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Imaging surveys will find many tens to hundreds of thousands of Type Ia supernovae in the next decade
and measure their light curves. In addition to a need for characterizing their types and subtypes, a redshift is
required to place them on a Hubble diagram to map the cosmological expansion. We investigate the
requirements on redshift systematics control in order not to bias cosmological results, in particular dark
energy parameter estimation. We find that additive and multiplicative systematics must be constrained at
the few × 10−3 level, effectively requiring spectroscopic follow-up for robust use of photometric
supernovae. Catastrophic outliers need control at the subpercent level. We also investigate sculpting
the spectroscopic sample.
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I. INTRODUCTION

Type Ia supernovae (SN Ia) are standardizable distance
measures, whose use led to the discovery of cosmic
acceleration [1,2] and still provide the most stringent
constraints on the nature of dark energy [3–7]. In the next
decade, the number of SN Ia discovered and imaged in
multiple photometric wavelength bands will increase by a
factor of ∼100, driven by surveys such as the Zwicky
Transient Factory (ZTF) [8] and the Large Synoptic Survey
Telescope (LSST) [9]. If those SN can be fully utilized for
cosmology, they will provide powerful leverage on uncov-
ering the nature of cosmic acceleration.
However, even with current samples, systematics con-

tribute at least equally to statistical uncertainty in the
cosmological use of SN Ia. These systematics can be
addressed through careful characterization of the supernova
properties, through enhanced wavelength coverage into the
infrared [10,11] and ultraviolet [12,13], and in particular
spectroscopic data [14–16]. Spectroscopy not only con-
firms the source to be a true SN Ia but also gives subtyping,
e.g., through line ratios, high vs low velocities, etc. This
then permits the matching of similar SN Ia at different
redshifts, greatly ameliorating systematics, through “like vs
like” [17–19] or more detailed “twinning” [20,21] methods.
The next decade’s imaging surveys (and the recently

completed Dark Energy Survey [22]) rely on spectro-
scopic follow-up to obtain the detailed information, as
well as accurate redshifts. This limits the most robust
sample to a few hundred in the case of the Dark Energy
Survey or a few thousand for next-decade surveys, due to
the time requirements for making the spectroscopic
measurements. While there will be next-decade multi-
object spectroscopic instruments such as the Dark Energy

Spectroscopic Instrument (DESI) [23,24] and the 4 m
MultiObject Spectroscopic Telescope (4MOST) [25], the
relatively low multiplexing of SN Ia observations means
that many will not have spectroscopic data.
This has led to extensive literature exploring whether

purely photometric measurements can robustly place SN Ia
on the Hubble diagram (see, e.g., Refs. [26–37] among
others). Issues include contamination by non-SN Ia, lack of
subtyping, and selection effects. These all can distort the
Hubble diagram vertically, by misestimating the source
distance. Here we focus on redshift errors, which biases the
Hubble diagram horizontally.
Note that a common practice is to obtain the source

redshift by measuring the spectroscopic redshift of the host
galaxy. If successful, this is adequate, but such a meas-
urement still requires telescope time and becomes increas-
ingly expensive at higher redshifts where leverage on dark
energy may be greater. Galaxy catalog redshifts will also
become more incomplete as one goes to the higher redshifts
accessed by the next-decade surveys. Moreover, not all
SN Ia will have readily (or uniquely) identified hosts
[38–40]. Photometric redshifts give a rough indication of
the source redshift, but they face challenges in use for
accurate cosmology.
The redshift requirements for the Hubble diagram were

investigated in the pioneering article of Ref. [41] (and later
Ref. [42] for high redshift). They propagated redshift
uncertainties into cosmological parameter uncertainties,
i.e., how a finite prior on the mean redshift within a bin
of supernovae nearly at the same distance increases the
cosmology uncertainty. Their conclusion is that the redshift
must be known to 0.002 or better to limit the increase in
uncertainty on a constant dark energy equation of state to
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less than 10%. Here we investigate the complementary
issue of systematic bias: a shift in derived cosmology rather
than an increase in statistical uncertainty.
In Sec. II, we present the redshift systematic and cosmo-

logical parameter bias formalism. We assess the impact
and derive the requirements on systematic control in Sec. III
for additive, multiplicative, and catastrophic systematics.
In Sec. IV, we discuss the results and conclude.

