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We examine the thermal evolution of particle number densities in the early Universe when the particles
have a finite diffusion length. Assuming that annihilations are impossible when the mean separation of the
particles is larger than their diffusion length, we derive a version of the Boltzmann equation for freeze-out
in this scenario and an approximate solution, accurate to better than 2%. The effect of a finite diffusion
length is to increase the final relic freeze-out abundance over its corresponding value when diffusion effects
are ignored. When diffusion is limited only by scattering off of the thermal background, and the
annihilation cross section is bounded by unitarity, a significant effect on the freeze-out abundance requires a
scattering cross section much larger than the annihilation cross section. A similar effect is demonstrated
when the relic particles are produced via the freeze-in mechanism, but in this case the finite diffusion length
is due to the scattering of particles that annihilate into the relic particle of interest. For freeze-in, the effect of
a finite diffusion length is to reduce the final relic particle abundance. The effects of a finite diffusion length
are most important when the scattering cross section or the relic mass are very large. While we have not
found a particularly compelling example where this would affect previous results, with the current interest
in new dark matter candidates it could become an important consideration.
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I. INTRODUCTION

The evolution of relic particle densities is one of the
central topics in early-Universe cosmology. In the standard
treatment, the relic particles are taken to be initially
relativistic and in chemical and kinetic equilibrium with
the thermal background. As the temperature T drops below
the mass m of these particles, they become nonrelativistic,
and their number density is Boltzmann-suppressed as
e−m=T . Finally, the particles drop out of thermal equilibrium
with a fixed number density per comoving volume. This
freeze-out scenario has been developed and refined over the
past 50 years [1–12]. It remains one of the favored models
for the evolution of dark matter, and it can also apply to the
evolution of other particles as well.
Here we consider an effect that has not been previously

discussed in these treatments of thermal evolution: a finite
diffusion length for the evolving massive particles. In
addition to undergoing pair annihilations, these particles
will scatter off of the thermal background particles,
resulting in a finite diffusion length. A finite diffusion
length could also result from more exotic scattering
processes, such as interactions with relic magnetic fields,
domain walls, or other early-Universe phenomena. If this
diffusion length is much larger than the mean particle
separation, then it has little effect on the particle

evolution. However, if the diffusion length drops below
the mean particle separation during the freeze-out proc-
ess, then the effect on the evolution of the particle
number density can be profound.
Although the effect discussed here has not been pre-

viously examined, there are other discussions of annihilat-
ing, diffusing particles in the literature. Zeldovich and
Khlopov investigated the diffusion and annihilation of
monopoles in the early Universe [13]. Several authors
(see, e.g., Refs. [14,15]) examined systems of particles and
antiparticles in a nonexpanding background, with initial
inhomogeneities in the particle-antiparticle distribution,
diffusion, and annihilation (but no particle-antiparticle
creation from the background). These systems tend to
evolve into domains of particles and antiparticles within
which further annihilation is impossible.
In the next section, we show how diffusion effects can

be incorporated into the Boltzmann equation, and we
derive an approximate solution to the diffusion-limited
evolution of the relic particle number density that is
accurate to within 2%. In Sec. III, we examine the
particular case where scattering off of thermal back-
ground particles limits the diffusion length of the relic
particles. In Sec. IV, we extend our discussion to the
freeze-in mechanism for relic particles. Our conclusions
are summarized in Sec. V.
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II. DIFFUSION AND FREEZE-OUT

Recall first the standard picture of thermal freeze-out.
Consider a fermion χ with gχ spin degrees of freedom
(d.o.f.). For simplicity, we will take the particle to be its
own antiparticle, but our results generalize easily to the case
of distiguishable particles and antiparticles, as well as to the
case where χ is bosonic. The number density evolves as

dnχ
dt

þ 3Hnχ ¼ hσAvi½n2eq − n2χ �; ð1Þ

where nχ is the number density of the χ particles, H is the
Hubble parameter (≡a−1da=dt, with a being the scale
factor), and hσAvi is the thermally averaged cross section
times relative velocity. When T ≫ m, the χ particles are
highly relativistic, and the equilibrium number density neq
is given by

neq ¼ ð3=4Þðgχ=π2Þζð3ÞT3; ð2Þ

where ζð3Þ ≈ 1.202. (We take ℏ ¼ c ¼ k ¼ 1 throughout).
In the opposite limit, when T ≪ m, we have instead

