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Gravitational effect of “magnetic type”—those having a curl-like character over large spheres—are
investigated, for isolated systems. The Bondi–Sachs–Newman–Penrose formalism clarifies a number of
points, especially related to radiation memory. It is shown that the “memory tensor” is equivalent to the
change in Bondi shear, from before to after the emission of radiation. This means that if magnetic radiation
memory is present, at least one of the intervals bracketing the radiation must have nonzero magnetic shear
but vanishing radiation. Such intervals, called here CPMS regimes, are shown to be necessarily
nonstationary, however, raising a variety of technical and interpretative issues. In linearized general
relativity, the gravitational fields due to point magnetic quadrupoles with arbitrary time-dependence are
computed, and some of their physics studied. In the far zone, there is a redshift effect which could be
searched for astrophysically: light coming from behind a source generating magnetic shear would be
redshifted by an amount varying with the angle around the source of shear, and in the far-field limit this
redshift goes inversely with the impact parameter. Induction-zone effects are also considered. An induction-
zone memory effect should exist which could possibly be within the reach of laboratory experiments, but
no good candidates for astrophysically detectable effects are found. Also a quadrupole will induce test
particles to move in such a fashion as to create an opposing quadrupole, an effect reminiscent of Lenz’s law.
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I. INTRODUCTION

Effects of “magnetic type”—that is, those coded in fields
which over large spheres have a curl-like, or “unnatural
parity,” character—form an intriguing and relatively unex-
plored facet of general relativity. Probably best known are
the possible cosmological gravitational-waveB-modes. But
there is another sort of magnetic feature, which should
appear in the asymptotic geometry of isolated systems, one
associated with Bondi shear.
The Bondi shear σ is a sort of potential for gravitational

radiation from an isolated system. It is defined on future
null infinity Iþ ≅ R × S2, with the sphere being the
asymptotic outgoing null directions and the R factor
Bondi retarded time u. I will write an overdot for ∂u.
Gravitational radiation is signaled by _σ ≠ 0.
The Bondi shear is a spin-weight two quantity, and in

general it has components σel of electric (or gradient)
and σmag of magnetic (or curl) types.1 It is also affected
by gauge transformations: under a supertranslation, a u-
independent term is added to σel. Indeed, in a regime where
there is no radiation, the electric part σel can be removed by

a gauge change. However σmag is gauge-invariant (and can
be thought of as a purely general-relativistic contribution to
the specific [per unit mass] spin of the system [1]).
This paper will be concerned with magnetic Bondi shear,

and also with related induction-zone effects. It has two
aims: to clarify some of the conceptual issues involved, and
to assess the potential for the effects to be measurable in the
laboratory or detectable astrophysically. Before outlining
the main results, it will be helpful to give a preliminary
discussion of the space-times under consideration.

A. Space-times with magnetic shear

It should be said at the outset that space-times with
σmag ≠ 0would be significantly asymmetric (since σmag has
spin-weight two), and we do not have explicit nonsingular
examples of them in full general relativity. We also do not
know of any realistic examples of matter which would
plausibly generate large persistent magnetic shears.2 On the
other hand, one would expect the presence of magnetic
shear to be generic. In short, we do expect magnetic shear
to be present in realistic systems, but we have no reason at

*helfera@missouri.edu
1From now on, these will simply be called the electric and

magnetic parts of the shear. There is only a formal connection
with electromagnetism.

2As noted above, the quantity σmag can be regarded as a
specific angular momentum, like the Kerr parameter a, in which
case one naturally compares it to the mass of the system
(converted to a length). It is in this sense which realistic estimates
for known systems are small.
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present to think it would be a large effect, and we do not
have good examples in full general relativity.
Within the class of space-times with magnetic shear,

there is a distinguished set. These are the space-times
which, at least for some interval of retarded time, have no
radiation but nevertheless magnetic shear, that is _σ ¼ 0 but
σmag ≠ 0. In such an interval, one could by a super-
translation set σel ¼ 0, and then one would have a regime
with constant (in u) purely magnetic shear. I will call these
CPMS regimes (regardless of the gauge chosen for σel).
Although space-times with CPMS regimes are certainly

not generic within the class of all space-times admitting
Bondi–Sachs asymptotics, one would expect them to be
generic within the class of those with nonradiating periods.
This would suggest that, given that a system at some stage
relaxes to the point where it is not radiating gravitationally,
we should usually expect to find it in a CPMS state. Should
this be the case, it would be very important to study CPMS
space-times as a class, since we would expect these to be
the ones representing real systems, except during periods of
radiation.
However, there are good (but not compelling) reasons to

think that the situation is more complicated: that in realistic
systems CPMS regimes may well occur but cannot persist
indefinitely. One line of thought supporting this view
comes from thinking about implications for black holes,
and this will be explained now. (Others will emerge from
discussion later in this paper.)
One would expect a general collapsing body to have

nonzero multipole moments of both parities of many
orders. If it forms a black hole, the argument above would
suggest that the hole relaxes to a CPMS state. This,
however, would violate the no-hair conjecture, for Kerr–
Newman solutions have vanishing magnetic shear. So
either, at least in the case of black holes, CPMS final
states are forbidden, or the no-hair conjecture is violated in
a serious way.
But what mechanism could forbid CPMS final states?

(And so, what would be wrong with the previous argument
that these states were expected?) Some indication of this
comes from thinking about CPMS perturbations of Kerr (or
Kerr–Newman). These would be zero-frequency deforma-
tions, but there are fairly good arguments that such
perturbations are not stable [2]. If this is the case, then a
gravitationally collapsing solution close to Kerr might
approach a CPMS state for some time, but then “hiccup”
away its magnetic shear as radiation and finally approach
the Kerr state.
In linearized gravity, there are no known examples of

sources generating indefinitely persistent constant mag-
netic shear, and systems which maintain a constant mag-
netic shear for a period do so by having separated
contributions to the angular momentum, the product of
the separation and the individual contributions increasing
quadratically. That the only known means of producing

CPMS regimes seems so mannered can be taken to suggest
that they cannot be maintained indefinitely—although this
is certainly not a compelling argument.
If this principle is true generally, then CPMS states

necessarily hold latent radiative degrees of freedom, which
will be eventually driven active. This would mean that all
gravitational systems would eventually emit their magnetic
shear in magnetic gravitational radiation. We should expect
a population of B-modes from this.
The reader may have noticed that I have avoided saying

that CPMS regimes might be quasistationary. We will see
later that they cannot be stationary, and indeed certain of
their Newman–Penrose asymptotic curvature coefficients
must grow polynomially with u. (This growth is associated
with restrictions on where the Bondi–Sachs asymptotics
will be accurate; it does not obviously indicate any
unphysical divergence or breakdown of the theory.)
This discussion of the possible instability of CPMS

regimes is just a sketch of what seem the likeliest alter-
natives at present. The real point is that there is a great deal
about the dynamics of solutions with magnetic shear which
will ultimately need to be resolved.
One further point of terminology: It is common to use the

terms “far zone” and “radiation zone” interchangeably.
Here, though, it is best to distinguish them, for the CPMS
regimes have no radiation but nevertheless distinctive
asymptotic structure. I will use far zone to refer to the
region in space-time (if it exists) in which the physical
geometry is well-modeled by the leading terms in the
Bondi–Sachs asymptotic expansions. If there is radiation,
the leading term will be the radiation field, and in the far
zone this will appear as outward-directed transverse waves.
But if no radiation is present, then we will see that one part
of the leading term is directly due to σmag, and uncovering
physical consequences of this will be an important part of
this paper.3

B. Main results

I will present here the results which most directly bear on
questions which have been raised elsewhere or seem most
accessible to experiment or observation. The subsection
after this one outlines the paper’s contents, including some
further results.

1. Asymptotic structure and radiation memory

Section II shows that the Bondi–Sachs–Newman–
Penrose asymptotic formalism considerably clarifies the

3One might think that, if no radiation is present, the definition
adopted here would make the far zone the same as the induction
zone. However, while there is some blurring of the concepts, they
are not the same, because many of the asymptotic observables of
interest are nonlocal. An important example will be scattering,
which brings in far-zone effects one would not normally consider
inductive.
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structures arising in gravitational radiation memory.
(A similar perspective, although not going quite as far,
is found in the recent paper of Bieri and Garfinkle [3].) In
particular, the “memory tensor” is shown to be equivalent
to the change in Bondi shear, from before the emission of
radiation to afterwards.
An important point brought out by this analysis is that,

while CPMS regimes by definition have no gravitational
radiation, CPMS regimes cannot be stationary. In fact, the
asymptotic Newman–Penrose equations show directly that
certain of the coefficients in the asymptotic expansion of
the curvature (the Newman–Penrose Ψ0

1, Ψ0
0) grow poly-

nomially in retarded time u (in a Bondi–Sachs frame).
It is important to make clear that this does not establish

that the curvature itself grows unboundedly in any physi-
cally meaningful sense, or that the theory breaks down. The
growth does strongly suggest, however, that as u increases
one must go to larger and larger values of the “distance”
coordinate r to remain in far zone, where the field is well-
represented by the leading term in the Bondi–Sachs
expansion. We may say briefly that the far zone is itself
not stationary, but tends to recede as u increases.4

This has a number of implications for radiation memory,
especially magnetic radiation memory:
(a) By definition, radiation memory effects involve com-

paring two nonradiative periods separated by a radi-
ative one. For magnetic effects, these nonradiative
periods must be CPMS regimes (or one of them could
have σ pure gauge).5

(b) Magnetic radiation memory effects should be possible,
at least over finite periods of retarded time, although
if CPMS regimes are unstable they will not persist
indefinitely.

(c) Mädler and Winicour [4] argued that physically
reasonable sources in linearized gravity would not
generate magnetic radiation memory. However, their
argument depends on looking at (and making assump-
tions about) what happens in passing from u ¼ −∞ to
u ¼ þ∞. From the present perspective, those results
do not speak to what might occur over finite times
(and Mädler and Winicour make stronger assumptions
than we would like about infinite times). (Closely
related criticisms were made by Satishchandran and
Wald [5].)

