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Symmetric teleparallel gravity (STG) offers an interesting avenue to formulate a theory of gravitation
that relies neither on curvature nor torsion but only on nonmetricity Q. Given the growing number of
confirmed observations of gravitational waves (GWs) and their use to explore gravitational theories, in this
work we investigate the GWs in various extensions of STG, focusing on their speed and polarization. We
explore the plethora of theories that this new framework opens up, that is, as general relativity can be
modified, so can the symmetric teleparallel equivalent of general relativity (STEGR). In this work, we
investigate the fate of GWs in the generalized irreducible decomposition of STEGR, generalizations of the
STEGR Lagrangian, fðQÞ, a scalar field nonminimally coupled to the STEGR Lagrangian, and the general
setup of fðQ;BÞ theory where B is the boundary term difference between the Ricci scalar and the STEGR
Lagrangian. Coincidentally, fðQ;BÞ forms a more general theory than fðRÞ gravity since Q embodies the
second-order elements of the Ricci scalar while B takes on its fourth-order boundary terms. Our work deals
mainly with the resulting scalar-vector-tensor polarization modes of the plethora of STG theories, and how
they effect their respective speeds of propagation.

DOI: 10.1103/PhysRevD.100.044008

I. INTRODUCTION

To adequately describe the late-time behavior of the
Universe and the behavior of galactic dynamics, on top of
Einstein’s theory of general relativity (GR) [1] one neces-
sitates the introduction of the so-called dark matter and dark
energy sectors [2], resulting to the ΛCDM paradigm. This
stems from the fact that the Universe is observed to be
accelerating in its expansion [3,4] and that galaxies do not
contain enough matter to sustain their measured rotational
curves [5]. While recent Planck Collaboration results show
mild tension in this picture of the Universe [6], the theory
hits its breaking point when the early Universe is

investigated. This regime of exploration has led to the
suggestion of a scalar field to explain the epoch of inflation
[7,8] which may solve some other problems too [9]. Given
the large body of research investigating new physics at
early times, we are motivated to explore alternative theories
of gravity in other regimes, namely in the strong field
regime where gravitational wave (GW) radiation is emitted.
Modifications to GR mainly come in the form of

extensions to the Einstein-Hilbert action, namely raising
the Ricci scalarR to an arbitrary function Lagrangian fðRÞ
[10], where R is determined using the Levi-Civita con-
nection (this character style is used throughout to denote
those quantities calculated using the Levi-Civita connec-
tion). Extended models of gravity [11] also include other
scalar invariants that contribute to the Lagrangian, such as
the Gauss-Bonnet term in fðR;GÞ gravity [12,13] and may
even include a nonminimal coupling with the trace of the
stress-energy tensor through fðR; TÞ gravity [14–16].
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While many potential extensions to GR exist, alternatives
to GR are more difficult to be constructed and require more
intense exploration due to their fundamental reconstitution
of basic tenants. An interesting class of alternative theories
of gravity comes with the use of torsion instead of
curvature, i.e., start from the teleparallel equivalent of
general relativity [17] and construct modifications like
fðTÞ gravity [18], fðT; TGÞ gravity [19,20], fðT; T Þ
gravity [21], etc. Some other examples include massive
gravity where gravitational waves (GWs) are endowed with
a nonvanishing effective mass [22], while Hořava-Lifshitz
gravity reexamines the relation between space and time in
the quantum regime [23]. As a shared goal, all these
modifications aim to confront observations at all scales
better than ΛCDM [24,25].
Symmetric teleparallel gravity (STG) is an interesting

theory in that it can describe gravitation while retaining a
vanishing contribution of both curvature and torsion, which
geometrically implies that vectors do remain parallel at
long distances on a manifold [26]. In this scenario, gravity
is manifested through a nonmetricity scalar Q that gives a
measure of the amount of nonmetricity present given a
particular metric tensor solution which is analogous to the
Ricci scalar in GR [27–29]. In terms of the affine
connection of the general frames, by demanding that the
curvature vanishes and that the connection is torsionless
(symmetric indices) then the remaining gravitational infor-
mation will be encoded in nonmetricity contributions [30].
The latter assumption of vanishing torsion can also lead to
its own version of gravitation. In STG the metricity
condition of GR is relaxed resulting in the symmetric
teleparallel gravity equivalent of general relativity
(STEGR), which is analogous to the procedure where
the vanishing torsion condition leads directly to the tele-
parallel equivalent of general relativity scalar [18].
Teleparallel gravity and STG share a number of important
properties, one of which is their ability to separate
gravitational and inertial effects [31] which is not possible
in GR. This has resulted in many strains on GR theory such
as the issue of defining a gravitational energy-momentum
tensor [32]. STG can also be shown to be consistent with a
connection that simplifies to a partial derivative through the
so-called coincident gauge [27,33].
By construction, the nonmetricity scalar,Q, is equivalent

to the Ricci scalar up to a boundary term in the Lagrangian
[34]. This takes the form of

R ¼ Q − B; ð1Þ

where B is the boundary term. This means that such a
Lagrangian would agree with GR at the level of field
equations at all levels of the classical regime, and so
produce no measurable differences [33]. As with the fðRÞ
extensions [10], one can construct a plethora of extended
STG theories. On the face of it, the relation in Eq. (1) can be

interpreted as a breakdown of the Ricci scalar into second-
order contributions and its boundary contribution made by
fourth-order parts. In this way, even fðRÞ theory can be
made richer by raising it to the broader class of fðQ;BÞ
theories, where both class of contributions can be fixed
independently.
Straightforward modifications of the STEGR Lagrangian

give directly fðQÞ gravity, which has the advantageous
property that the field equations remain second order
irrespective of the particular Lagrangian function. This is
in contrast to fðRÞ gravity scenario [33] where all non-
trivial models lead to fourth-order field equation. The result
of this observation is that despite the linear cases being
equal up to a boundary term [as shown in (1)], the general
scenarios of arbitrary functions are not equivalent. This
inequality stems from the boundary term which no longer
remains linear (i.e., a boundary term) in the generalized
case, namely

fðRÞ ≠ fðQÞ: ð2Þ

These theories are only equal when the argument of the
arbitrary Lagrangian takes on the exact form fðQ;BÞ ¼
fðQ − BÞ ¼ fðRÞ, where the STG Lagrangian is comple-
mented by a boundary term argument as well.
In curvature based gravity theory, it is well known that

one can add a scalar field nonminimally coupled to the
Ricci scalarR [35–37], and similarly in teleparallel gravity
one can add a scalar field nonminimally coupled to the
torsion scalar T [38–40]. In Ref. [33], the possibility of
nonminimcomprises the full complexally coupled general
function of the nonmetricity scalar is considered with
interesting results. However, not much work has been
done on other scalar invariant generalizations such as
Gauss-Bonnet extensions. The possibility of a scalar field
coupled to STG has been explored in a number of recent
works [34,41] where the nonminimal coupling case was
investigated. This is an interesting possibility for the
extended fðQ;BÞ context due to the separation between
second- and fourth-order contributions.
STG also offers another interesting way to investigate

gravitational models, since the nonmetricity scalar equiv-
alent of GR can be separated into five irreducible compo-
nents [27,42]. These irreducibles can then be generalized
linearly to form a completely new avenue for gravitational
modification. While the fðQ;BÞ scenario has a clear fðRÞ
limit, the generalized irreducible context is only fixed by
the GR scenario, since the boundary term is not necessarily
included in that form of the theory.
On the other hand, observations of gravitational radiation

have confirmed not only the existence of GWs as the
mediator of gravitational information [43] but also opened
the possibility of setting bounds on the possible polariza-
tion modes that a GWevent would propagate [44]. This is a
crucial component to testing gravitational models due to its
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inherently model-independent nature. Beyond this com-
parison, source modeling techniques would necessarily
have to be employed [45].
In Ref. [46], GWs polarization modes are investigated

for the general linear case of nonmetricity scalar irreducible
components, using the Newman-Penrose formalism. In this
work, the foundations of exploring polarization modes in
STG have been laid. In the current work, we are interested
in extending this work to further extensions and scenarios
that have appeared in the STG literature and which show
promise in terms of realistic theories of gravity [47].
The paper is divided as follows. In Sec. II, the founda-

tions of STG are introduced, with some discussion on its
relation to GR. Section III then delves into the potential
polarizations of GWs in the generalized GR equivalent, that
is fðQÞ gravity. The possibility of nonminimally coupled
scalar fields is advanced in Sec. IV. Section V extends the
generalized scenario to the fðQ;BÞ theory, where we can
compare the results of GWs with fðRÞ gravity for the
choice of fðQ;BÞ ¼ fðQ − BÞ. Finally, the main conclu-
sions are discussed and summarized in Sec. VI. Throughout
the work, geometric units are used unless otherwise stated.

