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Black holes are the simplest macroscopic objects, and provide unique tests of general relativity. They
have been compared to the hydrogen atom in quantum mechanics. Here, we establish a few facts about the
simplest systems bound by gravity: black hole binaries. We provide strong evidence for the existence of
“global” photosurfaces surrounding the binary, and of binary quasinormal modes leading to the exponential
decay of massless fields when the binary spacetime is slightly perturbed. These two properties go hand in
hand, as they do for isolated black holes. The binary quasinormal modes have a high quality factor and may
be prone to resonant excitations. Finally, we show that energy extraction from binaries is generic and we
find evidence of a new mechanism—akin to the Fermi acceleration process—whereby the binary transfers
energy to its surroundings in a cascading process. The mechanism is conjectured to work when the
individual components spin, or are made of compact stars.
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I. INTRODUCTION

Einstein’s theory of general relativity (GR) is the most
accurate known description of gravity [1–4]. One of its out-
standing predictions is the existence of black holes (BHs),
vacuum spacetimes defined by an event horizon, i.e., a null
one-way surface. IsolatedBHs have been studied for decades.
They are extremely simple [5] and fully characterized by their
mass and angular momentum [7–14]. These properties are
instrumental to building templates of gravitational-wave
(GW) signals generated by dynamical BHs, which eventually
led to the first direct detection of GWs [15]. The lack of
complex multipolar structure of BH geometries is crucial to
perform strong-field tests of the theory, for example, through
the late-time relaxation of BHs, as a superposition of
quasinormal modes (QNMs) [14,16–21].
By contrast, and due to their inherent complexity, BH

binaries (BHBs) are less well studied and understood: their
GW output and dynamics, when in isolation, are known
very well through post-Newtonian expansion techniques at
large separations [22]. In this approach the individual

binary components are stationary vacuum BHs, slightly
deformed in response to the companion’s field. The
dynamical behavior of the BHB itself is poorly understood.
Such knowledge can in principle be obtained using
numerical methods [23,24]; however, such techniques only
probe relatively small time scales using finely tuned initial
data. In particular, efforts to date have mostly focused on
purely vacuum spacetimes describing isolated BHBs which
have been evolving solely through GWemission, leading to
an inspiral and merger, possibly observable by current or
future GW detectors. The simulation time scales can be at
most of the order of a few thousandGM=c3, whereM is the
total spacetime mass. For stellar-mass components, these
are of the order of one second or less, but BHBs can live for
millions of years on tight orbits. Thus, new effects may be
triggered and relevant on large time scales. Do perturbed
BHBs also have characteristic ringdown modes, and can
they be resonantly excited? Do BHBs amplify incoming,
low-frequency radiation? Here, we provide a framework for
studying these open questions and answer some of them.

II. SETUP: A BLACK HOLE BINARY
IN POST-NEWTONIAN THEORY

Consider a BHB, whose dynamics are governed by the
vacuum Einstein equations. For the reasons outlined (com-
putational expense, dependence on initial data, etc.), instead
of numerically generated spacetimeswe use the approximate
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BHB spacetime discussed in Ref. [25]. The construction
relies on the theory of matched asymptotic expansions and
proceeds as follows. The spacetime is divided into three
different regions; see Fig. 2 in Ref. [25]. There are two inner
zones sufficiently close to each BH, characterized by BH
perturbation techniques (the metric perturbation is described
by tidal fields generated by the companion; the tidalmoments
include the quadrupole and octupole deformation and their
time derivatives). The inner zone is “stitched” to a near zone
described by a post-Newtonian expansion (to second post-
Newtonian order), itself matched to a far zone which is
described using a multipolar, post-Minkowskian formalism.
In addition, there are twobuffer zones defined as the region of
spacetimewhere the threemain zones overlap. The existence
of such overlapping regions is crucial for constructing the
matchedmetric. In particular, themultipolar post-Newtonian
formalism used to build the near- and far-zone metrics
ensures that they are matched by construction [22]. Such a
spacetime was implemented and used to investigate the
physics of accretions disks in the presence of BHBs [26–29].
Henceforth we set G ¼ c ¼ 1, and focus exclusively on