(d) The nonstationarity of the far zone means that care is
needed in devising observations which could detect

magnetic memory. (For example, one needs to be
concerned about whether the far zone, during the
course of some proposed measurement, will recede
beyond the measuring apparatus.) In a simple exam-
ple, we will see that the usual test-mass approaches are
problematic, and that certain redshift measurements
would be a better way to probe magnetic memory.

2. A possible laboratory effect

The case of a pure magnetic point quadrupole in
linearized gravity will be studied in some detail. It turns
out that there is a sort of induction-zone memory effect:
particles near the source will acquire a displacement
proportional to the time-integral of the quadrupole.
That induction-zone memory effects exist is not surpris-

ing. What is interesting is that it might be possible to detect
a magnetic one on laboratory scales. One could create a
mechanical quadrupole by two parallel oppositely-spinning
hoops, and position this near one test-mass of a laser
interferometer, and then attempt to measure the growth in
the displacement of the test mass. Doing this would require
adequate mechanical isolation of the quadrupole from the
interferometer as well as stability of the interferometer over
the run time (or, more precisely, strategies for taking these
issues into account insofar as measurements of the dis-
placement go).
For a quadrupole created by two 106 g hoops of radii

3 × 102 cm, separated by 102 cm and spinning with angu-
lar frequencies 103 s−1, at a distance 104 cm from the test
mass, I estimate displacements of order 10−13 cmy−1.

3. A possible astrophysical redshift effect

The Newman–Penrose asymptotic formulas imply that a
CPMS regime contributes to the far-field curvature at the
same order as does a mass monopole. This suggests looking
for magnetic effects which are of the same order as the far-
field deflection of light by a mass. We will see here that (in
the case of quadrupole sources in linearized gravity) such
an effect does exist, a redshift. In fact, a redshift contri-
bution from σmag exists at this order, whether _σmag vanishes
or not. (The CPMS condition need not hold.)
The redshift will apply to light (from distant sources)

which passes the quadrupole on its way to the observer. In
the simplest case, in the limit of large impact parameter b, it
will go like jσmagðu0Þjðcos αÞ=b, where u0 is the retarded
time of detection of the light-ray, and the angle α deter-
mines where in the plane of the sky around the source the
ray passes (measured relative to quantities involving the
multipole geometry).
A few words about the form of this result are in order.

First, what has been given here is the far-field (large b)
form. While in more general circumstances the effect
would depend on σmagðuÞ for u ≤ u0, for large b the
dominant term depends only on σmagðu0Þ; this might be

4In fact, the polynomial growth, and the failure of the far zone
to be stationary, may occur even if σmag ¼ 0, but it is unavoidable
if σmag ≠ 0.

5There is a potential issue of terminology here, in that some
people might prefer to use “memory effects” only for transitions
between stationary states; then the result that CPMS regimes
cannot be stationary would rule out magnetic radiation memory.
However, this definition would also rule out many interesting
cases of the conventional (electric) kind.
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called an amnesiac characteristic. Second, the overall 1=b
dependence here should be compared with the ∼M=b
angular deflection of light by a mass M; ultimately, this
is because the two effects are due to the magnetic and
electric parts of the same Newman–Penrose curvature
quantity (Ψ2).
The simplicity and long-range character of this form

make it an attractive candidate for astrophysical searches.
However, three cautionary points should be noted: First, a
boosted monopole source creates an electric dipole term
which also gives rise to a redshift with a sinusoidal angular
dependence, so one needs an independent measurement of
the source velocity to adjust for this. Related to this, we also
need an investigation of possible redshifts due to higher
electric multipoles, to see whether the magnetic quadrupole
effect could really be distinguished on the basis of
observational data. Finally, we have at present no convinc-
ing argument for any significant σmag ≠ 0 for known
astrophysical sources, and so no positive reason to expect
any effect—but this means detection of one would signal
interesting and possibly new physics.

4. Black holes

I pointed out above that Kerr–Newman black holes have
vanishing magnetic shear, so one could try to test the no-
hair conjecture by looking for σmag near black holes. Even
if the conjecture is true, black holes might temporarily have
magnetic shear, as a result of asymmetric processes in their
formation or in accretion to them, which is then radiated.
The Event Horizon Telescope collaboration6 has

reported that the near and induction zones of the super-
massive black hole in M87 can be modeled by a Kerr
geometry with an accretion disc, and in fact the data have
been used to constrain possible electric quadrupole con-
tributions there [6] (following a suggestion of Johannsen
and Psaltis [7]). The results of the present paper show that
magnetic quadrupole (or higher) contributions would give
rise to secular changes in the geometry. Detailed modeling
would be required to know these in the near and induction
zones, but one would expect to be able to constrain these
observationally. Magnetic contributions to the solution, but
in the far zone, might also be probed by the redshift effect
described above.

C. Outline

Section II puts radiation memory effects in the context of
the Bondi–Sachs–Newman–Penrose asymptotic formal-
ism. While some elements of this have been noted
previously (see e.g., Bieri and Garfinkle [3]), the con-
nections between memory, shear and the Bondi–Metzner–
Sachs group are brought out very clearly in this language.

With the Newman–Penrose asymptotic formulas, we also
see directly that CPMS regimes cannot be stationary.
Section III introduces the simplest example of a mag-

netic source, a pure point quadrupole in linearized gravity.
The metric can be explicitly computed, as can the change to
Bondi coordinates. A mechanical model producing such a
field is briefly discussed. The Bondi shear is shown to go as
the second time-derivative Q̈ab of the magnetic quadrupole
moment. While it is not hard to arrange for the CPMS
condition to hold for finite intervals, no plausible mecha-
nism is known which would keep Q̈ab constant indefinitely.
In Sec. IV, I consider test particles which are initially

comoving with the source. The ones sufficiently far away
are the first candidates to come to mind for magnetic
memory effects, but it is shown that these particles do not
remain in the far zone (on account its nonstationarity).
However, several induction-zone effects are explored in

Sec. IV. One is the memory effect described in Sec. I B.
Another is reminiscent of Lenz’s law: a distribution of
particles, initially at rest around the source, will acquire
from the field an induced motion, and the induced magnetic
quadrupole of the particles opposes the original one.
One would like to know whether the induction-zone

memory effect could be expected to be detected astrophysi-
cally. Although several consequences are considered, there
is little reason to feel encouraged. There are serious
difficulties, and no good arguments in favor.
The first problem is, again, that while there are good

reasons to think that generically magnetic effects will exist,
we have so far no mechanism identified which would
produced substantial ones. So we have no reason to expect
a strong driving force.
Even if induction-zone astrophysical memory effects do

exist, identifying them would not be easy. One would have
to find some structure in the astrophysical system, near the
source, whose past behavior could be inferred confidently
enough that the difference could reasonably be ascribed to
magnetic effects. (For instance, it turns out that if longi-
tudinal filaments were initially present about the source,
magnetic induction memory would tend to distort these to
S-shapes.)
Section V derives the redshift effect described in

Sec. I B.
Section VI takes up some delicate issues of the structure

of the far zone of a CPMS quadrupole. The underlying
concerns are questions of which aspects of the geometry
might be practically measurable.
For instance, I noted above that the far zone will itself

typically be receding as retarded time u increases. It could
happen that a test particle is in the zone at one point, and is
even moving away from the sources, yet is overtaken by the
zone’s trailing edge—its trajectory does not remain in the
far zone. One would like to know that there is some suitable
class of test trajectories which do lie in the far zone, and
whose scattering does give clean information about the6https://eventhorizontelescope.org/
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asymptotic geometry. It is shown that this is possible, in the
case of linearized quadrupole sources, for a class of distant,
relativistic, trajectories (but may fail in less restricted
circumstances).
The final section is given to discussion. The main results

are reviewed, and the issue of distinguishing between
electric and magnetic radiation memory effects is consid-
ered. The main difficulty in doing this is to get information
from at least a measurable fraction of the asymptotic
directions around a source.

D. Notation, conventions and background

Conventions are as in Penrose and Rindler [8,9]. The
metrics have signature þ−−−. The curvatures are defined
by ½∇a;∇b�vd ¼ Rabc

dvc, Rac ¼ Rabc
b, and Einstein’s

equation is Rab − ð1=2ÞRgab ¼ −8πGTab, with G
Newton’s constant and Tab the stress–energy. (In this last
equation, and throughout, the speed of light is taken to be
unity.) The alternating symbol ϵtxyz ¼ þ1 in a right-handed
orthochronous frame.
Although the Newman–Penrose formalism is used sys-

tematically in the next section, a detailed technical under-
standing of it is not necessary. A few of the arguments there
do require knowing basic properties of the ð operator
[8,10]. It is conventional, when dealing with a quantity of
nonzero spin-weight, to use j (rather than l) for the
multipole index, and this is done here.
In Sec. II, except where otherwise stated, the analysis is

valid in full general relativity. However, in succeeding
sections the computations are done in linearized gravity,
in standard coordinates. The Minkowskian metric is ηab
and the perturbed metric is gab ¼ ηab þ hab. The vector
ta ¼ ∂t. It is convenient to adopt the “radiation normali-
zation” lata ¼ 1 for the null tetrad. Then in Minkowswki
space we have xa ¼ uta þ rla. We may think of u, r and la

as the coordinates of the point. (The null vector is not
really a coordinate, of course, but we think of it as
determining a point on S2 which we could coordinatize
by standard means.)

II. SHEAR, MEMORY AND SOURCES

I outline here the main ideas relevant to magnetic
memory in the asymptotic formalism developed by Bondi,
Sachs, Newman and Penrose.