II. SYMMETRIC TELEPARALLEL GRAVITY

In this section, we present STG from its foundations. We
start by remarking that the mechanism by which gravity is
mediated is an expression of the affine connection and not
the physical manifold [48–50]. For instance, in GR, the
property of curvature emerges through the Levi-Civita
connection and not the manifold which is described
through the metric tensor, and thus the connection can
be equally described by other properties such as non-
metricity. By the strong equivalence principle [49], every
point on the manifold has a well-defined tangent space,
where the connection acts as an intermediary between
neighboring tangent spaces so that derivative operators can
be defined. This implies that the decomposition of a general
affine connection can be written as [50]

Γα
μν ¼ Γ

∘ α
μν þ Kα

μν þ Lα
μν; ð3Þ

where Γ
∘ α

μν is the Christoffel symbols of the Levi-Civita
connection, Kα

μν is the contorsion tension representing the
difference between the Christoffel symbols and the tele-
parallel connection (i.e., the Weitzenböck connection), and
Lα

μν is the disformation tensor which encodes the non-
metricity contribution due to the nonmetricity tensor [26]

Qαμν ≔ ∇αgμν: ð4Þ

The disformation takes the explicit form of [27]

Lα
μν ¼

1

2
gαβð−Qμβν −Qνβμ þQβμνÞ: ð5Þ

The Einstein-Hilbert Lagrangian can equivalently be
written as [33]

R ¼ LE þ LB; ð6Þ

where LE represents Einstein’s original Lagrangian from
the Levi-Civita connection [33,51]

LE ≔ gμνðΓ∘ αβμΓ
∘ β
να − Γ

∘ α
βαΓ

∘ β
μνÞ; ð7Þ

and the total derivative (or boundary term) is given by

LB ¼ gαμDαΓ
∘ ν
μν − gμνDαΓ

∘ α
μν; ð8Þ

where Dα represents the covariant derivative with respect
to the Levi-Civita connection. This higher derivative
version of the equivalent Lagrangian LE is ubiquitously
adopted due to its covariance, while LE alone is not
covariant within the Levi-Civita connection setting. STG
approaches this issue by promoting the partial derivative to
a covariant operator, called the coincident gauge, where
gravitation is no longer mediated through the connection
(called the “Palatini connection”) [31]. The disformation
then takes the form

Lα
βγ ¼ −

1

2
gαλð∇γgβλ þ∇βgλγ −∇λgβγÞ: ð9Þ

By the coincident gauge (∇α → ∂α), the disformation is
essentially the negative of the Christoffel symbols. The GR
equivalent Lagrangian then turns out to simply be [33]

Q ¼ −gμνðLα
βμLβ

να − Lα
βαLβ

μνÞ; ð10Þ

which is simply the negative sign of LE, and can equiv-
alently be interpreted in terms of the Christoffel symbols
due to Eq. (9). This produces the exact same relations as the
Einstein field equations at the level of the field equations.
In order to consider generalizations of the GR formalism

in the STG context, we consider the general action [31]

SG ¼
Z

d4x½ ffiffiffiffiffiffi
−g

p
f þ λα

βμνRα
βμν þ λα

μνTα
μν�; ð11Þ

where the Lagrangian assumes a Palatini approach with
f ¼ fðgμν Γα

μν; Þ, and Lagrange multipliers, λαβμν and λαμν,
are used to eliminate the curvature-full Riemann tensor and
torsion-full torsion tensor.
Straightforwardly, a conjugate to the Lagrangian can be

defined as [27]
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Pα
μν ≔

1

2

∂f
∂Qα

μν ; ð12Þ

which yields the metric tensor field equations

2ffiffiffiffiffiffi−gp ∇αð
ffiffiffiffiffiffi
−g

p
Pα

μνÞ −
∂f
∂gμν −

1

2
fgμν ¼ Tμν; ð13Þ

where

Tμν ≔ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

ð14Þ

is the regular energy-momentum tensor for matter. Second,
the action can also be varied with respect to the connection
since the Palatini approach is being adopted here which
results in [42]

∇ρλα
νμρ þ λα

μν ¼ ffiffiffiffiffiffi
−g

p
Pμν

α þHα
μν; ð15Þ

where

Hα
μν ≔ −

1

2

δð ffiffiffiffiffiffi−gp
LmÞ

δΓα
μν

ð16Þ

is the hypermomentum. The Lagrange multipliers can be
eliminated through symmetry considerations to give the
relation [42]

∇μ∇νð
ffiffiffiffiffiffi
−g

p
Pμν

αÞ ¼ 0; ð17Þ

which can be interpreted as the connection field equation
that is trivially solved by the coincident gauge choice. Here
it is assumed that ∇μ∇νHα

μν vanishes.

III. GRAVITATIONAL WAVES
IN EXTENSIONS OF STG

In this section, we investigate GWs in two extensions of
STG, namely the perturbed versions of the generalized
irreducible decomposition of the STG which emerges from
nonmetricity scalar Q, as well as the other natural gener-
alization of the theory, namely fðQÞ gravity.

A. GWs in the generalized irreducible
decomposition of STG

The most general quadratic scalar built form irreducible
components of the nonmetricity tensor is given by

Q ≔ c1QαμνQαμν þ c2QαμνQμαν þ c3QαQα

þ c4Q̄αQ̄α þ c5Q̄αQα; ð18Þ

where c1;…; c5 are arbitrary constants. Note that this is
quadratic at the level of the Lagrangian and does not refer to
the order of the resulting theory which can be generalized to

fðQÞ and still kept at second order. To reproduce the STG
equivalent of GR, i.e., the so-called STEGR, a unique
choice of these parameters must be considered, and it turns
out to be

Q ≔
1

4
QαμνQαμν −

1

2
QαμνQμαν −

1

4
QαQα þ 1

2
Q̄αQα; ð19Þ

which can be shown to be equal to Eq. (10) [27]. This
formulation of the theory is not possible in GR and can
offer an interesting perspective on generalizing the STG
equivalent of GR.
To derive the field equations for this Lagrangian, we first

need to determine the conjugate to the Lagrangian, which
reads as

Pα
μν ¼

1

2

�
c1Qα

μν þ c2QðμανÞ þ c3gμνQαc4δαðμQ̃νÞ

þ c5
2
ðQ̃αgμν þ δαðμQνÞÞ

�
: ð20Þ

For convenience, we define the tensor quantity [42,47]

qμν ≔ 2
∂ ffiffiffiffiffiffi−gp

f

∂gμν −
ffiffiffiffiffiffi
−g

p
fgμν

¼ ffiffiffiffiffiffi
−g

p ½c1ðQαβμQαβ
ν −QμαβQν

αβÞ
þ c2QαβμQβα

ν þ c3ð2QαQα
μν −QμQνÞ

þ c4Q̃μQ̃ν þ c5Q̃αQα
μν�; ð21Þ

with the help of which the field equations take the elegant
form

4∇αð
ffiffiffiffiffiffi
−g

p
Pα

μνÞ − qμν −
ffiffiffiffiffiffi
−g

p
fgμν ¼ Tμν; ð22Þ

where vacuum background is already assumed. For our
purposes, we take the general irreducible decomposition of
the nonmetricity scalar, that is fðgμν;Γα

