
 

Harmonic oscillations of neutral particles in the γ metric
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We consider a well-known static, axially symmetric, vacuum solution of Einstein equations belonging to
Weyl’s class and determine the fundamental frequencies of small harmonic oscillations of test particles
around stable circular orbits in the equatorial plane. We discuss the radial profiles of frequencies of the
radial, latitudinal (vertical), and azimuthal (Keplerian) harmonic oscillations relative to the comoving and
distant observers and compare with the corresponding ones in the Schwarzschild and Kerr geometries. We
show that there exist latitudinal and radial frequencies of harmonic oscillations of particles moving along
the circular orbits for which it is impossible to determine whether the central gravitating object is described
by the slowly rotating Kerr solution or by a slightly deformed static space-time.
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I. INTRODUCTION

The Zipoy-Vorhees space-time, also known as γ metric is
an asymptotically flat vacuum solution of Einstein’s equa-
tions which belongs to the Weyl class of static, axially
symmetric space-times [1,2]. The γ metric is completely
characterized by two parameters, namely M > 0, which is
related to the gravitational mass of the source and the
deformation parameter γ > 0. In the case of γ ¼ 1, the
Schwarzschild space-time is recovered. On the other hand,
the cases of γ > 1 and γ < 1 correspond to oblate and
prolate spheroidal sources, respectively, thus, showing that
the parameter γ can be considered as a deformation
parameter and that for γ ≠ 1, the coordinates are not
spherical.
From the no-hair theorem, it is obvious that for γ ≠ 1, the

line element does not describe a black hole. In fact, it can be
shown that the surface r ¼ 2M corresponds to a genuine
curvature singularity for every value of γ different from one
[3,4]. The singular surface r ¼ 2M must be regarded as an
infinitely redshifted surface, which observationally may
present features similar to the Schwarzschild event horizon.
However, for certain values of γ, the space-time presents
some unique features that allow it to be distinguished from
the Schwarzschild solution.
For these reasons, the γ metric can be considered as a

black hole “mimicker” and being an exact solution of
Einstein’s equations, constitutes an excellent candidate to
study possible astrophysical tests of black hole space-times.

The geometrical properties of the γ metric have been
studied in [5–8], while interior solutions have been found in
[9–11]. The motion of test particles and light rays in the γ
metric has been studied in [5,12–15].
The frequencies of quasiperiodic oscillations in the

Schwarzschild metric were studied, e.g., in [16,17], while
for the Kerr metric, they have been studied in various
physical scenarios, e.g., in [18–20]. The application to
astrophysics and the study of astrophysical black holes was
discussed in [21–27].
In the present article, we study the frequencies of small

harmonic oscillations of test particles about stable circular
orbits in the γ metric and compare them with the corre-
sponding frequencies in the Schwarzschild and Kerr space-
times. We find that differences appear at small radii [either
approaching the innermost stable circular orbit (ISCO) or
approaching the infinitely redshifted surface] and a combi-
nation of measurements for epicyclic frequencies at small
radii around compact objects could be used, in principle, to
determine the nature of its geometry.
The paper is organized as follows: in Sec. II, we recap

the equations describing the motion of test particles in the γ
metric and derive the values of γ that separate different
behaviors. Section III is devoted to the study of small
harmonic oscillations for test particles about the circular
geodesics. Finally, in Sec. IV, the results are summarized
and put in the context of possible future astrophysical
observations of black holes. Throughout the paper, we
make use of natural units setting G ¼ c ¼ 1.

II. DYNAMICS OF TEST PARTICLES

In Erez-Rosen coordinates [28] the γ metric is repre-
sented by the line element,
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ds2 ¼ −fγdt2 þ fγ
2−γg1−γ

2

�
dr2

f
þ r2dθ2

�
þ f1−γr2sin2θdϕ2; ð1Þ

where

fðrÞ ¼ 1 −
2M
r

;

gðr; θÞ ¼ 1 −
2M
r

þM2sin2θ
r2

: ð2Þ

From the asymptotic expansion of the gravitational
potential, it is easy to see that the total mass of the source
as measured by an observer at infinity is Mtot ¼ Mγ [7].
Also from the evaluation of the Kretschmann scalar, it is
possible to see that the surface r ¼ 2M is a true curvature
singularity for all values of γ ≠ 1 [3].1 Therefore, the radial
coordinate in the γ space-time takes values r ∈ ð2M;∞Þ. If
we understand the singularity as the regime at which the
classical description fails, then we can interpret the surface
r ¼ 2M as the boundary of an exotic compact object that is
intrinsically quantum gravitational in nature. Our purpose
is to investigate the properties of test particles orbiting
around such an exotic compact object and determine
whether they can, in principle, be distinguished from the
corresponding cases around a black hole.

