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In this paper, we verify the large scale structure consistency relations using N-body simulations,
including modes in the highly nonlinear regime. These relations (pointed out by Kehagias & Riotto and
Peloso & Pietroni) follow from the symmetry of the dynamics under a shift of the Newtonian potential by a
constant and a linear gradient, and predict the absence of certain poles in the ratio between the (equal time)
squeezed bispectrum and power spectrum. The consistency relations, as symmetry statements, are exact,
but have not been previously checked beyond the perturbative regime. Our test using N-body simulations
not only offers a nonperturbative check, but also serves as a warm-up exercise for applications to
observational data. A number of subtleties arise when taking the squeezed limit of the bispectrum—we
show how to circumvent or address them. An interesting by-product of our investigation is an explicit
demonstration that the linear-gradient symmetry is unaffected by the periodic boundary condition of the
simulations. Lastly, we verify using simulations that the consistency relations are violated when the initial
conditions are non-Gaussian (of the local fNL type). The methodology developed here paves the way for
constraining primordial non-Gaussianity using large scale structure data, including (numerous) highly
nonlinear modes that are otherwise hard to interpret and utilize.
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I. INTRODUCTION

One of the key questions in modern cosmology concerns
the initial condition of the Universe. Are the primordial
fluctuations consistent with what one would expect from
single-field inflation? Or do they arise from a scenario in
which additional light fields, besides the inflaton, play an
important role? Or more radically, is some mechanism
other than inflation at work?
The standard approach to answering these questions is to

work with data in the linear or quasilinear regime where
perturbation theory can be relied upon to give reliable
predictions. Modes in the nonlinear regime (for instance,
with momentum k≳ 0.2h=Mpc in large scale structure
data) are not utilized, even though they are abundant and
measured with high precision.
The consistency relations offer an interesting alternative,

where some of the information hidden in the nonlinear
regime can be brought to light. First pointed out by
Maldacena [1], consistency relations connect a squeezed
(N þ 1)-point correlation function (squeezing means one of
the momentum legs is soft) to an N-point function (see also
[2,3]). More recent work pointed out additional consistency
relations coming from new symmetries, clarified the
assumptions behind consistency relations and emphasized
their exact, nonperturbative nature, analogous to soft

theorems in high energy physics [4–10]. The nonperturba-
tive nature of consistency relations is a mere curiosity for
the microwave background since its fluctuations are small
and linear, but becomes very interesting for a large scale
structure. Kehagias & Riotto and Peloso & Pietroni [11,12]
pointed out the relevant large scale structure consistency
relations. It can be shown that of the infinite tower of
general relativistic consistency relations [8], two has non-
trivial Newtonian, sub-Hubble limits [13,14].
The study of large scale structure concerns, at a mini-

mum, the following quantities: the mass fluctuation δ, the
peculiar velocity v⃗ and the gravitational potential Φ. (One
can further expand this list to include the galaxy count
fluctuation δg and the galaxy peculiar velocity v⃗g. The
symmetries discussed below apply to them as well, where
δg and v⃗g transform in the same way as δ and v⃗ do, see e.g.,
[15,16].) The dynamics of (sub-Hubble) fluctuations exhib-
its two nonlinearly realized symmetries in a matter þ
cosmological constant universe.1 One is a constant shift
in the gravitational potential:

Φ → Φþ c; ð1Þ

1The split into two separate symmetries here follows the
discussion of [17].
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where c is independent of space but possibly a function of
time. The other involves adding a linear gradient to the
gravitational potential, together with a transformation of the
spatial coordinates and the velocity field [14]:

x⃗→ x⃗þ n⃗; Φ→Φ− ðHn⃗0 þ n⃗00Þ · x⃗; v⃗→ v⃗þ n⃗0; ð2Þ

where n⃗ is independent of space but a function of time. Here
0 ≡ ∂=∂η is the derivativewith respect to the conformal time
η, andH≡ a0=a is the comoving Hubble parameter, with a
being the scale factor. The above is a symmetry of the large
scale structure dynamics for n⃗ having any time dependence,
but the adiabatic mode condition [18] dictates that n⃗ must
match the time dependence of the linear growth factor, and
likewise c shouldmatch the corresponding time dependence
of the gravitational potential (see discussions in [10,17] and
point 2 below).
The consistency relations corresponding to a shift of the

gravitational potential by a constant and by a linear gradient
are, respectively,

lim
q⃗→0

q2
hδq⃗δk⃗1 � � � δk⃗N ic

0

PδðqÞ
¼ 0; ð3Þ

and

lim
q⃗→0

∇⃗q

�
q2

hδq⃗δk⃗1 � � �δk⃗N ic
0

PδðqÞ
�
¼−

XN
a¼1

DðηaÞ
DðηÞ k⃗ahδk⃗1 � � �δk⃗N i

c0 ;