neq ¼ gχ

�
mχT

2π

�
3=2

expð−mχ=TÞ: ð3Þ

Following Refs. [5,6], we parametrize the annihilation
cross section as

hσAvi ¼ σ0

�
mχ

T

�
−n
; ð4Þ

so that n ¼ 0 corresponds to s-wave annihilation, n ¼ 1
gives p-wave annihilation, and so on. We make the
standard change of variables x ¼ mχ=T and Y ¼ nχ=s,
where s is the entropy density, given by

s ¼ 2π2

45
g�T3; ð5Þ

and g� is the effective number of d.o.f. in thermal
equilibrium, all assumed to be at the same temperature.
We obtain [5,6]

dY
dx

¼ −λx−n−2ðY2 − Y2
eqÞ; ð6Þ

where the constant λ is given by

λ ¼ 0.264g1=2� mPlmχσ0; ð7Þ

and mPl is the Planck mass.
In the standard scenario, nχ tracks neq, and as T drops

below mχ (x > 1), the χ number density becomes expo-
nentially suppressed as in Eq. (3). When x reaches a value

of xf ∼ 10–30, the rates for the reactions that produce χ
become negligible compared to the annihilation rate, and
the abundance freezes out. However, annihilations con-
tinue, reducing the value of Y relative to its value at x ¼ xf.
The final abundance is well approximated by [5,6]

Y∞ ¼ nþ 1

λ
xnþ1
f : ð8Þ

This derivation assumes an effectively infinite mean free
path for the particles. However, in addition to annihilations,
the χ particles scatter off of the thermal background,
resulting in a finite diffusion length d, which will be a
function of T. (Here we are taking d to be the physical, not
the comoving diffusion length.) Although scattering is the
only unavoidable source of a finite diffusion length, it is not
the only possibility. Magnetic fields, domain walls, or other
early-Universe phenomena might also reduce the χ diffu-
sion length. Hence, we will take dðTÞ for now to be a free
parameter and determine under what conditions a finite
diffusion length affects the freeze-out process. In the next
section, we will examine the specific case of scattering
interactions with thermal background particles.
Now, consider how a finite value of d alters the freeze-

out process. It has no effect at all on the creation of χ
particles, since the creation rate is determined by the rate of
annihilation of thermal background particles into χ par-
ticles. However, a finite diffusion length does affect the χχ
annihilation rate. A given χ particle can only travel a
distance dðTÞ at a temperature T to annihilate with another
χ particle. Hence, when nχ ≪ 1=d3, the annihilations
effectively cease. Conversely, when nχ ≫ 1=d3, diffusion
has no effect on χχ annihilations. We will make the
approximation that annihilation is completely unaffected
for nχ > 1=d3 and that annihilations cease completely for
nχ < 1=d3. In reality, this behavior will not be a step
function but will vary more gradually with nχ and d.
However, our approximation, while admittedly crude, will
be sufficient for a first calculation of the effect consid-
ered here.
With this approximation, we can multiply n2χ in Eq. (1)

by the appropriate step function θðn–1=d3Þ, where the
Heaviside step function θðxÞ is defined by θðxÞ ¼ 0 for
x < 0 and θðxÞ ¼ 1 for x > 0. This gives

dnχ
dt

þ 3Hnχ ¼ hσAvi½n2eq − n2χθðnχ − 1=d3Þ�: ð9Þ

Consider how this change alters the evolution of the particle
abundances. As long as nχ > 1=d3, the evolution is
unaffected, but when nχ drops below 1=d3, the annihila-
tions shut off. However, creation of χ continues, ultimately
pushing nχ back above 1=d3. The net effect is that in
thermal equilibrium, nχ does not necessarily track neq;
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instead, it tracks the larger of neq and 1=d3. Effectively,
1=d3 gives a floor abundance on nχ .
To determine how this alters the freeze-out abundance,

we make the same change of variables as in Eq. (6), so that

dY
dx

¼ −λx−n−2½Y2θðY − YdÞ − Y2
eq�; ð10Þ

where we have defined the new quantity Yd to be given by

Yd ¼ ð1=d3Þ=s: ð11Þ

The quantity Yd has a simple physical interpretation; it is
the inverse of the total entropy in a diffusion volume d3.
To keep our argument as general as possible, we let d be

an arbitrary power law in T, namely

dðTÞ ¼ d0ðT=T0Þ−α; ð12Þ

where d0 and T0 are arbitrary fiducial values of the
diffusion length and the temperature, and we are implicitly
assuming that the diffusion length increases as the temper-
ature decreases (α > 0). Because s scales as a−3 ∼ T3, we
can then write Yd as

