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In this paper we present a new black hole solution surrounded by dark matter (DM) halo in the galactic
center using the mass model of M87 and that coming from the universal rotation curve (URC) dark matter
profile representing family of spiral galaxies. In both cases the DM halo density is cored with a size r0 and a
central density ρ0: ρðrÞ ¼ ρ0=ð1þ r=r0Þð1þ ðr=r0Þ2Þ. Since r0ρ0 ¼ 120 M⊙=pc2 [Mon. Not. R. Astron.
Soc. 397, 1169 (2009)], then by varying the central density one can reproduce the DM profile in any
spiral. Using the Newman-Jains method we extend our solution to obtain a rotating black hole
surrounded by dark matter halo. We find that the apparent shape of the shadow beside the black hole spin
a, it also depends on the central density of the surrounded dark matter ρ0. As a specific example we
consider the galaxy M87, with a central density ρ0 ¼ 6.9 × 106 M⊙=kpc3 and a core radius
r0 ¼ 91.2 kpc. In the case of M87, our analyses show that the effect of dark matter on the size of
the black hole shadow is almost negligible compared to the shadow size of the Kerr vacuum
solution hence the angular diameter 42 μas remains almost unaltered when the dark matter is considered.
For a small totally dark matter dominated spiral such as UGC 7232, we find similar effect of dark matter
on the shadow images compared to the M87. However, in specific conditions having a core radius
comparable to the black hole mass and dark matter with very high density, we show that the shadow
images decreases compared to the Kerr vacuum black hole. The effect of dark matter on the apparent
shadow shape can shed some light in future observations as an indirect way to detect dark matter using the
shadow images.

DOI: 10.1103/PhysRevD.100.044012

I. INTRODUCTION

Black holes (BHs) are the one of the most fascinating
astrophysical objects which perform manifestations of
extremely strong gravity such as formation of gigantic jets
of particles and disruption of neighboring stars. From
theoretical perspective, BHs serve as a lab to test various
predictions of theories of quantum gravity such as the
Hawking radiation. Recently, the Event Horizon Telescope
(EHT) Collaboration announced their first results concern-
ing the detection of an event horizon of a supermassive
black hole at the center of a neighboring elliptical M87
galaxy [1]. The bright accretion disk surrounding the black

hole appears distorted due to the phenomenon of gravita-
tional lensing. The region of accretion disk behind the
black hole also gets visible due to bending of light by black
hole. The shadow image helps in understanding the geo-
metrical structure of the event horizon and the speed of
rotation of the black hole.
In this paper, we consider a scenario of a BH surrounded

by a halo containing mostly dark matter. We ignore the
effects of baryonic matter and may consider it as a separate
study. For dark matter, we assume a Burkert halo (or the
universal rotation curve) profile of normal spirals which
point to the core to have fixed radius and density [2–8]. We
like to understand the effects of dark matter over the
shadows of black hole immersed in the halo in a family of
spiral galaxies. As a particular example we shall consider
the M87 black hole located at the galactic center and a
small spiral totally dominated by dark matter. Thus it will
be interesting to see if current or future astronomical
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observations can detect the presence of dark matter using
the black hole shadow.
Theoretically, the shadow cast by the black hole

horizon is studied as null geodesics and the existence of
a photon sphere. The incoming photons are trapped in an
unstable circular orbit (r ¼ 3M for a Schwarzschild BH).
Occasionally the photons are perturbed and diverted
towards the observer. The shadow of a BH is characterized
by the celestial coordinates α and β which are plotted for
different values of the BH parameters such as mass and
spin. In literature, the theory of black hole shadows is well-
developed and is under investigation for decades. After the
seminal work of Synge [9] and [10] on the apparent shape
of a spherically symmetric black hole and the appearance
Schwarzschild black hole, some notable results of BH
shadows are already discussed in the literature, to list a few:
The shadow of a Kerr black hole was studied by Bardeen
[11], shadow of Kerr-Newman black holes [12], naked
singularities with deformation parameters [13], Kerr-Nut
spacetimes [14], while shadows of black holes in Chern-
Simons modified gravity, Randall-Sundrum braneworlds,
and Kaluza-Klein rotating black holes have been studied in
[15–17], shadow of Kerr-Perfect fluid dark matter BH
[18–21] and rotating global monopoles with dark matter
[22] andmany other interesting studies concerning the Kerr-
like wormholes as well as traversable wormholes and many
others interesting studies [23–28]. Some authors have also
tried to test theories of gravity by using the observations
obtained from shadow of Sgr A* [29–32]; Einstein-dilaton-
Gauss-Bonnet BH [33]; Konoplya-Zhidenko BH [34];
Einstein-Maxwell-Chern-Simon BH [35]; Kerr-Newman-
Kasuya BH [36]; Kerr de Sitter BH [37]; Kerr-MOG BH
[38]; rotating regular BH [39]; Kerr-Sen BH [40]; non-
commutativeBHs [41]; naked singularities [42–43], shadow
of black holes in the presence of plasma [44] etc.
The plan of the paper is as follows: In Sec. II, we use the

URC dark matter profile to obtain the radial function of a
spherically symmetric spacetime. In Sec. III, we find a
spherically symmetric black hole metric surrounded by
dark matter halo. In Sec. IV, we Newman-Jains method to
find a rotating black hole with dark matter effects. In
Secs. V and VI we study null geodesics and circular orbits,
respectively. In Secs. VII and VIII we investigate the
shadow images and radius distortion. Finally in Sec. IX
we comment on our results. We shall use the natural units
G ¼ c ¼ ℏ ¼ 1 through the paper.