μνÞ ¼ Q.
We proceed, by perturbing the metric tensor in a

Minkowski background setting up to first order so that

gμν ¼ ημν þ ϵ1hμν; ð23Þ

where ημν is the Minkowski metric, ϵ1 is a first-order
parameter, and hμν is the perturbation of gμν, namely
hμν ≔ δgμν. In general, we can perturb any metric-
dependent quantity AðgÞ up to first order through

Aðημν þ ϵ1hμνÞ ¼ AðημνÞ þ ϵ1δAðημν; hμνÞ: ð24Þ

A subcase of the nonmetricity covariant derivative is the
usual partial derivative in the coincident gauge. We will use
interchangeably the notation Að1Þ ¼ δA to indicate the first-
order perturbation of a quantity A. We use this method to
find the first-order part of the field equations [Eq. (22)],
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4∇αδ½ð
ffiffiffiffiffiffi
−g

p
Pα

μνÞ� − δqμν − δðLQgμνÞ ¼ δTμν: ð25Þ

One would start by calculating all the relevant quantities,
δð ffiffiffiffiffiffi−gp

Pα
μνÞ, δðLQgμνÞ, and δqμν, in the coincident gauge.

However, it turns out the only nonvanishing quantity at first
order is δð ffiffiffiffiffiffi−gp

Pα
μνÞ, which is not unexpected since the

other quantities are third order in the metric. This gives

δð ffiffiffiffiffiffi
−g

p
Pα

μνÞ ¼ c1∂αhμν þ
1

2
c2ð∂μhαν þ ∂νhαμÞ þ c3ημν∂αh

þ 1

4
c4ð2δαν∂α1hμ

α1 þ 2δαμ∂α1hν
α1Þ

þ 1

4
c5ð2ημν∂α1h

αα1 þ δαν∂μhþ δαμ∂νhÞ;
ð26Þ

and substituting Eq. (26) back to Eq. (25), the linearized
field equations read as

δTμν ¼ c1□hμν þ
1

2
ðc2 þ c4Þð∂α∂μhνα þ ∂α∂νhμαÞ

þ c3ημν∂α1∂α1hþ 1

2
c5ðημν∂α1∂αhαα1 þ ∂ν∂μhÞ:

ð27Þ

Let us stress at this point that in order to study the above
linearized field equations, we no longer have the usual
diffeomorphism invariance which would have allowed us to
use the traceless transverse gauge or any gauge that is
sourced from a coordinate change. This is due to the fact
that we have already fixed a specific coordinate frame in
which our connection trivializes to the coincident gauge.
Therefore, to further study Eq. (27), we need to proceed in
the most general way possible by performing the full scalar-
vector-tensor (SVT) decomposition (for details, see on this
approach in Appendix A).
Inserting Eq. (A2) into Eq. (27) and then Fourier

transforming the space part of the perturbation through
hμνðxi; tÞ → ReðhμνðtÞeikixiÞ, we obtain the following field
equations for the scalar perturbations:

δT00 ¼ − 2ð6c3 þ c5Þk2ψ − 6ð2c3 þ c5Þψ̈
þ 4ðc1 þ c3Þk2φþ 4ðc1 þ c2 þ c3 þ c4 þ c5Þφ̈
− ð2c3 þ c5Þk4E − ð2c3 þ c5Þk2Ë
− 2ðc2 þ c4 þ c5Þk2 _B; ð28Þ

−i
ki
k2

δT0i ¼ ð2c1 þ c2 þ c4Þðk2Bþ B̈Þ
þ ðc2 þ c4 þ c5Þðk2 _E − 2 _φÞ
þ 2ðc2 þ c4 þ 3c5Þ _ψ ; ð29Þ

δijδTij¼12ðc1þ3c3Þψ̈þ4ð3c1þc2þ9c3þc4þ3c5Þk2ψ
−6ð2c3þc5Þφ̈−2ð6c3þc5Þk2φ
þ2ðc1þc2þ3c3þc4þ2c5Þk4E
þ2ðc1þ3c3Þk2Ëþ2ðc2þc4þ3c5Þk2 _B; ð30Þ

σ ¼ 2ðc2 þ c4Þ _B − 2c5φþ ð4ðc2 þ c4Þ þ 6c5Þψ
þ ð2ðc1 þ c2 þ c4Þ þ c5Þk2Eþ 2c1Ë; ð31Þ

where σ is a scalar that generates a part of the anisotropic
tensor defined by δTμν.
From the scalar perturbation equations, one can calculate

the dispersion relation for the scalar modes by Fourier
transforming the time derivatives AðtÞ → ReðAe−iωtÞ and
then evaluating the equations in vacuum, which results in

c1κ1κ2ðk2 − ω2Þ4 ¼ 0; ð32Þ

where

κ1 ≔ 2c1 þ c2 þ c4; ð33Þ

and

κ2≔4c21þ12c3ðc2þc4Þ−3c25þ4c1ðc2þ4c3þc4þc5Þ:
ð34Þ

The scalar perturbation equations and the dispersion
relation are in agreement with the results of Ref. [42]. The
physical consequence of Eq. (32) is that all the scalar
modes propagate with the speed of light, i.e., on the null
cone. Also, note that kμkμ ¼ k2 − ω2 is the norm of the
wave vector related to the scalar perturbation hSμν of the
metric which emerges by Fourier transforming through
hSμνðx; tÞ → hSμνeikμx

μ
. Therefore, if the norm of kμ is null,

then this just means that the spacetime wave vector kμ is
also null, i.e., it lies on the null cone and all of the above
relations are equivalent to saying that the scalar modes of
the gravitational wave propagate at the speed of light.
In a similar fashion, we find the field equations describing

vector-tensor perturbations by inserting hμν→ðhVμνþhTμνÞ
into Eq. (27),

δT0j ¼ð2c1 þ c2 þ c4ÞB̈j þ 2c1k2Bj þ ðc2 þ c4Þk2 _Ej;

ð35Þ

δTij ¼ −4c1ðËij þ k2EijÞ − 2iððc2 þ c4Þ _BðikjÞ

− 4ic1ËðikjÞ − 2ið2c1 þ c2 þ c4Þk2EðikjÞ: ð36Þ

We now let the energy-momentum tensor vanish since
our interest is in determining the dispersion relation for the
GW modes in vacuum. Following the same method
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described for the scalar perturbations, we found the
dispersion relations for the vector modes to be

c1κ1ðk2 − ω2Þ ¼ 0; ð37Þ

and for the tensor modes

c1ðk2 − ω2Þ ¼ 0; ð38Þ

where again both of these modes propagate in the speed
of light.
Notice that in every dispersion relation the coefficient c1

appears explicitly as a multiplying factor which is a result
of c1 being coupled to the wave operator in Eq. (27).
Hence, all of the modes propagate with the speed of light,
which means that the Eð2Þ framework can be employed to
further classify the polarization modes [52,53]. Our analy-
sis is also in agreement with Ref. [46] where another
version of the SVT decomposition was employed, and the
Eð2Þ framework used to perform the classification of the
polarizations modes for this class of theories. The full
polarization modes are classified in that work.