equal-mass binaries of total Arnowitt-Deser-Misner (ADM)
mass M separated by a coordinate distance L (proper
separations are very close to the coordinate distances we
discuss). “Nearly closed” (i.e., curves of period 2π to an
accuracy which increases with separation L and which self-
intersect at least once) null geodesics in such a construction
for a vacuumBHBare shown inFig. 1.We find three types of
null geodesics: the “standard” null circular geodesic sur-
rounding each BH (which in Schwarzschild coordinates sits
at a coordinate distance ∼rH=2 away from the horizon,
where rH is the Schwarzschild radius of a single BH), a
global nonintersecting geodesic, and a figure-of-eight-
shaped trajectory. Such null geodesics were found in toy
models in the past, in extremal BH or analog spacetimes

[30–32]. The distance of closest approach of the global
nonintersecting geodesic to each BH horizon is ð0.6�
0.03ÞrH and its periodT ¼ 2Lþ 31ð�1Þ for the separations
we study (L ¼ ½20; 40�M). Its distance of closest approach
to the center of mass is not strongly sensitive to L and is
y=M ¼ 3.5� 0.07 for these separations. It is natural to
speculate that such global geodesics can be identified with
the null circular geodesic of the final BH,when such a binary
merges. The instability of such orbits is clear from their
numerical search (fine-tuning is necessary). A complete
picture of geodesic motion in BHB spacetimes is outside the
scope of this work.

III. SCATTERING AND BINARY RELAXATION:
INDIVIDUAL AND GLOBAL QNMs,

AND POWER-LAW TAILS

The closed null geodesics of isolated BHs correspond to
a semitrapping of massless waves; accordingly, they
provide useful information on the characteristic modes
of vibration (QNMs) of BHs [19,20,33,34]. It is thus
natural to associate the previous global null geodesics with
binary relaxation, i.e., with the hitherto unknown QNMs of
BHBs. An analytic understanding of these issues for BHBs
is challenging, and we turn instead to the numerical
simulation of massless scalar fields in the BHB background
spacetime described above.
The dynamics of the BHB is governed by vacuumGR, as

described previously. We ignore the backreaction of the test
scalar field on the BHB spacetime, an approximation which
is valid for all realistic setups known to us (except when the
scalar field mimics GWs and the BHB is in the last stages
of inspiral). Thus, the scalar field is governed by the Klein-
Gordon equation □Φðt; x⃗Þ ¼ 0, in a known (albeit time-
dependent) background. We use purely ingoing initial data
of the form

Φð0; x⃗Þ≡Φ0 ¼
sinωrWðrÞ

r
e−ðr−r0Þ2=σ2 ; ð1Þ

∂tΦð0; x⃗Þ ¼ ∂rΦ0 þ
Φ0

r
; ð2Þ

where r is the radial coordinate and WðrÞ is a window
function that smooths the r ¼ 0 behavior. Here, r0 and σ
characterize the typical radius and width of the initial
ingoing scalar field, while ω characterizes its frequency.
The initial field amplitude is irrelevant, since the Klein-
Gordon equation is linear. To numerically evolve the scalar
field, we employ the code presented in Refs. [30,35], which
makes use of the EINSTEIN TOOLKIT infrastructure [36–38]
with the CARPET package [39,40].
We project the scalar field onto scalar harmonics,

Φ ¼ P
lmΦl;mYlm. The initial data is spherically symmetric

around the center of coordinates, but the presence of the
BHB guarantees that upon evolution other components will
exist. Note that for symmetry reasons only even modes are