A. Decompositions by frame and parity

There are two distinct sorts of decompositions into
“electric” and “magnetic” parts in general relativity. One,
which we have already encountered, will be of primary
interest here. However, the second meaning will come up
briefly.
The main case of interest is a decomposition of a spin-

weighted function on the sphere into two parts with certain
parity properties. (A familiar example is the resolution of

electromagnetic polarizations on the celestial sphere to
E-modes and B-modes.) If λ is a function of spin-weight
s ≥ 0 on the sphere, it can be written as λ ¼ ðsα for some
complex-valued function α. (Here ð is a certain first-order
differential operator, essentially an anti-holomorphic
derivative [8].) The electric and magnetic parts of λ are
then λel ¼ ðsℜα and λmag ¼ iðsℑα.7 It is the need to solve
the elliptic equation for α which makes this decomposition
non-local (for s ≠ 0).8 On the other hand, one can test
whether λ is purely electric or magnetic by checking
whether ð̄sλ is purely real or imaginary (respectively).
The terminology comes from Maxwell’s electromagnet-

ism in Minkowski space. There, an oscillating electric or
magnetic multipole source will produce a radiation field of
electric or magnetic type.
We will also briefly refer to local decomposition of

tensors relative to a choice of timelike vector. The case
which will come up in this paper is the Weyl tensor Cabcd
and its electric and magnetic parts Eab and Bab. In order to
avoid confusion with the other sense of electric and
magnetic, I will call these the frame-electric and frame-
magnetic parts of Cabcd.
Finally, to avoid confusion, it may be worth noting that

the term gravitomagnetism is related to but distinct from the
ones above, usually referring to effects which can be traced
to components other than the time-time one of the metric
(with respect to a chosen frame).

B. Bondi–Sachs asymptotics

Bondi and coworkers [11], followed by Penrose [12]
and Newman and Penrose [13] gave a framework for
treating gravitational radiation. An isolated general rela-
tivistic system admits certain asymptotics which can be
conveniently described by adjoining a null hypersurface
Iþ ≅ fu ∈ Rg × S2 at future null infinity. Here u is a
Bondi retarded time parameter, and S2 is the sphere of
asymptotic null directions.
The coordinate u can be extended inwards to the physical

space-time by choosing the u ¼ const hypersurfaces to be
null and meet Iþ orthogonally. They are then ruled by
outgoing null geodesics. Each (sufficiently distant) point in
the space-time will lie on a unique such geodesic, and its
angular coordinates are those corresponding to the value on
S2 at the endpoint of the geodesic. Finally, one introduces a
coordinate r which is an affine parameter on those geo-
desics. There is a frame associated with this, and tensor

7Newman and Penrose refined the electric part of λ to be ðsℑα
(that is, omitting the factor of i) [10].

8The electric and magnetic parts have sometimes been referred
to as even and odd parity, but this is misleading. (Already in the
spin-weight zero case, this notion of parity is not the ordinary
one.) It would be in keeping with language used elsewhere in
physics to say the parts have natural and unnatural parity,
although these terms are not literally accurate, either.
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components are expressed in terms of this. The frames
chosen take advantage of the complex structure on the
sphere; the tensor components are generally complex, and
have spin-weight.
A basic result is Sachs peeling, which governs the

behavior of the curvature tensor. The five complex com-
ponents of the Weyl tensor are Ψn (0 ≤ n ≤ 4), going as

Ψn ∼Ψ0
nrn−5 þ � � � : ð1Þ

In particular, the radiative component is Ψ4 ∼Oð1=rÞ, and
the semiradiative one isΨ3 ∼Oð1=r2Þ; they are linked by a
Bianchi identity ∂uΨ0

3 ¼ ðΨ0
4.

While there is a certain universal asymptotic structure
common to all the admissible systems, there is also an
infinite-dimensional set ofmotions preserving that structure.
Those motions form the Bondi–Metzner–Sachs (BMS)
group; they are generated by Lorentz motions and super-
translations u ↦ ú ¼ uþ α, where α is an arbitrary smooth
real-valued function on S2. (The translations are those
supertranslations with ð2α ¼ 0.)
A key quantity is the Bondi shear σ, a spin-weight two

function on Iþ.9 Its derivative ∂uσ signals the presence of
gravitational radiation. In fact this derivative is a potential
for Ψ0

4 and Ψ0
3, with

Ψ0
4 ¼ −∂2

uσ̄; ð2Þ

Ψ0
3 ¼ −∂uðσ̄: ð3Þ

The shear is not BMS-invariant; under a supertranslation it
changes to σ́ ¼ σ − ð2α. Note that this means σel changes,
but not σmag.

C. Memory and shear

Suppose one has two intervals I1 and I2 of retarded time
u, in each of which the neighborhood of Iþ is very nearly
Minkowskian, but in the interim a gravitational wave has
passed. In each of the regimes the shear will be pure gauge:
we will have σ ¼ ð2α1 in I1 and σ ¼ ð2α2 in I2, with α1 and
α2 supertranslations. In general, we will have α2 − α1 a
supertranslation (and not merely a translation). This means
that even though the two regimes are individually
Minkowskian, the evolution from one to another cannot
be asymptotically effected by a Poincaré motion. In
particular, the relative relations between test particles’
trajectories will not be preserved by evolution from I1 to
I2. This is an example of a memory effect, following
directly from the work of Bondi, van den Burg and

Metzner [11], but discovered from different perspectives
and in different contexts by later authors [14–17].
The assumption, in the previous paragraph, that in the

nonradiating regimes I1, I2 the space-time was asymptoti-
cally so very nearly Minkowskian that their shears were
pure gauge was made for conceptual simplicity. It had the
effect of setting σmag ¼ 0, but this is not an obviously
necessary assumption. In any nonradiating regime, the
leading curvature term in the sense of Sachs peeling will
be the Newtonian-order Oðr−3Þ, whether there is magnetic
shear or not.
Suppose we have the test particles following a con-

gruence of timelike geodesics γ in a neighborhood of Iþ,
that congruence tending to evolution along the time axis of
a Bondi system. Then the geodesic deviation equation
_γa∇a _γ

c∇cwd ¼ _γa _γcRabc
dwb for a connecting vector field

wa (with Rabc
d the Riemann curvature and∇a the covariant

derivative) becomes in the asymptotic regime

ẅd ≃ ðΨ0
4mbamd þ conjugateÞr−1wb ð4Þ

with la, ma, m̄a, na a standard null tetrad (and the dots
indicating covariant differentiation along the geodesics).10

Using the formula (2), we find for the change in connecting
vector over the period of gravitational radiation

Δwd ≃ −ðΔσ̄mbmd þ conjugateÞr−1wb
0; ð5Þ

where wb
0 is the initial connecting vector and Δσ is the

change in shear. The quantity in the parentheses in Eq. (5) is
sometimes called the memory tensor. In principle, obser-
vations of this memory effect for different asymptotic
geodesics and initial connecting vectors determine Δσ.11

There has been some discussion of whether radiative
magnetic memory is possible. This really involves two
questions: whether Δσ may have a magnetic component12;
and whether, if such a component is possible, among its
consequences is what one may reasonably identify as a
memory effect. I have already indicated that there is no
obvious reason to rule out a magnetic contribution to Δσ.
However, there are a number of factors which complicate
the situation, and we need to understand more of the
geometry.

9In the Newman–Penrose formalism, it is denoted σ0, but to
avoid clutter I drop the superscript. However, the superscripts on
the curvature quantities will be retained.

10This is essentially the same as the argument of Bieri and
Garfinkle [3]. A subtlety is that asymptotically evolution along
the time axis will not be geodesic when radiation is present.
However, this gives only a second-order correction to Eq. (4).

11A distinction between “linear” and “nonlinear” memory is
sometimes made. This refers to different mechanisms contribut-
ing to the change in shear. The treatment here does not require
this distinction.

12In the geodesic deviation equation (4), the quantity in
parentheses (times r−1) is the asymptotic value of the frame-
electric part of the Weyl tensor. But that is, in itself, quite
irrelevant to the question of magnetic memory in this regime.
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In regimes for which _σ ¼ 0, one of the asymptotic
Newman–Penrose equations reduces to

Ψ0
2 −Ψ0

2 ¼ ð̄2σ − ð2σ̄; ð6Þ

and this implies that σmag encodes precisely the information
in the asymptotic curvature component ℑΨ0

2—the magnetic
part of Ψ0

2. In a non-radiating regime, the magnetic shear
determines a magnetic contribution to the curvature at the
same power of r as Newtonian terms.
Perhaps most importantly, CPMS space-times cannot be

stationary. This follows from the Newman–Penrose equa-
tions

∂uΨ0
1 ¼ −ðΨ0

2 ð7Þ

∂uΨ0
0 ¼ −ðΨ0

1 þ 3σΨ0
2 ð8Þ

for such space-times.13 Because we have seen that σmag ≠ 0

implies Ψ0
2 has nontrivial j ≥ 2 contributions, the curvature

quantities Ψ0
1 and Ψ0

0 must, in the CPMS case, have time-
dependent such terms. (Such nontrivial higher-multipole
terms could well be present in cases of purely electric
radiation memory as well—in fact, generically would be
expected to be present. However, in the electric case it is at
least mathematically self-consistent to assume these multi-
poles vanish.)
Finally, it is worth noting that the quantities σel and σmag

figure importantly but differently in the treatment of
general-relativistic angular momentum. The electric part
contributes directly to the general-relativistic analog of the
origin-dependent terms, and this is where the issues with
supertranslations enter. On the other hand, one can think of
σmag as providing the multipole-index j ≥ 2 components of
the spin angular momentum [1].

D. The far zone; failure of uniformity

One may define the far zone (if it exists) of a general-
relativistic system as the regime in which its geometry is
well-approximated by the leading terms in the Bondi
asymptotic expansions. For a realistic radiating system,
this will be a zone far enough away from the sources that
the gravitational disturbances have resolved into outgoing,
transverse waves but not so far away that they begin to
encounter other systems or sources of curvature which
would distort that behavior. If the system is not radiating,
the lead curvature term will be due to the component Ψ2.
It is important to understand that the Newman–Penrose

asymptotic expansions describing this regime are not

generally valid uniformly in u.14 In particular, it often
happens that the points in the far zone have r increasing as
u increases. Knowing where the asymptotic expansions are
valid is a key issue in connecting them to physical
interpretations, and it depends on the details of the system
at hand.
For example, in the discussion in the previous subsec-

tion, I implicitly assumed that the asymptotic form (4) of
the geodesic deviation equation held, for each r-value
under consideration, for a long enough interval of u to
stretch from one nonradiating interval I1 to another I2.
Since the total interval of retarded time considered is
compact, there will be distant enough r-values for this to
hold, but just how far out they are will depend on the
specifics of the situation.
While this point is always of some concern, it has been

possible to ignore for electric memory effects, because,
as noted above, there it is at least mathematically self-
consistent to assume the regimes I1 and I2 are stationary.
But in the magnetic cases it cannot be avoided. This issue
will make statements about magnetic effects finicky.
A full resolution of this will depend on thinking more

carefully about the physical meaning of the radiation zone.
I wrote above that it was a regime in which the geometry is
well-approximated by the leading Bondi–Sachs asymp-
totics, but to apply this in any problem we must know just
what aspect of the geometry is being probed and how good
the approximation is required to be. This will be taken up in
Sec. VII.