II. REDSHIFT SYSTEMATICS AND
COSMOLOGY BIAS

When the measurement of an observable is systematically
offset from its true value, the cosmology estimation follow-
ing from the data will be biased. For small offsets, the Fisher
bias formalism provides a straightforward technique for
investigating the size and impact of this effect. The bias
on a cosmological parameter is given by [43,44]

δpi ¼ ðF−1Þij
X

k

∂Ok

∂pj

1

σ2k
ΔOk; ð1Þ

where F−1 is the inverse Fisher matrix,Ok is the observable,
σk is its uncertainty, and ΔOk is the offset in the observable
due to the systematics. The expression here is given for a
simple diagonal noise matrix σ2k; see Ref. [44] for a general
expression.
For the SN Ia case, the observable is the apparent

magnitude m (really derived from observed photometry
and redshift), and the offset is due to systematic misesti-
mation of the redshift, so

ΔOðzÞ ¼ ∂m
∂z δz: ð2Þ

The partial derivative involves two components: the change
in the distance modulus or luminosity distance dL with
redshift, and how the change in redshift alters the relation
between the apparent magnitude and distance modulus.
The latter part is due to the data analysis procedure for
standardization based on light curve width and color or dust
extinction.
From Ref. [41], we see that the wavelength-dependent

color (k correction) and extinction factor varies rapidly, and
with spikes in the redshift, as the rest frame SN flux moves
through the various photometric survey bands. This does not
resemble the smooth variation from a cosmological param-
eter, and so it will not significantly bias cosmology estima-
tion [19,45–47]. (We have verified this numerically with a
spiking toy model.) The light curve width does contain a
component from time dilation, proportional to 1þ z, and
so the standardization procedure with an incorrect redshift
will cause a shift in m. Thus, we take

∂m
∂z ¼ ∂m

∂dL
∂dL
∂z þ ∂m

∂width
∂width
∂z : ð3Þ

Since m ∼ 5 log½dLðzÞ�, the factor

∂m
∂dL ¼ 5

ln 10
1

dLðzÞ
: ð4Þ

Recall that dLðzÞ ¼ ð1þ zÞ R z
0 dz

0=½Hðz0Þ=H0� for a flat
universe, as we will assume, with H being the Hubble
parameter. In common light curve width standardization
methods, the apparent magnitude is linearly proportional to
the rest frame light curve width, and so

∂m
∂width ¼ const: ð5Þ

For example, in stretch standardizationm ∼ −αðs − 1Þ, and
in SALT2 [48] light curve fitting m ∼ −α0X1, where α and
α0 are constants. Since the rest frame width equals the
observer frame width divided by 1þ z, then ∂width=∂z ¼
−dz=ð1þ zÞ.
Putting this all together, we have

Δm ¼ 5

ln 10
ln

�
dLðzþ δzÞ

dLðzÞ
�
þ Cδz
1þ z

: ð6Þ

For δz ≪ z, one could expand the distance ratio by
evaluating the derivative ddL=dz; we do not do this, since
for low-redshift SN we may not have δz ≪ z, and in any
case the derivative would still leave integrals to be
evaluated, and so it does not save much effort. However,
we can note that we expect Δm ∝ δz to a good approxi-
mation. The constant C ≈ αs ≈ α0ðX1 þ 1Þ ≈ 1.4 averaging
over supernovae [48].
The cosmological parameters pi are the matter density

Ωm in units of the critical density, the dark energy equation
of state parameter todayw0 andameasure of its timevariation
wa, and the combination M of the SN absolute magnitude
and Hubble constant. When quoting constraints on one
parameter, we marginalize over the other parameters.
We now have to specify the survey properties, i.e., the