FIG. 1. Illustration of closed null geodesics in the background
of nearly static, nonspinning BHBs. Each BH, depicted by a full
black circle, is surrounded by its own light ring, lying at r ¼ 3M
in standard Schwarzschild coordinates, when their separation is
large. Two other null closed trajectories are possible: a global
nonintersecting null geodesic and a figure-of-eight-shaped tra-
jectory. Such null geodesics were found in extremal BH or analog
spacetimes [30–32]; we also find them in the matched spacetime
describing a vacuum BHB. A similar illustration also describes
some timelike geodesics.
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excited in the current setup (see also Ref. [41]). We studied
a variety of different initial parameters and BHB separa-
tions. A typical outcome of the evolution is shown in Fig. 2
(further details are provided in the Appendix A). The binary
is separated by L ¼ 10M [42]. Our results show fourth-
order convergence.
As seen in Fig. 2, the dominant mode is the monopolar

one and it drives the dynamics. Initially, the observer sitting
at r ¼ 100M sees the field heading towards the BHB. At
t ∼ 100M the observer starts receiving signals that inter-
acted with the BHB. The first clear signal is a strongly
damped sinusoid, associated with the ringdown of each
individual BH in the binary. These individual modes are
well studied and our results are consistent with theoretical
expectations based on linearized calculations [17,43]. After
t ∼ 100M, the leading monopolar component is now out-
going and also drives higher multipoles.
After the initial driving monopolar mode dies away at

t ∼ 320M, another exponentially damped sinusoid is ap-
parent in the waveform. This is one of our main results:
BHBs possess global QNMs which describe the ringdown
of the binary as a whole. Our results indicate that the
ringdown parameters depend only on the mass and sepa-
ration of the binary and are (to the extent probed by our
simulations) independent of the initial data. It is compelling
to associate such BHB modes with the closed null geo-
desics around the BHB, as can be done formally for isolated
BHs [19,20,33,34]. A reassuring check on the correspon-
dence is that our results are well described by the linear fit

T=M ¼ ð1.03� 0.04ÞL=M þ 8� 1 ð3Þ

in the range of separations we studied, where we made use
of the simulations listed in the Appendix A. The geodesic

calculation would have predicted, for l ¼ m ¼ 2 modes,
T ∼ Lþ 16. In other words, our numerical results are in
suggestive agreement with geodesic expectations, lending
further support to the association of the global QNMs with
global geodesics. Our results for the decay time scale
during this global ringdown phase are less accurate, but
suggest that the relaxation time scale τ also increases with
the separation and is of order 10M for L ¼ 10M.
Notice that the insight from geodesic motion hinges on

having two static BHs. This crude approximation is
however robust for BHB for which the post-Newtonian
expansion is trustworthy: the orbital period scales like L3=2,
whereas the light travel time scales like L. Already for
L ¼ 10 we find an orbital period of 200M, and a global
ringdown time scale of order 10M. In other words, the
binary only travels a few degrees during the global ring-
down stage. The approximation is even better for larger
separations. Characteristic vibration modes are generic
properties of dissipative systems: a binary system of two
stars may also have global QNMs without allowing closed
null geodesics [21,44]. Although all of our results are
compatible with such an association, further work is
necessary to understand the details and origin of the BHB
QNMs.
At very late times, our simulations indicate that the

signal dies as a power-law tail in time, Φ ∼ t−γ . For
isolated, nonspinning BH spacetimes and for scalar fluc-
tuations, γ ¼ 2lþ 3 [45]. Our results indicate that γ ∼ 7 for
l ¼ m ¼ 0, which is presumably an indication of mode
mixing during the evolution, of the kind seen in isolated but
spinning BH geometries [46,47].
When the initial wave packet has a very large width

(corresponding to a constant force on the BHB), the
outgoing pulse is modulated at frequencies ω� kΩ, where
k is an integer. Such effects were previously seen in the
scattering of electromagnetic waves by periodically moving
obstacles [48,49].

IV. ENERGY EXTRACTION AND INSTABILITIES

Compact binaries are astrophysical blenders and poten-
tial energy sources, either when surrounded by accretion
disks or in the context of fundamental massive fields.
Different mechanisms may be associated with energy
extraction in the presence of a compact binary:

(i) If the individual objects spin, there are ergoregions
in the spacetime and each binary component can
transfer rotational energy to bosonic fields through
superradiance. Such transfer can be turned into
an instability by placing the system inside a cavity
[50–52]. It is unknown whether binary-intrinsic
ergoregions exist (but there are arguments sug-
gesting that superradiance does exist for binaries
made of nonspinning objects [53]).