A. Equations of motion

Since the space-time under study does not depend
explicitly on time, the Hamiltonian plays the role of the
total energy of the system and governs the dynamics of
neutral test particle. Such a Hamiltonian for test particles in
curved space-time can written as

H ¼ 1

2
gμνpμpν þ

1

2
m2; ð3Þ

where pμ is a four-momentum that is defined as pμ ¼ muμ

with m and uμ being mass and four-velocity of the test
particle, respectively. From Noether’s theorem, as the
system does not depend explicitly on the coordinates t
and ϕ, we know that the associated conjugate momenta,
namely the energy E and angular momentum L, are
conserved and

pt ¼ gtt
dt
dτ

¼ −E; pϕ ¼ gϕϕ
dϕ
dτ

¼ L: ð4Þ

From Eq. (4), one can find the t and ϕ components of the
four velocity of the test particle as

dt
dτ

¼ −gttE;
dϕ
dτ

¼ gϕϕL; ð5Þ

and thus, we obtain

H ¼ 1

2
grrp2

r þ
1

2
gθθp2

θ þHtϕ; ð6Þ

with

Htϕðr; θÞ ¼
1

2
ðgttE2 þ gϕϕL2 þm2Þ: ð7Þ

The normalization condition uμuμ ¼ −1 leads to H ¼ 0.
Then, from Eq. (6), one finds that

grr

�
dr
dτ

�
2

þ gθθ

�
dθ
dτ

�
2

¼ −
2Htϕðr; θÞ

m2
: ð8Þ

If one considers a particle moving on a plane with
θ0 ¼ const, as is the case for particles in accretion disks
that are confined near the equatorial plane θ ¼ π=2, then
the equation of motion (8) takes the form,

grr

�
dr
dτ

�
2

¼ RðrÞ≡ −
2Htϕðr; θ0Þ

m2
; ð9Þ

where the radial function RðrÞ can be written as

RðrÞ ¼
�
1 −

2M
r

�
−γ

ðE2 − VeffðrÞÞ; ð10Þ

with

VeffðrÞ ¼
L2

r2

�
1 −

2M
r

�
2γ−1

þ
�
1 −

2M
r

�
γ

: ð11Þ

If, on the other hand, the particle is moving along a circular
orbit on r ¼ r0 with θ ≠ const, then the equation of motion
(8) takes the form,

gθθ

�
dθ
dτ

�
2

¼ ΘðθÞ≡ −
2Htϕðr0; θÞ

m2
: ð12Þ

By combining the two conditions above, for a particle on a
circular orbit r ¼ r0 in the plane θ ¼ θ0, we obtain

Rðr0Þ ¼ 0; ∂rRðrÞjr0 ¼ 0; ð13Þ

[or Veffðr0Þ ¼ E2 and ∂rVeffðr0Þ ¼ 0] and

Θðθ0Þ ¼ 0; ∂θΘðθÞjθ0 ¼ 0; ð14Þ
1However, it is also an infinite redshift surface, which means

any signal emanating from it would be infinitely redshifted. It
would therefore be rather innocuous for an external observer.
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B. Circular orbits

In the following, we shall focus on the radii of character-
istic circular orbits in the equatorial plane of the γ space-time,
since these are the most relevant orbits for astrophysical
purposes, as they describe the motion of particles of gas in
accretion disks around compact objects.
By solving Eqs. (13), simultaneously, one finds the

specific energy E ¼ E=m and the specific angular momen-
tum L ¼ L=m of test particles moving along circular
orbits as

E ¼ −
gttffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ðgtt þ gϕϕΩ2Þ
q ; ð15Þ

L ¼ gϕϕΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðgtt þ gϕϕΩ2Þ

q : ð16Þ

Here, Ω ¼ dϕ=dt is the angular velocity of the test particle
as measured by distant observers, and it is given by

Ω ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

gtt;r
gϕϕ;r

r
: ð17Þ

Thus, we rewrite expressions (15)–(17) in terms of the γ
metric as

E ¼
�
1 −

2M
r

�
γ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − γM −M
r − 2γM −M

s
; ð18Þ

L ¼ �r

�
1 −

2M
r

�ð1−γÞ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mγ

r −M − 2Mγ

s
; ð19Þ

Ω ¼ �
�
1 −

2M
r

�
γ−1=2 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mγ

r −M −Mγ

s
: ð20Þ

From the above expressions, one can see that the regions of
the γ space-time where test particles can have circular orbits
are given by

ðiÞ r > Mð2γ þ 1Þ if γ ≥
1

2
;

ðiiÞ r > 2M if 0 < γ <
1

2
: ð21Þ

Moreover, from the fact that at the light ring (photon’s
capture orbits), the specific energy (18) diverges because
the photon’s mass is zero and the relevant parameter is the
ratio, L=E; one can easily find the location of the photon
capture orbit as

rps ¼ Mð2γ þ 1Þ; with γ ≥
1

2
; ð22Þ

while for γ < 1=2, no photon capture orbit is present. By
comparing (21) with (22), one can say that innermost
positions of circular orbits of test particles are limited by the
circular geodesics of massless particles. That is, photon
circular orbit defines the existence threshold, r > rps, for
timelike circular orbits. Further note that rps is always
preceded by unstable circular orbits.
Circular orbits with r > rps are therefore unstable, and

slight departures from circularity leads to unbound motion.
Unbound orbits are separated from the bound orbits by a
critical geodesic called the marginally bound circular orbit
rmb that is found from the zero binding energy Ebind ≡
Eð∞Þ − EðrmbÞ ¼ 0 [29,30]. Since the γ space-time is
asymptotically flat, Eð∞Þ ¼ 1; therefore, EðrmbÞ ¼ 1 gives

rmb−M−2Mγ− ðrmb−M−MγÞ
�
1−

2M
rmb

�
γ

¼ 0: ð23Þ

A particle with energy E > 1 that slightly departs from
circular orbit has unbound motion. This means that the
circular orbit is unstable in such a way that with an
infinitesimal small outward perturbation, the particle will
escape to infinity on an asymptotically hyperbolic trajec-
tory. On the other hand, for E < 1, perturbing a particle on
an unstable circular orbit would lead to bound motion. In
the case of γ ¼ 1, by solving Eq. (23), one obtains the
marginally bound circular orbit in the Schwarzschild space-
time, rmb ¼ 4M.
Now we find the marginally stable circular orbits, also