B. GWs in f ðQÞ gravity
The other natural generalization of the STEGR scalar

is to raise the Lagrangian to an arbitrary function. This is
analogous to the fðRÞ gravity paradigm. Saying that, this is
distinct in that the resulting field equations remain second
order, meaning that fðQÞ ≠ fðRÞ. This happens due to the
contribution of the boundary term in Eq. (1) which renders
fðQÞ gravity as a genuinely distinct theory.
Using Eq. (13), we can write the field equations as

f0ðQÞ
�
2ð∇α

ffiffiffiffiffiffi−gp
Pα

μνÞffiffiffiffiffiffi−gp þ PμαβQν
αβ − 2QαβμPαβ

ν

#

−
1

2
gμνfðQÞ þ 2Pα

μν∂αðf0ðQÞÞ ¼ Tμν; ð39Þ

where f0ðQÞ ≔ df=dQ. We can rewrite (39) to be repre-
sented by the Einstein tensor Gμν as determined using the
Levi-Civita connection, obtaining

1

2
gμν½−fðQÞ þ f0ðQÞQ� þ f0ðQÞGμν þ 2Pα

μν∇αf0ðQÞ
¼ Tμν: ð40Þ

Following the same procedure as in the irreducible decom-
position, we perturb the metric up to first order using (23)
and determine the field equations in Eq. (40) which result in

ημνfð0Þ ¼ 0; ð41Þ

Gð1Þ
μν f0ð0Þ − 1

2
hμνfð0Þ ¼ 0: ð42Þ

These are the zeroth- and first-order perturbation equ-
ations which yield a vanishing cosmological constant, i.e.,
fð0Þ ¼ 0 and

Gð1Þ
μν f0ð0Þ ¼ 0; ð43Þ

respectively. These equations are completely equivalent to
GR in the first-order perturbation regime, for the nontrivial
case f0ð0Þ ≠ 0. This again implies that we acquire the same
speed and polarizations of waves as in GR. Note that if one
starts from fðQÞ, i.e., using the modified version of the
generalized nonmetricity scalar of (18), the same result
as in (43) is obtained when the appropriate choices for
STEGR are chosen.
The behavior of Eqs. (41) and (42) is identical to the case

of fðTÞ gravity [54,55]. The significance of this result is
that the general class of fðQÞ theories passes the polari-
zation constraints of the LIGO-Virgo observation of a
binary black hole coalescence [44].

IV. GRAVITATIONAL WAVES IN THEORIES
WITH SCALAR-FIELD COUPLING TO f ðQÞ

GRAVITY

In this section, we investigate the GWs which arise in the
extended theory where a scalar field ϕ is nonminimally
coupled to the nonmetricity scalar Q, together with the
presence of a coupled kinetic energy and potential. The
study of GWs in the context of scalar-tensor theories has
been investigated in various works, for instance, in the
nonminimal coupling to torsion scalar and boundary term
[56], in scalar-tensor equivalent of fðRÞ gravity [57,58], in
Horndeski theory [59], and in GR couplings [60] as well as
Hořava gravity [61] and generalized TeVeS theory [62,63].
In most works, a linearized gravity approach is considered
to examine the properties of the GWs arising from the
theory. Hence, the approach considers metric perturbations
around a Minkowski background as

gμν ¼ ημν þ hμν þ…; ð44Þ

where jhμνj ≪ 1, which represents the first-order correction
to the metric as in Eq. (23). For the scalar field, a
perturbative approximation is considered which takes the
form

ϕ ¼ ϕ0ðxμÞ þ δϕðxμÞ þ…; ð45Þ

where jδϕðxμÞj ≪ 1 and likewise it represents a first-order
perturbation. We mention that in this work we allow the
background scalar field to be space and time dependent and
not necessarily constant. This will allow for a broader
analysis of the resulting perturbed equations of motion
comparing to the literature.
The gravitational Lagrangian that we study in this

section is the one considered in [41]
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Lg ¼ AðϕÞQ − BðϕÞgαβ∂αϕ∂βϕ − 2VðϕÞ; ð46Þ

where A, B represent the coupling strengths to the non-
metricity scalar and kinetic energy of the scalar field,
respectively, and VðϕÞ is the potential energy of the scalar
field. In the absence of matter fields, the gravitational field
equations and the scalar-field equation are, respectively,
found to be

0 ¼ AGμν þ 2Pα
μν∂αAþ 1

2
gμνðBgαβ∂αϕ∂βϕþ 2VÞ

− B∂μϕ∂νϕ; ð47Þ

0 ¼ 2BDαDαϕþ Bϕgαβ∂αϕ∂βϕþAϕQ − 2Vϕ; ð48Þ

where a subscript wrt the scalar field represents a deriva-
tive, i.e., Bϕ ¼ dB=dϕ.
The next step is to consider perturbations over the

equations and solve them order by order. We start with
the zeroth-order perturbation of Eq. (47), which yields

0¼1

2
ημνðBð0Þηαβ∂αϕ0∂βϕ0þ2Vð0ÞÞ−Bð0Þ∂μϕ0∂νϕ0; ð49Þ

where superscript bracketed numerals again refer to the
order of the perturbation of the quantity. This leads to a
system of ten equations that yield a set of constraints on the
potential Lagrangians. The first is that Vð0Þ ¼ 0. Then, one
of the following scenarios must hold:
(1) Bð0Þ ¼ 0;
(2) Bð0Þ ¼ 0 and ϕ0 ¼ ϕ0ðxμÞ for some μ;
(3) ϕ0 ¼ const.

Using these conditions, the first-order equation in Eq. (47)
simplifies to

0 ¼ 2∂αðAð0ÞPαð1Þ
μνÞ þ

1

2
ημν½Bð1Þηαβ∂αϕ0∂βϕ0 þ 2Vð1Þ�

− Bð1Þ∂μϕ0∂νϕ0: ð50Þ

On the other hand, the zeroth and first order of the scalar-
field equation in Eq. (48) result into the following linear-
ized equations:

0 ¼ Bð0Þ
ϕ ημν∂μϕ0∂νϕ0 − 2Vð0Þ

ϕ ; ð51Þ

0 ¼ 2Bð0Þ
□δϕþ 2Bð1Þ

□ϕ0 þ 2Bð0Þ
ϕ ημν∂μϕ0∂νδϕ

−Bð0Þ
ϕ hμν∂μϕ0∂νϕ0 þ Bð1Þ

ϕ ημν∂μϕ0∂νϕ0 − 2Vð1Þ
ϕ ; ð52Þ

where □ ≔ ημν∂μ∂ν is d’Alembert’s operator. We now
investigate the three cases separately.

A. Bð0Þ = 0

For the first case, Eqs. (50)–(52) become

0 ¼ 2∂αðAð0ÞPαð1Þ
μνÞ þ

1

2
ημν½Bð1Þηαβ∂αϕ0∂βϕ0 þ 2Vð1Þ�

− Bð1Þ∂μϕ0∂νϕ0; ð53Þ

0 ¼ Bð0Þ
ϕ ημν∂μϕ0∂νϕ0 − 2Vð0Þ

ϕ ; ð54Þ

0 ¼ 2Bð1Þ
□ϕ0 þ 2Bð0Þ

ϕ ημν∂μϕ0∂νδϕ − Bð0Þ
ϕ hμν∂μϕ0∂νϕ0

þ Bð1Þ
ϕ ημν∂μϕ0∂νϕ0 − 2Vð1Þ

ϕ : ð55Þ

For this case, not much can be done with the field
equations, in order to examine the behavior of the pertur-
bations due to the complexity of the system. Nevertheless,
results can be obtained within certain considerations.
If we assume that B is Taylor expandable around some

value ϕ ¼ ϕ⋆, then BðϕÞ ¼ P∞
n¼0

BðnÞðϕ⋆Þ
n! ðϕ − ϕ⋆Þn. Since

Bð0Þ ¼ 0, this leaves two possibilities, (i) BðnÞðϕ⋆Þ ¼ 0 for
every n, which implies BðϕÞ ¼ 0 (in other words, absent
from the Lagrangian), or (ii) ϕ0 achieves a constant (real or
complex) value in terms of the Taylor coefficients and ϕ⋆.
The latter case is not of interest here since the constant case
is investigated separately, and hence we investigate only the
former case.
The scalar zeroth- and first-order equations in Eqs. (54)

and (55) result in the conditions Vð0Þ
ϕ ¼ Vð0Þ

ϕϕ ¼ 0. On
the other hand, the first-order field equation in Eq. (53)
reduces to

0 ¼ ∂αðAð0ÞPαð1Þ
μνÞ: ð56Þ

Solving the partial differential equation for the perturbations
hμν in general is not possible here unless prior knowledge of
Að0Þ and ϕ0 is known. However, one can make note of the
following. The coupling term A represents the coupling
strength to STEGR. In most cases, we are interested in
coupling strengths which deviate slightly from STEGR, and
hence one can assume the form of A to be