E. Magnetic shear and sources

We expect a space-time to be determined by suitable
initial data for the matter within it and the gravitational
degrees of freedom. What sorts of matter (and what
gravitational configurations) would give rise to magnetic
shear?
In linearized gravity, the contributions from matter and

from gravitational perturbations are independent. For the
gravitational degrees of freedom, Bondi shear at past null
infinity I− is mapped to future null infinity Iþ in a
straightforward way. It is always possible that such data
are present.
We can get an idea of how matter generates shear in

linearized gravity by looking at the quadrupole terms.15

Then the electric and magnetic quadrupole parts of the
shear are proportional to the second time derivatives Q̈el

ab
and Q̈mag

ab of corresponding source quadrupoles. The
electric quadrupole Qel

ab is familiar as the reduced second
mass (or, more properly, energy) moment. As will be
discussed below, the magnetic quadrupoleQmag

ab turns out to

13There are extra terms if material radiation at infinity is
allowed, and in principle in special cases these might lead to
certain cancellations. But the point here is that we generically
expect Ψ0

1 and Ψ0
0 to be time-dependent.

14A simple example is the Schwarzschild solution in a boosted
frame.

15In fact, the results for higher multipoles can be deduced from
these, by taking derivatives and boosts.
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be proportional to the first moment of the angular momen-
tum density.
A quadrupole must vary nonlinearly in time in order to

generate shear. We may expect this in both electric and
magnetic cases. However, for a u-independent shear, the
cases are very different. Such behavior is easy to arrange in
the electric case. (A system which splits into several
subsystems with nonzero mutual velocities will have this
character—in fact, this mechanism is fundamental for
electric memory effects.) But for magnetic effects, while
it is not hard to imagine mechanisms which for finite
intervals of retarded time will generate CPMS behavior,
there is no known way of achieving this for unbounded
intervals.
Finally, I should mention an attempt to suggest an

astrophysical situation in which CPMS effects might arise.
If a gravitational wave passes through a volumewhere there
is a chiral fermion density, the electric and magnetic parts
of the wave will to some degree interconvert [18].16 If this
also holds in the zero-frequency limit, then a wave-train,
which would (if no fermions were present) give rise to a
supertranslation, would (after passing though the chiral
fermion region) also create a change in σmag. I used this to
sketch a (somewhat elaborate) mechanism by which in
principle black holes emitting jets via the Blandford–
Znajek process might also acquire σmag ≠ 0 [19].

III. QUADRUPOLE SOURCE TERMS

In linearized gravity, when we work out the field due to a
source, we integrate the stress-energy Tab against a Green’s
function. In the simplest case, if the source were supposed
to be a small, featureless, mass, we would idealize Tab by a
spatial delta function. Of course, point masses are not really
admissible in general relativity, and the delta function is not
to be taken in any literal sense. Rather it approximates the
effects of a monopole source term as soon as we are a few
gravitational radii away. If the mass is not featureless, it
would have multipole moments. For computations outside
the mass, one could idealize their contributions as spatial
derivatives of the spatial delta function. These idealizations
are formally simple and computationally powerful; for this
we have traded specific knowledge of the physics within
the mass. (In particular, questions about what sources can
produce these quadrupoles are not addressable within this
formalism.)
One can similarly idealize the effects of distributions of

matter in linearized general relativity by point multipoles,
and (for multipole index j ≥ 2) these may be either of
electric or magnetic type (as classified by the shears they

produce). In Ref. [20], it was shown that stress-energy for a
point purely magnetic quadrupole QabðtÞ at the spatial
origin is

Tab ¼ tpϵpqrðað− _QbÞ
q þ tbÞQs

q∇sÞ∇rδð3ÞðxÞ: ð9Þ

Here Qab is symmetric, tracefree and orthogonal to ta; its
time-dependence may be arbitrary; the stress-energy is
automatically conserved.17 It is again not to be taken
literally; really one should think of a smooth distribution
of matter reproducing these quadrupole moments, in the
vicinity of the worldline. It was also shown in Ref. [20] that
the magnetic quadrupole from such a distribution can be
computed as

Qab ¼ ð4=3Þ
Z

LðaðxbÞ − ttbÞÞd3x; ð10Þ

where La ¼ ϵapqrtpxqtcTc
r is the angular momentum

density. Thus Qab can be thought of as a first moment
of the angular moment density. For instance, two parallel
hoops of mass M and radius R, each orthogonal to the
z-axis, at z ¼ �L=2 and spinning with angular velocities
�ω, will give rise to a quadrupole

Qab ¼ Q

2
6664
0

−1
−1

2

3
7775; ð11Þ

Q ¼ ð2=3ÞMωR2L ð12Þ

in standard Cartesian coordinates (blank places are zero).
It is straightforward to compute from Eq. (9) the retarded

linearized metric perturbation hab in the de Donder gauge.
One finds

hab ¼ 4Gtpϵpqrðaxqfr−2Q̈bÞr þ r−3 _QbÞ
r

− tbÞxj½r−3Q̈j
r þ 3r−4 _Qj

r þ 3r−5Qj
r�g: ð13Þ

Here Qab and its derivatives are evaluated at the retarded
time t − r.
To give an invariant account of scattering for massless

particles, we must pass to the Bondi–Sachs gauge. To do
this, first note that the retarded time u ¼ t − r remains a
null coordinate for the perturbed metric gab ¼ ηab þ hab.
The affinely parametrized null geodesic congruence ruling

16This is derived by treating the wave as a first-order
perturbation on the background space-time. However, this goes
beyond the linearized gravity approximation, as in this case the
stress-energy is allowed to respond to the perturbation—indeed,
that is what drives the process.

17This stress-energy will not by itself satisfy any energy
conditions. While this is partly due to the singular, distributional,
character of the idealization, the main point is that it is not
supposed to represent all the matter. It is simply one multipole
component. It is the full matter distribution which one would take
to be subject to energy conditions.
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the u ¼ const hypersurfaces will be la − hablb, and thus the
perturbation δγaB ¼ −

R
hablbdr (the integral being taken

along the geodesics) of these geodesics relative to those for
the Minkowski background can be computed:

δγaB ¼ −2Gtpϵpqralqlb½2r−1 _Qb
r þ ð3=2Þr−2Qb

r�: ð14Þ

(The subscript B is for Bondi congruence.) This shows that
the perturbed outgoing geodesics approach the unperturbed
ones as r → ∞. One then sees by inspection that the fall-off
of the perturbation along the r ¼ const cross sections of the
u ¼ const hypersurfaces has the requisite asymptotics.
Because the Bondi–Sachs coordinatization at Iþ itself
agrees with the Minkowskian one, for the questions
investigated below it will not be necessary to take the
gauge change to this system into account (although for
more delicate questions this would be relevant), and the
form (13) will be used. However, the formulas for the gauge
change will be given for completeness.
Suppose we wish to label a point xa by its Bondi–Sachs

coordinates. We have seen that the retarded time coordinate
u is unaffected by the metric perturbation. The new affine
coordinate will be rþ δr, where ðla−hablbÞ∇aðrþδrÞ ¼ 0

or δr ¼ R
r
∞ðhabla∇brÞdr along the outward null geodesics.

Finally, we wish to label each point by the angles
corresponding to the point on S2 determined by the tangent
to the null geodesic outwards from the point, evaluated
asymptotically as we approach Iþ. The null geodesic
outwards from xa will be

γaðsÞ ¼ xa þ sðla − habðxÞlbÞ þ δγaB: ð15Þ

Because of the fall-off of δγaB, the angles for the asymptotic
tangent are those for the point la − habðxÞlb on the sphere.
The explicit form of the metric allows one to work out the

full scattering theory in terms of integrals of Qab and its
derivatives (times certain functions) along theMinkowskian
geodesics. However, the formulas are lengthy, and in this
paper I shall just focus on examples of special interest.
We may read off from Eq. (13) the asymptotic form of

the curvature near Iþ; it is

Rabcd ¼ ∇c∇½ahb�d −∇d∇½ahb�c

≃ 4r−1Gtpϵpqr½dlqlc�Q
ð4Þr
½b la�

þ 4r−1Gtpϵpqr½blqla�Q
ð4Þr
½d lc�; ð16Þ

where the superscript (4) indicates the fourth derivative.
From this we have

Ψ0
4 ¼ ði=2ÞGQð4Þ

ab m̄
am̄b: ð17Þ

Equation (2) then gives the Bondi shear:

σ ¼ ði=2ÞGQ̈abmamb: ð18Þ

We see that in order to get a nontrivial but u-independent
magnetic shear, we must have Qab depend quadratically
on u. While this can reasonably be maintained for finite
intervals, it is not at all clear if a mechanical configuration
can be devised doing so indefinitely.18 One might be
tempted to argue that an unbounded quadratic growth of
Qab is evidently unphysical, based on the consequent
growth of the stress-energy (9) and the metric (13).
While there is a sense in which this is true, it is not a
strong sense. What we really learn by inspecting these
formulas is that the following three assumptions are not
simultaneously compatible: that we may approximate the
source as a point quadrupole; that we may apply linearized
gravity; and that the quadrupole grows indefinitely in time.
This certainly does place restrictions on the regimes in
which the formulas are applicable, but it does not invalidate
them wholesale.
It may help to think about the case of electric quadru-

poles. Recall that a system breaking into relatively moving
subsystems will give rise to an electric quadrupole growing
quadratically with time. At any finite time, on a large
enough spatial scale—much larger than the separations
between the subsystems—one can approximate the system
by point multipoles. So on large enough scales electric
analogs of Eqs. (9) and (13) will apply. Those scales will
moreover grow with the passage of time, since the
separations between the subsystems is growing.
In other words, by idealizing the problem by using a

point quadrupole as a source, we are able to get what appear
to be explicit solutions. But those solutions are only valid
on large enough scales that the idealization is a good one.
Just what those scales are depends on the particular system,
and cannot be read off simply from the idealization. If the
magnetic quadrupole does grow with time, then for-
mula (13) certainly breaks down at any given r after a
long enough time. But whether this signals that it is
impossible to maintain a value of σmag indefinitely, or
rather that for a realistic matter distribution the metric in
finite regimes is more complex, is impossible to say
without detailed analysis of realistic matter.