II. THE UNIVERSAL ROTATION CURVE
AND THE SPACETIME METRIC OF THE

DARK MATTER HALO

It is well known that the actual density halo distribution
around galaxies is well represented by the Burkert profile as
first proposed by Salucci and Burkert [2,3]. This distribu-
tion has been confirmed by the deep investigation of the
family of spiral coadded rotation curves derived from 1000

individual RCs (see, Salucci et al. [4]) and of a large
number of individual RC’s (see Donato et al. [5]). An even
bigger number of RCs has also confirmed this density
distribution (see Lapi et al. [6]), while for a review see [7].
This density profile is also known as the URC dark matter
profile and can be given by the following relation [2]

ρðrÞ ¼ ρ0r30
ðrþ r0Þðr2 þ r20Þ

; ð1Þ

with the mass profile of the dark matter galactic halo
given by

MDMðrÞ ¼ 4π

Z
r

0

ρðr0Þr02dr0: ð2Þ

Solving the last integral we obtain

MDMðrÞ ¼ πρ0r30

�
ln

�
1þ r2

r20

�
þ 2 ln

�
1þ r

r0

�

− 2 arctan

�
r
r0

��
ð3Þ

From the last equation one can find the tangential
velocity v2tgðrÞ ¼ MDMðrÞ=r of a test particle moving in
the dark halo in spherical symmetric space-time as follows

vtgðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
πρ0r30
r

r �
ln

�
1þ r2

r20

�
þ 2 ln

�
1þ r

r0

�

− 2 arctan

�
r
r0

��
1=2

: ð4Þ

In this section, we derive the space-time geometry for
pure dark matter. To do so, let us consider a static and
spherically symmetric spacetime ansatz with pure dark
matter in Schwarzschild coordinates can be written as
follows

ds2 ¼ −fðrÞdt2 þ dr2

gðrÞ þ r2ðdθ2 þ sin2 θdϕ2Þ; ð5Þ

in which fðrÞ and gðrÞ are known as the redshift and shape
functions, respectively. Given the tangential velocity, one
can calculate the radial function fðrÞ by the following
equation [45]

v2tgðrÞ ¼
rffiffiffiffiffiffiffiffiffi
fðrÞp d

ffiffiffiffiffiffiffiffiffi
fðrÞp
dr

¼ r
d lnð ffiffiffiffiffiffiffiffiffi

fðrÞp Þ
dr

: ð6Þ

Assuming a spherically symmetric solution, i.e. fðrÞ ¼
gðrÞ, and solving the last equation we find
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fðrÞ ¼
�
1þ r2

r20

�
−
2ρ0r

3
0
π

r ð1− r
r0
Þ�

1þ r
r0

�
−
4ρ0r

3
0
π

r ð1þ r
r0
Þ

× exp

�
4ρ0r30π arctanð rr0Þð1þ r

r0
Þ

r

�
: ð7Þ

In the specific case, we shall consider the galaxy M87,
with the central density given by ρ0 ¼ 6.9 × 106 M⊙=kpc3

with a core radius of the galaxyM87 given by r0 ¼ 91.2 kpc.
It is worth noting that the central densities depends upon the
core radius r0. Using the mass of the black hole M87
estimated as MBH ¼ 6.5 × 109 M⊙ we can express the
central density as ρ0 ¼ 0.001 in units of MBH= kpc3. At
this stage it is convenient to introduce a new constant k
defined by the following relation k ¼ ρ0r30. In particular for
M87 we find k ¼ 805 in units of black hole M87 mass.
If the dark matter is absent, i.e. k ¼ 0, our solution for

the radial function fðrÞ reduces to the following expected
relation

lim
k→0

fðrÞ ¼ lim
k→0

��
1þ r2

r20

�
−2kπ

r ð1− r
r0
Þ�

1þ r
r0

�
−4kπ

r ð1þ r
r0
Þ

× exp

�
4kπ arctanð rr0Þð1þ r

r0
Þ

r

��
¼ 1: ð8Þ

III. BLACK HOLES IN DARK MATTER HALO

We now shall generalize our solution to consider black
holes surrounded by dark matter halo. To do so, first let us
review briefly the result obtained in Ref. [45]. From the
pure dark matter space-time it was argued that one can
obtain the space-time metric of a black hole surrounded by
dark matter halo. As a special case one can recover the
Schwarzschild metric when dark matter is not absent. From
the Einstein field equation we have

Rν
μ −

1

2
δνμR ¼ κ2Tν

μ
DM: ð9Þ

Here Tν
μ
DM ¼ diag½−ρ; pr; p; p� are the nonzero energy-

momentum corresponding to the pure dark matter space-
time metric, given by [45]

κ2Tt
t
DM ¼ gðrÞ

�
1

r
g0ðrÞ
gðrÞ þ

1

r2

�
−

1

r2
;

κ2Tr
r
DM ¼ gðrÞ

�
1

r2
þ 1

r
f0ðrÞ
fðrÞ

�
−

1

r2
;

κ2Tθ
θ
DM ¼ κ2Tϕ

ϕ
DM

¼ 1

2
gðrÞ

�
f00ðrÞfðrÞ − f02ðrÞ

f2ðrÞ þ 1

2

f02ðrÞ
f2ðrÞ

þ 1

r

�
f0ðrÞ
fðrÞ þ

g0ðrÞ
gðrÞ

�
þ f0ðrÞg0ðrÞ
2fðrÞgðrÞ

�
: ð10Þ

One way to include the black hole in our metric is by
treating the dark matter as part of the general energy-
momentum tensor T μν ¼ Tμν þ Tμν

