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We discuss locally Weyl (scale) covariant generalization of quadratic curvature gravity theory in three
dimensions using Riemann-Cartan-Weyl spacetimes. We show that this procedure of Weyl gauging yields a
consistent generalization for a particular class of quadratic curvature gravity theories which includes the
new massive gravity theory.
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I. INTRODUCTION

Locally scale covariant theories are important because
they allow the construction of high and low energy
complete theories. In the context of gravitational theories,
this aspect is very important due to a lack of having a
well-behaved perturbative quantum gravity. To gain insight
in the quantum gravity problem, three-dimensional (3D)
toy models [1] provide us with important examples:
Topologically massive gravity (TMG) [2,3], minimal mas-
sive gravity (MMG) [4,5], and new massive gravity (NMG)
[6,7], all of which are extensions of cosmological general
relativity (GR) in three dimensions (3D). Because GR in
3D has no propagating degree of freedom [8], these models
are obtained by augmenting the GR action with extra terms
such as coupling a vector Chern-Simons term (for TMG
and MMG) or a particular combination of quadratic
curvature invariants (for NMG). An important common
feature of all of these models is that, when linearized
around a 3D anti–de Sitter background, they yield a
propagating massive spin-2 field, i.e., a graviton.
In our recent works, we studied the locally Weyl

covariant TMG [9] and MMG theories [10], where we
used the powerful language of differential forms on
Riemann-Cartan-Weyl (RCW) spacetimes. RCW space-
times provide a natural, geometrical framework to discuss
locally scale covariant theories [11]. Choosing a specific
nonmetricity tensor and identifying it with the Weyl con-
nection helps us provide a geometrical origin to scale trans-
formations. In this geometrical framework, the scale
covariant theories are defined in terms of a locally scale
invariant action with a first order variational formalism.
In this paper, we study the locally Weyl covariant

generalization of quadratic curvature gravity (QCG) in
3D and the consistency of this procedure. QCG is defined

via the action of 3D GR augmented with generic quadratic
curvature invariants. This model is motivated by NMG and
the new improved massive gravity (NIMG) [12,13] models.
On the one hand, in NIMG we have studied a general 3D
gravitational model that contains TMG, MMG, and NMG
as subcases and obtained exact background solutions.
NIMG action also contains the most general quadratic
curvature invariants in its action. On the other hand, NMG
is a parity invariant extension of GR given by a specific
combination of the squares of Ricci tensor and scalar
curvature. It is shown to admit TMG theory as its square
root, and at the linearized level it is equivalent to the unitary
Pauli-Fierz theory for a massive spin-2 field. These proper-
ties make it desirable to discuss Weyl covariant extensions
of NMG and NIMG. To cover both cases, we study the
Weyl covariant generalization of QCG. We show that, for a
certain subset of our coupling parameters (which also cover
the NMG theory), this generalization is consistent.
The organization of the paper is as follows. In Sec. II, we

discuss RCW spacetimes within the context of local scale
transformations and explain how we implement Weyl
covariance in a gravitational theory. Then we move on
to present the Lagrangian formulation of quadratic curva-
ture gravity and its Weyl covariant extension. We check the
consistency of this procedure in Sec. III. Concluding
remarks make up the fourth section. The technical details
regarding the quadratic curvature invariants and derivation
of equations are in the Appendixes A and B, respectively.

II. RIEMANN-CARTAN-WEYL SPACETIMES

We follow the same conventions as in Refs. [9,10];
however, to set the notation we briefly explain RCW
spacetimes in general. A RCW spacetime is a triplet
fM; g;∇g where M is a smooth n-manifold, g is a non-
degenerate, Lorentzian metric tensor on M, and ∇ is a
linear connection on M. With the help of g-orthonormal
frames fXag and their dual coframes feag defined via
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eaðXbÞ ¼ ιbea ¼ δab, the metric tensor can be expressed as
g ¼ ηabea ⊗ eb, where ηab ¼ gðXa; XbÞ ¼ ð−;þ; � � � ;þÞ.
For brevity, we use shorthand notations for the exterior
products eab… ≡ ea ∧ eb ∧ … and the interior products
ιab… ≡ ιaιb…. The metric allows the definition of the
Hodge duality operator �∶ ΛpðMÞ → Λn−pðMÞ, where
the orientation of M is fixed by the choice of a volume
form �1 ¼ e0 ∧ e1 ∧ … ∧ en−1. Finally, a linear connec-
tion ∇ on M can be given by a set of connection 1-forms
fΛa

bg so that ∇Xa
Xb ¼ Λc

bðXaÞXc. A linear connection ∇
is uniquely fixed by the nonmetricity, torsion, and curvature
forms defined via the Cartan’s structure equations below:

D
ðΛÞ

ηab ¼ −ðΛab þ ΛbaÞ ¼ −2Qab; ð2:1Þ

D
ðΛÞ

ea ¼ dea þ Λa
b ∧ eb ¼ Ta; ð2:2Þ

D
ðΛÞ

Λa
b ¼ dΛa

b þ Λa
c ∧ Λc

b ¼ Ra
b

ðΛÞ
: ð2:3Þ

d, D
ðΛÞ

, and Ra
b

ðΛÞ
denote the exterior derivative, exterior

covariant derivative, and curvature of the above connection,
respectively. Bianchi identities are obtained as the integra-
bility conditions of the Cartan’s structure equations:

D
ðΛÞ

Qab ¼
1

2
ðRab

ðΛÞ
þ Rba

ðΛÞ
Þ; ð2:4Þ

D
ðΛÞ

Ta ¼ Ra
b

ðΛÞ ∧ eb; ð2:5Þ

D
ðΛÞ

Ra
b

ðΛÞ
¼ 0: ð2:6Þ

To see that a generic linear connection is fixed uniquely
by the metric tensor field g, the torsion tensor field T, and

a nonmetricity tensor field S ¼ D
ðΛÞ

g, we separate the
antisymmetric and symmetric parts of the connection
1-forms as follows:

Λa
b ¼ Ωa

b þQa
b; ð2:7Þ

where the antisymmetric part further decomposes in a
unique way according to

Ωa
b ¼ ωa

b þ Ka
b þ qab: ð2:8Þ

Here, the Levi-Civita connection 1-forms fωa
bg are deter-

mined completely by the coframes from the Cartan struc-
ture equations:

dea þ ωa
b ∧ eb ¼ 0: ð2:9Þ

The contortion 1-forms fKa
bg are fixed by the torsion

2-forms:

Ka
b ∧ eb ¼ Ta: ð2:10Þ

The antisymmetric 1-forms fqabg are completely deter-
mined in terms of the symmetric nonmetricity 1-forms
fQa

bg by the equations:

qab ¼ −ðιaQbcÞec þ ðιbQa
cÞec: ð2:11Þ

In a Weyl covariant theory, field elements are allowed to
carry some representation of the scale group. The trans-
formation properties of these fields are intimately con-
nected to the dimensions that they are carrying. Under a
local scale transformation, a field Φ transforms as

Φ ↦ expð−qσÞΦ; ð2:12Þ

where σ is a dimensionless real scalar field on spacetime,
and the dimensionless parameter q is called the Weyl
charge. Conventionally, the metric tensor is assigned a
Weyl charge of −2 because it has dimension length
squared. After that, Weyl charge assignments of other
fields are done accordingly. For the linear connection,
we adopt the Weyl transformation rule under Weyl group
action:

∇ ↦ ∇: ð2:13Þ

This is a consistent choice because the connection is not a
tensorial quantity and therefore is not assigned any dimen-
sions, and therefore stays inert under local scale trans-
formations. Also in a RCW spacetime, when at least one of
the torsion or nonmetricity tensors, or both, are present,
there need not be any correlations between metric scaling
and transformation of the linear connection.
Under a local change of scale, the spacetime exterior

covariant derivative does not transform covariantly. Thus,
we introduce a Weyl connection 1-form Q as a com-
pensating potential. Q is a dimensionless 1-form that
transforms as

Q ↦ Qþ dσ ð2:14Þ

under a local scale transformation. With the help of Q, the
exterior Weyl covariant derivative of a p-form Φp

q with
Weyl charge q is defined as:

DΦp
q ¼ D

ðΛÞ
Φp

q þ qQ ∧ Φp
q ; ð2:15Þ

so that under a local scale transformation DΦp
q transforms

covariantly. Under the action of interior product and Hodge
duality operator, the Weyl charge of the fields changes as:
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ιaΦ
p
q ¼ Φp−1

qþ1; ð2:16Þ

�Φp
q ¼ Φn−p

q−ðn−2pÞ: ð2:17Þ

To discuss locally Weyl covariant theories in RCW space-
times, we take the following relation between the Weyl

connection 1-form Q and the nonmetricity tensor S ¼ D
ðΛÞ

g:

Dg ¼ S − 2Q ∧ g ¼ 0: ð2:18Þ

Therefore, the nonmetricity 1-forms fQabg and the Weyl
connection 1-form Q are related to each other by:

Qab ¼ −Qηab: ð2:19Þ

This identification gives a geometrical origin to the
Weyl connection and assignment of units to dimensioned
quantities.
The Ricci 1-forms are obtained by contracting the

curvature 2-forms:

Rica
ðΛÞ

¼ ιbRb
a

ðΛÞ
: ð2:20Þ

The curvature scalar needs one more contraction with the
metric itself:

R
ðΛÞ

¼ ιaRica
ðΛÞ

¼ ιabRba

ðΛÞ
: ð2:21Þ

Moreover, the Einstein (n − 1)-forms of our non-
Riemannian connection are defined through the variation
of the Einstein-Hilbert term as:

Ga

ðΛÞ
¼ Gab

ðΛÞ
� eb ¼ −

1

2
Rbc

ðΛÞ ∧ �eabc: ð2:22Þ

We note that, although the curvature 2-forms may depend
both on the antisymmetric and symmetric parts, similar to
the Riemannian case only the antisymmetric part of the
connection contributes to the Einstein tensor.
We will discuss our gravitational models using an action

principle. The field equations are going to be derived using
a first order variational formalism. For a nonscale covariant
gravitational model, the action functional depends on the
coframe 1-forms feag, the antisymmetric part of connec-
tion 1-forms fΩa

b ¼ ωa
b þ Ka

bg, and possibly on some
Lagrange multiplier valued forms fλag. To obtain a scale
covariant generalization, we introduce two more indepen-
dent variables to original theories: the dilaton 0-form αwith
the dimension of inverse length and the Weyl connection
1-form Q. Then, for a locally scale covariant model, the
action functional is given by

I½ea;Ωa
b; Qa

b; α; λa� ¼
Z
M
LW;

where LW is a scale invariant Lagrangian density, andM is
a compact region in a RCW manifold without boundary.
To check the consistency of the scale covariant gener-

alization, we use the following diagram:

We introduce scale invariant terms to the Lagrangian L
of the original theory using the dilaton field α and Weyl
connection 1-form Q. Then, we vary the scale invariant
Lagrangian LW and obtain the scale covariant variational
field equations _LW . If these field equations agree with the
field equations of original theory _L for a fixed scale α ¼ 1,
and vanishing nonmetricity Q ¼ 0, the above diagram
commutes and we say that the generalization is consistent.
A consistent generalization means that the scale covar-

iant theory contains the original theory in its vacuum
configuration for the Weyl sector. The vacuum configura-
tion means the Weyl connection 1-form has a vanishing
field strength; i.e., it is flat. In this case, any solution of the
original theory defines an equivalence class of solutions for
the scale covariant theory. In this class, two solutions are
related to each other by a pure gauge transformation.

III. QUADRATIC CURVATURE GRAVITY IN
THREE DIMENSIONS

We start with the formulation of quadratic curvature
gravity in a 3D pseudo-Riemannian setting in the language
of differential forms and a first order variational formalism.
The independent variables are the coframe 1-forms feag
and connection 1-forms fΩa

bg. Lagrange multiplier valued
1-forms fλag are introduced to constrain the spacetime
torsion to zero. We consider the Lagrangian density 3-form:

L ¼ 1

K
Ra

b

ðΩÞ ∧ �eab þ Λ � 1þ λa ∧ Ta þ κ1Ra
b

ðΩÞ ∧ �Ra
b

ðΩÞ

þ κ2Rica
ðΩÞ ∧ �Rica

ðΩÞ
þ κ3R2

ðΩÞ
� 1; ð3:1Þ

where K denotes the three-dimensional gravitational con-
stant; Λ the cosmological constant; and κ1, κ2, and κ3 are
coupling constants with dimensions of inverse length. This
family of Lagrangian densities also covers the Lagrangian
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density of the NMG theory for the particular values of
κ1 ¼ 0, κ2 ¼ 1, and κ3 ¼ −3=8.
In our formulation, we will vary the metric-compatible

totally antisymmetric connection 1-forms:

Ωa
b ¼ ωa

b þ Ka
b: ð3:2Þ

The total variational derivative of L with respect to three
independent variables is found to be:

_L ¼ _ea ∧
�
1

K
Rb

c

ðΩÞ
ϵab

c þ Λ � ea þ D
ðΩÞ

λa − κ1τ̂a½Rb
c

ðΩÞ
�

þ κ2½ιaðRicb
ðΩÞ

∧ �Ricb
ðΩÞ

Þ þ 2ιaRbc

ðΩÞ ∧ ιb � Ricc
ðΩÞ

� þ κ3ð2 R
ðΩÞ

Rb
c

ðΩÞ
ϵab

c − R2
ðΩÞ

� eaÞ
�

þ _Ωa
b ∧ fD

ðΩÞ
� eab þ eb ∧ λa þ 2D

ðΩÞ
½κ1 � Ra

b
ðΩÞ

− κ2ιa � Ricb
ðΩÞ

þ κ3R � eab�g þ _λa ∧ Ta: ð3:3Þ

Above, a dot over a field variable denotes the variation of
that variable. First, due to Lagrange constraint equation,
torsion vanishes and we will be working with the unique
Levi-Civita connection 1-forms fωa

bg. Then, we solve the
Lagrange multiplier 1-forms from the connection variation
equation. For this, we write the connection equation as:

1

2
ðea ∧ λb − eb ∧ λaÞ ¼ Σab; ð3:4Þ

where

Σab ¼ 2D
ðωÞ

ðκ1 � Rab

ðωÞ
− κ2ι½a � Ricb�

ðωÞ
þ κ3 R

ðωÞ
� eabÞ

is antisymmetric due to antisymmetry of the Levi-Civita
connection 1-forms. Indices between square brackets means
total antisymmetrization of those indices. Then, the unique
solution for the Lagrange multiplier 1-forms reads:

λa ¼ 2ιbΣba −
1

2
ðιbcΣcbÞea: ð3:5Þ

Finally, Einstein field equations are determined to be:

−
2

K
Ga

ðωÞ
þ Λ � ea þ D

ðωÞ
λa − κ1τ̂½Rb

c

ðωÞ
� þ κ3ð2R

ðωÞ
Rb

c

ðωÞ
ϵab

c − R2
ðωÞ

� eaÞ

þ κ2½ιaðRicb
ðωÞ

∧ �Ricb
ðωÞ

Þ þ 2ιaRbc

ðωÞ ∧ ιb � Ricc
ðωÞ

� ¼ 0: ð3:6Þ
In order to promote the above model into a locally scale covariant one, we introduce two new independent variables:

dilaton scalar α and the Weyl 1-formQ, and we consider the most general connection 1-forms that have their symmetric part
identified with the Weyl connection 1-form:

Λa
b ¼ ωa

b þ Ka
b þ qab −Qηab: ð3:7Þ

Thus, we consider the following Weyl invariant Lagrangian density 3-form1:

LW ¼ αRa
b

ðΛÞ ∧ �eab þ α3Λ � 1þ αλa ∧ Ta −
γ

2α
Dα ∧ �Dα −

γ0

2α
dQ ∧ �dQ

þ 1

α
½κ1Ra

b

ðΛÞ ∧ �Ra
b

ðΛÞ
þ κ2Rica

ðΛÞ ∧ �Rica
ðΛÞ

þ κ3R2
ðΛÞ

� 1�: ð3:8Þ

Above, to promote α andQ to dynamical fields, we added their kinetic terms where γ and γ0 are new dimensionless coupling
constants. While finding variational field equations, we vary the Lagrangian density with respect to the total connection
1-forms fΛa

bg. Then, we will separate the connection variation equations according to

_Λa
b ¼ _Ωa

b − ηab _Q: ð3:9Þ

1In our earlier papers [12,13], using an identity we replaced one of the three quadratic curvature invariants in terms of the other two.
Here, we do not do this and keep all three quadratic curvature invariants. We explain this choice and the derivation of the identity in
Appendix A.
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Therefore the variation of the Lagrangian density (3.8) is found to be:

_LW ¼ _ea ∧
�
αRb

c

ðΛÞ
ϵab

c þ α3Λ � ea þ D
ðΛÞ

ðαλaÞ þ
γ

2α
τa½Dα� þ γ

2α
τ̂a½dQ�

−
κ1
α
τ̂a½Rb

c

ðΛÞ
� þ κ2

α
½ιaðRicb

ðΛÞ ∧ �Ricb
ðΛÞ

Þ þ 2ιaRbc

ðΛÞ ∧ ιb � Ricc
ðΛÞ

�

þ κ3
α
½2R

ðΛÞ
Rb

c

ðΛÞ
ϵab

c − R2
ðΛÞ

� ea�
�
þ _λa ∧ ðαTaÞ

þ _Λa
b ∧

�
D
ðΛÞ�

α � eab þ
2κ1
α

� Ra
b

ðΛÞ
−
2κ2
α

ιa � Ricb
ðΛÞ

þ 2κ3
α

R
ðΛÞ

� eab
�

þ αeb ∧ λa þ
1

3
ηbaγ �Dαþ 1

3
ηbaγ

0d
�
1

α
� dQ

��

þ _α

�
Ra

b

ðΛÞ ∧ �eab þ 3α2Λ � 1þ γ

2α2
Dα ∧ �Dαþ γD

�
1

α
�Dα

�
þ λa ∧ Ta

þ γ0

2α2
dQ ∧ �dQ −

1

α2
½κ1Ra

b

ðΛÞ ∧ �Ra
b

ðΛÞ
þ κ2Rica

ðΛÞ ∧ �Rica
ðΛÞ

þ κ3R2
ðΛÞ

� 1�
�
: ð3:10Þ

We start simplifying by first noting that the torsion 2-forms vanish. Then, we first go to dilaton field equation. To do this,
we compare the trace of the coframe equations:

ea ∧ δLW

δea
¼ αRa

b

ðΛÞ ∧ �eab þ 3α3Λ � 1 − γ

2α
Dα ∧ �Dαþ γ0

2α
dQ ∧ �dQ

þ αλa ∧ Ta − dðαea ∧ λaÞ −
κ1
α
Ra

b

ðΛÞ ∧ �Ra
b

ðΛÞ
þ 3κ2

α
Rica
ðΛÞ ∧ �Rica

ðΛÞ

þ 4κ2
α

Ra
b

ðΛÞ ∧ ιa � Ricb
ðΛÞ

−
κ3
α
R2
ðΛÞ

� 1 ¼ 0; ð3:11Þ

with the dilaton field equation above and obtain:

dðαea ∧ λa þ γ �DαÞ ¼ 0: ð3:12Þ

Next, we separate the symmetric and antisymmetric parts of the connection variation equations by lowering an index.
In order to lower an index inside a covariant derivative, we make use of the following identities:

D
ðΛÞ

ðα � eabÞ ¼ Dα ∧ �eab; ð3:13Þ

D
ðΛÞ�1

α
� Ra

b
ðΛÞ �

¼ −
2Q
α

∧ �Ra
b

ðΛÞ
−
dα
α2

∧ �Ra
b

ðΛÞ
þ 1

α
ηcb D

ðΛÞ
� Rac

ðΛÞ
; ð3:14Þ

D
ðΛÞ�1

α
ιa � Ricb

ðΛÞ �
¼ −

2Q
α

∧ ιa � Ricb
ðΛÞ

−
dα
α2

∧ ιa � Ricb
ðΛÞ

þ 1

α
ηcb D

ðΛÞ
ðιa � Ricc

ðΛÞ
Þ; ð3:15Þ

D
ðΛÞ�1

α
R
ðΛÞ

� eab
�

¼ Q
α
∧ R

ðΛÞ
� eab þ

1

α
d R
ðΛÞ ∧ �eab −

dα
α2

∧ R
ðΛÞ

� eab: ð3:16Þ

On the right-hand side of identities (3.13)–(3.16) there are terms proportional to the torsion 2-forms in general; however that
should be omitted here as they identically vanish.
After lowering an index and using (3.9), the symmetric and antisymmetric parts of the connection variation equations

read:
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αea ∧ λa þ γ �Dα ¼ ð6κ1 þ 6κ2 − γ0Þd
�
1