IV. INITIALLY COMOVING GEODESICS

In this section I will consider the effects of the quadru-
pole on geodesics which are initially comoving with the
source. (The quadrupole will be assumed to vanish suffi-
ciently far in the past.) While this is a rather special
situation, it is the zeroth-order approximation to the more

18An indefinite linear growth is easy to achieve, for example by
using the hoop model but allowing the hoops to move away from
each other on the z-axis.
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general case of nonrelativistic motion, and there are
interesting things to learn from it.
The first subsection derives the formulas for the

geodesics.
The second subsection will compare this case with the

general arguments about radiation memory from Sec. II.
Recall that those arguments, derived in the far zone, gave
the change in displacement (5) of nearby particles in terms
of the memory tensor. We will see how this comes up in our
case, but we will also see that the identification of the far
zone is somewhat involved, limiting where the simple form
(5) applies.
The third subsection establishes the Lenz’s-law-type

result, that in the induction zone a stationary quadrupole
acts on nearby test particles in a way as to induce an
opposing quadrupole.
The fourth subsection is concerned with induction-zone

memory. It is there that a possible laboratory effect is
identified. Various potential astrophysical effects are also
considered, but no promising candidates are found.

A. The geodesics

The geodesics in the past have the form

γapðsÞ ¼ ba þ sta; ð19Þ

where we may take the impact vector ba purely spatial.
Then because hac _γa _γc ¼ 0, there is a first integral of the
geodesic equation and we find the perturbations of the
velocities are

δ_γaðsÞ ¼ 2Gtpϵpqrabqbj½b−3Q̈j
r þ 3b−4 _Qj

r þ 3b−5Qj
r�;
ð20Þ

where b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
−baba

p
and the quadrupole and its derivatives

are evaluated at the retarded time s − b. We see that in any
fixed spatial region it is inconsistent to assume simulta-
neously linearized gravity, a point quadrupole, and indefi-
nite quadratic growth of QabðtÞ.
It is worth noting that the form (20) shows the velocity is

orthogonal to ba, so (to the extent this linearized treatment
is valid) the perturbed geodesics will remain on the
coordinate spheres r ¼ b. On the other hand, simply
computing the trajectories in the linearized approximation
we find

δγa ¼ 2Gtpϵpqrabqbj
�
b−3 _Qj

r þ 3b−4Qj
r

þ 3b−5
Z

s−jbj

−∞
Qj

rðśÞdś
�
: ð21Þ

The last two terms indicate that the linearized approxima-
tion cannot be valid uniformly in time if Qab is allowed to
increase indefinitely, or indeed even reach a steady,

nonzero, state. This is not surprising, as even in
Newtonian mechanics, the effects of a small force acting
for a long enough time usually accumulate and pass beyond
perturbation theory.

B. Consequences for magnetic radiation memory

Radiation memory is usually considered to be the change
in relative displacement of nearby test masses caused by
passage of gravitational radiation. We saw in Sec. II that in
the radiation zone, taking advantage of the Bondi–Sachs–
Newman–Penrose formalism led to a simple formula (5) for
this, with the memory tensor expressed in terms of the
change in shear. It is instructive to examine radiation
memory in the present case.
For magnetic quadrupole sources in linearized gravity,

we may read off the geodesic deviation by differentiating
Eq. (21) with respect to ba in the direction wa of the
separation of two geodesics. That is, the change in this
separation due to the quadrupole is

δwa ¼ wp ∂
∂bp δγ

a: ð22Þ

Formally, the leading (long-distance) behavior of this is
the term

2Gtpϵpqrabqbjb−4wsbsQ̈j
r; ð23Þ

corresponding to the formula (5) for the memory in the
radiation zone.
However, one must be careful about the sense in which

this really is the dominant term. It will clearly be so at fixed
u for sufficiently large b. On the other hand, suppose in
some regime σmag is constant, so Qj

r grows quadratically
with u. Then for fixed ba, the terms in (22) other than (23)
will grow with u and eventually overwhelm (23). (And at
some point the linearized approximation itself will break
down.) This is an example of the nonuniform dependence
of the far zone on u.
This does not mean magnetic radiation memory, as

defined by Eq. (5), is impossible. It does however mean
that there are serious restrictions on when it can apply. One
needs to know that the test particles are indeed in the
radiation zone, and this will be more problematic than the
electric case. I will return to this in Sec. VII.

C. Stationary states and Lenz’s law

In the case where the quadrupole settles down and
becomes time-independent, the equation for its contribution
to the velocity perturbation (20) reduces to

δ_γaðsÞ ¼ 6Gb−5tpϵpqrabqbjQj
r: ð24Þ

In almost all circumstances, there will be other contribu-
tions as well (for instance, monopole terms). But the

ADAM D. HELFER PHYS. REV. D 100, 044004 (2019)

044004-10



mathematical structure of Eq. (24) is so remarkable that a
brief comment is in order.
Equation (24) is a very interesting system of equations for

the spatial coordinate vector x. As noted above, it preserves
the coordinate radius. There is also another constant of
motion, which is Qabxaxb. This means that the particles’
trajectories are the intersections of these quadratic surfaces.
Generically, thesewill be quartics, and the trajectories can be
computed in terms of elliptic integrals by choosing the
coordinate axes to be the principle axes for Qab.
I now return to thinking of Eq. (24) simply as giving the

quadrupole’s contribution to the equation of motion. For
simplicity, let us look at the case where the quadrupole has
two equal eigenvalues. Then it will have the same form (11)
as that for the two counterrotating hoops, and this expres-
sion will be retained. In this case, we find Eq. (24)
becomes, in three-vector form,

δ _x ¼ −18GQb−5ðk · xÞðk × xÞ; ð25Þ

where k is the unit vector in the þz direction. Note that the
induced motion in this case will also consist of revolutions
about the z-axis, but their sense will oppose those of the
original hoops. Therefore, at least in this case, the induced
motion will tend to generate, from a distribution of free
particles, a quadrupole opposed to the initial one. This has
the flavor of Lenz’s law, although here the particles’motion
is induced by Qab (and not some time-derivative of that).
Note that this argument does not depend on integrating the
equation of motion (and hence on questions of how long it
will be before nonlinearities accumulate).

D. Induction-zone memory

Now let us consider what happens to initially comoving
geodesics when a nonzero quadrupole is present for a finite
amount of time only. In this case, there will be a net
displacement

δγa ¼ 6Gtpb−5ϵpqrabqbjQð−1Þ
j
r; ð26Þ

where

Qð−1Þ
j
r ¼

Z
∞

−∞
Qj

rðsÞds: ð27Þ

I will suppose for simplicity that we are in the axial case

Qð−1Þ
ab ¼ Qð−1Þ

2
6664
0

−1
−1

2

3
7775 ð28Þ

with respect to the coordinate axes, where Qð−1Þ is a scalar
(blank places are zeroes). Then the displacement (26)
becomes in ordinary vector notation

δx ¼ −18Gr−5Qð−1Þðk · xÞðk × xÞ: ð29Þ

Some care about the physical interpretation of this
formula is in order. Here x form three of the coordinates
to the geodesic, and in general relativity (even in the
linearized theory) coordinates do not a priori have physical
meaning. However, we have been supposing that the
quadrupole vanishes except for a finite range of times,
and that means that the metric will be Minkowskian except
where the source influences it in accordance to Huygens’s
principle. So both before and after the influence of the
source, we have a clear physical interpretation of x not
simply as coordinates but as the spatial part of the
Minkowksian position vector of the source relative to
the central worldline.
At this point, we have argued that we have Minkowskian

regimes before and after the quadrupole is present, and also
that we have spatial coordinate vectors x in each of those.
We must however specify how to compare the two regimes,
and, because there is curvature in the interim, this is a
nontrivial point. One might first think of simply parallel-
transporting along the central worldline, but because we
have used an idealized point quadrupole the metric
becomes singular there.
The most invariant thing to do is to use the asymptotic

structure to compare the regimes, that is, to identify them
by identifying their asymptotically constant vector fields
near Iþ. It follows from the analysis of Ref. [21] that,
because the radiation is confined to a compact interval of
retarded time, this simply amounts to identifying the
components with respect to Cartesian coordinates in the
two regimes. So the coordinate difference δx of Eq. (29)
has an invariant interpretation.
The effect (29) has what is sometimes called unnatural

parity, in the following sense: Under the antipodal map
x → −x, the quantity δx is unchanged. Yet this is a
displacement of x, and, the image of a displacement under
the antipodal map is the opposite displacement. Thus the
operations of forming the displacement and applying the
antipodal map anticommute.

1. A potential laboratory effect

If we know the central worldline of the source, and we
have information about the initial segment of the geodesic,
then δx is interpretable as the change in coordinate relative
to the source. It is conceivable that effects like this could be
measured in laboratories. Suppose, for example, the two-
hoop source were placed near one test-mass of a laser
interferometer. In general, the interferometer will measure
the change in position between the two masses, which is
rather more complicated than δx. However, as noted above,
before and after the nonzero values of the quadrupole, the
positional measurements are those of Minkowski space. In
these cases, because the second mass is so far away that the
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effect of the quadrupole on it is negligible, we may interpret
δx as the change in position.
Choosing M ¼ 106 g, R ¼ 3 × 102 cm, ω ¼ 103 s−1,

L ¼ 102 cm, a distance r ¼ 103 cm and a run-time T,
we should have

kδxk ∼ ð3 × 10−13 cmÞ
�

T
1 y

�
sin θ cos θ: ð30Þ

While the prefactor looks encouraging, current
gravitational-wave interferometers are designed to measure
oscillatory effects, and what we are considering here would
show up as a zero-frequency, linear, drift. The detectability
of this would depend on the temporal stability of the
interferometer. In this connection, see the suggestion of
Lasky et al. [22] for a statistical approach to accumulating
interferometric measurements for memory.