called innermost stable circular orbits (ISCO). All the
stable circular orbits of test particles (with radius rst)
satisfy the condition (V 00

effðrstÞ ≥ 0), or

R00ðrÞjrst ¼
2Mγ½r2st−2Mð1þ3γÞrstþ2M2ð1þ2γÞð1þ γÞ�

r2stðrst−2MÞðMþ2Mγ− rstÞ
≤ 0; ð24Þ

with the equality holding for the smallest allowed value for
stable circular orbits, namely the ISCO. By solving the
equation R00ðrÞ ¼ 0 [or V 00ðrÞ ¼ 0], one finds two roots for
the ISCO given by

risco;� ¼ M

�
1þ 3γ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5γ2 − 1

q �
: ð25Þ

Once again, for γ ¼ 1, we retrieve risco;þ ¼ 6M, which is
the value of the ISCO for the Schwarzschild geometry.
Here, it is easy to notice that for γ ¼ 1=

ffiffiffi
5

p
, the two values

of the ISCO coincide. Moreover, for γ ≥ 1=
ffiffiffi
5

p
, the value of

risco;þ is always greater than the bounds imposed by
conditions (21), and therefore, there is always at least
one marginally stable circular orbit. However, risco;− does
not satisfy the bounds imposed by conditions (21) for
values γ ∈ ð1=2;∞Þ. Although it is natural to expect that
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stable circular orbits will be allowed at great distances and
cease to exist at a certain distance from the source, the
above discussion shows that in the range γ ∈ ½1= ffiffiffi

5
p

; 1=2�,
there exists a second range of stable circular orbits closer to
the center (see Fig. 1). We can understand better the reason
for this behavior by analyzing the effective potential in
Eq. (11) term by term. It is easy to see that at small radii, the
term proportional to L2=r2 will dominate over the other
terms. Then, as γ < 1=2, the term ð1 − 2M=rÞ2γ−1 will go at
the denominator, causing the change in the behavior of the

effective potential. This new region where stable circular
orbits are allowed extends from r ¼ 2M until a finite
distance, determined by the second root of the ISCO
equation. However, for γ ¼ 1=

ffiffiffi
5

p
, the two values of the

ISCO radii coincide, and for γ < 1=
ffiffiffi
5

p
, stable circular

orbits are allowed at any distance from the source, similarly
to the Newtonian case.
In order to extract more information on the region of the

stable circular orbits, we can plot the effective potential
VeffðrÞ in Eq. (11) for different values of γ ∈ ð0; 1=2Þ [see
Fig. 2 for the case of γ ∈ ð1= ffiffiffi

5
p

; 1=2Þ]. Depending on the
value of γ the effective potential Veff can have up to two
minima and one maximum. From the condition (24), one
can easily realize that maxima (minima) of the radial
function (effective potential) correspond to stable circular
orbits. Then, the outer edge of the inner stable circular
orbits corresponds to risco−, while the inner edge of
the outer stable circular orbits corresponds to riscoþ, i.e.,
the two solutions of the ISCO equation, respectively. The
maximum of the effective potential corresponds to the
unstable circular orbits. The effective potential exhibits this
behavior with two minima and one maximum precisely for
1=

ffiffiffi
5

p
< γ < 1=2—see right panel of Fig. 2. This shows

that in two disjoint regions, rst ∈ ð2M; risco−� and
rst ∈ ½riscoþ;∞Þ, the circular orbits are stable. However,
in the region between these, i.e., runst ∈ ðrisco−; riscoþÞ,
no stable circular orbits can exist. For γ > 1=2, the beha-
vior of the radial function (10) becomes similar to the
Schwarzschild case, where stable circular orbits are pos-
sible only for rst ∈ ½riscoþ;∞Þ. At γ ¼ ffiffiffi

5
p

, the outer and
inner minima merge, and for γ ≤ 1=

ffiffiffi
5

p
, the behavior of the

radial function resembles the Newtonian case, and stable
circular orbits are allowed everywhere. This suggests that
the term responsible for the angular momentum interaction

FIG. 1. Dependence of radii of characteristic circular orbits:
light ring (rps-black, solid), marginally bound orbit (rmb-black,
dotted), and ISCO (risco-black, dashed) in the γ metric as
functions of γ. Here, the vertical dot-dashed line corresponds
to the values for the Schwarzschild space-time with γ ¼ 1. The
curve for risco;− for γ > 1=2 is not shown since marginally stable
circular orbits are not allowed in this case. The gray region
corresponds to the range of values of r and γ, where stable
circular orbits are allowed.

FIG. 2. Left panel: Boundary of the ISCO radii for γ ∈ ½1= ffiffiffi
5

p
; 1=2� from Fig. 1. Here, the gray shaded region represents the range of

radii for which stable circular orbits can exist as a function of γ, while the white region corresponds to the range for which no stable
circular orbits exist. The value of rmb separates the regime where unstable orbits are bound from that were they are unbound. Right
panel: Radial profile of the effective potential Veff in Eq. (11) for γ ∈ ð1= ffiffiffi