(ii) Awell-knownNewtonian energy extraction process—
the gravitational slingshot—transfers kinetic energy

FIG. 2. Time evolution of an initial spherically symmetric
Gaussian pulse, localized at r0 ¼ 100M, with width σ ¼ 40M
and frequencyMω ¼ 0.1. The pulse evolves in a BHB spacetime
of separation L ¼ 10M, and the field is extracted at r ¼ 100M.
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from moving planets or stars to scattered probe
objects; it is straightforward to show that, within
GR, such a mechanism also occurs with light. Light
scattering off a BHmovingwith velocity v can extract
(kinetic) energy with an efficiency ϒ≡ Efinal=Einitial
up to

ϒmax ¼
1þ v
1 − v

: ð4Þ

The maximum efficiency occurs when the photon
scatters with a 180° angle off of an oppositely moving
BH, and is identical to the energy gain of a photon
scattering off of a moving mirror. For velocities
associated with orbital motion in a compact binary,
the efficiency can be 1.2 or higher. We verified such a
result via explicit scatterings of photons off of moving
BH and BHB geometries [54]. It is conceivable that
one photon suffers multiple scatterings with the binary
(specially if confined).

(iii) A binary provides a periodic force on external fields;
a similar lower-dimensional toy model is known to
give rise to instabilities in trapped radiation [56], akin
to the Fermi acceleration process of cosmic rays [57].

These effects or othersmay all bepart of the astrophysics of
compact binaries (and hence are all part of realistic simu-
lations, although perhaps not easily identifiable [58,59]). We
will be interested in confined binaries (which are of interest to
some darkmatter scenarios)where the abovemechanisms are
expected to trigger instabilities. Unfortunately, a numerical
investigationof these issues using the previous (3þ 1) setting
is challenging: time scales for energy extraction are expected
to be very large, and for nonspinning BHBs (the ones we are
currently able to simulate in our setup) absorption at the
horizon will likely quench or strongly suppress any possible
energy extraction mechanism (but see Ref. [53]); a BH of
mass MBH has an absorption cross section (for scalars) of
20kπM2

BH [60–62]with k ¼ 27=20, 16=20 ¼ Oð1Þ for high-
and low-frequency radiation, respectively. Because of this, a
naive expectation is that a BHB in a cavity of size Rext will
contribute to a decrease in the energy inside that cavity at a
rate dE=dt ∼ −λE, λ ∼ 10kðM=LÞ2=Rext.
To emulate compact binaries of spinning BHs or neutron

stars, we take a binary of two reflecting objects in flat
(2þ 1) dimensions, and we evolve a massless scalar with a
simple Gaussian initial profile. This setup allows for the
evolution of a very large number of orbits and reflections in
the confining cavity. We evolve the system numerically for
different values of the orbital frequency Ω, separation L,
and cavity size Rext with the EINSTEIN TOOLKIT infra-
structure using the code described in Ref. [30]. The total
integrated energy inside the cavity is shown in Fig. 3 for
one such binary. The total energy increases with time, and
at late times this increase is exponential. Our results
indicate that this growth happens only when the orbital

frequency is of the order of the light travel time inside the
cavity. Although this is a toy model, this is probably
the first example of instabilities triggered by binaries. There
is nothing intrinsic to lower-dimensional spacetimes: the
arguments above suggest that it may have a counterpart in
(3þ 1) setups as well. Enclosed BHBs are currently being
studied [63].