Yd ¼ Y1x3−3α; ð13Þ

where the fiducial quantity Y1 is defined by Eq. (13): Y1 is
the value of Yd at x ¼ 1. Hence, Y1 is the inverse of the
entropy in a diffusion volume d3 at a temperature T ¼ mχ .
Larger Y1 corresponds to smaller diffusion length, and
vice versa.
A rough approximation to the evolution of Y is sketched

out in Fig. 1 for the case of s-wave annihilation. For
illustrative purposes, we take α ¼ 11=4 here and in Fig. 2,
as this corresponds to a diffusion length limited by
scattering off of thermal background particles with a
constant scattering cross section (see the next section).
However, our qualitative results do not depend on the value
of α. When χ is in thermal equilibrium, with Y ≈ Yeq, a
finite diffusion length has no effect on the evolution of Y as
long as Yeq > Yd. However, when Yeq < Yd, the value of Y
tracks Yd instead of Yeq. Thus, Y tracks the larger of Yeq or
Yd, until nχhσAvi drops belowH and the abundance freezes
out at the value shown in Fig. 1 by the horizontal black
lines. (Note that if Yd > Yeq when χ is highly relativistic,
we will have Y > Yeq and nχ > neq. This is a rare case in
which it is possible for the density of a particle to exceed its
relativistic equilibrium density. Physically, this occurs
because the finite diffusion length prevents particle anni-
hilations, while production from the thermal background
continues to produce χ particles. This would require an
exceedingly small diffusion length.)
This approximation assumes a sudden sharp freeze-out,

but in reality residual annihilations continue to occur even

after nχhσAvi drops belowH. This is illustrated in Fig. 2, in
which we display the exact evolution, derived from a
numerical integration of Eq. (10), for s-wave annihilation.
The solid blue curve in Fig. 2 corresponds to the exact
evolution where Yeq < Yd at x ¼ xf, where xf is the freeze-
out value of x in the standard scenario without diffusion
effects. The dashed blue curve shows the equivalent
abundance in the sudden freeze-out approximation. As
in the case of standard freeze-out, residual annihilations
reduce the final abundance below that obtained by using the
sudden freeze-out approximation.
We now calculate an expression for the final abundance

that takes into account these residual annihilations. For the
diffusion-limited case, we have Y ≈ Yd instead of Y ≈ Yeq
at x ¼ xf. The reactions that create χ particles effectively
shut off at xf, and Eq. (10) becomes

dY
dx

¼ −λx−n−2Y2θðY − YdÞ: ð14Þ

FIG. 1. A rough sketch of the evolution of Ŷ, the value of Y
normalized to its relativistic value, neq=s, as a function of mχ=T,
for the case of s-wave annihilations. [Here Ŷ ≡ Y=ðneq=sÞ, with
neq=s ¼ 0.208gχ=g� for a relativistic fermion.] The blue curve is
the thermal equilibrium abundance Yeq. The area above the dotted
red line is the region in which nχhσAvi > H, so annihilations can
take place. [We have fixed hσAvi to a single illustrative value.]
The green lines give Yd as defined in Eq. (13) for α ¼ 11=4 and
two different values of Y1. For each value of Y1, the value of Ŷ
tracks the larger of Yeq and Yd until Ŷ drops below the threshold
for annihilations given by the dotted red line, at which point the
abundances freeze out at the values shown by the horizontal black
lines. In both cases, the value of Ŷ traces out the solid portion of
the displayed curves.
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At this point, Y continues to track Yd, which is a decreasing
function of x given Eq. (13). The rate at which Yd decreases
with x is then

dYd

dx
¼ Y1ð3 − 3αÞx2−3α: ð15Þ

However, Y cannot decrease faster than the annihilation rate
given by Eq. (14) in the absence of diffusion effects,
namely

dY
dx

¼ −λx−n−2Y2: ð16Þ

Hence, Y tracks Yd only until jdYd=dxj from Eq. (15)
becomes larger than jdY=dxj from Eq. (16). At this point,
diffusion effects become irrelevant and the further evolu-
tion of Y is determined only by Eq. (16), as in standard
freeze-out.
We can now calculate the final abundance of Y in the

presence of diffusion effects, which we will denote by Ỹ∞.
Equating dYd=dx from Eq. (15) with dY=dx from Eq. (16)

and taking Y ¼ Yd given by Eq. (13) gives the value of x at
which annihilations can proceed without diffusion effects,
which we will denote by xd:

xd ¼
�

λY1

3α − 3

�
1=ð3α−2þnÞ

: ð17Þ

At x ¼ xd, the value of Y is given by the value of Yd in
Eq. (13), namely

Yðx ¼ xdÞ ¼ Y1

�
3α − 3

λY1

�ð3α−3Þ=ð3α−2þnÞ
: ð18Þ

In order to calculate the new asymptotic value of Y, denoted
by Ỹ∞, we integrate Eq. (16) from x ¼ xd to x ¼ ∞, using
the value of Yðx ¼ xdÞ that we have just derived. The final
result is