DM. At this point, we
emphasize that for the Schwarzschild black hole we need to
take into account only the energy-momentum tensor related
to the dark matter since the energy-momentum tensor of the
Schwarzschild black hole is zero, Tμν ¼ 0. This we guess
our space-time metric as follows

ds2 ¼ −ðfðrÞ þ F1ðrÞÞdt2 þ
dr2

gðrÞ þ F2ðrÞ
þ r2ðdθ2 þ sin2θdϕ2Þ: ð11Þ

For convenience let us rewrite these coefficient functions as
follows

FðrÞ ¼ fðrÞ þ F1ðrÞ;
GðrÞ ¼ gðrÞ þ F2ðrÞ: ð12Þ

The Einstein field equation can now be written as

Rν
μ −

1

2
δνμR ¼ κ2ðTν

μ þ Tν
μ
DMÞ: ð13Þ

With the help of our space-time metric and Einstein field
equations yields

ðgðrÞþF2ðrÞÞ
�
1

r2
þ1

r
g0ðrÞþF0

2ðrÞ
gðrÞþF2ðrÞ

�
¼gðrÞ

�
1

r2
þ1

r
g0ðrÞ
gðrÞ

�
;

ðgðrÞþF2ðrÞÞ
�
1

r2
þ1

r
f0ðrÞþF0

1ðrÞ
fðrÞþF1ðrÞ

�
¼gðrÞ

�
1

r2
þ1

r
f0ðrÞ
fðrÞ

�
:

ð14Þ

In terms of these relations space-time metric including a
black hole in dark matter halo gives [45]

ds2¼−exp

�Z
gðrÞ

gðrÞ− 2GM
r

�
1

r
þf0ðrÞ

fðrÞ
�
dr−

1

r
dr

�
dt2

þ
�
gðrÞ−2GM

r

�
−1
dr2þ r2ðdθ2þ sin2θdϕ2Þ: ð15Þ

In the special case when dark matter is absent i.e.,
fðrÞ ¼ gðrÞ ¼ 1, the indefinite integral results with a
constant

F1ðrÞþfðrÞ¼ exp

�Z
gðrÞ

gðrÞþF2ðrÞ
�
1

r
þf0ðrÞ

fðrÞ
�
dr−

1

r
dr

�

¼ 1−
2M
r

; ð16Þ

with M being the black hole mass. In other words, we end
up with the Schwarzschild black hole space-time. Finally
we can interpret the space-time Eq. (15) as a Schwarzschild
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black hole surrounded by dark matter halo. Given the dark
matter density profile one can obtain the corresponding
space-time. Based on our assumption that fðrÞ ¼ gðrÞ, we
obtain F1ðrÞ ¼ F2ðrÞ ¼ −2M=r, hence the black hole
space-time is finally written as

ds2 ¼ −FðrÞdt2 þ dr2

GðrÞ þHðrÞðdθ2 þ sin2θdϕ2Þ ð17Þ

where HðrÞ ¼ r2. The black hole space-time metric coef-
ficient functions are given by

FðrÞ ¼ GðrÞ

¼
�
1þ r2

r20

�
−2kπ

r ð1− r
r0
Þ�

1þ r
r0

�
−4kπ

r ð1þ r
r0
Þ

× exp

�
4kπ arctanð rr0Þð1þ r

r0
Þ

r

�
−
2M
r

: ð18Þ

IV. ROTATING BLACK HOLES
IN DARK MATTER HALO

We shall now generalize our spherical symmetric black
hole to rotational black hole surrounded by dark matter halo
based on the Newman-Jains method. Following the stan-
dard formalism, first we transform Boyer-Lindquist (BL)
coordinates ðt; r; θ;ϕÞ to Eddington-Finkelstein (EF) coor-
dinates ðu; r; θ;ϕÞ. One can obtain such coordinates by
introducing the following transformation

dt ¼ duþ drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðrÞGðrÞp ; ð19Þ

It is convenient to rewrite this metric in terms of null
tetrads as

gμν ¼ −lμnν − lνnμ þmμm̄ν þmνm̄μ; ð20Þ
and the null tetrads defined by

lμ ¼ δμr ; ð21Þ

nμ ¼ δμu −
1

2
FðrÞδμr ; ð22Þ

mμ ¼ 1ffiffiffiffiffiffiffi
2H

p
�
δμθ þ

_ι

sin θ
δμϕ

�
; ð23Þ

m̄μ ¼ 1ffiffiffiffiffiffiffi
2H

p
�
δμθ −

_ι

sin θ
δμϕ

�
ð24Þ

It is worth noting that the null tetrads are chosen such
that mμ and m̄μ are complex, thus for example m̄μ is
complex conjugate of mμ. By construction these vectors
satisfy the conditions for normalization, orthogonality and
isotropy as

lμlμ ¼ nμnμ ¼ mμmμ ¼ m̄μm̄μ ¼ 0; ð25Þ

lμmμ ¼ lμm̄μ ¼ nμmμ ¼ nμm̄μ ¼ 0; ð26Þ

− lμnμ ¼ mμm̄μ ¼ 1: ð27Þ

According to the Newman–Janis prescription we can write

x0μ ¼ xμþ iaðδμr − δμuÞcosθ→

8>>><
>>>:

u0 ¼ u− iacosθ;

r0 ¼ rþ iacosθ;

θ0 ¼ θ;

ϕ0 ¼ ϕ;

ð28Þ

with a being the spin parameter. Furthermore the null
tetrad vectors Za transform according to the relation
Zμ ¼ ð∂xμ=∂x0νÞZ0ν, yielding

l0μ ¼ δμr ; ð29Þ

n0μ ¼
ffiffiffiffi
B
A

r
δμu −

1

2
Bδμr ; ð30Þ

m0μ ¼ 1ffiffiffiffiffiffi
2Σ

p
�
ðδμu − δμrÞ_ιa sin θ þ δμθ þ

_ι

sin θ
δμϕ

�
; ð31Þ

m̄0μ ¼ 1ffiffiffiffiffiffi
2Σ

p
�
ðδμu − δμrÞ_ιa sin θ þ δμθ þ

_ι

sin θ
δμϕ

�
; ð32Þ

wherewe have assumed that the functions ðGðrÞ; FðrÞ; HðrÞÞ
transform to ðAða; r; θÞ; Bða; r; θÞ;Σða; r; θÞÞ. Having
defined the null tetrad vectors one can construct the contra-
variant components of our new metric in terms of the
following relations