α
� dQ

�
; ð3:17Þ

and

α

2
ðea ∧ λb − eb ∧ λaÞ ¼ Σab; ð3:18Þ

respectively, where

Σab ¼
�
Dαþ 2κ3

α

�
d R
ðΩÞ

þQR
ðΩÞ

−
dα
α

R
ðΩÞ�� ∧ �eab þ 2κ1D

ðΩÞ�1
α
� Rab

ðΩÞ�

þ 2κ2D
ðΩÞ�1

α
ι½a � ιb�dQ −

1

α
ι½a � Ricb�

ðΩÞ �
:

When writing the antisymmetric part of the equations, we used the fact that index raising and lowering operations commute
with the covariant derivative operation with respect to the antisymmetric connection 1-forms fΩa

bg. We algebraically solve
(3.18) for the Lagrange multiplier 1-forms as:

λa ¼
2

α
ιbΣba −

1

2α
ðιbcΣcbÞea: ð3:19Þ

The substitution of the above in Einstein field equations of the Weyl covariant theory gives:

− 2αGa

ðΩÞ
þ α3Λ � ea þ D

ðΩÞ
ðαλaÞ þ αQ ∧ λa þ

γ

2α
τa½Dα� þ

�
γ0

2α
−
3κ1
α

�
τ̂a½dQ�

−
κ1
α
τ̂a½Rb

c

ðΩÞ
� þ κ2

α
½ιaðRicb

ðΩÞ ∧ �Ricb
ðΩÞ

Þ þ 2ιaRbc

ðΩÞ ∧ ιb � Ricc
ðΩÞ

þ 4ιaðdQ ∧ �dQÞ

− 2ιaRbc

ðΩÞ ∧ ιb � ιcdQ − 6ιadQ ∧ �dQ� þ κ3
α
½2R

ðΩÞ
Rb

c

ðΩÞ
ϵab

c − R2
ðΩÞ

� ea� ¼ 0: ð3:20Þ

Therefore, the Weyl covariant quadratic curvature theory defined via the action (3.8) yields three sets of field equations:
(3.12), (3.17), and (3.20). In order to show the consistency of this generalization, we are going to restrict the Weyl sector of
the theory to its vacuum sector and show that the original quadratic curvature theory field equations are contained in this
configuration. To this end, we make the following choices:

Dα ¼ 0; α ¼ 1 ⇒ Q ¼ 0: ð3:21Þ

The first choice sets the Weyl connection to be a flat connection; then the second choice fixes a global units scale.
Consequently, theWeyl connection 1-form gets canceled out and we are left with a pseudo-Riemannian geometry. Then, the
field equations reduce to:

− 2Ga

ðωÞ
þ Λ � ea þ D

ðωÞ
λa − κ1τ̂½Rb

c

ðωÞ
� þ κ3ð2R

ðωÞ
Rb

c

ðωÞ
ϵab

c − R2
ðωÞ

� eaÞ

þ κ2½ιaðRicb
ðωÞ

∧ �Ricb
ðωÞ

Þ þ 2ιaRbc

ðωÞ ∧ ιb � Ricc
ðωÞ

� ¼ 0; ð3:22Þ

and

ea ∧ λa ¼ 0; dðea ∧ λaÞ ¼ 0; ð3:23Þ

where
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λa ¼ 2ιbΣba −
1

2
ðιbcΣcbÞea; and

Σab ¼ 2D
ðωÞ

ðκ1 � Rab

ðωÞ
− κ2ι½a � Ricb�

ðωÞ
þ κ3 R

ðωÞ
� eabÞ:

Although the Eqs. (3.22) agree with the field Eqs. (3.6) of
quadratic curvature gravity, the Eqs. (3.23) are extra. One
must make sure that the Eq. (3.23) vanishes2 identically, so
that the Weyl covariant generalization is consistent.
The explicit evaluation of Eq. (3.23) is technical and we

present it separately in Appendix B. We show that:

ea ∧ λa ¼ 0 ⇔ ð2κ1 þ 3κ2 þ 8κ3Þιa � dR
ðωÞ

¼ 0: ð3:24Þ

Then, either the spacetime has constant curvature or else in
a generic spacetime, only certain combinations of quadratic
curvature invariants for which

2κ1 þ 3κ2 þ 8κ3 ¼ 0 ð3:25Þ

are allowed. It is remarkable that NMG meets this con-
dition: κ1 ¼ 0, κ2 ¼ 1, κ3 ¼ − 3

8
.