Ỹ∞ ¼
�ð3α − 3Þð1þ nÞ

3α − 2þ n

�
1

λ

�
λY1

3α − 3

�ð1þnÞ=ð3α−2þnÞ
: ð19Þ

Alternately, we can express the value of Ỹ∞ relative to Y∞,
the asymptotic value of Y for the case where diffusion
effects are negligible, which is given by Eq. (8). This gives

Ỹ∞

Y∞
¼

�
3α − 3

3α − 2þ n

�
1

xnþ1
f

�
λY1

3α − 3

�ð1þnÞ=ð3α−2þnÞ
: ð20Þ

Equations (19) and (20) are the main results of our paper.
They take a particularly simple form for s-wave annihila-
tions (n ¼ 0), namely

Ỹ∞ ¼
�
3α − 3

3α − 2

�
1

λ

�
λY1

3α − 3

�
1=ð3α−2Þ

ð21Þ

and

Ỹ∞

Y∞
¼

�
3α − 3

3α − 2

�
1

xf

�
λY1

3α − 3

�
1=ð3α−2Þ

: ð22Þ

Comparing to a numerical integration of Eq. (10), we find
that these expressions for Ỹ∞ are accurate to better than 2%
for both the s-wave and p-wave cases.

III. FINITE DIFFUSION LENGTH FROM
SCATTERING

Our results in the previous section apply to the general
case in which the diffusion length of the particles is small
enough to affect the freeze-out process, without reference
to any specific model of diffusion. Here we will consider
the specific case of scattering of the χ particles off of
standard-model thermal background particles. This process
has been explored in detail in connection with the process
of kinetic decoupling, which generally occurs later than

FIG. 2. The evolution of Ŷ, defined as in Fig. 1, as a function of
mχ=T, from a numerical integration of Eq. (10), for s-wave
annihilations with λðneq=sÞ ¼ 104 and α ¼ 11=4. The solid black
curve gives the evolution in the standard model with no diffusion
effects. The dotted black curve is Yeq=ðneq=sÞ. The solid blue
curve gives evolution for Y1=ðneq=sÞ ¼ 50000; the dotted blue
line gives the corresponding value of Yd=ðneq=sÞ. The dotted red
line corresponds to nχhσAvi ¼ H. The points at which this line
intersects the dotted blue line and the dotted black line correspond
to the sudden freeze-out approximation in the diffusion-limited
case and in the standard model, respectively, with the resulting
abundances given by the dashed blue and dashed black lines.
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chemical decoupling for most particle species [16–23].
Here we will be interested in the extreme case for which the
scattering rate is large enough to affect the freeze-out
process itself, as discussed in the previous section.
Assume that the χ particles can annihilate into thermal

standard-model (SM) particles, and also scatter off of those
same particles:

χ þ χ → SMþ SM; ð23Þ

and

χ þ SM → χ þ SM: ð24Þ

We will assume s-wave annihilations, so that hσAvi ¼ σ0,
while the cross section for scattering off of standard-model
particles will be σS.
As the χ particles scatter off of the thermal background

particles, they undergo a random walk with step size l,
which gives a diffusion length d:

d ¼
ffiffiffiffiffiffi
lvt

p
: ð25Þ

When T > mχ , the value of l is just the mean free path,
given by l ¼ ðnSσSÞ−1. However, for T < mχ, multiple
scatterings are required to significantly change the momen-
tum of the χ particles. Following Ref. [19], we will assume
that the number of such collisions required to alter the
trajectory of a given χ is ∼mχ=T. Thus, the step size l in this
case is l ∼ ðnSσSÞ−1ðmχ=TÞ. Since freeze-out occurs when
mχ=T > 1, we will use the latter expression to derive the
diffusion length. Then we obtain