ð4Þ

where PδðqÞ is the mass power spectrum, D is the linear
growth factor and c0 denotes the connected correlator with
the overall δ-function removed. The time dependence is as
follows: the soft mode q⃗ is at time η [likewise for PδðqÞ]
while the hard mode k⃗a is at time ηa. Several comments are
called for on these two consistency relations.
1. The consistency relations are in general of an unequal

time form. In this paper, we focus on the equal time limit, in
which case the right-hand side of Eq. (4) vanishes. Thus,
the content of the consistency relations is simple, that the
equal time correlator

hδq⃗δk⃗1…δk⃗N ic
0

PδðqÞ
has no q−2 pole and no q−1 pole ð5Þ

in the q⃗ → 0 limit. The lack of a 1=q2 pole follows from the
shift symmetry, and the lack of a 1=q pole follows from the
linear gradient symmetry. That this statement is correct (for
Gaussian initial conditions) is easy to check in perturbation
theory (see e.g., [11,12,14]). But the consistency relations,
as symmetry statements, are expected to be stronger than
this. What we wish to accomplish in this paper is to test this
statement in the nonperturbative regime using N-body

simulations (i.e., with the hard momenta k⃗a’s on nonlinear
scales).2

2. It should be emphasized that the consistency relations
are not statements merely about a strictly vanishing q⃗.
Indeed, an exact q⃗ ¼ 0 mode is not even observable.
Rather, the consistency relations are statements about the
absence of certain divergences as q⃗ is taken to be smaller
and smaller, such as (5). This is why the so-called adiabatic
mode condition is crucial [18,19]. This condition ensures
that the symmetry in question, which in general originates
as a gauge redundancy, generates a q⃗ ¼ 0 mode that is
smoothly connected to a physical mode of a small but finite
q⃗. For more discussions on this point, see [10].
3. The consistency relations, Eqs. (3) and (4), take a

particularly simple form in Lagrangian space where the
corresponding “right-hand side” vanishes even if the hard
modes are at unequal times. See [17] for a discussion.
4. The consistency relations take essentially the same

form even in redshift space, as pointed out by [20]. This
means they can be profitably applied in galaxy surveys
where the line-of-sight direction is almost always in red-
shift space.
5. There is the question of how galaxy biasing affects the

consistency relations. As mentioned above, the relevant
symmetries remain good symmetries even for the dynamics
of galaxies (which can form, merge and so on).3 Thus, the

2We focus on the equal time correlator largely for simplicity.
There is also a practical reason for doing so: that the 1=q pole
associated with the unequal time contributions [i.e., the right-
hand side of Eq. (4)] is naturally suppressed in observational data.
Recall that the unequal times refer to the times of the hard modes
(η1 for k⃗1, η2 for k⃗2 and so on); the hard modes are by definition
short wavelength perturbations which also means their separation
in time cannot be too big—keep in mind that observational data
are confined to the light cone. One can see from Eq. (4) that if the
ηa’s are close to each other, one is almost summing the k⃗a’s which
yields zero. Nonetheless, it is worth asking how big of a 1=q pole
one might inadvertently generate by measuring a correlator
averaged over some survey volume, which inevitably spans a
range of redshifts. Some care in defining the average might be
useful to ensure it is negligible. It is also worth noting that the
unequal-time contributions do not generate a 1=q2 pole. A 1=q2
pole can only appear with certain primordial non-Gaussianities
(see point 6 below).