5
p

; 1=2Þ. There are two minima of Veff corresponding to the
stable circular orbits [where V 00

effðrstÞ ≥ 0] and one maximum corresponding to the unstable circular orbit [where V 00
effðrunstÞ < 0].
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with the mass (the term L2M=r3 in the Schwarzschild case)
behaves qualitatively similar to the Schwarzschild case for
γ > 1=2, namely it is attractive, causing the stable circular
orbits to cease to exist at a certain radius, while it behaves in
the opposite way for γ ≤ 1=2. The interaction between the
angular momentum and mass turns from attractive to
repulsive as γ goes from γ > 1=2 to γ < 1=2. This can
be clearly seen by studying the term,

WðrÞ ¼ L2

r2

�
1 −

2M
r

�
2γ−1

; ð26Þ

in the effective potential (11). It is immediately seen for
γ ¼ 1=2, we haveW ¼ L2=r2, and therefore, the relativistic
correction to the Newtonian behavior vanishes. Then from
the fact that W0ðrÞ ¼ dW=dr near r ¼ 2M changes sign at
γ ¼ 1=2, we see thatW changes from increasing (attractive)
for γ > 1=2 to decreasing (repulsive) for γ < 1=2 in the
vicinity of the singularity.
Thus, taking into account the conditions (21), we can

conclude that the stable circular orbits can exist in different
regions as follows:

r ∈ ½riscoþ;þ∞Þ for γ ∈ ½1=2;þ∞Þ;
r ∈ ð2M; risco−� ∪ ½riscoþ;þ∞Þ for γ ∈ ½1=

ffiffiffi
5

p
; 1=2Þ;

r ∈ ð2M;þ∞Þ for γ ∈ ð0; 1=
ffiffiffi
5

p
Þ:

It is interesting to notice that through the behavior of the
motion of test particles, we can gain some insight on
the nature of the curvature singularity in the space-time. In
the case of Schwarzschild, the singularity located at r ¼ 0
is attractive and particles are crushed in it by diverging tidal
forces. Similarly, in the case of the γ metric we can see that
the same behavior occurs at r ¼ 2M only for large values of
γ. This can be seen, e.g., from the Kretschmann scalar K,
which behaves like 1=ðr − 2MÞ6 for γ ¼ 2. Therefore, if we
characterize the strength of the singularity by the exponent
s for which K ≃ 1=ðr − 2MÞs, we see that s > 6 for γ > 2,
s > 4 for γ > 1þ ffiffiffi

5
p

, and s < 2 for γ < 1, suggesting that
for prolate sources, the singularity is weaker than in the
Schwarzschild case. For γ > 1=2, the singularity is “attrac-
tive” as can be seen from the fact that the interaction
between mass and angular momentum vanishes at r ¼ 2M.
On the other hand, when γ < 1=2, the interaction term
between the mass and the angular momentum of the test
particle is repulsive and blows up at r ¼ 2M, as in the case
of the monopole-quadrupole solution of the Weyl class,
which also describes small deviations from spherical
symmetry [31]. Therefore, in this case, the singularity is
“repulsive” and test particles will be ejected rather than
crushed.

III. HARMONIC OSCILLATIONS OF NEUTRAL
TEST PARTICLE

In this section, we will study the motion of test particles
that slightly depart from a circular orbit. As we mentioned
in the previous section, stable circular orbits for test
particles in the γ space-time are located at a radius r0
and latitudinal angle θ0 ¼ π=2 corresponding to the mini-
mum of the function Htϕ [or RðrÞ and ΘðθÞ, respectively]
given in Eq. (7). If a test particle deviates slightly from the
stable circular orbit, it will start to oscillate around its
equilibrium value performing an epicyclic motion. This
oscillating motion is governed by the epicyclic frequencies.

A. Epicyclic frequencies

For the sake of clarity, we shall restrict the analysis to the
linear regime and consider separately the case of purely
radial, i.e., r ¼ r0 þ δr, δθ ¼ 0, and purely vertical, i.e.,
θ ¼ θ0 þ δθ, δr ¼ 0, epicyclic oscillations about circular
orbits in the equatorial plane θ0 ¼ π=2. If we write the
Taylor expansion of the functions RðrÞ and ΘðθÞ in powers
of δr and δθ, respectively, as

RðrÞ¼Rðr0Þþ∂rRðrÞjr0δrþ
1

2
∂2
rRðrÞjr0δr2þ��� ; ð27Þ

ΘðθÞ¼Θðθ0Þþ∂θΘðθÞjθ0δθþ
1

2
∂2
θΘðθÞjθ0δθ2þ���; ð28Þ

and apply the circularity conditions (13) and (14), we
arrive at

grrδ_r2 ¼
1

2
∂2
rRðrÞjr0δr2; ð29Þ

gθθδ_θ
2 ¼ 1

2
∂2
θΘðθÞjθ0δθ2: ð30Þ

Considering that the total energy of the orbit is conserved,
one finds that

δ_r

�
grrδ̈r −

1

2
∂2
rRðrÞjr0δr

�
¼ 0; ð31Þ

δ_θ

�
gθθδθ̈ −

1

2
∂2
θΘðθÞjθ0δθ

�
¼ 0; ð32Þ

where δ_r ¼ 0 and δ_θ ¼ 0 are the trivial solutions corre-
sponding to no oscillations. It is immediately apparent that
the parts within the square brackets of the above equations
are in the form of harmonic oscillators as [16,32]

δ̈rþ ω2
rδr ¼ 0; ð33Þ

δθ̈ þ ω2
θδθ ¼ 0; ð34Þ
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with

ω2
r ¼ −

∂2
rRðrÞjr0
2grr

¼ ∂2
rHtϕjr0
grr

; ð35Þ

ω2
θ ¼ −

∂2
θΘðθÞjθ0
2gθθ

¼ ∂2
θHtϕjθ0
gθθ

; ð36Þ

where the specific energy and angular momentum of the
test particles on circular orbits are given by Eq. (18) and
Eq. (19), respectively. Therefore, we can obtain the explicit
forms of the frequencies as