V. DISCUSSION

The role and simplicity of BHs in GR has often been
compared to the hydrogen atom in the development of
quantum mechanics. It is compelling to draw a parallel
between BH binaries and the simplest possible molecule—
that of the hydrogen molecule ion [64–67]. The null
geodesics around isolated BHs have a counterpart in wave
dynamics as QNMs of the geometry. In a quantum-
mechanical picture they would correspond to the bound
states of the hydrogen atom. Likewise, the global geodesics
for BHBs (see Fig. 1) may be tightly connected to global
QNMs (Fig. 2), the analog of molecular bound states. It is
amusing to note that such a correspondence can be taken a
step further for an exact BHB solution: the Majumdar
Papapetrou geometry describing a pair of extremal BHs.
The Klein-Gordon equation in this background assumes
the same form as the Schrödinger equation describing
a positron in the ionized hydrogen molecule (see
Appendix B). The successful, effective-one-body treatment
of post-Newtonian theory for the BHB problem uses very
explicit hydrogen-atom analogies to construct an inspiral-
ing waveform model [68]. It is tempting to expect that such
methods can also yield insight into the problem of BHB
relaxation. A quantitative correspondence can be estab-
lished between geodesics and QNMs of isolated BHs; a

FIG. 3. Total energy in a scalar field inside a cavity composed
of a circular reflecting boundary and two reflecting circles in
circular orbit around each other. The boundary radius is
Rext ¼ 30, and each object has a radius 0.5 and is on a circular
orbit of radius 5 with angular velocity Ω ¼ 0.14.
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similar analysis for BHBs is missing, but would be
fundamental for the program of understanding the high-
frequency QNM regime and its possible connection to null
geodesics. BH spectroscopy makes use of the QNMs of
isolated BHs to infer their mass and spin [16,69,70].
Perhaps BHB spectroscopy is within reach, where their
separation can also be estimated from the global modes.
The excitation mechanism of BHB modes could happen,
for example, via three-body interactions.
It is a fact that, since the QNMs of isolated BHs are

associated with photospheres (and hence to the largest
frequency in such a spacetime), the resonant excitation of
such modes is impossible in astrophysical setups. However,
the new global modes associated with the entire BHB
geometry are associated with a new scale (the binary
separation), and have a lower frequency than each of the
individual BH QNMs. It is therefore conceivable that a
particle orbiting one of the BHs can resonantly excite
the global modes. The condition for this to happen is that
the orbital period of the small particle equals the period of the
QNMs. We find that the particle orbiting at radius rp around
one of the BHs should satisfy rp=MBH ¼ 0.466ðL=M þ
3π

ffiffiffi
3

p
=2Þ2=3 (MBH is the mass of each individual BH). For

L ¼ 38M, for example, resonant excitation is possible when
the particle reaches the innermost stable circular orbit of one
individual BH. The consequence could be enhanced emission
of GWs from the binary.
There are compelling arguments suggesting that compact

binaries may be prone to energy transfer to other degrees of
freedom (most notably to fundamental scalars, for example)
when inside a cavity. This artificial setup accurately mimics
physically motivated scenarios consisting of massive
degrees of freedom, such as massive scalars or vectors,
which are proxies or serious candidates for dark matter (for
instance, when dealing with axionlike particles) [52]. Our
results strongly suggest that a new type of instability may
be active, which could potentially improve constraints on
dark matter models. The mechanism resembles a para-
metric instability [71], but we find complex growth patterns
in the field. The instability growth rate is larger for larger
angular velocities, and thus a natural question remains
open, which our toy model is unable to answer: is the
instability relevant for an astrophysical binary driven by
GW emission? In other words, is there any regime during
which the growth rate is important during a binary’s
lifetime? [72].
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APPENDIX A: SIMULATIONS, CONVERGENCE,
AND RADIAL DEPENDENCE

Table I summarizes the parameters of our simulations for
the scattering of Gaussian wave packets off BHBs.

TABLE I. Summary of our simulations. The parameters specify
the initial conditions, as in Eq. (1) in the main text. Here the mass
of each BH is fixed at 0.5. T20 is the period of oscillations of the
l ¼ 2, m ¼ 0 component at late times. Our results show that the
l ¼ m ¼ 2 case has a similar period. The oscillation period T20 is
extracted using two periods of the late-time oscillation, when
available. For the BHB8 run, the late-time behavior of T20 is
highly modulated and it is hard to extract any characteristic
frequency.