guu ¼ a2sin2θ
Σ

; guϕ ¼ a
Σ
; gur ¼ 1 −

a2sin2θ
Σ

;

grr ¼ F þ a2sin2θ
Σ

; grϕ ¼ −
a
Σ
; gθθ ¼ 1

Σ
;

gϕϕ ¼ 1

Σsin2θ
: ð33Þ

Note Σ ¼ r2 þ a2 cos2 θ, and F is some function of r
and θ. The metric is found as follows

ds2 ¼ −Fdu2 − 2dudrþ 2asin2θðF − 1Þdudϕ
þ 2asin2drdϕþ Σdθ2

þ sin2θ½Σþ a2ð2 − F Þsin2θ�dϕ2: ð34Þ

Furthermore we can rewrite our black hole solution in
terms of old coordinates by introducing the following
transformations
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du ¼ dt −
a2 þ r2

Δ
dr; dϕ ¼ dφ −

a
Δ
dr; ð35Þ

where Δ is defined by

Δ ¼ r2GðrÞ þ a2

¼ r2
�
1þ r2

r20

�−2kπ
r ð1− r

r0
Þ�

1þ r
r0

�
−4kπ

r ð1þ r
r0
Þ

× exp

�
4kπ arctanð rr0Þð1þ r

r0
Þ

r

�
− 2Mrþ a2; ð36Þ

with GðrÞ ¼ FðrÞ ¼ fðrÞ þ F1ðrÞ ¼ gðrÞ þ F2ðrÞ. Note
that the first terms in the last equation encodes the dark
matter halo, while the second and third term depends on the
black hole mass and angular momentum parameter, respec-
tively. The rotational black hole space-time metric sur-
rounded by dark matter halo is

ds2 ¼ −
�
1 −

2ΥðrÞr
Σ

�
dt2 þ Σ

Δ
dr2 þ Σdθ2

− 2asin2θ
2ΥðrÞr

Σ
dtdφ

þ sin2θ
�ðr2 þ a2Þ2 − a2Δsin2θ

Σ

�
dφ2 ð37Þ

where we have introduced

ΥðrÞ ¼ rð1 −GðrÞÞ
2

: ð38Þ

The last equation represents the space-time metric of
rotational black holes surrounded by URC dark matter halo.
In the Appendix we proof that our spherical symmetric
solution generated from Newman-Janis algorithm does
satisfy the Einstein field equations.

A. Shape of Ergoregion

Let us now proceed to study the shape of the ergoregion
of our black hole metric given by (37). In particular we
shall be interested to plot the shape of the ergoregion in the
xz-plane. Recall that the horizons of the black hole can be
found by solving Δ ¼ 0, i.e.,

r2
�
1þ r2

r20

�
−2kπ

r ð1− r
r0
Þ�

1þ r
r0

�
−4kπ

r ð1þ r
r0
Þ

×exp

�
4kπ arctanð rr0Þð1þ r

r0
Þ

r

�
− 2Mrþa2 ¼ 0; ð39Þ

on the other hand, the static limit or ergo surface inner and
outer ergosurface is given by gtt ¼ 0, i.e.,

r2
�
1þr2

r20

�
−2kπ

r ð1− r
r0
Þ�

1þ r
r0

�
−4kπ

r ð1þ r
r0
Þ

×exp

�
4kπarctanð rr0Þð1þ r

r0
Þ

r

�
−2Mrþa2cos2θ¼0: ð40Þ

From Fig. 1 we observe that for a given ρ0 and r0, one
gets two horizons if a < aE. However when a ¼ aE (blue
line) the two horizons coincide, in other words we have an
extremal black hole with degenerate horizons. Beyond this
critical value, a > aE, there is no event horizon and the
solution corresponds to a naked singularity (Figs. 2–4).
Also we can observe that the effect of dark matter halo is
very small, in fact the effect of dark matter results with a
smaller value for gtt and Δ compared to the Kerr vacuum
solution (Fig. 5).

V. NULL GEODESICS

One of the most important goals of this paper is to study
the shadow shapes of the black hole defined by metric 37.
Towards this goal, we shall first analyze the geodesics
equations of photons in a given spacetime background. The
crucial point behind this method is the fact that one can
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0.5
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r M

k 805

0.0 0.5 1.0 1.5 2.0
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0.4

0.6

0.8

1.0

r M

Δ

k 805

Δ

FIG. 1. Variation of Δ as a function of r, for a fixed value of r0 ¼ 91.2 kpc, k ¼ 805 in units of MBH= kpc3. Left panel: We use
a ¼ 0.2 (black curve), a ¼ 0.5 (red curve), a ¼ 0.75 (blue curve), respectively. Right panel: We use a ¼ 0.85 (black curve), a ¼ 0.95
(red curve), a ¼ 1 (blue curve), respectively.
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differentiate the unstable photon orbits which in turn
defines the boundary of the shadow.
In order to find the null geodesics around the black hole

we can use the Hamilton-Jacobi equation given as follows

∂τJ ¼ −H: ð41Þ

Note that J is the Jacobi action, defined in terms of the
affine parameter τ and coordinates xμ i.e. J ¼ J ðτ; xμÞ and
H is the Hamiltonian of the particle which can be stated
also as gμν∂μJ ∂νJ . From the symmetries of the spacetime,
it is well known that along the photon geodesics the energy
E and momentum L are conserved quantities, and can be

FIG. 2. Variation of Δ as a function of r, with no dark matter halo, i.e., ρ0 ¼ 0. Left panel: We use a ¼ 0.2 (black curve), a ¼ 0.5 (red
curve), a ¼ 0.75 (blue curve), respectively. Right panel: We use a ¼ 0.85 (black curve), a ¼ 0.95 (red curve), a ¼ 1 (blue curve),
respectively.