ω2
r ¼

�
1−

M
r

�
2γ2−2

�
1−

2M
r

�
−γ2þγ−1

×
Mγ½r2−2ð3γþ1ÞMrþ2ðγþ1Þð2γþ1ÞM2�

r4ðr−M−2MγÞ ; ð37Þ

ω2
θ ¼

�
1 −

M
r

�
2γ2−2

�
1 −

2M
r

�
−γ2þγ Mγ

r2ðr −M − 2MγÞ :

ð38Þ

By inspecting expression (37), one can notice that zeros
of expression in the square bracket correspond to the radii
of the ISCO as given in Eq. (25). Thus, we see that radial
epicyclic frequency vanishes at the ISCO, ωrðriscoÞ ¼ 0.
This is reasonable, considering the fact that the ISCO is a
marginally stable orbit and that below ISCO, at least for
values of γ > 1=2, the particles start to fall towards the
central object, and no radial oscillations occur.
Moreover, there is another very important angular

frequency of circular epicyclic motion of the particle,
namely the azimuthal (or Keplerian) frequency of the
circular motion in the equatorial plane, defined by the
relation,

ω2
ϕ ¼ _ϕ2 ¼

�
1 −

2M
r

�
γ−1 Mγ

rðr −M − 2MγÞ : ð39Þ

Note that the frequencies ωr, ωθ, and ωϕ are measured
with respect to the proper time of a comoving observer.
To get the observed frequencies by a observer at infinity,
one needs to divide them by the square of the redshift factor
ut as

Ω2
rðθ;ϕÞ ¼

ω2
rðθ;ϕÞ
ðutÞ2 ; ð40Þ

where squared redshift factor for the γ metric is given by

ðutÞ2 ¼
�
1 −

2M
r

�
−γ r −M −Mγ

r −M − 2Mγ
: ð41Þ

Thus, frequencies (37)–(39) take the following form when
they are measured by observers at infinity:

Ω2
r ¼

�
1 −

M
r

�
2γ2−2

�
1 −

2M
r

�
−ðγ−1Þ2

×
Mγ½r2 − 2ð3γ þ 1ÞMrþ 2ðγ þ 1Þð2γ þ 1ÞM2�

r4ðr −M −MγÞ ;

ð42Þ

Ω2
θ ¼

�
1 −

M
r

�
2γ2−2

�
1 −

2M
r

�
−γ2þ2γ Mγ

r2ðr −M −MγÞ ;

ð43Þ

Ω2
ϕ ¼

�
1 −

2M
r

�
2γ−1 Mγ

r2ðr −M −MγÞ : ð44Þ

In Fig. 3, we show the dependence of the epicyclic
frequencies for neutral test particles about the radii of stable
circular orbits for different values of γ. One can see that the
azimuthal frequencies are monotonically decreasing func-
tions of the radius. More in detail, depending on the value
of the parameter γ, the epicyclic frequencies as measured by
observers at spatial infinity behave as follows:

(i) If γ > 1, the latitudinal and azimuthal epicyclic
frequencies diverge, Ωθ;Ωϕ→∞, at r¼Mð1þγÞ;
the radial epicyclic frequency vanishes at the radius
of the outer ISCO, namely Ωr ¼ 0 at r ¼ risco;þ (see
first panel of Fig. 3).

(ii) If γ ¼ 1, the latitudinal and azimuthal epicyclic
frequencies diverge, Ωθ;Ωϕ → ∞, at r ¼ 0; the
radial epicyclic frequency vanishes at the radius
of ISCO, namely Ωr ¼ 0 at r ¼ risco;þ ≡ 6M. These
are the known results for the Schwarzschild
space-time.

(iii) If 1=2 < γ < 1, the latitudinal and azimuthal epi-
cyclic frequencies vanish,Ωθ ¼ Ωϕ ¼ 0, at r ¼ 2M;
the radial epicyclic frequency vanishes at the radius
of ISCO, namely Ωr ¼ 0, at r ¼ risco;þ (see second
panel of Fig. 3).

(iv) If 1=
ffiffiffi
5

p
≤ γ ≤ 1=2, the latitudinal frequency vani-

shes, Ωθ ¼ 0 at r ¼ 2M, while the azimuthal fre-
quency diverges, Ωϕ → ∞ at r ¼ 2M; the radial
frequency vanishes at the extremal ISCO, namely
Ωr ¼ 0 at r ¼ ð1þ 3=

ffiffiffi
5

p ÞM, and then monotoni-
cally increases with smaller radii to diverge at the
singularity, namely Ωr → ∞ at r ¼ 2M (see third
panel of Fig. 3).