3Galaxy dynamics is of course different from mass dynamics:
mass conservation is replaced by galaxy number density evolu-
tion that has a source (or sink) term; galaxies are subject to forces
beyond gravity. The key observation is that as long as these new
terms/forces depend only on mass/galaxy density, velocity
gradients (or velocity difference between different species) and
second derivatives of the gravitational potential (tidal forces), the
symmetries espoused in Eqs. (1) and (2) hold. For instance, it is
crucial the new forces on a galaxy do not depend on the absolute
velocity, i.e., some form of equivalence principle (see point 6
below). There is an additional requirement: that the squeezed
momentum q⃗ must be sufficiently soft, that on that scale, gravity
dominates (even though for the hard momenta k⃗’s, the dynamics
can be complicated). See [14,21] for further discussions.
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consistency relations, Eqs. (3) and (4), remain valid even if
the hard modes δk⃗1 ;…; δk⃗N are replaced by galaxy density
fluctuations δgk⃗1 ;…; δgk⃗N . The soft mode δq⃗ can be replaced
by δgq⃗=bg where bg is the galaxy bias; likewise PδðqÞ can
be replaced by PδgðqÞ=bg2. In the soft limit, bg is expected
to be a constant,4 and thus the consistency relations Eqs. (3)
and (4) are modified in a simple way. The equal time
version (5) in fact takes the same form, i.e., the equal time
correlator:

hδgq⃗δgk⃗1 � � � δgk⃗N ic
0

PδgðqÞ
has no q−2 pole and no q−1 pole ð6Þ

in the q⃗ → 0 limit.
6. Two important assumptions go into deriving the

consistency relations. One is the equivalence principle,
that on sufficiently large scales—i.e., q⃗ → 0—all objects
fall at the same rate (whereas on small scales, different
objects can be subject to different forces, such as pressure
forces, etc.). See [14,22] for a discussion. The other
important assumption, which we focus on in this paper,
is Gaussian initial conditions. More precisely, it is the
assumption that in the squeezed limit, the primordial
connected N-point function vanishes for N > 2, something
that follows from single-clock inflation.5 From the point of
view of initiating cosmological N-body simulations,
imposing Gaussian initial conditions is sufficient to guar-
antee the validity of the consistency relations stated above,
and this is what we adopt in this paper. It is not surprising
that the consistency relations, or the precise form they take,
are sensitive to initial conditions, since the symmetries
underlying them are nonlinearly realized or spontaneously
broken—in other words, exactly how the initial conditions,
or the “vacuum,” breaks the symmetries in question dictates
the form of the consistency relations [10]. Examples that
violate the stated consistency relations generally involve
extra light fields during inflation, for instance the curvaton,
a spectator scalar that dominates the curvature fluctuations
[27–29].6 The curvaton (or modulated-reheating) model
motivates initial conditions of the local fNL type (see
Sec. II D), and we will examine how the consistency
relations are violated in such a case. The ultimate goal

would be to check consistency relations in observational
data, and put a bound on local fNL for instance. The
robustness of the consistency relations means we can freely
employ data in the highly nonlinear regime (the high
momentum k⃗ modes), involving astrophysically realistic
fluctuations, e.g., galaxies.
7. One might worry that the consistency relation could be

violated by the finite size of the simulation box, especially for
the symmetry transformation that involves shifting the
gravitational potential by a term linear in x⃗ (Eq. (2), which
seems naïvely inconsistent with the periodic boundary
condition of the simulations. However, from the point of
view of the particles, all they see is the gradient of the
potential, and the symmetry in question simply shifts this
gradient by a constant, which does respect the periodic
boundary condition. The fact that, as we will see, the
consistency relations hold in the N-body data indeed con-
firms this expectation.
8. Lastly, it should be kept in mind that in the presence of

features in the power spectrum (e.g., acoustic peaks), the
bispectrum could present a 1=q behavior for mildly
squeezed triangles, albeit recovering the behavior expected
fromEq. (5) in the strict q → 0 limit.When such features are
present a simple power series in qwill not suffice to describe
the squeezed bispectrum, and the complete dependence
should be taken into account [33,34]. For the range of k’s we
are considering here, this is a negligible effect anyway.
To summarize, the goal of this paper is twofold. First, we

test the consistency relations (5) at equal time using the
results of N-body simulations with Gaussian initial con-
ditions, focusing on the three-point function or bispectrum.
To the best of our knowledge, this is the first time that
the consistency relations have been verified for scales that
are well within the nonperturbative regime.7 Second, we
show that when the initial conditions for the primordial
fields are non-Gaussian of the local fNL type, deviations
from (5) are observed, as expected from theoretical argu-
ments [12,14,38].