number and distribution of SN Ia and their magnitude
uncertainty. We do not attempt to model a next-decade
survey, with all its real-world selection effects; rather, we
adopt a simple model that should be a reasonable approxi-
mation. To a statistical dispersion of σstat ¼ 0.15magnitude
per SN Ia (reasonable for a photometric survey), we add
in quadrature a systematic measurement floor of σsys ¼
0.01ð1þ zÞ per redshift bin of width 0.1. That is, infinite
numbers of SN Ia will not give infinite accuracy, but rather
uncertainties will be limited by the floor, representing, e.g.,
photometric band calibration zero-point uncertainties, light
curve model uncertainties, survey selection effects, etc.
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Table I summarizes the number of SN Ia used in each
redshift bin, and the ratio of the systematic to the total
magnitude error, showing that more statistics will not help
significantly with reducing the magnitude error. (And
indeed, if the error is lowered, any bias will become more
severe in a relative sense. Note, though, that the use of
SN for other cosmological probes, e.g., peculiar velocity
surveys, could profit from an increased sample size.) We
take a redshift range of z ¼ 0–1.2 (though the z < 0.1 SN
may come from a separate survey). One can regard this as a
reasonable, if rough, approximation to a next-decade SN
survey.
Finally, we need to specify a model for δz. We take it to

be systematic among all supernovae at redshift z and
consider three types of redshift systematics: additive,
multiplicative, and catastrophic errors. The first two are
simply described by

δz ¼ d0 þ d1z: ð7Þ

As long as δz ≪ z, one can show that the parameter biases
δpi are linear in δz, and so one can explore the impact of d0
(additive) and d1 (multiplicative) separately. One can then
add the δpi afterward if desired, or take the individual
effects as a lower limit on the systematics control required.
Catastrophic redshift errors are more sensitive to the

complicated survey characteristics, so we only adopt three
toy models to give a rough estimation of their effects. For
each, we assume a fraction f of the SN Ia in each redshift
bin are affected, and we derive the control needed on f.
The first model sets misestimated SN from each redshift at
z ¼ 0.1, and the second model sets them at z ¼ 1, regard-
less of their true redshift. This scattering of outliers to the
survey extremes is reminiscent of certain actual outlier
behavior, but we make no claims for it beyond a toy model.

The third model sets SN from true redshifts z < 0.6 at
zþ 0.2 andSN from true redshifts z > 0.6 at z − 0.2. That is,
we examine the effect of narrowing the redshift distribution.
We emphasize that these redshift errors are to be regarded

as the residuals after calibrating the photometric redshift
distributions. Surveys have active, extensive efforts to do
precisely this, using both their data and external information,
and deriving these in detail is beyond the scope of this article.
Given all the elements, we propagate the redshift system-

atics into cosmological parameter biases. Since the covari-
ance between parameter shifts is important—i.e., a modest
shift orthogonal to the degeneracy direction can place the
derived values well outside the true joint confidence contour
—we quantify this by evaluating the change in likelihood
due to the bias [49,50]:

Δχ2 ¼ δpFsubðδpÞT; ð8Þ

where we define a subspace of interest, e.g., the dark energy
w0-wa plane, and convolve the Fisher submatrix (margin-
alized over other parameters)with the parameter bias vectors.
In all calculations, we include a Planck prior on the distance
to CMB last scattering.

III. SYSTEMATICS REQUIREMENTS

For each of the forms of the redshift systematics, we
calculate the cosmological parameter biases, and the Δχ2 in
the w0-wa plane, i.e., the offset of dark energy properties
relative to the true joint likelihood (marginalized over the
other parameters). Due to the linearity of δpi with respect to
δz, we can estimate the systematics control necessary, in
terms of limiting d0, d1, or f, so as to ensure bias is not
significant. Note that a condition such as, say, δpi <
σðpiÞ=2 is not sufficient to prevent a large shift in terms
of Δχ2, since that involves a nonlinear combination of
various parameters pi and their covariances. Therefore, we
evaluate Δχ2 and impose Δχ2 < 2.30, i.e., limiting the
misestimation of the dark energy properties to stay within
the 1σ joint confidence contour of w0-wa. This gives the
requirements on the systematics control.

A. Additive systematic

For the additive redshift systematic, we take d0 ¼ 0.01,
d1 ¼ 0; i.e., z → zþ 0.01 for illustration. We calculate the
cosmological parameter bias induced by this systematic,
applied to each of the 12 redshift bins individually, and to
all of them together. Figure 1 shows the results in the w0-wa
dark energy plane. Each red box shows the shift from the
fiducial ΛCDM cosmology with w0 ¼ −1, wa ¼ 0 (black
dot at the center of the blue 68.3% joint confidence contour
ellipse). The lowest redshift bin z ¼ ½0; 0.1� is marked with
orange fill, and the highest redshift bin z ¼ ½1.1; 1.2� is
marked with blue fill; all bins are connected in order of
redshift by the red curve.