FIG. 4. Variation of gtt as a function of r, with no dark matter halo, i.e, ρ0 ¼ 0. We use a ¼ 0.5 (black curve), a ¼ 0.75 (red curve),
a ¼ 1 (blue curve), in both plots respectively.

FIG. 3. Variation of gtt as a function of r, for a fixed value of r0 ¼ 91.2 kpc, and k ¼ 805 in units of MBH= kpc3. We use a ¼ 0.5
(black curve), a ¼ 0.75 (red curve), a ¼ 1 (blue curve), in both plots respectively.
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FIG. 5. Plot showing the variation of the shape of ergoregion of the rotating black hole with dark matter effects in the xz-plane for
different values of a. The red line corresponds to the static limit surfaces while the two black lines correspond to the two horizons.
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defined by Killing fields ξt ¼ ∂t and ξϕ ¼ ∂ϕ, respectively.
In the case of photon we shall consider also m ¼ 0. Next,
one can separate the Jacobi function as follows

J ¼ 1

2
m2τ − Etþ Lϕþ J rðrÞ þ J θðθÞ ð42Þ

with J rðrÞ and J θðθÞ are functions of the coordinates r
and θ.
If we combine Eqs. (41) and (42) it is straightforward to

recover the following equations of motions

Σ
dt
dτ

¼ r2þa2

Δ
½Eðr2þa2Þ−aL�−aðaEsin2θ−LÞ; ð43Þ

Σ
dr
dτ

¼
ffiffiffiffiffiffiffiffiffiffi
RðrÞ

p
; ð44Þ

Σ
dθ
dτ

¼
ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
; ð45Þ

Σ
dφ
dτ

¼ a
Δ
½Eðr2 þ a2Þ − aL� −

�
aE −

L
sin2 θ

�
; ð46Þ

with RðrÞ and ΘðθÞ given by

RðrÞ ¼ ½Eðr2 þ a2Þ − aL�2 − Δ½m2r2 þ ðaE − LÞ2 þK�;
ð47Þ

ΘðθÞ ¼ K −
�

L2

sin2 θ
− a2E2

�
cos2 θ; ð48Þ

with K being the Carter constant.

VI. CIRCULAR ORBITS

Let us note that the photons which are emitted from the
light source can eventually fall into the black hole or scatter
away from it. This process defines a region separating these
photons forming the contour of the shadow. We can analyze
the presence of unstable circular orbits around the black
hole be writing the radial geodesic equation in terms of
effective potential Veff corresponding to the photon’s radial
motion as

Σ2

�
dr
dτ

�
2

þ Veff ¼ 0: ð49Þ

For our convenience we introduce two independent
parameters ξ and η [46] as

ξ ¼ L=E; η ¼ K=E2: ð50Þ

The effective potential in terms of these two parameters is
then expressed as

Veff ¼ Δðða − ξÞ2 þ ηÞ − ðr2 þ a2 − aξÞ2; ð51Þ

where we have replaced Veff=E2 by Veff. Figure 6 shows the
variation in effective potential associated with the radial
motion of photons. Now the circular photon orbits exists
when at some constant r ¼ rc the conditions

VeffðrÞ ¼ 0;
dVeffðrÞ

dr
¼ 0 ð52Þ

are satisfied. We then use these equations to obtain the
following results

FIG. 6. Left panel: The effective potential of photon moving in equatorial plane, with respect to r in the case of L ≠ 0. Right panel:
The effective potential of photon moving in equatorial plane, with respect to its radial motion with L ¼ 0. We have chosen a ¼ 0.5
(black color), a ¼ 0.6 (red color) and a ¼ 0.75 (blue color), respectively.
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ξ ¼
ð3Mr2 − a2ðM þ 2rÞÞAþ exp

	
4kπðrþr0Þ arctanð r

r0
Þ

rr0
ðrða2 − r2Þ þ kπða2 þ r2ÞB




a exp
	
4kπðrþr0Þ arctanð r

r0
Þ

rr0



ðrþ kπBÞ − aMA

η ¼
r3ðMð4a2 − 9MrÞA2 − r exp

	
8kπðrþr0Þ arctanð r

r0
Þ

rr0


	
rþ 2kπ arctanð rr0Þ − kπKÞ2 þ 2A exp

	
4kπðrþr0Þ arctanð r

r0
Þ

rr0



N



	
aMA − a exp

	
4kπðrþr0Þ arctanð r

r0
Þ

rr0



ðrþ kπBÞ



2

ð53Þ

where

A ¼
�
1þ r2

r20

�2kπðr0−rÞ
rr0

�
1þ r

r0

�4kπðrþr0Þ
rr0 ; ð54Þ

B¼−2arctan
�
r
r0

�
þ ln

�
1þ r2

r20

�
þ2 ln

�
1þ r

r0

�
; ð55Þ

K ¼ ln

�
1þ r2

r20

�
þ 2 ln

�
1þ r

r0

�
; ð56Þ

N ¼ 3Mr2 þ kπð2a2 − 3MrÞB: ð57Þ

In the special case k → 0 we recover the Kerr vacuum
case [13]

ξ ¼ r2ð3M − rÞ − a2ðM − rÞ
aðr −MÞ ; ð58Þ

η ¼ r3ð4Ma2 − rðr − 3MÞ2Þ
a2ðr −MÞ2 : ð59Þ

Note that a is nonzero in the last two equations.