AðϕÞ ¼ 1þ ϵ2ĀðϕÞ þOðϵ22Þ; ð57Þ

where ϵ2 is some small parameter (i.e., jϵ2j ≪ 1) and Ā is a
function of ϕ. In this way, the zeroth-order perturbation
takes the form

Að0Þ ¼ 1þ ϵ2Ā
ð0Þ þOðϵ22Þ; ð58Þ

where Āð0Þ ¼ Āðϕ0Þ. Thus, instead of solving Eq. (56) in
general, the equation is solved perturbatively order by order
in terms of ϵ2. This can be achieved by taking a perturbative
solution for hμν in the form
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hμν ¼ hSTEGRμν þ ϵ2h̄μν þOðϵ22Þ: ð59Þ

Here, the STEGR superscript denotes the absence of the A
couplingwhile the bar denotes the first-order contribution of
the latter, which notationwill be assumed in the remainder of
this section. SincePαð1Þ

μν is explicitly dependent on hμν, this
leads to a similar order expansion of the form

Pαð1Þ
μν ¼ Pαð1ÞSTEGR

μν þ ϵ2P̄αð1Þ
μν þOðϵ22Þ; ð60Þ

where it can be shown that Pαð1ÞSTEGR
μν ¼ Pαð1Þ

μνjhμν→hSTEGRμν

and P̄αð1Þ
μν ¼ Pαð1Þ

μνjhμν→h̄μν . Therefore, expanding Eq. (56)
order by order yields the iterative system of equations,

0 ¼ ∂αP
αð1ÞSTEGR

μν ; ð61Þ

0 ¼ ∂αðP̄αð1Þ
μν þ Āð0ÞPαð1ÞSTEGR

μν Þ
¼ ∂αP̄αð1Þ

μν þ Pαð1ÞSTEGR
μν ∂αĀ

ð0Þ; ð62Þ

where in Eq. (62) we used Eq. (61). One can easily observe
that the solution for Eq. (61) yields the standard STEGRGW
solution, while from Eq. (62) the first-order correction h̄μν
depends on the STEGR solution and the scalar-field
coupling which together act as a source term. Hence, the
choice of the coupling strength is important as it affects the
corrections to the standard STEGR GW modes.
Furthermore, it is necessary for the scalar field to be strictly
nonconstant, otherwise themodes reduce to those of STEGR
(since Āð0Þ would become constant and hence the source
term would become zero) as expected.

B. Bð0Þ = 0 and ϕ0 =ϕ0ðxμÞ (for some μ)

For these conditions, Eqs. (50)–(52) reduce to

0 ¼ 2∂αðAð0ÞPαð1Þ
μνÞ þ

1

2
ημν½Bð1Þηρρð∂ρϕ0Þ2 þ 2Vð1Þ�

− Bð1Þ∂μϕ0∂νϕ0; ð63Þ

0 ¼ Bð0Þ
ϕ ηρρð∂ρϕ0Þ2 − 2Vð0Þ

ϕ ; ð64Þ

0 ¼ 2Bð1Þ
□ϕ0 þ 2Bð0Þ

ϕ ηρρ∂ρϕ0∂ρδϕ − Bð0Þ
ϕ hρρð∂ρϕ0Þ2

þ Bð1Þ
ϕ ηρρð∂ρϕ0Þ2 − 2Vð1Þ

ϕ ; ð65Þ

where□ϕ0 ¼ ηρρ∂2
ρϕ0. In what follows, we assume that ϕ0

is nonconstant, since in that case the model reduces to the
next case ϕ0 ¼ const, analyzed in the next subsection.
Taking the derivative of Eq. (64) with respect to xρ, and

using the fact that Cð1Þ ¼ Cð0Þϕ δϕ for any CðϕÞ, Eq. (65)
reduces to

0 ¼ Bð0Þ
ϕ ½2ηρρ∂ρδϕ − hρρ∂ρϕ0�: ð66Þ

This leaves two possibilities, either Bð0Þ
ϕ ¼ 0 or 2ηρρ∂ρδϕ−

hρρ∂ρϕ0 ¼ 0. In the former case, Eq. (63) reduces to

0 ¼ ∂αðAð0ÞPαð1Þ
μνÞ: ð67Þ

As discussed in the previous subsection, the solution for the
metric perturbation cannot be obtained in general but its
behavior can be examined provided that the coupling
strength A can be expanded as STEGR with a small
correction.
In the remaining case, provided that the behavior for ϕ0

is known, this leads to the system

0 ¼ 2∂αðAð0ÞPαð1Þ
μνÞ þ ½2ημνVð0Þ

ϕ − Bð0Þ
ϕ ∂μϕ0∂νϕ0�δϕ;

ð68Þ

0 ¼ 2ηρρ∂ρδϕ − hρρ∂ρϕ0; ð69Þ

where the field equation in question was simplified using
Eq. (64). However, this case cannot be analytically solved
for both δϕ and hμν, and hence will not be investigated
further. Nonetheless, we mention that if we assume that B is
Taylor expandable around ϕ ¼ 0 as in the previous case,
then this instance would not appear and the previous case
would follow.

C. ϕ0 = const:

For the constant case, Eqs. (50)–(52) simplify to

0 ¼ 2∂αðAð0ÞPαð1Þ
μνÞ þ ημνVð1Þ; ð70Þ

0 ¼ Vð0Þ
ϕ ; ð71Þ

0 ¼ Bð0Þ
□δϕ − Vð1Þ

ϕ : ð72Þ

As Vð1Þ ¼ Vð0Þ
ϕ δϕ, Eq. (70) simplifies further to

0 ¼ ∂αðAð0ÞPαð1Þ
μνÞ: ð73Þ

Furthermore, since ϕ0 is constant, every zeroth-order
quantity of functions of ϕ will be constant. Therefore,
since Að0Þ is constant, this simplifies the expression to

0 ¼ Að0ÞGð1Þ
μν . Since the A coupling has to be nonzero

(otherwise no STEGR contributions appear), this reduces to
the standard STEGR perturbation equation. On the other

hand, since Vð1Þ
ϕ ¼ Vð0Þ

ϕϕδϕ, Eq. (72) becomes

Bð0Þ
□δϕ − Vð0Þ

ϕϕδϕ ¼ 0; ð74Þ
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which yields a wave equation solution with effective mass

m2 ¼ Vð0Þ
ϕϕ

Bð0Þ : ð75Þ

Therefore, the scalar field evolves independently of the
metric perturbations.
In summary, we can deduce that while the GW analysis

of this section contains three subcases, the main distinction
comes from when the background value of the scalar field
is a constant. If it is, then the metric propagates with two
polarizations identical to GR with an independent massive
mode in the scalar field. This means that we recover
STEGR, while in the scenario where the background value
of the scalar field is not constant, the scalar field acts as a
source term that attenuates the GW signature but does not
produce any extra polarization modes.