(v) If 0 < γ < 1=
ffiffiffi
5

p
, the latitudinal epicyclic frequency

vanishes, Ωθ ¼ 0, at r ¼ 2M, while the radial
and azimuthal epicyclic frequencies diverge,
Ωr;Ωϕ → ∞, at r ¼ 2M. Notice that there is no
ISCO in this range of values for γ (see fourth panel
of Fig. 3).
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Small changes in the value of the parameter γ do not affect
much the azimuthal, Ωϕ, and latitudinal, Ωθ, frequencies;
however, the effects on the radial frequency, Ωr, are more
significant. However, a striking difference appears in the
longitudinal and azimuthal frequencies, when we compare
with the Schwarzschild case. In fact, for γ ¼ 1, bothΩθ and
Ωϕ have a finite, nonvanishing value at r ¼ 2M, while for
γ < 1, they either diverge or vanish.
The local extrema of the epicyclic frequencies are given

by the condition,

∂Ωi

∂r ¼ 0; ð45Þ

where i ¼ r; θ;ϕ. For the values γ ≥ 1=
ffiffiffi
5

p
, the radial

frequency always has a local maximum close to the outer
ISCO radius, risco;þ, and this maximum value increases
with a decreasing value of γ. Thus, when γ ¼ 1=

ffiffiffi
5

p
, the

radial epicyclic frequency of the γ spacetime reaches
the possible highest maximum value, Ωr ¼ 0.0044=M at
r ¼ ð1þ 3=

ffiffiffi
5

p ÞM.
It is well known that at large distances the Schwarzschild

space-time has Newtonian behavior, and for Newton, all the
three components of epicyclic frequencies have the same
value given by [33]

Ω2
r ¼ Ω2

θ ¼ Ω2
ϕ ¼ M

r3
: ð46Þ

As expected, at large distances, the epicyclic frequencies in
the γ metric exhibit Newtonian behavior as

Ω2
r ¼ Ω2

θ ¼ Ω2
ϕ ¼ Mγ

r3
þO

�
1

r4

�
; ð47Þ

which can be interpreted as a further confirmation that the
total mass of the γ space-time as measured by distant
observers is Mtot ¼ Mγ.
In order to estimate the effects due to the departure from

spherical symmetry of the space-time, we can study how
small deviations from the Schwarzschild metric affect the
epicyclic frequencies. By considering γ ¼ 1þ ϵ with
jϵj ≪ 1, the epicyclic frequencies take the form,

Ω2
r ¼ Ω2

r;Schw þM
r4

�
4ðr − 6MÞ log

�
1 −

M
r

�

þ r2 − 13Mrþ 20M2

r − 2M

�
ϵþOðϵ2Þ; ð48Þ

Ω2
θ ¼ Ω2

θ;Schw þM
r3

�
4 log

�
1 −

M
r

�
þ r −M
r − 2M

�
ϵþOðϵ2Þ;

ð49Þ

Ω2
ϕ ¼ Ω2

ϕ;Schw þM
r3

�
2 log

�
1−

2M
r

�
þ r−M
r− 2M

�
ϵþOðϵ2Þ;

ð50Þ
where

Ω2
r;Schw ¼ Mðr − 6MÞ

r4
; ð51Þ

Ω2
θ;Schw ¼ Ω2

ϕ;Schw ¼ M
r3

: ð52Þ

FIG. 3. Radial profiles of epicyclic frequencies for neutral test particles measured by distant observers in the γ spacetime for different
values of the parameter γ. The last two figures represent the radial profiles of epicyclic frequencies measured by distant observers for
neutral test particles corotating a=M ¼ 0.5 (red) and counterrotating a=M ¼ −0.5 (blue) around Kerr and Schwarzschild a ¼ 0 (black)
black holes.
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Thus, one can see from Eqs. (48), (49), (50) that oblate
(prolate), i.e., values of ϵ > 0 (ϵ < 0), deviations from
spherical symmetry, i.e., Schwarzschild, increase the values
of all components of the epicyclic frequency of test
particles.

B. Epicyclic frequencies in Kerr spacetime

In order to compare epicyclic frequencies of neutral test
particles moving along circular orbits in the γ space-time
with the ones in the Kerr space-time, we briefly review the
epicyclic frequencies around a Kerr black hole. In Boyer-
Lindquist coordinates, the line element for the Kerr space-
time is given by

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 þ Σ

Δ
dr2 − 2

2Mra
Σ

sin2 θdϕdt

þ Σdθ2 þ
�
r2 þ a2 þ 2Mra2

Σ
sin2 θ

�
dϕ2; ð53Þ

where

Σ ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2Mrþ a2: ð54Þ

The comparison between the γ and the Kerr space-times is
justified by the fact that at large distances, both metrics tend
to become asymptotically flat and so Erez-Rosen as well as
Boyer-Lindquist coordinates tend to become the usual
spherical coordinates. Therefore, an observer at infinity,
measuring some features of the motion of test particles in
the accretion disk around a Kerr black hole would be able to
compare, at least in principle, the obtained measurements
with the expected observations of the corresponding sit-
uation in the γ space-time. Similarly to the static axially
symmetric case, in the stationary case, due to rotation of the
source, circular orbits are located on the equatorial plane,
thus allowing us to restrict the analysis to the case
θ0 ¼ π=2. The specific energy, angular momentum, and
angular velocity of the particle moving on a circular orbit

around a Kerr black hole are derived from relations (15),
(16), and (17), respectively, as