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnSσSÞ−1ðmχ=TÞvt

q
: ð26Þ

We take v ≈
ffiffiffiffiffiffiffiffiffiffiffiffi
3T=m

p
and t ¼ 0.3g−1=2� mPl=T2, which

assumes a radiation-dominated Universe. The values of
nS and σS are necessarily model dependent. To make an
estimate of the circumstances under which scattering can
alter the freeze-out process, we will assume that χ can
scatter off of all of the d.o.f. in the relativistic background,
so that nS is given by nS ¼ ζð3ÞgnT3=π2, where gn ¼
3=4ð¼ 1Þ per fermionic (bosonic) d.o.f. Because the
scattering cross section itself is completely model depen-
dent, we will, for simplicity, take σS to be a constant. (For a
discussion of other possibilities, see, e.g., Ref. [16].) It is
straightforward to generalize our results to other functional
forms for σS.
Combining these expressions, and taking gn ≈ g�, we

obtain

d ¼ 2.1g−3=4� σ−1=2S m1=2
Pl m

1=4
χ T−11=4: ð27Þ

Using the standard expression for entropy density, we can
substitute this value for the diffusion length into Eq. (11) to
derive an expression for Yd:

Yd ¼ 0.26g5=4� σ3=2S m−3=2
Pl m9=2

χ

�
mχ

T

�
−21=4

: ð28Þ

In terms of the parameters of Eqs. (13) and (21), we then
have

Y1 ¼ 0.26g5=4� σ3=2S m−3=2
Pl m9=2

χ ð29Þ

and

α ¼ 11=4: ð30Þ

Using the values for Y1 and α from Eqs. (29) and (30),
along with the definition of λ from Eq. (7), Eq. (22)
becomes

Ỹ∞

Y∞
¼ 21

25

1

xf
½0.013g7=4� m−1=2

Pl m11=2
χ σ0σ

3=2
S �4=25: ð31Þ

Clearly, the change in the relic χ abundance relative to its
standard abundance is an increasing function of the
annihilation cross section, the scattering cross section,
and the particle mass. Diffusion effects become important
when Ỹ∞=Y∞ > 1, which corresponds to

mχ > 2.7x25=22f g−7=22� σ−2=110 σ−3=11s m1=11
Pl : ð32Þ

Taking g� ∼ 100 and xf ∼ 10 (both good order-of-magni-
tude approximations), we graph the region for which
scattering affects the freeze-out abundance in Fig. 3. In
this figure, the area above the solid line corresponding to
each indicated mass represents the region in parameter
space for which a finite diffusion length from scattering
will increase the relic freeze-out abundance relative to its
value in the absence of diffusion effects. For reference, we
also include the value of σ0 that corresponds to the
observed dark matter abundance for a thermal
relic, σ0 ∼ 1.0 × 10−36 cm2 ¼ 2.6 × 10−9 GeV−2.
Note also that mχ is bounded from above by unitarity,

which requires that [7]

σ0m2
χ < 4π: ð33Þ

This bound requires particles with masses above roughly
100 TeV to have an annihilation cross section below the
standard weak-scale σ0 cited above, which results in a
freeze-out abundance larger than the observed dark matter
abundance. (See, however, Ref. [24] for mechanisms to
evade this bound.) For particle masses below the unitarity
bound and σ0 ¼ 2.6 × 10−9 GeV−2, we see from Fig. 3 that
the scattering cross section must be much larger than the
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annihilation cross section in order for a finite diffusion
length to alter the freeze-out abundance.

IV. DIFFUSION-LIMITED FREEZE-IN

Another mechanism to produce relic particles, called
freeze-in, was first proposed by Hall et al. [25]. In this
scenario, a feebly interacting massive particle (FIMP) is
coupled too weakly to standard-model particles to ever be
in equilibrium with the thermal background. However, the
FIMP can be produced by annihilations of other particles,
albeit at a very low rate. Reference [25] gives a number of
variations on this theme involving a combination of freeze-
in, freeze-out, and particle decays, but we will confine our
attention here to the simplest scenario, in which there is
only freeze-in of a relic particle. Because of the variety of
possible scenarios, we will keep our discussion as general
as possible. Nonetheless, we will be able to derive some
interesting results for freeze-in.
In this simple scenario, we assume that the particle χ is

produced through annihilation of one or more particles A,
so that the production rate is

dnχ
dt

þ 3Hnχ ¼ hσAvin2A: ð34Þ

Again, we define Yχ and YA to be the ratio of the particle
number densities to the entropy density, so Eq. (34) becomes