IV. CONCLUDING REMARKS

We have derived the locally scale covariant extension of
quadratic curvature gravity field equations in 3-dimensional
Riemann-Cartan-Weyl spacetimes. Our basic field variables
are the spacetime metric g, the dilaton 0-form α, and the
Weyl potential 1-form Q. Their field equations are obtained
by a first order variational principle from a locally scale
invariant action in which the spacetime torsion is constrained
to zero by the method of Lagrange multipliers. The locally
scale covariant variational equations follow from action
density that involves the Einstein–Hilbert term with a
cosmological constant plus the most general linear combi-
nation of quadratic curvature invariants in 3-dimensions. We
also discussed the consistency of the conformal equivalence
class of the vacuum configuration of the theory that is
determined by setting the Weyl potential to zero (Q ¼ 0)
and fixing a scale (by the choice α ¼ 1). We noted that such
a consistency imposes a condition on the choice of the
quadratic curvature invariants allowed in the action. Rather
than a 2-parameter family of an action density 3-form that
one would expect, only a 1-parameter family is allowed. It is
remarkable that the NMG action belongs to this family.3 The
constraint on quadratic curvature invariants suggests whether

the action (3.8) can be obtained by gauge fixing from a more
general action that is invariant under the full conformal
group.4 Conformally invariant theories can be expressed in
terms of actions that depend on tractor connections [16]. We
argue that our action cannot be written as a Yang-Mills type
quadratic curvature action for the tractor connection. The
first reason is that, although the Einstein-Hilbert and
cosmological constant terms can be written in terms of a
Yang-Mills type quadratic action [17], this action is not
invariant under the full conformal group but the Lorentz
subgroup. The second reason is, in three dimensions the
Weyl tensor vanishes and we are left with the Schouten
tensor instead [18]. Any theory that is invariant under the
conformal group which involves curvatures, may be
expressed in terms of the Schouten tensor. For the quadratic
part of our Lagrangian density, if we replace the Riemann-
squared term using the identity (A11), we cannot express it
in terms of the square of Schouten tensor.
For a future direction of research, one may consider

investigating linearized field equations [19,20] to determine
the particle spectrum of the theory and to check the
linearization instabilities [21]. Besides, finding out non-
trivial solutions that have nonvanishing field strength for
the Weyl sector would be interesting. Furthermore, one can
look for solutions that are Einstein-Weyl spaces. Due to
their specific geometrical properties [22], 3-dimensional
Einstein-Weyl spaces can be formulated in terms of mini-
twistor spaces [23] and can be used to construct four-
dimensional self-dual geometries [24]. Finally, similar
methods can be applied to the NIMG model so that we
have a generic Weyl covariant theory that contains impor-
tant 3D models such as TMG, MMG, and NMG altogether.

APPENDIX A: QUADRATIC CURVATURE
INVARIANTS

The curvature 2-forms can be uniquely decomposed into
their symmetric and antisymmetric parts according to

Ra
b

ðΛÞ
¼ Ra

b

ðΩÞ
− ηabdQ: ðA1Þ

We also have by contractions:

Rica
ðΛÞ

¼ Rica
ðΩÞ

− ιadQ; R
ðΛÞ

¼ R
ðΩÞ

: ðA2Þ

The coframe variations of the Einstein-Hilbert term in the
action density (3.6) give

−
1

2
Rbc
ðΩÞ

ϵabc ¼ �Rica
ðΩÞ

−
1

2
R
ðΩÞ

� ea ðA3Þ

2This guarantees the equation dðea ∧ λaÞ ¼ 0 is also satisfied,
and we are only left with quadratic curvature gravity field
equations.

3A Weyl covariant generalization of NMG and quadratic
curvature gravity in general has also been studied in [14] from
a Higgs-like symmetry breaking point of view for NMG. They
pointed out in a linearized approximation that gravitons thus gain
mass in anti–de Sitter and/or Minkowski backgrounds.