TABLE I. Survey characteristics adopted as an approximation
of a next-decade survey in terms of total magnitude uncertainty
σtot. This is given in magnitude and is the most important
property. The last column shows that the total uncertainty is
predominantly systematics dominated, so the number n of SN Ia
in each redshift z bin is mostly moot.

z n σtot Sys/total

0.05 300 0.014 0.77
0.15 300 0.014 0.80
0.25 300 0.015 0.82
0.35 300 0.016 0.84
0.45 300 0.017 0.86
0.55 300 0.018 0.87
0.65 300 0.019 0.89
0.75 300 0.020 0.90
0.85 300 0.020 0.91
0.95 300 0.021 0.91
1.05 150 0.024 0.86
1.15 150 0.025 0.87
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The largest individual bias occurs for the lowest bin, but
substantial bias is evident for several redshift bins. The
green arrow gives the total bias for the systematic applied to
all redshifts. Note that the bias for d0 ¼ 0.01 is so large that
it extends well beyond the 1σ joint confidence contour, as
shown by the inset figure. We can best quantify the overall
dark energy bias by using the Δχ2 statistic: such a redshift
systematic deliversΔχ2 ¼ 505, some 20σ off. To determine
the systematic control requirement, we can solve numeri-
cally for the condition Δχ2 ¼ 2.3 (or use the fact that
Δχ2 ∼ ½δz�2) to find the requirement d0 ≲ 0.0006. This is
quite severe, and while later we will investigate ways of
easing this, we see that photometric redshifts will be greatly
challenged to give robust cosmology.

B. Multiplicative systematic

For the multiplicative redshift systematic, we take d0 ¼ 0,
d1 ¼ 0.01, i.e., z → ð1þ 0.01Þz for illustration. The analy-
sis for bias induced bymultiplicative systematics follows that
of the previous subsection on the additive case. In Fig. 2,
we can see that the total bias due to redshift systematic
applied to all redshift bins is significantly smaller than the
additive case. There is a coincidental cancellation among
the (lesser) biases of individual redshift bins such that the
sum is small, lying within the 1σ joint confidence contour.
This gives a small shift Δχ2 ¼ 0.4 for d1 ¼ 0.01, mean-

ing that d1 ≲ 0.024 would satisfy the Δχ2 < 2.3 criterion.
However, we emphasize that this cancellation is somewhat

fine-tuned, as we explore in the following subsection, and
so the requirements on multiplicative systematics control
would be better regarded as d1 ≲ 0.01.

C. Systematics control

Table II summarizes the additive and multiplicative
redshift systematics cases. We see that the additive case
is much more severe, with spectroscopic level requirements
on the redshifts. Allowing for both additive and multipli-
cative systematics tightens the control requirements. (Note
that a multiplicative systematic in 1þ z corresponds to a
combination of additive and multiplicative systematics in
z.) In all cases, photometric precision is insufficient for
robust cosmology determination.
We have also explored the cosmology biases that arise in a

more restrictedmodelwith a constant equation of statew, i.e.,
fixing wa ¼ 0. The results are substantially similar, qualita-
tively and mostly quantitatively, to what we present—e.g.,
δzreq ¼ 0.0008 for the additive case, and the multiplicative
case is essentially unchanged.

FIG. 1. The dark energy parameter shifts from an additive
redshift systematic, ðd0; d1Þ ¼ ð0.01; 0Þ, are plotted in the w0-wa
plane, along with the statistical 1σ joint confidence contour. The
red curve indicates the shifts as the systematic is applied
individually to each redshift, from the lowest bin (z ¼ ½0; 0.1�:
solid orange box) to the highest (z ¼ ½1.1; 1.2�: solid blue box),
with open red squares every 0.1 in redshift. Applying the
systematic to all redshifts shifts the fiducial cosmology from
the black dot (ΛCDM) to the end of the green arrow. We show the
full extent of the shift in the inset plot.