V. GRAVITATIONAL WAVES IN f ðQ;BÞ GRAVITY

In this section, we investigate GWs within the fðQ;BÞ
gravity context, which is a more general scenario than fðQÞ
with a Lagrangian that depends both on the nonmetricity
scalar and the boundary term that forms with the Levi-
Civita Ricci scalar as shown in Eq. (1). In essence, this is a
generalization of fðRÞ gravity in terms of the order
contributions to the Lagrangian.

A. f ðQ;BÞ gravity
The action of fðQ;BÞ gravity naturally writes as

S ¼ 1

16πG

Z
d4x½ ffiffiffiffiffiffi

−g
p

fðQ;BÞ þ λα
βμνRα

βμν

þ λα
μνTα

μν� þ
Z

d4x
ffiffiffiffiffiffi
−g

p
Lm; ð76Þ

where Lm refers to any source contributions, and the
Lagrange multipliers are eliminated in the same way as
in Eq. (17) which is again solved by adopting the
coincident gauge. This is interesting since besides being
another potential generalization of STEGR, it also offers an
attractive alternative interpretation of the well-studied fðRÞ
modification of GR. This implies that despite the plethora
of work on the topic, fðQ;BÞ gravity offers an alternative
direction for a broader class of fðRÞ equivalent theories of
gravity.
Variation of the action with respect to the metric yields

the field equations,

1

2
gμν½−fðQ;BÞ þ fBB� þ 2Pα

μν∂αðfQ þ fBÞ

þ fQ

�
2ffiffiffiffiffiffi−gp ∇αð

ffiffiffiffiffiffi
−g

p
Pα

μνÞ þ PμαβQν
αβ − 2QαβμPαβ

ν

�

þDμDνfB − gμνDαDαfB ¼ 8πGTμν; ð77Þ

where ∇μ is the STG covariant derivative, Dμ is the Levi-
Civita covariant derivative, and Pα

μν is the superpotential
defined in (12), which now becomes

Pα
μν ¼

1

4
½−Qα

μν þ 2QðμανÞ þQαgμν − Q̃αgμν − δαðμQνÞ�:
ð78Þ

Using the GR limit fðQ;BÞ → R ¼ Q − B, we can iden-
tify the Einstein tensor in the field equations and write

1

2
gμν½−fðQ;BÞ þ fQQþ fBB�
þ fQGμν þ 2Pα

μν∂αðfQ þ fBÞ
þ ½DμDν − gμνDαDα�fB ¼ 8πGTμν; ð79Þ

where Gμν ¼ Rμν − 1
2
gμνR is the Einstein tensor calculated

using Levi-Civita connection.
We can retrieve the field equation of fðRÞ gravity [10]

by taking the limit fðQ;BÞ → fðR ¼ Q − BÞ, where we
have fB → −fR, fQ → fR and fBB → fRR, yielding

−
1

2
gμνfðRÞ þ fRRμν

þ ½gμνDαDα −DμDν�fR ¼ 8πGTμν; ð80Þ

which agree with the fðRÞ gravity field equations as
expected.

B. GWs in f ðQ;BÞ gravity
We now proceed to the study of GWs within the context

of fðQ;BÞ theory. As before, we assume the coincident
gauge where the connection vanishes [27]. As a further
coincidence, the field equations that emerge in Eq. (77) are
identical to those in the teleparallel case under the symbolic
change T → Q and superpotential change, which was
studied in Ref. [54]. Furthermore, the Q and T scalars
are both second-order quantities, thus at first order only the
boundary terms of the theories will contribute. The foun-
dations of these theories are wholly distinct from each other
but given their relation to the Ricci scalar the above result is
not completely unexpected.
Consider the metric perturbation of Eq. (23). At first

order, only the field equations that contain the boundary
term will survive beyond the cosmological constant. This
can be related to the first order of the Ricci scalar using
Eq. (1), which gives

Bð1Þ ¼ ðDαðQα − Q̃αÞÞð1Þ;
¼ ∂αðηβγ∂αhβγ − ηαβ∂γhβγÞ;
¼ □hββ − ∂α∂βhαβ ¼ −Rð1Þ: ð81Þ

We assume a Taylor expansion of fðQ;BÞ around (0,0), so
that the expansion of the Lagrangian takes the form
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fðQ;BÞ¼fð0;0ÞþfQð0;0ÞQþfBð0;0ÞBþ1

2
fQQð0;0ÞQ2

þ1

2
fBBð0;0ÞB2þfQBQBþ���: ð82Þ

We then consider a vacuum background where Tμν ¼ 0 and
writing the field equations up to first order as

ημνfð0; 0Þ ¼ 0; ð83Þ

fQð0; 0ÞGð1Þ
μν − fBBð0; 0Þð∂μ∂ν − ημν□ÞRð1Þ ¼ 0; ð84Þ

where we used the solution of the first equation fð0; 0Þ ¼ 0
which is used to simplify the second equation.
Taking the trace of Eq. (84) yields

−fQð0; 0ÞRð1Þ þ 3fBBð0; 0Þ□Rð1Þ ¼ 0: ð85Þ

We identify a Klein Gordon type equation ð□ −m2ÞRð1Þ ¼
0, where the effective mass is given as

m2 ¼ fQð0; 0Þ
3fBBð0; 0Þ

: ð86Þ

From Eq. (85), it is evident that a massive wave
propagates in the GW signature, but the wave is composed
of at most six polarizations and so no further information
can be extracted from this scalar wave equation. Given that
the Klein-Gordon equation does not operate directly hμν but
on Rð1Þ ¼ □hββ − ∂α∂βhαβ, the massive mode is actually
an expression of the Ricci scalar and not the underlying
metric perturbation.
As already discussed in Sec. III A, we do not have the

freedom to further set gauge conditions such as the Lorenz
gauge since we have already chosen the coincident gauge
for the connection, which permeates even at perturbative
level. This means that we must consider again an SVT
decomposition of the linearized equations. Structurally, this
is very similar to fðRÞ (see Appendix D) so we would
expect to find breathing and even longitudinal modes in
fðQ;BÞ, since fðRÞ ⊆ fðQ;BÞ. In terms of hμν, the
linearized field equations for fðQ;BÞ turn out as

1

2
ð−□hμν þ gμνð−∂λ∂αhαλ þ□hÞ þ ∂μ∂αhνα

þ ∂ν∂αhμα − ∂ν∂μhÞ þ ðημνð□∂β∂αhαβ −□
2hÞ

− ∂ν∂μ∂λ∂αhαλ þ ∂ν∂μ∂λ∂λhÞCB ¼ 0; ð87Þ

where fQ ≔ fQð0; 0Þ ≠ 0, fBB ≔ fBBð0; 0Þ ≠ 0, CB ≔
fBB=fQ and h ¼ hνν. It is important to note that the
Lagrangian limits to fðRÞ and not to GR due to the
restrictions on the values of the arbitrary function f,
which stems from the fact that fBB is present. The choice

fQ → fR and fBB → 0 is the limit to fðRÞ only, since a
limit to GR would additionally require that fB → 0.
In STG, the connection is changed from the Levi-Civita

to the disformation connection. However, this framework
still exists within the broader Riemannian geometry setting
and so certain elements can be adopted straightforwardly as
in modifications of GR. One such setup is that of a locally
freely falling observer on a Riemann manifold making
measurements on an incoming GW [64]. This analysis
leads directly to the Eð2Þ framework which can consis-
tently be utilized to determine the polarization modes of
incoming GWs. This approach is introduced for conven-
ience in Appendix B. Here, we will distinguish between an
extra mode that propagates as a null and almost null wave
since the results differ for either case.
In the null wave case, the only nontrivial components

from Eq. (87) are

Hmm̄ ¼ −
1

2
ḧll ⇒ Ψ2 ¼ 0; ð88Þ

Hnm̄ ¼ Hnm ¼ −
1

2
ḧlm̄ ⇒ Ψ3 ¼ 0; ð89Þ

Hnn ¼ −CB
⃜hll − ḧmm̄ ⇒ Φ22 ≠ 0; ð90Þ

which is a result identical to the corresponding case for
fðRÞ theory and is also consistent with the fact that
fðRÞ ⊆ fðQ;BÞ.
In the case of an almost null wave, the norm of the wave

vector, lμ, gives

ημνl̃
μl̃ν ¼ ε ≪ 1; ð91Þ

where ϵ is related to change in the propagation speed. We
then obtain the following system of equations:

Hnn ¼ −CB
⃜hll − hmm̄ þ ε

�
−
1

2
hmm̄ þ CBð− ⃜hll

þ 3⃜hln − 2⃜hmm̄Þ þ hnn

�
ð92Þ

Hnm̄ ¼ Hmn ¼ −
1

2
hlm̄ þ 1

4
εð−hlm̄ þ 3hnm̄Þ ð93Þ

Hmm̄ ¼ −
1

2
hll þ ε

�
−
1

4
hll − CB

⃜hll þ
3

2
hln −

1

2
hmm̄

�
ð94Þ

Hln ¼ ε

�
3

2
CB

⃜hll − hln þ
3

2
hmm̄

�
ð95Þ

Hll ¼ εhll ð96Þ

Hlm̄ ¼ Hlm ¼ 3

4
εhlm̄ ð97Þ
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Hm̄m̄ ¼ Hmm ¼ 1

2
εhm̄m̄; ð98Þ

which are again identical to the corresponding one
for fðRÞ, when the substituting CB ↔ CR is assumed.
Therefore, the polarization amplitudes areΨ2 ¼ 0, Ψ3 ¼ 0,
Ψ4 ¼ 0 but Φ22 ≠ 0. Just as in fðRÞ, by keeping terms of
the form OðεhμνÞ, which are practically second order, we
see that only the breathing scalar mode survives. One
outcome of this analysis is that the propagating degrees of
freedom of fðQ;BÞ should at least match those of fðRÞ.
The fact that we need to distinguish two cases for the

mass of the total GW has to do with the form of the
dispersion relation of the total wave since both the null and
non-null cases are potential solutions. It turns out that there
is a massive scalar propagating degree of freedom in the
class of fðQ;BÞ theories, which at first glance, can be
observed from Eq. (85). Although the effective mass in
Eq. (86) does not coincide with the (small) mass imposed
by ημνl̃

μl̃ν ¼ ε, i.e., the almost null wave. This merely
suggests that the total wave cannot be studied just by using
one dispersion relation but rather two of them, one for the
tensor wave ημνl̃

μl̃ν ¼ ε≡ 0 and one for the massive
scalar wave ημνl̃

μl̃ν ¼ ε ≪ 1. In this sense, the theory
itself cannot be classified as a whole but rather component
wise. Considering only the tensor modes, fðQ;BÞ gravity
appears as anN3 quasi-Lorentz invariant class. On the other
hand, considering only the small massive scalar part
fðQ;BÞ gravity is of O1 quasi-Lorentz invariant class.
This hold translates identically for fðRÞ gravity.

VI. CONCLUSIONS

In this work, we explored the possibility of GWs in STG
theories and their extensions, where gravitation is
expressed through nonmetricity rather than curvature or
torsion of the manifold connection. This form of gravity
can be constructed to be equivalent to GR at the level of
field equations through relation in Eq. (1), namely STEGR.
However, the boundary term, B, renders most generaliza-
tions distinct from their GR analogue. Even at the level of
STEGR, there are a number of advantages that STG offers,
that do not appear in the Levi-Civita connection form of the
theory, such as a well-defined energy-momentum tensor for
the gravitational field.
We first investigated the GW signature of the general

irreducible setting of the STEGR scalar, Q, which repre-
sents a novel generalization that does not appear for GR.
This is interesting since it may offer a guide to why STEGR
(or GR) should at least form part of any modified theory of
gravitational Lagrangian. In the general linear case, we
derived the linearized field equations in Eq. (27) and then
the dispersion relations for the scalar, vector, and tensor
modes which all propagate at the speed of light. However,
extra polarization modes beyond the two tensor modes of

GR exist in certain setting (the full classification is carried
out in Ref. [46]).
Alternatively, modifying the STEGR Lagrangian itself,

analogous to the fðRÞ paradigm results in generally
second-order field equations. In Eq. (42), we find that
the polarization modes turn out to be identical to those of
GR. This means that GW polarization tests cannot dis-
tinguish between GR and fðQÞ theories of gravity, while
the linear irreducible form of STG theory does produce
distinct results that would emerge in GW observations.
Furthermore, we investigated the GWs in theories with a

nonminimal coupling between fðQÞ and a scalar field,
where the perturbations were taken at the level of the metric
as well as the scalar field itself. While the GW analysis
contains three subcases, the conclusions depend on whether
background value of the scalar field is constant. If this is
constant, then two polarization modes of GR propagate in
the metric and the scalar field forms a massive mode that
decouples from the two polarizations of STEGR. This
implies that the massive mode evolves independently of the
metric perturbations, and as a consequence would in
general propagate with a different speed. In the other case,
the background value of the scalar field is not constant and
effectively acts as a source term that attenuates the two
polarizations of STEGR but does not produce any extra
polarization modes.
Finally, we analyzed the fðQ;BÞ gravitational modifi-

cation which is a further generalization of the analogous
fðRÞ theory, where the nonmetricity scalarQ embodies the
second-order contribution and the boundary term B the
fourth-order contributions. Thus, fðQ;BÞ gravity offers a
wider range of Lagrangians to be explored against obser-
vations. In our treatment, we adopt the Eð2Þ framework to
investigate the polarization modes of the propagating GW
modes. We find that the two tensor modes appear in exactly
the same way as they do in GR, while an extra scalar
breathing mode which may appear as a massive mode. In
such cases, the scalar mode does not propagate at the speed
of light.
In general, GW polarizations offer a way of constraining

the strong field behavior of any theory of gravity. This is
helpful in constructing a realistic theory of gravity. STG
and its extensions offer a way for a paradigm shift in our
perspective of gravity.
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APPENDIX A: SCALAR VECTOR TENSOR
(SVT) DECOMPOSITION

The SVT decomposition of the metric perturbation hμν
assumes the following form:

hμν ¼ hSμν þ hVμν þ hTμν; ðA1Þ
where

hSμν ≔
�−2φ ∂iB

∂iB −2ψδij þ ∂i∂jE

�
; ðA2Þ

hVμν ≔
�

0 Bi

Bi 2∂ðiEjÞ

�
; ðA3Þ

hTμν ≔
�
0 0

0 2Eij

�
; ðA4Þ

where Eij is symmetric, and Eijδ
ij ¼ ∂iEij ¼ 0. Here

φ;ψ ; B; E embody the scalar degrees of freedom (DoF),
Bi, Ei the vector DoFs, and Eij the tensor DoFs.
In a similar fashion, the perturbation of the energy-

momentum tensor can be divided as

δTij ¼ δpδij þ Σij ¼ p̄

�
δp
p̄

δij þ Πij

�
; ðA5Þ

Σij ≔ δTij −
1

3
δijδTp

p; ðA6Þ

Πij ≔
Σij

p̄
¼ 1

p̄

�
δTij −

1

3
δijδTp

p

�
; ðA7Þ

where δp≡ δTi
i is the perturbation of the pressure p, p̄ is

the mean value of p, and Σij is the traceless and symmetric
tensor part of δTij, called the anisotropic pressure.
In general, δTμν can be constructed from the scalar

perturbations δp, δρ, the three-velocity vector and Πij. We
can further perform an SVT decomposition of Πij as

Πij ¼ Πij
S þ Πij

V þ Πij
T ; ðA8Þ

Πij
S ≔

�
∂i∂j −

1

3
δij∇2

�
σ; ðA9Þ

Πij
V ≔ −

1

2
ðΠi;j − Πj;iÞ; ðA10Þ

δipΠ
ij;p
T ¼ 0; ðA11Þ

which is useful for the perturbation decomposition of the
individual theories.