II. CHECKING THE CONSISTENCY RELATIONS
IN N-BODY SIMULATIONS

We describe in Sec. II A our methodology, focusing in
particular on how to obtain the bispectrum in the squeezed
limit. This is followed by a discussion in Sec. II B of how
we fit the bispectrum with a power series in the sque-
ezed momentum q. The results of the fit are presented in

4This holds if the initial conditions were Gaussian, an
assumption that goes into the derivation of the consistency
relations themselves. Or more precisely, this assumes single-
field or single-clock initial conditions. See the discussion in point
6 below.

5The primordial consistency relations can be expressed as the
vanishing of the squeezed N-point function if one accounts for
the fact that the metric fluctuations enter into the definition of
physical momenta. See [23–26] for a discussion.

6Ultra-slow-roll inflation, while strictly a single field
model, has essentially an extra clock due to the importance
of what normally would be discarded as the decaying mode.
See [10,30–32].

7A different kind of consistency relation has been tested in [35]
using N-body simulations as well. That interesting relation
concerns the higher order coefficients of the low q expansion
of the bispectrum [36,37]. More specifically, it concerns the q0
behavior in the context of (5), and its derivation crucially relies on
the hard observables being mass fluctuations as opposed to
galaxy fluctuations. The consistency relations we focus on are
instead more robust and valid even for galaxy observables.
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Sec. II C, for N-body simulations with Gaussian initial
conditions. We verify that the consistency relations are
indeed satisfied, even though the high momentum modes
are in the nonlinear regime. We draw attention to, and
comment on, the fact that the linear-gradient consistency
relation [i.e., the lack of 1=q pole in (5)] is satisfied, despite
the periodic boundary conditions of the simulations—
which one might naively expect to invalidate the linear
gradient symmetry of Eq. (2). We demonstrate in Sec. II D
that the consistency relations are violated for simulations
with non-Gaussian initial conditions of the local fNL type.

A. Setup and details of the measurement

We use a suite of N-body simulations consisting of Nr ¼
40 realizations with Gaussian initial conditions. The box
size is L ¼ 2.4 Gpc=h comoving, with 12803 particles. The
cosmological parameters are ΩΛ ¼ 0.75, Ωm ¼ 0.25 (of
which Ωb ¼ 0.04), h ¼ 0.7, ns ¼ 1 and σ8 ¼ 0.8. We
analyze the simulation outputs at redshift z ¼ 0. For further
details on the simulations, see [39].
A prime observable of focus is the bispectrum, in the so-

called squeezed limit, i.e., when one of the legs (in
momentum space) is soft. We are particularly interested
in what happens when that leg, labeled by the momentum
q, becomes softer and softer as other quantities that label
the relevant momentum-space triangle are kept fixed. A
convenient parametrization is to take them to be the highest
momentum leg, labeled by k, and its angular separation
from the soft leg, labeled by θ. With this choice, θ is
between π=2 and π (see Fig. 1).8 We will have more to say
about the choice of parametrization below.
The bispectrum in the squeezed limit can then be

expressed as a power series in the soft mode,

Bδðq; k; θÞ ¼
X∞
n¼−2

anðk; θÞPδðqÞqn: ð7Þ

We will truncate this power series at some finite n, with the
understanding that this is a good approximation for small

values of q—the precise n at which we truncate will be
determined by the goodness-of-fit to the data. The con-
sistency relations (5) tell us that, for equal time correlators,
one has a−2ðk; θÞ ¼ a−1ðk; θÞ ¼ 0. The goal of this paper is
to check this prediction. We wish to do it in a way that does
not assume any knowledge of the coefficients an. They are
known robustly only within perturbation theory, that is, if k
is not too large. For large k’s, nonlinearity, or baryonic
physics in the case of galaxy observables (in anticipation of
applications to observational data), makes it difficult to
robustly predict an. Thus we carry out the analysis without
prior assumptions on them.
The key feature we exploit is that Eq. (7) takes a

factorized form: for each n, the dependence on the soft
momentum q is factorized from the dependence on the hard
momentum k (and θ). The coefficients that contain the k
and θ dependence, anðk; θÞ, can be treated as free param-
eters when fitting the bispectrum. As a simplifying pro-
cedure, since we are not ultimately interested in the k and θ
dependence of the bispectrum or an, we average over all
possible values of k and θ when we measure the bispectrum
for a given q.9