TABLE II. Cosmology biases due to additive and multiplica-
tive redshift systematics at the 0.01 level. The requirement on
the systematic level to control bias to Δχ2 < 2.3 (1σ joint
confidence) is given by δzreq for each case (where δzreq is to be
interpreted as either d0 or d1). The case with no systematics
for z < 0.1 SN is shown by “(no local)”; note that for the
multiplicative case, this removes a cancellation and tightens
the requirement.

Model δΩm δw0 δwa Δχ2 δzreq

Additive 0.065 1.92 −6.14 505 0.0006
Additive (no local) 0.041 −0.64 2.90 33 0.003
Mult. −0.004 −0.02 0.021 0.4 0.024
Mult. (no local) −0.005 −0.16 0.51 3.4 0.008

FIG. 2. As Fig. 1, but for a multiplicative redshift systematic
with ðd0; d1Þ ¼ ð0; 0.01Þ.
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Since we expect a small redshift shift to affect low
redshifts more, due to the sensitivity of the SN apparent
magnitude to redshift at low z (going roughly as 1=z), we
also consider the case where spectroscopic redshifts exist
for all local (z < 0.1) SN, and so systematics there vanish.
This helps substantially (but not enough) for the additive
case, while for the multiplicative case it actually worsens
the effect.
It is worthwhile pursuing the question further as to

whether systematics control can be concentrated in par-
ticular redshift bins. As mentioned, the lowest redshift bin
systematic gives substantial cosmology bias in both cases.
Note that a similar characteristic was found in Ref. [41].
Indeed, if we eliminate the systematic in the z ¼ ½0; 0.1�
bin, then for the additive case theΔχ2 drops from 505 to 33.
Of course, this is still far more biased than we can accept.
Note, however, that for the multiplicative case,Δχ2 actually
worsens from 0.4 to 3.4, because the bias from the lowest
bin cancels some of the bias from higher bins.
Figure 3 presents the results of systematic redshift control,

e.g., by use of a SN spectroscopic sample, to make all
redshifts z < zfree free from additive systematics. Figure 4
shows themultiplicative systematics case.We show the effect
of such control both onΔχ2 and on the requirement δzreq on
the remaining redshifts z > zfree (compare Table II). To avoid
substantial cosmology bias, we need to either eliminate
systematics through the use of a spectroscopic sample out

to zfree ≳ 0.9 (with the higher-redshift photometric sample
having a systematic of 0.01), or use of a spectroscopic sample
out to zfree and a systematic level at higher redshifts below
the δzreq curve.
Note that the multiplicative case has a different behavior

than the additive case in the shape of the Δχ2 curve. The
elimination of systematics for the lowest redshift bin
controls cosmology bias, but this is due to a fine-tuned
cancellation. The Δχ2 curve increases initially, rather than
monotonically decreasing as in the additive case. So we
cannot depend on removing systematics only from the
lowest bin; if we removed systematics from the first two or
three bins instead, the cosmology would be strongly biased.
Only by removing systematics out to zfree ≳ 0.9 can we
guarantee robust cosmology results. In all other cases, we
see that photometric redshift systematic control at the 0.01
level is insufficient; spectroscopy for the majority of the
SN is required.

D. Catastrophic outliers

The three catastrophic outlier toy models can also give
rise to a bias on cosmology. In Table III, we summarize the
three cases, showing the bias induced for a catastrophic
outlier fraction of 1%, and also the requirement on the
fraction f in order to keepΔχ2 < 2.3. Recall that the values
δpi will scale nearly linearly with f, and Δχ2 will scale
nearly as its square.
These results hold for catastrophic redshift outliers in

every bin. However, it is useful to break this down to
investigate the contribution from each individual redshift
bin. Figures 5 and 6 show an interesting effect. For the

FIG. 3. The relaxation of the cosmology bias Δχ2 (solid black
curve) and required additive redshift systematic control δzreq
(dashed blue curve) is shown as a function of the redshift zfree out
to which the systematic is eliminated, e.g., due to use of a
spectroscopic sample. The dotted red line shows Δχ2 ¼ 2.3; to
avoid substantial cosmology bias, we need to work in the region
where the solid black curve lies below the dotted red curve.