2. Potential astrophysical effects

Now let us consider possible astrophysical effects. We
suppose there is an object which might have been active at
times as a magnetic quadrupole source, and that we can
observe matter in its vicinity; we seek possible memory
effects.
The chief issue in this case is to find, in the vicinity of the

source, distributions of matter whose original states might
be known or plausibly inferred to the necessary accuracy.
If, for instance, we had reason to think that some mecha-
nism had formed filaments longitudinally with respect to
the axis of the quadrupole, then Eq. (29) would imply the
filaments would acquire S-shapes as a result of the quadru-
pole’s action, bulging azimuthally one way in one hemi-
sphere and the other way in the other.
The effect just described relied on a plausible hypothesis

about structure (filaments) extending over substantial
angles on the sphere around the quadrupole source. We
may also consider hypotheses about structure on smaller
scales. If we knew the separation Δx between two nearby
geodesics carrying particles, it would change, after the
effects of the quadrupole, by an amount

δΔx ¼ −18GQð−1Þr−5½ðk · ΔxÞðk × xÞ þ ðk · xÞðk × ΔxÞ
− 5r−2ðx · ΔxÞðk · xÞðk × xÞ�: ð31Þ

This is a first-order differential effect.
The general second-order differential effect is to shear a

geodesic congruence (physically, a distribution of particles
initially comoving with the source). To see this, let us think
of an initially spherical distribution of particles in the
neighborhood of a geodesic. We may then consider Δx to
be a random variable where the sample space is the set of
these particles. We will assume

hΔxji ¼ 0 ð32Þ

hΔxjΔxki ¼ð1=3ÞðΔxÞ2rmsε
jk; ð33Þ

where the brackets h� � �i denote statistical average and εjk is
the Euclidean metric. Then

hΔxj þ δΔxji ¼ 0 ð34Þ

and (to first order)

hðΔxj þ δΔxjÞðΔxk þ δΔxkÞi
¼ ð1=3ÞðΔxÞ2rmsε

jk − 6ðΔxÞ2rmsGQ
ð−1Þr−7

×

2
64

10xyz 5ðy2 − x2Þz 5yz2 − r2y

5ðy2 − x2Þz −10xyz −5xz2 þ r2x

5yz2 − r2y −5xz2 þ r2x 0

3
75: ð35Þ

[In case the asymmetry in x and y appears odd, it should be
remembered that this matrix really refers to components
of tangent vectors at a point ðx; y; zÞ.] The most important
point is that this is tracefree, and therefore the local
density—which might have been a relatively straightfor-
ward thing to try to measure—is unchanged by quadru-
pole’s action. The deformation is pure shear.
To understand the formula (35), we may by rotational

symmetry restrict attention to the meridian y ¼ 0, x ≥ 0.
Then the correction term is

− 6ðΔxÞ2rmsGQ
ð−1Þr−4

2
64

0 −5x2z 0

−5x2z 0 xðr2− 5z2Þ
0 xðr2− 5z2Þ 0

3
75:

ð36Þ

The zeroes on the diagonal mean that, on our meridian, the
quadrupole contributes no change to the distribution’s
dimensions along the coordinate axes. Expressing this
invariantly, we may say that at any point, the dimensions
in the z-direction, and also the azimuthal direction and the
direction of constant latitude, receive no changes from the
quadrupole’s action. On the other hand, the eigenvectors of
the matrix above will determine the principal axes for
the shear.
It is not hard to see from Eq. (36) that one principal axis

of the shear is

∝

2
64
xðr2 − 5z2Þ

0

5x2z

3
75; ð37Þ

in the longitudinal plane, with corresponding eigenvalue
zero, so no shearing occurs in this direction. While the
detailed forms of the other principal axes are complicated, it
turns out that if the shear tensor is restricted to the tangent
plane of the sphere—that is, if we ask for the effects of the
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shear projected orthogonal to the radial direction—the
results are simple. One can check [again from Eq. (36)]
that the principal axes of the projected tensor are at �π=4
relative to the latitude-longitude lines, and the angular
dependence of the eigenvalues is ∼ sin θ. So if we were
lucky enough to have objects we could plausibly assume
had initially been round distributed about the candidate
quadrupole source, and if we were able to measure their
strains, we would have a straightforward check of whether
these could have been produced by the quadrupole.

V. A REDSHIFT EFFECT

Because a persistent magnetic shear will give rise to a
curvature term with the same radial fall-off as the
Newtonian one, one would like to look for a scattering
effect due to magnetic shear which is comparable to the
Newtonian one, that is, falls off as the reciprocal of the
impact parameter (in the large-impact-parameter limit). It is
not obvious just what effect might have this character, for
the effects depend very much on the detailed form of the
curvature, and the quadrupole dependence makes it hard to
see just which effects might accumulate. Moreover, as
noted previously, the space-time cannot be stationary,
making it still harder to guess what the effects might be
without detailed computations.
It turns out that the redshift does fall off as the reciprocal

of the impact parameter (in the limit that this parameter is
large). Consider a null geodesic in Minkowski space

γapðsÞ ¼ ba þ u0ta þ sLa; ð38Þ

where L · t ¼ 1, L · b ¼ 0, t · b ¼ 0. From the geodesic
equation, the perturbation δγaðsÞ of this due to the metric
perturbation hab satisfies

δ ̈γa ¼ −_γb∇bhca _γc þ ð1=2Þ_γb _γc∇ahbc: ð39Þ

Integrating this in order to find the scattering, the first term
on the right drops out, and, using the fact that at zeroth
order _γa ¼ La is constant in Minkowski space, we have

_γa
����
þ∞

s¼−∞
¼ ð1=2Þ

Z
∞

−∞
∇ahbcLbLcds: ð40Þ

The net change in the temporal component of this will be
−z, the negative of the redshift.19 Explicitly

z ¼ −ð1=2Þ
Z

4GtpLaϵpqrabqfLb½r−2Qð3Þ
b

r þ r−3Q̈b
r�

−ðbj þ sLjÞ½r−3Qð3Þr
j þ 3r−4Q̈r

j þ 3r−5 _Qr
j�gds: ð41Þ

It is straightforward to estimate this for large b (see the
Appendix). One finds

z ≃ −4GtpLabqϵpqrab−2LbQ̈b
rðu0Þ: ð42Þ

We see that the redshift (42) does indeed fall off as the
reciprocal b−1 of the impact parameter.
Perhaps the next most striking feature of the formula is

that it depends on the quadrupole’s value only at u0. This is
a retardation effect. The computation is given in the
Appendix, but the reason for the result is this. The geodesic
equation depends on the quadrupole and its derivatives
evaluated at the retarded time u of the point in question. We
have u ¼ u0 þ s −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ s2

p
. We are looking at the limit of

large b (large, in particular, compared to the duration of the
action of the quadrupole). We will need to have s at least of
the order of b in order to access the retarded times for which
the quadrupole may be nonzero. But in this regime u
approaches u0 very rapidly (in terms of the scale b). In
contrast to memory effects, one might say that the redshift
has an amnesiac character—it depends (in the limit
b → ∞) only on the last value of Q̈ab accessible to the
scattered ray.
In particular, we see that the redshift requires

Q̈abðu0Þ ≠ 0. This means that it does depend on generating
a magnetic shear; on the other hand, it does not depend on
that shear persisting indefinitely.
In three-vector notation, the redshift is

z ¼ 4Gb−2ððb × vÞ ·LÞ; ð43Þ

where b and L are the spatial parts of ba and La, and v is
the spatial part of Q̈b

rLb. The redshift reverses sign under
the inversion of the spatial parts L → −L, b → −b, so it
has odd parity in a straightforward sense.
For celestial sources, in the simplest cases L is fixed as

the unit vector in the direction from the source to us, but b
will be the impact vector, in the plane of the sky. The
redshift will vary as the cosine of the angle b makes
with v ×L. It should be noted, however, that such a
sinusoidal redshift would also be produced from a boosted
Schwarzschild solution.20 Thus one would also need a
measurement of the source’s velocity in order to distinguish
the effect of the magnetic quadrupole from that of a boosted
monopole.

19So here z does not stand for a coordinate.

20In linearized gravity, the deflection of light can be written
invariantly as −4GMba=b2, where ba is the impact vector with
respect to the frame defined by the source—it is orthogonal to the
vector ta defining the source’s frame, as well as the null tangent
La. If the null geodesic is held fixed to zeroth order but the source
is boosted so the frame vector becomes t́a, then the impact vector
with respect to this frame will be ba − Laðt́ · bÞ=ðt́ · LÞ (and the
impact parameter will be unchanged). The last term will have a
timelike component, and accordingly there will be a redshift
ð4GM=bÞt́ · b=t́ · L.
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The boosted monopole creates a dipole of electric type,
which gives the sinusoidal contribution to the redshift. One
would like to know also what the effects of higher electric
multipoles are, and what is required observationally to
distinguish them from the magnetic effects of interest here.
Even for quadrupoles, this is a substantial problem, and will
be investigated elsewhere.
If we were lucky enough to have a lensing mass between

us and the source, we might be able to make measurements
for several different values of L, and these would help a
great deal in identifying the gravitational field. For in-
stance, the magnetic quadrupole effect depends quadrati-
cally on L, whereas the boosted monopole effect is linear
(to lowest order in velocity).21

This redshift is presumably a better candidate for an
observable effect than were the memory ones, partly in that
it is a longer-range effect and partly that the measurements
involved would be much less fussy. On the other hand, it
does require catching the quadrupole source while it is
varying quadratically.