E� ¼
ffiffiffi
r

p ðr − 2MÞ � a
ffiffiffiffiffi
M

p

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� 2a

ffiffiffiffiffiffiffiffiffi
M=r

p
− 3M

q ; ð55Þ

L� ¼ �
ffiffiffiffiffi
M

p ðr2 ∓ 2a
ffiffiffiffiffiffiffiffiffi
M=r

p þ a2Þ
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� 2a

ffiffiffiffiffiffiffiffiffi
M=r

p
− 3M

q ; ð56Þ

Ω� ¼ �
ffiffiffiffiffi
M

p

a
ffiffiffiffiffi
M

p � r
ffiffiffi
r

p ; ð57Þ

where the þ and − signs correspond to corotating and
counterrotating particles with respect to the direction of
rotation of the black hole. Again one can find the radii of
circular photon orbits, marginally bound orbits, and ISCO
from the following relations [29]:

rps� � 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=rps�

q
− 3M ¼ 0; ð58Þ

rmb� ¼ 2M � aþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðM � aÞ

p
; ð59Þ

risco�ðrisco�−6MÞ�8arisco�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=risco�

p
−3a2¼ 0; ð60Þ

In Fig. 4, we show the degeneracy between the γ metric
and the Kerr space-time resulting frommeasurements of the
ISCO or of the photon capture radius. In fact, each given
measured value of risco corresponds to one value of a and
one value of γ, showing that the measurement of the ISCO
radius alone is not enough to distinguish between the two
space-times, unless the value is smaller than 2M, as the γ
space-time cannot have characteristic orbits whose radii are
smaller than 2M, while rapidly rotating Kerr can. Similar
arguments hold for the photon capture radius. However, by
observing that the degeneracy in the two cases is different,
we can conclude that a simultaneous measurement of
risco and rps with enough precision would allow us to

FIG. 4. Left panel: Radii of circular photon orbits in γ spacetime (black) with γ ¼ 1þ ϵ and Kerr black hole (blue, dashed). Right
panel: ISCO radii of neutral test particles in γ spacetime (black) and Kerr black hole (blue, dashed).
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distinguish between the two geometries around astrophysi-
cal compact objects.
The epicyclic frequencies, with respect to distant observ-

ers, of a test particle moving along circular orbits around a
Kerr black hole are given by [20,21]

Ω2
r� ¼ M½rðr − 6MÞ � 8ar

ffiffiffiffiffiffiffiffiffi
M=r

p
− 3a2�

r2ðr3 � 2ar2
ffiffiffiffiffiffiffiffiffi
M=r

p þ a2MÞ ; ð61Þ

Ω2
θ� ¼ Mðr2 ∓ 4ar

ffiffiffiffiffiffiffiffiffi
M=r

p þ 3a2Þ
r2ðr3 � 2ar2

ffiffiffiffiffiffiffiffiffi
M=r

p þ a2MÞ ; ð62Þ

Ω2
ϕ� ¼ M

r3 � 2ar2
ffiffiffiffiffiffiffiffiffi
M=r

p þ a2M
: ð63Þ

In the slow rotation limit, a ≪ M, the above expressions
take the form,

Ω2
r� ¼ Ω2

r;Schw � 6ðM=rÞ3=2ðrþ 2MÞ
r4

aþOða2Þ; ð64Þ

Ω2
θ� ¼ Ω2

θ;Schw ∓ 6ðM=rÞ3=2
r3

aþOða2Þ; ð65Þ

Ω2
ϕ� ¼ Ω2

ϕ;Schw ∓ 2ðM=rÞ3=2
r3

aþOða2Þ: ð66Þ

Thus, one can see from (64), (65), (66) that the rotation of
the spacetime increases (decreases) the radial frequency of
the harmonic oscillations and decreases (increases) the
latitudinal and azimuthal frequency of the harmonic oscil-
lations of the corotating (counterrotating) particle moving
along the circular orbit.
This shows that the degeneracy between the Kerr metric

and the γ metric due to measurements of the value of the
ISCO can be broken if one is able to measure simulta-
neously Ωr and one between Ωθ and Ωϕ.
To this aim, we consider the values of γ and a for which

the epicyclic frequencies of the neutral test particles have
the same value. As we mentioned, if the circular orbits
where the particles are moving are located far away from
the central object, then the two metrics can not be
distinguished, since at large distances all frequencies
become Newtonian. Therefore, we will focus our attention
on relatively short distances. For simplicity, we shall also
consider slight deviations from the Schwarzschild space-
time for both cases, i.e., small deformations γ ¼ 1þ ϵ with
jϵj ≪ 1, and slow rotation, jaj ≪ M. Thus, by using the
expressions of epicyclic frequencies for the γ metric, given
by Eqs. (48)–(50), and for the Kerr black hole, given by
Eqs. (64)–(66), we find the expressions for the coincidence
of all components of the frequencies as

Ω2
r;γ ¼ Ω2

r;Kerr ⇒
a
ϵ
¼ M½4ðr − 6MÞðr − 2MÞ logð1 −M=rÞ þ r2 − 13Mrþ 20M2�

ðr2 − 4M2Þ
�
r
M

�
3=2

; ð67Þ

Ω2
θ;γ ¼ Ω2

θ;Kerr ⇒
a
ϵ
¼ −

M
6

�
4 log

�
1 −

M
r

�
þ r −M
r − 2M

��
r
M

�
3=2

; ð68Þ

Ω2
ϕ;γ ¼ Ω2

ϕ;Kerr ⇒
a
ϵ
¼ −

M
2

�
2 log

�
1 −

2M
r

�
þ r −M
r − 2M

��
r
M

�
3=2

: ð69Þ

In Fig. 5, we show the above expressions as functions of
the dimensionless radial coordinate r=M.
Since test particles are oscillating due to slight deviations

from stable circular orbits in a space-time which slightly
deviates from spherically symmetry, it is useful to focus the
attention on the region near r=M ≈ 6, corresponding to the
ISCO for the Schwarzschild metric. One can see from
Fig. 5 that the three curves corresponding to the same
values for the three frequencies in Kerr and in the γ metric
intersect in three different points. Therefore, if one meas-
urement was, in principle, able to measure all three
frequencies, the results could easily distinguish the γ
space-time from Kerr. On the other hand, a measurement
of only two frequencies, may not be enough if performed in
the vicinity of the point where two curves overlap. For
example, the curves obtained from Ωr and Ωθ overlap at

FIG. 5. Radial dependence of ratio a=ϵ for which the γ and Kerr
space-times have the same epicyclic frequencies.
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r ≈ 6.8M with a=ϵ ≈ −1.7M. Thus, a measurement of these
two frequencies in the vicinity of this radius would not be
able to distinguish the γ space-time from Kerr.
From the above considerations, we can derive some

conclusion on which kind of objects may or may not be
distinguished from a Kerr black hole.