4Such a conformally invariant action formulation in 3D can be
found in [15].
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that can be inverted in n ¼ 3 dimensions as

Rbc
ðΩÞ

¼ −ϵabc
�
�Rica

ðΩÞ
−
1

2
R
ðΩÞ

� ea
�
: ðA4Þ

Squaring both sides and simplifying we arrive at the
following identity satisfied by the quadratic curvature
invariants in n ¼ 3 dimensions:

Ra
b

ðΩÞ ∧ �Ra
b

ðΩÞ
¼ 2Rica

ðΩÞ ∧ �Rica
ðΩÞ

−
1

2
R2
ðΩÞ

� 1: ðA5Þ

On the other hand, from above we also have

Ra
b

ðΛÞ ∧ �Ra
b

ðΛÞ
¼ Ra

b

ðΩÞ ∧ �Ra
b

ðΩÞ
þ 3dQ ∧ �dQ ðA6Þ

and

Rica
ðΛÞ ∧ �Rica

ðΛÞ
¼ Rica

ðΩÞ ∧ �Rica
ðΩÞ

þ 2dQ ∧ �dQ

− 2Rica
ðΩÞ ∧ �ιadQ: ðA7Þ

In order to simplify the third term on the right-hand side, we
consider the second Bianchi identity written in the form:

Ra
b

ðΩÞ ∧ eb − dQ ∧ ea ¼ D
ðΛÞ

Ta; ðA8Þ

and contract on both sides to get:

Rica
ðΩÞ ∧ ea ¼ dQþ ιaðD

ðΛÞ
TaÞ: ðA9Þ

Therefore,

−2Rica
ðΩÞ ∧ �ιadQ ¼ 2Rica

ðΩÞ ∧ ea ∧ �dQ

¼ 2dQ ∧ �dQþ 2ιaðD
ðΛÞ

TaÞ ∧ �dQ:

ðA10Þ

Putting all these back into our basic quadratic curvature
identity above, we may write it as

Ra
b

ðΛÞ ∧ �Ra
b

ðΛÞ
− 2Rica

ðΛÞ ∧ �Rica
ðΛÞ

þ 1

2
R2
ðΛÞ

� 1

¼ −5dQ ∧ �dQ − 4ιaðD
ðΛÞ

TaÞ ∧ �dQ: ðA11Þ

APPENDIX B: DERIVATION OF
EQUATION (3.23)

Before starting to calculate (3.23), we note that

ea ∧ λa ¼ 2ea ∧ ιbΣba ¼ 2ιbðea ∧ ΣabÞ: ðB1Þ

Now, wewill play with the antisymmetric 1-form Σab. First,
using ιaχ ¼ ð−1Þp � ðea ∧ �χÞ for a p-form χ, we see

ιa � Ricb
ðωÞ

¼ �ðRicb
ðωÞ ∧ eaÞ; ðB2Þ

where we also made use of � � χ ¼ −χ for a 2-form χ.
Using (B2), Σab can be written as:

Σab ¼ 2D
ðΩÞ

�
h
κ1Rab

ðωÞ
þ κ2

2
ðea ∧ Ricb

ðωÞ
− eb ∧ Rica

ðωÞ
Þ

þ κ3 R
ðωÞ

eab
i
: ðB3Þ

Then, using the fact that geometry is torsion free, we can
write

ea ∧ Σab ¼ −2D
ðΩÞ�

ea ∧ �
�
κ1Rab

ðωÞ
þ κ2

2
ðea ∧ Ricb

ðωÞ

− eb ∧ Rica
ðωÞ

Þ þ κ3 R
ðωÞ

eab

��
: ðB4Þ

Using, ιaχ ¼ ð−1Þp � ðea ∧ �χÞ for a p-form χ implies
ea ∧ �χ ¼ − � ιaχ, and the above equation reads:

2ιbðea ∧ ΣabÞ ¼ 4Db
ðΩÞ

� ιa
�
κ1Rab

ðωÞ
þ κ2

2
ðea ∧ Ricb

ðωÞ
− eb ∧ Rica

ðωÞ
Þ þ κ3 R

ðωÞ
eab

�

¼ 4Da
ðΩÞ

�
��

κ1 þ
κ2
2

�
Rica
ðωÞ

þ
�
2κ3 þ

κ2
2

�
R
ðωÞ

ea

�
: ðB5Þ

Finally equating (B5) to zero yields the Eq. (3.24).
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