VI. FAR ZONE FOR A CPMS QUADRUPOLE

I defined the far zone as a regime in which the geometry is
well-approximated by the leading terms in the Bondi–Sachs
expansion. Although this is a good intuitive beginning, it
does need some refinement. The issue is thatmany quantities
of physical interest are nonlocal; for these we typically need
to know that some integrals of geometric quantities over
extended sets are suitably controlled. The sets on which this
will hold will depend on the physical quantities of interest,
so really one should speak of what regime should be
considered the far zone for a given sort of measurement.
The most important class of observables will be ones

derived from the trajectories of test particles, and if we are
interested in results which stabilize as the intervals of
measurement increase, then we must take complete
geodesics. This will be done here, in the case of geodesic
scattering from a CPMS quadrupole in linearized gravity.
The first task will be to examine the metric perturbation

along geodesics in the background space-time (Minkowski
space), and make sure this is controlled. After that, the
scattering itself, which requires an integral over the
geodesic, will be computed.
The zeroth-order geodesic, in the background

Minkowski space-time, will be written

γa0ðsÞ ¼ ba þ u0ta þ sðta cosh ξþ za sinh ξÞ; ð44Þ

where za is a unit spacelike vector, the vectors ba, ta, za are
mutually orthogonal, and ξ is the rapidity. As before, I will
write b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

−baba
p

for the impact parameter. Along the
geodesic, the coordinates are given by

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ s2 sinh2 ξ

p
ð45Þ

u ¼ u0 þ s cosh ξ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ s2 sinh2 ξ

p
ð46Þ

la ¼ ta þ ðba þ sðsinh ξÞzaÞ=r: ð47Þ
Now let us turn to the metric perturbation. Suppose for

simplicity the quadrupole has a purely quadratic depend-
ence on u, so Qab ¼ ð1=2Þu2Q̈ab for some constant Q̈ab.
Inspection of the formula (13) for the metric perturbation
shows it can be written as a sum of terms of the form
ðQ̈ab=rÞðu=rÞn for n ¼ 0, 1, 2 contracted with tensors
whose components are of order at most unity.
Along the geodesic, the factor Q̈ab=r will be bounded by

jλj=b, where λ is the eigenvalue of Q̈ab of the largest
magnitude. A short computation shows that the factor u=r
has limiting values

�j coth ξj − 1 ð48Þ
as s → �∞, and (if u0 ≠ 0) a single local extremum at
s ¼ ðb2=u0Þ coth ξcschξ, with value

sgnðu0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu0=bÞ2 þ coth2 ξ

q
− 1: ð49Þ

We may now see how the metric perturbation along the
geodesic can be controlled. We take b large enough so
the ratio λ=b of the largest-magnitude eigenvalue of Q̈ab to
the impact parameter will be small. The other factors will be
controlled by requiring the rapidity ξ be at least moderate,
and the ratio ju0=bj be at most moderate. Then the
perturbation will be uniformly small over the geodesic.
It turns out that these restrictions are also enough to

control the scattering. The computation is lengthy but
straightforward; I will give only the solution and only
the limiting form for b ≫ ju0j. It is

Δ_γc ¼ −2Gðcosh ξÞðcsch2ξÞtpϵpqrazaQ̈j
r

· ½b−2Πqcbj þ b−2Πjcbq þ 2b−4bqbcbj�; ð50Þ
where

Πq
c ¼ δqc − tqtc þ zqzc ð51Þ

is projection orthogonal to ta and za. Recall that ξ is at least
moderate here; the divergence of the scattering (50) as
ξ → 0 is a failure of the linearized approximation to hold
good for the perturbation over the infinite range of s
values.22

21As follows from the formula at the end of the previous
footnote.

22While the formula (50) diverges for large ξ, this is because
with our normalization the original vector _γa does, too [Eq. (44)].
In fact, the relative change of _γa vanishes in this limit. It is worth
remarking that taking this limit and rescaling does not reproduce
the redshift formula (43) for light because it does not also
incorporate an appropriate scaling for u0 or b.
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Briefly, we may say that we have identified a far
zone, suitable for analyzing test-particle scattering, of
relativistic (since ξ should be at least moderate) geodesics
with ju0=bj ≪ 1.

VII. DISCUSSION

Magnetic gravitational effects are inherently non-
Newtonian, general-relativistic features. Generically, one
expects these degrees of freedom to be nontrivial, and in
particular magnetic shear to be present. Yet we have little
understanding of precisely how this should arise, and what
its consequences might be.
The aims of this paper have been to clarify some aspects

of the theoretical bases for magnetic shear (particularly as
they relate to possible radiation memory effects), and to
explore some possible experimental or observational con-
sequences of magnetic effects. I will review here where
some aspects of this stand.

A. Sources

We do not have a good understanding of the sources of
magnetic shear, and this remains a major problem. This
paper has not suggested any new sources of magnetic
effects. On the other hand, it has investigated the fields due
to arbitrarily varying quadrupole point sources in linearized
gravity. (Since any magnetic shear given at Iþ can be
realized as a superposition of quadrupole contributions and
their derivatives, this provides the basis for a general
treatment of the linearized theory.) The computation was
done in a de Donder gauge, but the transition to a Bondi
gauge was found as well, and the required change was
quite mild.
In linearized gravity, we saw that magnetic quadrupoles

were associated with first moments of the angular momen-
tum density. This suggests that we look for nonlinear
effects where there are separated contributions to the total
angular momentum, for instance, a binary black hole
system with opposing spins. Although it would be hard
to detect σmag directly in data from current numerical
simulations, one has a hope of recovering it by integrating
the magnetic part of Ψ0

4 [see Eq. (2)].
It would also be natural to explore the potential for

effects due to explicitly chiral matter. A sketch of how this
might come about was suggested in Ref. [19].

B. CPMS regimes

If a gravitational system relaxes to a point where it is not
emitting radiation, one would a priori expect it to retain
some magnetic shear, that is, to be in what I have called a
CPMS state. It is possible that such regimes are indeed the
natural endstates for many gravitational systems, but there
are several reasons for thinking the situation is more
complicated.

One of these comes from work on black holes. An
endstate black hole with magnetic shear would be a strong
violation of the no-hair conjecture. There is a fairly good
argument that such a violation is impossible, but it is worth
being careful about just what the argument is, because we
shall see that some of the relevant physics has not been
explored.
As is well known, there are many studies of perturbations

of black holes, and a great body of evidence that perturbed
holes “ring down” via quasi-normal modes to Kerr–
Newman states. However, most of these studies take the
initial data for the perturbation to have compact support. For
CPMS regimes, though, this restriction is inappropriate—
the perturbations in question would have zero-frequency
components. The zero-frequency case was considered by
Teukolsky [2], who gave arguments that such perturbations
were not be stable, but beyond that we have very little
knowledge of the dynamics of the situation. We would like
to know how much of the familiar quasinormal mode/
ringdown structure applies to the expulsion of magnetic
shear. What sets the timescale?
Another reason for doubting CPMS states can persist

indefinitely comes from linearized gravity, where no
realistic sources are known which can generate CPMS
behavior for more than finite periods. Magnetic quadru-
poles can be thought of as first moments of the angular
momentum density, and this suggests, roughly, that to
create σmag (proportional to Q̈ab) one needs to increasingly
separate increasingly large contributions to the total angular
momentum. It is possible that such processes can only
occur over restricted periods. This would accord with the
general sense of suggestions of Winicour and Mädler
[4,23], although from the present point of view their
assumptions seem overly restrictive.
The definition given here of CPMS regimes is idealized

in that I have assumed _σ ¼ 0. In a realistic situation, of
course, one does not expect this to hold exactly, and one
may ask what the consequences of this are. The tolerance
allowed in _σ will vary according to just what effects are
considered, and must be investigated on a case-by-case
basis. This is discussed further in Sec. VII E, below.
However, in this paper the exact CPMS condition was
only invoked in a couple of places: as a conceptual issue, in
the discussion of magnetic radiation memory; and in
Sec. VI, the detailed investigation of the far zone of a
quadrupole. It was not important in the induction-zone
discussions, or used in the computation of the redshift
effect.

C. Scattering and redshift

Two observables associated with the far zones of
magnetic quadrupoles in linearized gravity were computed.
One of these was the case of timelike geodesics in a

CPMS regime. We saw there that for a clean far-zone limit
the geodesics had to be at least moderately relativistic with
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respect to the source; that this is at odds with the sorts of
configurations often considered for radiation memory. The
polarization effects even in this limit were rather compli-
cated, but the overall magnitude went as jσmagj=b, where b
is the impact parameter. This should be compared to the
gravitational scattering due to a mass ∼M=b; both of these
are effects due to the curvature quantity Ψ2, one from its
magnetic part and one from its electric part.
The second case, for which the CPMS condition was not

assumed, was for the temporal component of the scattering
of light—the redshift. For this, the far-zone magnitude went
as jσmagðu0Þj=b, where u0 was the retarded time of receipt
of the light. That the result does not (in the limit of large b)
depend on σmagðuÞ for u ≤ u0 is a retardation effect;
one can view this as an amnesiac effect, opposite to a
memory one.
This magnetic redshift would presumably be possible to

search for astrophysically; one would look for a central
source, and in the circle of directions around the source
redshifts falling off (in the far zone) as 1=b, with a
sinusoidal dependence on the angle around the source.
However, one would also like to know how to rule out other
redshifts of this same form. I pointed out that if a boosted
mass would give something of this form; one could address
this by trying to measure the source’s velocity. But it is also
possible that higher-multipole electric multipoles could
produce this sort of effect; this question needs to be
investigated.

D. Magnetic radiation memory

An important motivation for this paper was the inves-
tigation of potential magnetic radiation memory effects.
Previous work of Winicour and Mädler had tended to
suggest these effects could not occur, and simple models of
radiation memory had involved electric effects only. What
have we learned?
We have good arguments that in principle magnetic

radiation memory effects ought to be possible, at least over
finite periods. Mathematically, they would be due to the
transition from one CPMS regime to another.23 However,
there are a number of cautionary points:
(a) We do not have realistic models of sources for

significant CPMS behavior, and questions have been
raised about how long this behavior can persist.