(i) If test particles are corotating relative to the Kerr
black hole (aL > 0) and the source of the γ space-
time is oblate (ϵ > 0), then the two geometries are
distinguishable.

(ii) If test particles are corotating relative to the Kerr
black hole and the source of the γ space-time is
prolate (ϵ < 0), then the two geometries may be
indistinguishable.

(iii) If test particles are counterrotating relative to the
Kerr black hole (aL < 0) and the source of the γ
space-time is oblate, then the two geometries may be
indistinguishable.

(iv) If test particles are counterrotating relative to the
Kerr black hole and the source of the γ space-time is
prolate, then the two geometries are distinguishable.

Finally, if the latitudinal and radial frequencies of harmonic
oscillations of a particle moving along the circular orbit
with radius r ¼ 6.8M are detected, one will not be able to
distinguish if the central gravitating object is described by
the slowly rotating Kerr (and which rotational direction
relative to central object is particle moving) or slightly
deformed γ (and type of deformation) space-times. Since
for all three frequencies, the ratio a=ϵ is negative, similar
considerations as the ones above apply also to the simulta-
neous measurement of radial and azimuthal frequencies and
to the simultaneous measurement of azimuthal and latitu-
dinal frequencies.

IV. CONCLUSION

The recent observation of the “black hole shadow” by the
Event Horizon Telescope, has opened the door to precise
measurements of the geometry in the vicinity of black hole
candidates [34]. To this day, astrophysical observations of
black hole candidates have shown no departure from the
relativistic description (see, e.g., the recent measurement of
the gravitational redshift of stars orbiting the supermassive
black hole candidate at the center of the Milky Way [35]).
However, such measurements have not been able yet to test
whether the geometry in the vicinity of black hole candi-
dates is well described by the Kerr metric. For this reason, it
is useful to study the predictions obtained from different
geometries which, while being solutions of Einstein’s
field equations in vacuum, do not describe a black hole.
In this respect, the γ metric is an ideal candidate due to
its simplicity and to its immediate connection to the
Schwarzschild space-time.
The γ metric describes a deformed Schwarzschild object,

it is prolate for γ > 1 and oblate for γ < 1. It turns out that
for the former, particle dynamics continues to have the

same qualitative features as the Schwarzschild’s, while for
the latter it has much richer structure. In particular, there are
two disjoint regions for the existence of stable circular
orbits for the range 1=

ffiffiffi
5

p
< γ < 1=2, while for γ < 1=

ffiffiffi
5

p
,

there exist only stable circular orbits. This is exactly like the
Newtonian case.
In the present paper, we have studied some properties of

characteristic circular orbits, i.e., circular null geodesics,
marginally bound orbits, stable circular orbits, for massive
and massless test particles around the γ metric. In particu-
lar, we focused on the frequencies of harmonic oscillations
around stable circular orbits for massive test particles.
We have shown that small deviations from equatorial

circular orbits of the particle in the γ space-time are
described by harmonic oscillations in the radial, vertical,
and latitudinal directions. By solving the harmonic oscillator
equations, we have found the analytical expressions for the
frequencies and studied the epicyclic frequencies of particles
in the uncoupled orthogonal (radial), vertical (latitudinal),
and axial (azimuthal) oscillatorymodes relative to comoving
and distant observers. The frequencies as measured by
distant observers are particularly important since they could,
in principle, be measured from the observations of accretion
disks around black hole candidates.
We have shown that radial oscillations vanish at the

ISCO of the space-time, and below the ISCO, the particles
fall towards the central object and no radial oscillations
occur. Since at large distances the space-time approaches
the Newtonian limit, all epicyclic frequencies tend to the
same limit, Ω2

i ¼ Mγ=r3 with i ¼ r; θ;ϕ. For this reason,
we have studied the behavior of the frequencies in the
relativistic regime for slight deviations from spherical
symmetry and compared the results with the corresponding
frequencies in the slowly rotating Kerr black hole
geometry.
We have shown that the two metrics are distinguishable

if a simultaneous measurement of all three components of
the epicyclic frequencies is available. However, if only two
frequencies of oscillations for the test particles are obtained
(e.g., near r ≈ 6.8M for the radial and vertical oscillations)
then it may not be possible to distinguish if the geometry
around the central object is described by the γ or Kerr
space-times. Similarly, we have shown that a simultaneous
measurement of the radii of the ISCO and the photon
capture orbit may be able to distinguish between the two
geometries, while the measurement of one radius only is
not enough unless such radius is smaller than 2M. This is
because rapidly rotating Kerr black hole can have orbits
below 2M, while the γ spacetime cannot.
As new an better observations of astrophysical black

hole candidates become available, we will soon be able to
test the nature of the geometry around such candidates and
answer the question whether all such objects must neces-
sarily be described by the Kerr space-time or if nature
allows for some other possibility.
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