VII. SHADOW OF M87 BLACK HOLE
SURROUNDED BY DARK MATTER

We can proceed further to find the shadow images related
to our black hole in the presence of dark matter. The
observer is located at the position ðro; θoÞ, where ro ¼
r → ∞ and θo being the angular coordinate on observer’s
sky. Toward this purpose, we also need to introduce
celestial coordinates, say α and β, given in terms of the
following equations [18]

α ¼ lim
ro→∞

�
−r2o sin θo

dϕ
dr

�
; ð60Þ

β ¼ lim
ro→∞

�
r2o

dθ
dr

�
: ð61Þ

Furthermore, one can rewrite these coordinates in terms
of two parameters ξ and η, given by

α ¼ −
ξ

sin θ
;

β ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηþ a2 cos2 θ − ξ2 cot2 θ

q
: ð62Þ

To simplify the problem further we shall consider that the
observer is located in the equatorial plane (θ ¼ π=2), α and
β yielding

α ¼ −ξ; ð63Þ

β ¼ � ffiffiffi
η

p
: ð64Þ

In order to see better the effect of dark matter let us
introduce a new variable, say x ¼ r=r0 resulting with

FðrÞ ¼ ð1þ x2Þ−2kπ
r ð1−xÞð1þ xÞ−4kπ

r ð1þxÞ

× exp

�
4kπ arctanðxÞð1þ xÞ

r

�
−
2M
r

: ð65Þ

Figures 7 show the deformation in shapes of the black
hole shadow with respect to ρ0 and a. It is shown that the
shadow of the black hole M87 (red curve) in the presence of
dark matter is almost indistinguishable compared to the
Kerr vacuum (black curve). The effect is strong if the core
radius of the dark matter is of the order of black hole mass,
consequently a much denser dark matter medium compared
to ρ0 for M87. This will happen if x increases (or the core
radius decreases), while keeping constant k, as a result the
shadow images decreases. For an interesting observation, in
Fig. 8 we show the shadow for small spiral dominated by
dark matter, such as the spiral galaxy UGC 7232 with ρ0 ¼
7 × 10−23 g=cm3 and a core radius r0 ¼ 0.35 kpc and
black hole mass MBH ¼ 105 M⊙ (Fig. 9). We have found
a similar analysis as in the case of M87. Again under
specific condition, say with a very small core radius such as
the case x ¼ 1; 2; 3; 4 and say k ¼ 0.005. We find that the
shadow shapes are considerable decreased compared to
the Kerr vacuum solution. This can be seen from the blue
curve in Figs. 7 and 8.

A. A comparison with NFW profile
and the cusp phenomenon

In Ref. [19] authors have studied the effect of cold dark
matter on the black hole shadow using the well-known
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Navarro-Frenk-White (NFW) dark matter density profile
given by

ρNFW ¼ ρ0
r
rs
ð1þ r

rs
Þ2 : ð66Þ

In particular they obtained a black hole solution sur-
rounded by dark matter given by the line element

FðrÞ ¼
�
1þ r

rs

�
−8kπ

r

−
2M
r

ð67Þ

with k ¼ ρ0r3s . In the case of M87 we have rs ¼ 130 kpc
and ρ0 ¼ 0.008 × 107.5 M⊙=kpc3 (see, [47]). In what
follows we shall compare the shadow images using the
URC and NFW profile. Figure 10 show that in the case of
M87 shadow images are in perfect agreement, however in a
stronger dark matter medium shadow images show differ-
ent effect. In particular the NFWeffect increases the size of
shadow images compared to the Kerr vacuum, while the
URC profile results in a decrease of shadow images. In
order to have strong effect we need a core radius compa-
rable to the black hole mass, and this difference may be

related to the cusp phenomenon, namely when the
distance r from the black hole is below 1–2 kpc it is
known that energy density of dark matter diverges for NFW
profile.
The energy density of the surrounded dark matter is

given by the following equation [19]

κ2ρ ¼ 1

r2
− GðrÞ

�
G0ðrÞ
rGðrÞ þ

1

r2

�
: ð68Þ

From Fig. 11 we see that the energy density of dark
matter at small distance is ill behaved in the case of NFW
and “cusp” phenomenon occurs. Interestingly, for the case
of URC the dark matter density is finite at small distances.
To conclude, the difference on the effect of dark matter on
black hole shadow can be linked to the cusp phenomenon.
For URC profile, the energy density of dark matter is finite
near the black hole hence we observe smaller images.
This effect may be potentially explained by the fact that
dark matter causes a pressure on the surrounding plasma
near the black hole, as a result smaller shadow size is
obtained.

FIG. 7. Variation in shape of shadow for different values of a. We use M ¼ 1 in units of the M87 black hole mass given by
MBH ¼ 6.5 × 109 M⊙ and r0 ¼ 91.2 kpc or r0 ¼ 28.8 × 107 MBH. Furthermore for M87 we have used ρ0 ¼ 6.9 × 106 M⊙=kpc3, thus
we find k ¼ 805 in units of MBH. The red curve corresponds to M87, black curve corresponds to Kerr vacuum solution and the dotted
and line blue curve corresponds to k ¼ 0.005 with x ¼ 3 and x ¼ 4.5, respectively.
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FIG. 8. Variation in shape of shadow for different values of a in the case of small spiral UGC 7232 dominated by dark matter with
black hole mass MBH ¼ 105 M⊙. Here we have used ρ0 ¼ 7 × 10−23 g=cm3 with a core radius r0 ¼ 0.35 kpc, or r0 ¼ 0.7 × 1010 in
units ofMBH. In a similar way we find k ¼ 438 in units ofMBH ¼ 106 M⊙. To see the effect better, we compare the results with the Kerr
vacuum solution in all plots, respectively. We clearly see that the situation is almost similar to M87, thus we conclude that the effects of
dark matter are almost negligible.