APPENDIX B: Eð2Þ FRAMEWORK

Wewill follow the conventions and methods presented in
[64]. We assume a local Lorentz frame in which a plane
wave traveling in the Z direction is described by the
function of retarted time u≡ t − Z and a wave traveling
in the opposite Z direction is described by the function of

advanced time v≡ tþ Z. The functions u and v define our
Newman-Penrose (N-P) basis as follows:

lμ ≔ −u;μ; nμ ≔
1

2
v;μ; ðB1Þ

which made local Fermi coordinates by also including the
normals mμ and m̄μ which comprises the full complex null
basis,

lμ ¼ ð1; 0; 0; 0Þ; nμ ¼ 1

2
ð1; 0; 0;−1Þ; ðB2Þ

mμ ¼ 1ffiffiffi
2

p ð0; 1; i; 0Þ; m̄μ ¼ 1ffiffiffi
2

p ð0; 1;−i; 0Þ: ðB3Þ

Assuming a plane wave traveling in the Z direction, the
perturbation of the metric is a function of the retarted time
hμν ¼ hμνðuÞ. In this setup, the only possible polarization
amplitudes Ψ2, Ψ3, Ψ4, Φ22 can be expressed as

Ψ2 ¼ −
1

6
Rnlnl þOðεRÞ ¼ −

1

6
Rnl þOðεRÞ

¼ 1

12
ḧll þOðεRÞ;

Ψ3 ¼ −
1

2
Rnlnm̄ þOðεRÞ ¼ −

1

2
Rnm þOðεRÞ

¼ 1

4
ḧlm̄ þOðεRÞ;

Ψ4 ¼ −Rnm̄nm̄ ¼ −Rnmnm þOðεRÞ ¼ 1

2
ḧm̄ m̄ þOðεRÞ;

Φ22 ¼ −Rnmnm̃ ¼ −
1

2
Rnn þOðεRÞ ¼ 1

2
ḧmm̄ þOðεRÞ;

ðB4Þ
which naturally are first-order quantities.
Firstly, let us stress that in using the Eð2Þ framework,

in principle, there are three ways of calculating the
polarization amplitudes: directly calculating the Riemann
tensor, the Ricci tensor, or the individual components of the
metric perturbation. These can be viewed as the respective
equivalences positions in Eq. (B4). In our case, we consider
the individual components of the metric perturbation. To
further clarify the situation, we will give examples of GR
and fðRÞ in Appendixes C and D, respectively. In this
setup, we will denote components of the linearized field
equations, on a Minkowski background, by the symmetric
tensor Hμν, i.e., Hμν ¼ 0.

APPENDIX C: POLARIZATIONS IN GR

In GR, the field equations are given by Gμν ¼ 0, in
vacuum, where Gμν is the Einstein tensor. Linearizing these
equations for a Minkowski background gives

Hμν ≡ δGμν: ðC1Þ
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Renaming and expressing in the N-P basis, the only
nontrivial components read as

Hmm̄ ¼ −
1

2
ḧll ⇒ Ψ2 ¼ 0; ðC2Þ

Hnm̄ ¼ Hnm ¼ −
1

2
ḧlm̄ ⇒ Ψ3 ¼ 0; ðC3Þ

Hnn ¼ −ḧmm̄ ⇒ Φ22 ¼ 0: ðC4Þ

Notice that Ψ4 ≠ 0 is unconstrained, and that we have
imposed a null wave. If one used an almost null wave
instead, it would turn out that all the polarization ampli-
tudes are zero, which means no wave at all. This is expected
since we already know that GR describes only a massless
spin 2 particle. When the Ricci tensor is used to make this
determination, the situation is degenerate since δRμν ¼ 0

irrespective of what happens with the norm of the wave
since in either case the only nontrivial polarization ampli-
tude is Ψ4.

APPENDIX D: POLARIZATIONS IN f ðRÞ
GRAVITY

In the same way, we study the case of fðRÞ, where the
background field equations, in vacuum [65], read as

fRRμν −
1

2
fgμν þ ½gμν□ −DμDν�fR ¼ 0; ðD1Þ

which after linearizing give

Hμν ≡ δRμν −
1

2
gμνδRþ CRRμνδR ¼ 0; ðD2Þ

where it is assumed that fRð0Þ ≠ 0, CR ≔ fRRð0Þ=fRð0Þ,
and again the calligraphic characters are quantities related
to the Levi-Civita connection. Expanding all terms in hμν
and projecting in the N-P basis (assuming a null wave), we
obtain the following nontrivial components for the linear-
ized field equations:

Hmm̄ ¼ −
1

2
ḧll ⇒ Ψ2 ¼ 0; ðD3Þ

Hnm̄ ¼ Hnm ¼ −
1

2
ḧlm̄ ⇒ Ψ3 ¼ 0; ðD4Þ

Hnn ¼ −CR
⃜hll − ḧmm̄ ⇒ Φ22 ≠ 0: ðD5Þ

Notice that the only difference between GR and fðRÞ lies
in the ḧmm̄ component due to the presence of CR

⃜hll which
is a pure fðRÞ term since it is fourth order and it is also
multiplied by CR. Therefore, fðRÞ belongs to the N3 class,
if one assumes a null wave.

On the other hand, we also need to work through the
same analysis by considering an almost null wave, where
ημνl̃

μl̃ν ¼ ε ≪ 1, for fðRÞ, since there is also a massive
scalar mode present,

Hnn ¼ −CR
⃜hll − ḧmm̄ þ ε

�
−
1

2
ḧmm̄ þ CRð−⃜hll

þ 3⃜hln − 2⃜hmm̄Þ þ ḧnn

�
; ðD6Þ

Hnm̄ ¼ Hmn ¼ −
1

2
ḧlm̄ þ ε

�
−
1

4
ḧlm̄ þ 3

4
ḧnm̄

�
; ðD7Þ

Hmm̄ ¼ −
1

2
ḧll þ ε

�
−
1

4
ḧll − CR

⃜hll þ
3

2
ḧln −

1

2
ḧmm̄

�
;

ðD8Þ

Hln ¼ ε

�
3

2
CR

⃜hll − ḧln þ
3

2
ḧmm̄

�
; ðD9Þ

Hll ¼ εḧll; ðD10Þ

Hlm̄ ¼ Hlm ¼ 3

4
εḧlm; ðD11Þ

Hm̄m̄ ¼ Hmm ¼ 1

2
εḧm̄m̄; ðD12Þ

and having solved the system where the only nontrivial
polarization amplitude is Φ22 means that the theory now
belongs to the O1 class. This is a consistent result since if
the theory did not really entail a massive scalar mode, then
all the polarization amplitudes would be zero, just as in
GR above.
Alternatively, using the approach where only the Ricci

tensor is used in fðRÞ, as it is done throughout the literature
[57,58,66], one will find that the only nontrivial compo-
nents Hμν ≡ δRμν are

Hnn ¼ − 1

6
δRþ CδR ⇒ Φ22 ≠ 0; ðD13Þ

Hmm̄ ¼ 1

6
δR ⇒ inconclusive: ðD14Þ

This means that we cannot use the Ricci scalar to determine
the GW polarization properties for fðQ;BÞ. One can
immediately see that Ψ4 ≠ 0 since there is no constraint
and also Φ22 ≠ 0 while the rest is trivial. This is consistent
with the previous results but apparently Hmm̄ ≡ δRmm̄ ≠ 0
is inconsistent and that is why the authors initially stated
that the brute force method of calculating the metric
perturbation components is the appropriate consistent
approach.
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