Name L σ ω r0 T20

BHB1 20 40 0.1 100 26.6
BHB2 20 40 0.05 100 28.0
BHB3 10 40 0.1 100 19.0
BHB4 40 40 0.1 100 49.6
BHB5 20 40 0.01 100 27.2
BHB6 20 40 0.02 100 27.0
BHB7 20 80 0.2 100 28.6
BHB8 20 80 0.5 100 *
BHB9 10 4 0.1 100 18.6
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1. Numerical procedure and convergence analysis

To numerically evolve the scalar field equations in our
prescribed metric background we employ the code pre-
sented in Refs. [30,35], which makes use of the EINSTEIN
TOOLKIT infrastructure [36–38] with the CARPET package
[39,40] for mesh-refinement capabilities. We employ the
method of lines, where spatial derivatives are approximated
by fourth-order finite-difference stencils, and we use the
fourth-order Runge-Kutta scheme for the time integration.
Kreiss-Oliger dissipation is applied to evolved quantities in
order to damp high-frequency noise.
Our simulations use finite-difference techniques, which

approximate the continuum solution of the problem with an
error that depends polynomially on the grid spacing h,

f ¼ fh þOðhnÞ; ðA1Þ

where n is the convergence order. Since the code we
employ uses both second- and fourth-order techniques we
expect this to be reflected in the convergence properties of
our results. Consistency can be checked by evolving the
same configuration with coarse, medium, and fine reso-
lutions (hc, hm, and hf). One can then compute the
convergence factor given by

Q≡ fhc − fhm
fhm − fhf

¼ hnc − hnm
hnm − hnf

: ðA2Þ

To check the convergence of the extracted waveforms we
have evolve the configuration of Fig. 2 in the main text,
with resolutions hc ¼ 1.6M, hm ¼ 1.28M, and hf ¼ 1.0M
(where this refers to the resolution of the outermost
refinement level); the corresponding results are shown in
Fig. 4 for the l ¼ 2, m ¼ 2 multipole of Φ. We have

amplified the differences between the medium- and fine-
resolution runs by the factor 2.97 expected for fourth-order
convergence.

2. Dependence on extraction radii

Figure 5 shows the waveform extracted at different radii,
aligned by their maxima (in other words, aligned by the
light-travel-time propagation delay). The consistent overlap
between the three signals indicates that the signal is indeed
being measured in the wave zone, and that there is no finite-
extraction radius artifact. Notice that the early-time
response for the monopole does not align because the
initial pulse is ingoing. On the other hand, the late-time

FIG. 4. Convergence analysis of the l ¼ 2, m ¼ 2 multipole of
Φ extracted at r ¼ 100M for the configuration of Fig. 2 in the
main text (BHB3), showing good agreement with fourth-order
convergence.

FIG. 5. Radial dependence of the waveform shown in Fig. 2 of
the main text (BHB3) for the l ¼ m ¼ 0 (top) and l ¼ 2, m ¼ 0
(bottom) modes. Here we align the waveform extracted at three
different radii by properly subtracting the light travel time. As one
can see, there is a very good overlap of the waveform for the
l ¼ 2 mode, indicating that it is purely outgoing and that one is
indeed in the wave zone already and capturing the leading-order
dependence of the waveform. The driving l ¼ 0 mode, on the
other hand, is not aligned at early times, showing that indeed it is
initially ingoing.
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behavior of the monopolar component is perfectly aligned,
showing that the pulse is outgoing at these late stages.

3. Dependence on initial data

Figure 6 shows the waveforms for different types of
initial conditions, following the definitions in Table I. The
waveforms are aligned in time to show a clear universal
ringdown, which is the most important result of our work.
The ringdown frequency and damping time scale are the
same for different initial conditions, and depend only on the
binary parameters (mass and separation). The results also
clearly indicate that, although the period and damping time
scale with separation L, the quality factor seems to be scale
independent.
The initial pulse is spherically symmetric. However, on

very short time scales the signal develops a quadrupolar
(l ¼ 2) component as well. This behavior is expected, since
one is specifying spherically symmetric initial conditions

on a nonsymmetric background. Thus, the field will very
quickly sense the nonsymmetric background metric. It is
possible to show that such a nonsymmetric component is
weaker at larger distances.