dYχ

dt
¼ shσAviY2

A: ð35Þ

In the treatmentofRef. [25], it is assumed thatA is a standard-
model particle in equilibrium with the thermal background,
so thatwhenT dropsbelowmχ, the interactionsproducing the
χ are Boltzmann-suppressed and freeze-in terminates. To
keepour results as general aspossible,wewill notmake these
assumptions, butwewill takeA to be relativistic in our epoch
of interest, as this simplifies the calculation.
Now, consider the effect of a finite diffusion length on

the freeze-in process. In this case, the diffusion length of χ
is irrelevant, since it is the annihilation of A that produces
the final χ abundance, so it is the finite diffusion length of A
that has the potential to alter this abundance. As before, let
d be the diffusion length of A. Then the freeze-in process
will be altered whenever nAd3 < 1.
Now consider the case where the finite diffusion length is

produced by the scattering of A off of particles in the
thermal background. Since we are taking A to be relativistic
at T ∼mχ , Eq. (26) becomes

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnSσSÞ−1t

q
; ð36Þ

and the condition for the finite diffusion length to alter the
relic abundance, nAd3 < 1, becomes

nAn
−3=2
S σ−3=2S t3=2 < 1: ð37Þ

We now take nS ∼ T3, nA ∼ YAT3, and t ∼mPl=T2 to obtain

YAT−9=2m3=2
Pl σ

−3=2
S < 1: ð38Þ

Equation (38) is our condition for which a finite diffusion
length for A alters the freeze-in process at temperature T,
due to scattering of A off of the thermal background. In the
case of freeze-in, finite diffusion effects suppress the
annihilation of A into χ particles, reducing the final
freeze-in abundance of χ. The size of this effect, and
whether it occurs at all, depend upon the detailed scenario
for freeze-in.

V. CONCLUSIONS

It is remarkable that after 50 years, we are still finding
new aspects of the thermal evolution of relic particle
abundances. It is important to note that the effects we
have outlined here are not “optional.” Any particle under-
going annihilation into standard-model particles will also
scatter off of the thermal background, and the only question
is the magnitude of this effect. For particles satisfying the
unitarity bound, scattering effects will affect the freeze-out

FIG. 3. Region in parameter space defined by the particle
mass mχ , s-wave annihilation cross section σ0 ≡ hσAvi, and
scattering cross section σS, for which a finite diffusion length
from scattering off of the thermal background will alter the
standard freeze-out abundance of χ: this region lies above the
solid lines corresponding to each indicated mass. Vertical
dashed line is the annihilation cross section corresponding to
the observed dark matter abundance today in the absence of
diffusion effects (σ0 ¼ 2.6 × 10−9 GeV).

ROBERT J. SCHERRER and MICHAEL S. TURNER PHYS. REV. D 100, 043545 (2019)

043545-6



abundance only if the scattering cross section is much
larger than the annihilation cross section. However, the
scattering effects outlined in the previous section are
unlikely to exhaust the possibilities of diffusion-limited
freeze-out; one can also consider scattering from relic
magnetic fields, domain walls, or other exotic early-
Universe phenomena.
The main approximation we made in our derivation of

the effect of a finite diffusion length is the sharp cutoff in
the annihilation rate when the mean particle separation is
larger than the diffusion length. A more detailed calculation
would show a more gradual effect. However, we expect the
derivation in Sec. II to be qualitatively accurate, and
furthermore, independent of the particular mechanism
limiting the particle diffusion. In this derivation, we have
assumed nothing about the actual mechanism producing a
finite diffusion length; our result depends only the value of
the diffusion length as a function of temperature.
Our calculation in Sec. III is more model dependent; the

effect of scattering will depend on the total scattering cross
section, the particles off of which scattering occurs, and the
scaling of scattering with temperature. However, the
formalism we have developed in that section is easily
extended to other scattering scenarios such as those we
have mentioned above.

A finite diffusion length from scattering can also affect
the freeze-in process for relic particle production. In this
case, the effects depend not on the scattering of the relic
particle itself, but on the scattering of the particles that
annihilate into the relic particle. For freeze-in, the effect is
the opposite of the effect on freeze-out: a finite diffusion
length decreases the relic particle abundance.
While we have not found an especially compelling

example for which a finite diffusion length would signifi-
cantly alter previous results for freeze-out or freeze-in, the
current heightened interest in new dark matter candidates
suggests the possibility that diffusion could be an important
consideration in computing relic abundances in the future.
We can say more generally that the effects discussed here
are likely to be most important when the relic particle mass
or the scattering cross section is very large.
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