FIG. 9. Left panel: Variation in shape of shadow for M87 for different values of a (dashed lines). Right panel: Variation in shape of
shadow in the case of small spiral UGC 7232 for different values of a (solid lines). We have used a ¼ ð0.2; 0.5; 0.75; 0.98Þ from left to
right in both plots.
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VIII. RADIUS DISTORTION AND ENERGY
EMISSION

In order to extract information the shadow size there are
two commonly defined observable: the radius Rs of the
shadow and the distortion δs. The shadow radius Rs is
defined in terms of the reference circle (see, Fig. 12) in
connecting three characteristic points on the boundary of
the shadow: ðαt; βtÞ corresponds to the top most point on
the shadow, ðαb; βbÞ corresponds to the bottommost point
on the shadow and finally ðαr; 0Þ corresponds to unstable
circular orbit seen by an observer on reference frame.
Mathematically the radius is approximated as follows [18]

Rs ¼
ðαt − αrÞ2 þ β2t

2jαt − αrj
: ð69Þ

On the other hand, the second observable δs describes
the rate of distortion. By construction DCS simply gives the
difference between the contour of shadow and reference
circle in terms of the points: ðα̃p; 0Þ and ðαp; 0Þ, thus
DCS ¼ jα̃p − αpj. Now the distortion yields

δs ¼
α̃p − αp

Rs
: ð70Þ

FIG. 11. We show the dark matter for the NFW and URC
density profile, respectively. In the case of URC profile the
energy density of dark matter is finite.

FIG. 12. Schematic representation of rotating black hole
shadow and depicting the observable Rs [48].

FIG. 10. Variation of shadow shapes of M87 using NFW and URC profile. For the case of M87 the shadow plots are almost same,
while for stronger effect they show opposite behavior, namely it is observed that NFW increases the shadow size, on the hand URC
decreases the shadow size. We have introduced a new variable x ¼ r=rs or x ¼ r=r0, respectively.
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For our case, we consider the points ðα̃p; 0Þ and ðαp; 0Þ
to be on the equatorial plane, opposite to the point ðαr; 0Þ.
As we have considered our observer to be at infinity

so in this case the area of the black hole shadow will
be approximately equal to high energy absorption cross
section. For a spherically symmetric black hole the
absorption cross section oscillates around Πilm, a limiting
constant value. For a black hole shadow with radius Rs, we
adopt the value of Πilm as calculated by

Πilm ≈ πR2
s : ð71Þ

The energy emission rate of the black hole is thus defined
by [18]

d2EðσÞ
dσdt

¼ 2π2
Πilm

eσ=T − 1
σ3; ð72Þ

where σ is the frequency of the photon and T represents the
temperature of the black hole at outer horizon i.e. rþ, given
by [18]

TðrþÞ¼ lim
r→rþ

∂r
ffiffiffiffiffi
gtt

p
2π

ffiffiffiffiffiffi
grr

p

¼ð2a2ðfðrþÞ−1Þþrþðr2þþa2Þf0ðrþÞÞ
rþ

4πðr2þþa2Þ2
ð73Þ

The angular radius of the shadow can be estimated using
the observable Rs as θs ¼ RsM=D, where M is the black
hole mass and D is the distance between the black hole and
the observer. The angular radius can be further expressed as
θs ¼ 9.87098 × 10−6RsðM=M⊙Þð1 kpc=DÞ as [19]. In the
case of M87, for the supermassive black hole M87 mass we
have usedM ¼ 6.5 × 109 M⊙ andD ¼ 16.8 Mpc [1] is the
distance between the Earth and M87 center black hole. The
angular diameter of the shadow of the M87 supermassive
black hole is estimated to be 42� 3 μas (see, [1]). In order
to include dark matter effect, we have considered the case
of k ¼ 0.005 with x ¼ 1. We can estimate the observable
quantities such as Rs and δs, as shown in Fig. 13. Wewe see
from Fig. 14 that Rs is smaller compared to the Kerr

FIG. 13. Left panel: The quantities Rs with respect to spin parameter a. Right panel: The quantities δs with respect to spin parameter a.

FIG. 14. Left panel: The quantities Rs with respect to spin parameter a, The red curve corresponds to k ¼ 0.005, while the black curve
to the case when dark matter effects are absent or almost negligible. Right panel: The quantities δs with respect to spin parameter a. We
see that the dark matter results in a decrease of the shadow radius.
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vacuum black hole when the dark matter effects are taken
into account. Furthermore in Fig. 15 we plot the energy
emission rate. Finally we compare our results with the
empirical value of the angular diameter reported for the
M87 estimated as 42 μas (see, [1]), and found that our
results are consistent with [1] (Fig. 16).

IX. CONCLUSION

In this paper we have obtained a new black hole solution
surrounded by dark matter halo in the galactic center using
the so-called universal rotation curve (URC) dark matter
profile. Furthermore using the Newman-Jains method we
have extended our solution to a rotating black hole
surrounded by dark matter halo. We have explored the
shadow images of the black hole M87 with effect of dark
matter. In doing so, for the central density of the galaxy
M87 we have adopted the value ρ0 ¼ 6.9 × 106 M⊙=kpc3

and a core radius r0 ¼ 91.2 kpc. Our analyses show that
the shadow size is the same compared to the Kerr vacuum

solution. In the case of small spiral dominated by dark
matter, such as UGC 7232, we find that the effect of dark
matter on shadow images is almost same as in M87. We
have compared our results with [1] and found that the
consistency is achieved if the black hole mass is
M ¼ 6.9 × 109 M⊙, hence the angular diameter reported
for the M87 42 μas should remain almost unchanged in the
presence of dark matter. The small effect of dark matter on
the shadow of suggests that most of the galactic dark matter
resides in the halo and not in the core or center regions.
Furthermore this show that it is very difficult to detect dark
matter using the shadow images in terms of the present
technology. Similar results have been reported recently in
Ref. [19] where the effect of dark matter on the shadow of
the Sgr A* was estimated to the order of 10−3 μas.
Although such tiny effects on the angular diameter are
out of reach of the present technology, it remains an open
question if future astronomical observations can potentially
detect such effects.

FIG. 15. Left panel: Emission rate for the case k ¼ 0.005. Right panel: Emission rate in the case when dark matter is absent. We use
a ¼ 0.2 (red curve), a ¼ 0.6 (blue curve), and a ¼ 0.9 (black curve), respectively.