(b) Traditional proposals to measure radiation memory
are based on observing changes in the trajectories
of test-particles from before to after the passage of
gravitational waves. For magnetic effects, because the
bracketing CPMS periods are not stationary, the class
of trajectories which are cleanly in the far zone is
significantly restricted (Sec. VI). In particular, all such
trajectories should be relativistic with respect to the

source worldline. This makes the detection of clean
magnetic memory effects, even in principle, harder
than previous work has suggested.

(c) There is at present little or no prospect of using
terrestrial or solar-system gravitational-wave detectors
for verifying the existence of magnetic radiation
memory. The issue is that the split of radiation into
electric and magnetic parts necessarily involves some
comparison of signals at different points of the sphere
of asymptotic directions around the source, and we
cannot expect current detectors to have the requisite
angular resolution.
For instance, the most direct approaches would

involve measurements of the radiation field ∼Ψ0
4=r, a

spin-weight (minus) two quantity. And the most local
approach to extracting a purely magnetic effect from
this would be to compute the spin-weight zero
quantity ℑð2Ψ0

4. Doing this would require gravita-
tional-wave detectors extending over a large enough
solid angle around the source that this second deriva-
tive could be accurately found.

(d) On the other hand, there is some prospect of measuring
the magnetic redshift effect around astrophysical
sources. If one can rule out other sources of the
redshift, and if one observed time-independent such
redshifts in two intervals, the difference between them
would be a magnetic radiation memory effect.

E. The far zone versus null infinity

In much of the relativity literature, investigation of the
asymptotic regimes is done in the limit of passing to null
infinity. In this paper, however, while some important
formulas were derived there, most of the asymptotic work
has been done in the far zone. This was necessary in order
to investigate the domains of validity of the computations.
There is, however, a point about the distinction between

the far zone and null infinity which has not yet been
discussed, and which can be puzzling. One could argue that
_σ is never truly zero, so in particular CPMS regimes cannot
truly exist. If we are indeed considering a Bondi–Sachs
space-time, then by passing to large enough r we expect a
finite if small radiative term will exist and be the dominant
contribution to the curvature. If this argument were correct,
then the CPMS regimes would be a thin set unrepresenta-
tive of real physics.
To resolve this, the first observation to make is that

the same sort of argument would (for instance) apply to
suggest that stationary solutions were unphysical over-
idealizations not representative of real physics. That con-
clusion would be false, because while we do not expect any
real system to be exactly stationary, many systems are
adequately modeled by stationary solutions for a wide
range of purposes. It is a question of which aspects of the
physics are to be modeled, and how accurate the models
must be.

23Strictly speaking, that is for the case of pure magnetic
radiation. One might also want to allow arbitrary σel.
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In the case at hand, we should remember that we do not
expect any real system to be exactly modeled by a Bondi–
Sachs solution. No system in the Universe is really
perfectly isolated. What we can ask for is that a regime
around the system (but not really extending infinitely far
out) is well-modeled (for specific purposes) by the leading
terms in the Bondi–Sachs expansions, and this has been the
definition of the far zone adopted here.
For any real system, there will be some tolerances in

the possible choices of Bondi–Sachs modeling solutions.
In particular, quantities like σ and Ψn are not precisely
determined. The Bondi–Sachs space-times will be good
models if those tolerances are small enough not to affect the
analysis of quantities of interest. So a physical region will
be well-modeled by a CPMS regime for certain purposes if
the presence of a sufficiently small amount of _σ does not
make any difference to the quantities we wish to model, to
the accuracy required.
The point of the discussion just given is only to make

precise the sense in which CPMS regimes might be realistic
models of physics. It does not speak to the dynamical
questions of how long the regimes might persist to given
degrees of accuracy.

F. Induction-zone effects

Some consequences of a magnetic quadrupole in the
induction zone were investigated. It was found that memory
effects were possible there—where by memory, we mean
differences in the trajectories of particles from ingoing to
outgoing regimes which signal that at some point the
quadrupole was nonzero. That such effects are possible is
not a surprise; but we do find some chance that they could
be verified by laboratory experiments. They could also lead
to astrophysical effects, but these seem less likely to be
observed, at least based on current understanding and
technology.
Arguably the most conceptually interesting result was

that a magnetic gravitational quadrupole will tend to
induce, in nearby test particles, motions leading to an
opposing quadrupole. This is perhaps the first example
of how matter might tend to screen magnetic general-
relativistic effects.
While this effect has the general flavor of Lenz’s law for

electromagnetism, the parallel is not very close. Lenz’s law
describes currents induced by a changing field, whereas

here the test particles react to the value of the quadrupole
(not some time-derivative of that).
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APPENDIX: SCATTERING INTEGRALS

I will here indicate how the integrals occurring in the
scattering computations can be done.
Each integral can be reduced to a sum of ones of the form

I ¼
Z

∞

−∞

sm

ðs2 þ b2Þn=2 qðt0 þ s −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ b2

p
Þds; ðA1Þ

where s is an affine parameter on the geodesic and q is a
component of the quadrupole, or of a derivative of the
quadrupole, and n −m ≥ 2.
The key point is the assumption that qðuÞ is nonzero only

for a finite range of retarded times u. In fact, if we change
variables to u ¼ t0 þ s −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ b2

p
, we find that u ranges

over the interval ð−∞; t0�. We invert the relation to get

s ¼ b2

2ðt0 − uÞ −
t0 − u
2

: ðA2Þ

Note here that, if u is restricted to any bounded subinterval
of ð−∞; t0�, then

sm

ðs2 þ b2Þn=2 ¼
�
2ðt0 − uÞ

b2

�
n−m

þ � � � ðA3Þ

as b → ∞, uniformly for in u in any bounded interval
(for n −m ≥ 0).
We will also have

ds ¼
�

b2

2ðt0 − uÞ2 þ
1

2

�
du: ðA4Þ

Then

I ¼ ðb2=2Þðm−nþ1Þ
Z

u0

−∞
ðt0 − uÞn−m−2qðuÞduþ � � � : ðA5Þ

[1] A. D. Helfer, Gen. Relativ. Gravit. 39, 2125 (2007).
[2] S. A. Teukolsky, Phys. Rev. Lett. 29, 1114 (1972).
[3] L. Bieri and D. Garfinkle, Phys. Rev. D 89, 084039

(2014).

[4] T. Mädler and J. Winicour, Classical Quantum Gravity 33,
175006 (2016).

[5] G. Satishchandran and R. M. Wald, Phys. Rev. D 99,
084007 (2019).

MAGNETIC EFFECTS IN GENERAL RELATIVITY: QUADRUPOLES, … PHYS. REV. D 100, 044004 (2019)

044004-17

https://doi.org/10.1007/s10714-007-0509-0
https://doi.org/10.1103/PhysRevLett.29.1114
https://doi.org/10.1103/PhysRevD.89.084039
https://doi.org/10.1103/PhysRevD.89.084039
https://doi.org/10.1088/0264-9381/33/17/175006
https://doi.org/10.1088/0264-9381/33/17/175006
https://doi.org/10.1103/PhysRevD.99.084007
https://doi.org/10.1103/PhysRevD.99.084007


[6] K. Akiyama et al. (Event Horizon Telescope Collaboration),
Astrophys. J. 875, L1 (2019).

[7] T. Johannsen and D. Psaltis, Astrophys. J. 718, 446
(2010).

[8] R. Penrose and W. Rindler, Spinors and Space-Time, Vol. 1:
Two-Spinor Calculus and Relativistic Fields (Cambridge
University Press, Cambridge, England, 1984).

[9] R. Penrose and W. Rindler, Spinors and Space-Time,
Vol. 2: Spinor and Twistor Methods in Space-Time Geo-
metry (Cambridge University Press, Cambridge, England,
1986).

[10] E. T. Newman and R. Penrose, J. Math. Phys. (N.Y.) 7, 863
(1966).

[11] H. Bondi, M. G. J. van der Burg, and A.W. K. Metzner,
Proc. R. Soc. A 269, 21 (1962).

[12] R. Penrose, Gen. Relativ. Gravit. 43, 901 (2011).

[13] E. Newman and R. Penrose, J. Math. Phys. (N.Y.) 3, 566
(1962).

[14] Y. B. Zel’dovich and A. G. Polnarev, Sov. Astron. 18, 17
(1974).

[15] V. B. Braginsky and L. P. Grishchuk, Zh. Eksp. Teor. Fiz.
89, 744 (1985) [Sov. Phys. JETP 62, 427 (1985)].

[16] V. B. Braginskii and K. S. Thorne, Nature (London) 327,
123 (1987).

[17] D. Christodoulou, Phys. Rev. Lett. 67, 1486 (1991).
[18] A. D. Helfer, Phys. Rev. D 94, 124011 (2016).
[19] A. D. Helfer, arXiv:1805.11569.
[20] A. D. Helfer, Mon. Not. R. Astron. Soc. 430, 305 (2013).
[21] A. D. Helfer, Phys. Rev. D 90, 044005 (2014).
[22] P. D. Lasky, E. Thrane, Y. Levin, J. Blackman, and Y. Chen,

Phys. Rev. Lett. 117, 061102 (2016).
[23] J. Winicour, Classical Quantum Gravity 31, 205003 (2014).

ADAM D. HELFER PHYS. REV. D 100, 044004 (2019)

044004-18

https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.1088/0004-637X/718/1/446
https://doi.org/10.1088/0004-637X/718/1/446
https://doi.org/10.1063/1.1931221
https://doi.org/10.1063/1.1931221
https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1007/s10714-010-1110-5
https://doi.org/10.1063/1.1724257
https://doi.org/10.1063/1.1724257
https://doi.org/10.1038/327123a0
https://doi.org/10.1038/327123a0
https://doi.org/10.1103/PhysRevLett.67.1486
https://doi.org/10.1103/PhysRevD.94.124011
http://arXiv.org/abs/1805.11569
https://doi.org/10.1093/mnras/sts618
https://doi.org/10.1103/PhysRevD.90.044005
https://doi.org/10.1103/PhysRevLett.117.061102
https://doi.org/10.1088/0264-9381/31/20/205003