4. Power-law tails

Figure 7 zooms in on the late-time behavior of the
dominant, driving l ¼ m ¼ 0 simulations for the scattering
of Gaussian wave packets. Our results are consistent with a
power law.

APPENDIX B: MAJUMDAR-PAPAPETROU AND
THE DIHYDROGEN IONIZED MOLECULE

There is an exact solution in general relativity describing
two or more static BHs. Such a solution is known as the
Majumdar-Papapetrou (MP) solution [73–75]. In a cylin-
drical coordinate system the BHB version of the MP
solution is written as

ds2 ¼ −
dt2

U2
þ U2ðdρ2 þ ρ2dϕ2 þ dz2Þ; ðB1Þ

with

Uðρ; zÞ ¼ 1þ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − aÞ2

p þ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðzþ aÞ2

p : ðB2Þ

This solution represents two maximally charged BHs in
equilibrium, each with massM and chargeQ ¼ M. In these
coordinates, their horizons are shrunk to two points at
z ¼ �a (and hence the parameter a measures the distance
between them). The spacetime ADM mass is 2M.
Some geodesic properties of these solutions were studied

before [30–32]. We will now show the rather remarkable
result that the Klein-Gordon equation separates. We change

FIG. 6. Waveforms for different initial data, following the
notation of Table I and extracted at r ¼ 100M. The waveforms
are aligned in time, such that the universality of the ringdown
phase is clear.

FIG. 7. Late-time behavior of the driving l ¼ m ¼ 0 mode for
two different simulations. The results are compatible with a
power-law tail at late times.
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to planar “prolate confocal elliptical” coordinates χ, η
(keeping the time and azimuthal coordinates) defined as

r21 ≡ ρ2 þ ða − zÞ2 ¼ a2ðχ þ ηÞ2; ðB3Þ

r22 ≡ ρ2 þ ðaþ zÞ2 ¼ a2ðχ − ηÞ2: ðB4Þ

The variable χ plays a role similar to r in standard spherical
coordinates, while η plays the role of cos θ. The domains of
these variables are −1 ≤ η ≤ 1 and 1 ≤ χ ≤ ∞. In these
coordinates the Klein-Gordon equation for Ψeimϕ−iωt can
be written as

0 ¼ ∂χððχ2 − 1Þ∂χΨÞ − ∂ηððη2 − 1Þ∂ηΨÞ

þ
�

m2

η2 − 1
−

m2

χ2 − 1

�
Ψþ ω2ðaχ2 − aη2 þ 2MχÞ4Ψ

a2ðχ2 − η2Þ3 :

When a=M ≫ 1, we find that the above is separable and
reduces to

∂χððχ2 − 1Þ∂χΨÞ − ∂ηððη2 − 1Þ∂ηΨÞ

þ
�

m2

η2 − 1
−

m2

χ2 − 1

�
Ψþ a2ω2

�
χ2 − η2 þ 8χM

a

�
Ψ ¼ 0:

With the ansatz Ψ ¼ SðηÞRðχÞ, we finally find

∂ηðð1 − η2Þ∂ηSÞ þ
�
−a2ω2η2 −

m2

1 − η2
þ Λ

�
S ¼ 0;

∂χððχ2 − 1Þ∂χRÞ

þ
�
a2ω2χ2 þ 8Maχω2 −

m2

χ2 − 1
− Λ

�
R ¼ 0; ðB5Þ

where Λ is a separation constant. This same system
describes the Schrödinger equation (for a positron) in
the ionized hydrogen molecule [64,65]. We thus have a
formal equivalence between two similar systems: that of a
molecule governed by electromagnetism and a simple
binary system in full general relativity. The effective-
one-body treatment of post-Newtonian theory for the
BHB problem uses very explicit hydrogen-atom analogies
to construct an inspiraling waveform model [68]. Thus, it is
interesting that the converse (i.e., recovering the dynamics
of a molecule in quantum mechanics) is borne out of an
exact solution in general relativity.
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