FIG. 4. As Fig. 3, but for the multiplicative systematic. Note
that the δzreq curve is divided by 0.01, not 0.001 as in the additive
case.
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z → 0.1 case, although all the redshift outliers at each
redshift bin give small shifts lying within the 68% joint
confidence contour (i.e., Δχ2 < 2.3), more of them lie to
the lower right, so the summed cosmological parameter
shift amounts to Δχ2 ¼ 21, or approximately 4.5σ. (Recall
that theΔχ2 do not sum linearly.) For the z → 1 case, all but
the lowest redshift bin do not give large parameter shifts.
However, the lowest redshift bin gives a very strong dark
energy shift (which to some extent is canceled by the shift
in the opposite direction by the other redshift bins). If the
first bin were systematics free, then Δχ2 would drop from
24.6 to 9.5, meaning that the requirement on f for the other
bins would loosen to 0.005. (For the z → 0.1 case, the
lowest z bin systematic does not give a strong effect.)
For the third model, with z → z� 0.2, again we find that

catastrophic outliers in the lowest redshift bin are the most
damaging, and again it is partially controlled by opposite
shifts from the other bins, as seen in Fig. 7. If the first bin
were systematics free, then Δχ2 would drop from 8.1 to 3.2
(and freq would rise to 0.008).

IV. CONCLUSION

Tens to hundreds of thousands of Type Ia supernovae
will be discovered by 2020s wide area imaging surveys
such as ZTF and LSST. While these will provide some
information on the SN, they cannot provide spectral

FIG. 5. As Fig. 1, but for a catastrophic redshift systematic with
outlier fraction fcat ¼ 0.01 misinterpreted as being at z ¼ 0.1.

FIG. 6. As Fig. 1, but for a catastrophic redshift systematic with
outlier fraction fcat ¼ 0.01misinterpreted as being at z ¼ 1. Note
the huge shift due to the lowest redshift bin outliers.

TABLE III. Cosmology biases due to various catastrophic
redshift models with 1% outliers. The requirement on the outlier
fraction to control bias to Δχ2 < 2.3 (1σ joint confidence) is
given by freq for each case.

Model δΩm δw0 δwa Δχ2 freq

z → 0.1 0.026 0.19 −0.36 21 0.003
z → 1 0.028 0.20 −0.35 25 0.003
z� 0.2 0.017 0.099 −0.14 8.1 0.005

FIG. 7. As Fig. 1, but for a catastrophic redshift systematic with
outlier fraction fcat ¼ 0.01 misinterpreted as being at zþ 0.2 for
z ≤ 0.6 and z − 0.2 for z > 0.6; i.e., losing from the extremes.
Note the large shift due to the lowest redshift bin outliers.
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information, which is useful for classification and sub-
classification, and redshifts. Follow-up spectroscopy, even
for host galaxy redshifts, is expensive in terms of telescope
time. We investigate specifically the issue of cosmology
bias due to systematically imperfect redshift determination,
quantifying the cosmology bias and resulting requirements
for systematic control.
We examine three classes of redshift systematics—

additive, multiplicative, and catastrophic—and conclude
that in all cases, robust cosmology requires control of
redshift systematics at the subpercent level. We show
how cosmology bias evolves as the systematic enters at
different redshifts, and generally the sum over the full
sample leads to large offsets from the true cosmology.
Investigating whether limited spectroscopy in the form of
a focus on particular redshift bins, e.g., low redshift,
removes the issue gives the conclusion that it generally
does not; systematic control throughout the sample is
essential. This analysis is complementary to that of
Ref. [41], which examined the “bloat” of uncertainties
rather than bias, and came to similar accuracy requirement
conclusions.

Additive systematics appear the most harmful, and then
certain types of catastrophic outliers. Multiplicative red-
shift systematics initially appear relatively benign, but
this is due to a fine-tuned cancellation, and small devia-
tions from the model do impose subpercent control
requirements. A spectroscopic sample, though more
limited in numbers, is needed for robust cosmology
determination. Many spectroscopic instruments will be
operating during the 2020s, such as the Dark Energy
Spectroscopic Instrument (DESI) and the Wide Field
Infrared Survey Telescope (WFIRST), and could play
useful roles in contributing to a well-controlled sample of
several thousand SN, capable of high-accuracy constraints
on dark energy and cosmology.
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