FIG. 16. Left panel: The angular diameter for M87 where the effect of dark matter are very small. The consistency is achieved for the
supermassive black hole M87 having mass M ¼ 6.9 × 109 M⊙, hence the reported value of 42 μas remains unchanged when we
consider dark matter effects. Right panel: the angular diameter for the black hole with k ¼ 0.005 and x ¼ r=r0 ¼ 1. Thus when the dark
matter effects are stronger the angular diameters are shifted. Note that we have adopted D ¼ 16.8 Mpc.
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In order to have strong effect of dark matter we have
argued that the core radius should be of the order of black
hole masses implying a much higher value for the critical
density, say compared to M87. In that case, the surrounding
dark matter considerable affects the shadow shapes result-
ing with smaller angular diameter for the shadow. This
effect may be explained by the fact that dark matter causes a
pressure on the surrounding plasma near the black hole, as a
result smaller shadow size is obtained. We have compared
two density profiles; the NFW and the URC dark matter
density profile and obtained opposite behavior on the
black hole shadow. Namely, in the case of NFW the
shadow radius increases, while for URC the shadow radius
decreases. We have argued that this difference may be
linked to the cusp phenomenon. In fact, the energy density
of dark matter near the black hole is ill behaved while in the
case of URC profile the energy density is finite. In that
sense, the URC profile produces better results in our view.
We plan in the near future to study the effect of stellar
distribution on the black hole shadow.

APPENDIX: EINSTEIN FIELD EQUATIONS

Here we shall show that the obtained spherical sym-
metric solution (37) is an exact solution of the Einstein field
equations. It has been shown previously for the generic
spherical symmetric solution generated from Newman-
Janis algorithm does satisfy the Einstein field equations
(see for details [49]). Toward this purpose we can use the
Einstein field equations Gμν ¼ 8πTμν along with the
energy-momentum tensor represented by a properly chosen

tetrad of the vector given by Tμν ¼ eμaeνbT
ab, where

Tab ¼ ðρ; pr; pθ; pφÞ. In terms of the orthogonal basis,
the energy momentum tensor components are given as
follows

ρ ¼ 1

8π
eμt eνt Gμν; pr ¼

1

8π
eμreνrGμν;

pθ ¼
1

8π
eμθe

ν
θGμν; pφ ¼ 1

8π
eμφeνφGμν: ðA1Þ

The idea is to find an orthogonal bases such that the
Einstein field equations are satisfied

0 ¼ Gμν − 8πTμν

¼ Gμν − 8πðeaμebνÞ
1

8π
ðeγaeηbÞGγη

¼ Gμν − ðeaμeγaÞðebνeηbÞGγη

¼ Gμν − δγμδ
η
νGγη

¼ 0: ðA2Þ
If such a bases exists, then the problem is solved. One

such orthogonal bases is the following choice

eμt ¼
1ffiffiffiffiffiffiffi
ΣΔ

p ðr2þa2;0;0;aÞ; eμr ¼
ffiffiffiffi
Δ

p
ffiffiffi
Σ

p ð0;1;0;0Þ;

eμθ¼
1ffiffiffi
Σ

p ð0;0;1;0Þ; eμφ¼ 1ffiffiffi
Σ

p
sinθ

ðasin2θ;0;0;1Þ: ðA3Þ

For the Einstein tensor components we find

Gtt ¼
2Υ0ða4cos4θ − a4cos2θ þ a2r2 þ r4 − 2Υr3Þ − a2rsin2θΥ00

Σ3
;

Grr ¼ −
2Υ0r2

ΔΣ
;

Gθθ ¼ −
Υ00a2r2cos2θ þ 2Υ0a2cos2θ þ Υ00r3

Σ
;

Gtφ ¼ asin2θ½rða2 þ r2ÞΣΥ00 þ 2Υ0ðða2 þ r2Þa2cos2θ − a2r2 − r3ðr − 2ΥÞÞ�
Σ3

;

Gφφ ¼ −
sin2θ½rða2 þ r2Þ2ΣΥ00 þ 2a2Υ0ðcos2θða4 þ 3a2r2 þ 2r4 − 2Υr3Þ − a2r2 − r4 þ 2Υr3Þ�

Σ3
ðA4Þ

Finally for the energy momentum tensor components we
find

ρ ¼ 2Υ0ðrÞr2
8πΣ2

¼ −pr;

pθ ¼ pϕ ¼ pr −
Υ00ðrÞrþ 2Υ0ðrÞ

8πΣ
: ðA5Þ

This shows that indeed the metric (37) is a solution of
Einstein field equations. It is worth noting that our solution

relies on the empirical dark matter density profile obtained
from observations along with the rotatingmetric obtained by
the Newman-Janis algorithm, a quite similar approach
developed recently by Z. Xu et al. [45]. One can go one
step further to ask whether we can check the validity of the
resulting energy momentum tensor components of the dark
matter in the framework of some underlying field equations
of the theory, say in terms of the explicit Lagrangian for the
dark matter. Unfortunately, we do not know yet the full
mechanism of the dark matter and this remains an open
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problem. Starting from the action, equation of motion, and
Lagrangian of the dark matter, in principle, one should be
able to recover the above energy momentum tensor compo-
nents. Of course, this is outside the scope of the present
article, but one possibleway to tackle this problem is the idea
of dark matter as a Bose-Einstein condensates (BEC). In
particular the URC density profile obtained through the

kinematics of spirals (i.e. observations) could be explained
by the nonminimal coupling of a condensed phase inside a
dark matter halo as an effective density profile (see for
example, D. Bettoni et al. [50]). According to this view, in
large scales the dark matter is described by a minimally
coupled weakly self-interacting scalar field, while inside the
halos it develops a nonminimal coupling mechanism.
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