At this point, a subtlety occurs because of the discrete
nature of the Fourier modes in a finite volume. Let us focus
on the coefficient an for a particular n. Our procedure is
effectively to compute some averaged version of an by
summing over all possible k’s and θ’s at a fixed q, i.e.,
summing over all triangles which has one momentum leg of
magnitude q. The issue is this: within our set of discrete
Fourier or momentum modes, for a given q, not all possible
k’s and θ’s are actually allowed—in fact, the span of
possible k’s and θ’s would depend on the value of q in a
subtle way; this means the averaged an would end up
inheriting a subtle q dependence. This q dependence cannot
be predicted without prior knowledge or assumption of
how an depends on k and θ. It is useful to concretely see
how this comes about by dividing the k’s and θ’s into bins,
labeled by i. For instance, a bin centered at ðki; θiÞ might
have contributions from Ni;q triangles. Note how the q
dependence is “sneaked” in through the fact that Ni;q

depends on q. In this language, averaging over all possible
triangles for a given q amounts to computing the following:

B̄δðqÞ ¼
P

iBδðq; ki; θiÞNi;qP
iNi;q

¼
X∞
n¼−2

P
ianðki; θiÞNi;qP

iNi;q
PδðqÞqn

≡ X∞
n¼−2

ānðqÞPδðqÞqn: ð8Þ

FIG. 1. The bispectrum is defined for three Fourier modes
whose momenta sum to zero. The resulting triangle can be
uniquely labeled by q≡ jq⃗j (the softest momentum), k≡ jk⃗j (the
hardest momentum), and the angle between them θ. By virtue of
the fact that q is the softest and k is the hardest, θ is between π=2
and π.

8By restricting ourselves to k being the highest momentum and
θ between π=2 and π, we are implicitly assuming parity
invariance: that two triangles related to each other by a reflection
have the same bispectrum.

9We will later check this procedure by varying the range of θ
over which we average.
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We are thus left with an averaged an, which we call ān,
which has an unwanted q dependence which cannot be
predicted without making assumptions about how an
behaves for high k’s. Thus, imagine we fit the N-body
data with n up to, e.g., 1. Even if one puts aside the possible
q dependence of ā−2 and ā−1 (which for Gaussian initial
conditions are expected to vanish), the unknown q depend-
ence of ā0 and ā1 is problematic.
This way of spelling out the problem also suggests its

cure. The above averaging weighs each ith bin by the
number of triangles in it, Ni;q. We can instead weigh each
bin equally (or for that matter, use any other weights as long
as they do not depend on q)10:

B̄δðqÞ ¼
P

iBδðki; θi; qÞP
i

≡ X∞
n¼−2

ānPδðqÞqn: ð9Þ

The coefficients ān are now given by

ān ≡
P

ianðki; θiÞP
i

; ð10Þ

and are truly independent of the soft momentum. They are
treated as free parameters in our fit of the data.
To simplify the analysis, we also bin in q. In particular, if

fq̄g is a bin with average soft momentum q̄, the binned
version of the bispectrum (9) is

B̄δðq̄Þ ¼
X
q∈fq̄g

B̄δðqÞ ¼
Xnmax

n¼−2
ānMnðq̄Þ; ð11Þ

whereMnðq̄Þ ¼
P

q∈fq̄g PδðqÞqn is also measured from the
data to avoid any theoretical bias. The value of nmax is
something we have to experiment with: qualitatively, the
more squeezed our triangles are (smaller q’s), the lower is
the nmax we need. In the next section we will rely on data to
find how many ān’s we need to account for higher order
corrections to the small q expansion.
Lastly, let us comment on our bispectrum triangle

parametrization, described in Fig. 1. One alternative [40]
is to parametrize the triangle in terms of q⃗, k⃗þ q⃗=2 (where
k⃗ is one of the two high momentum legs), and the angle
between them, say β. Assuming invariance under parity (a
reflection of the triangle), the bispectrum should be
unchanged under cos β → cosðπ − βÞ. Thus, if q enters
into the bispectrum only through cos β, the squeezed
bispectrum should contain only even powers of q, as
suggested by [40]. This appears to be true in some cases
but not in others—for instance, it can be checked in
perturbation theory that if the initial conditions were of
the local fNL type, the squeezed mass bispectrum depends

on the transfer function at the soft-momentum q (which
equals 1 when q ¼ 0, but has corrections with both even
and odd powers of q) [12].11We thus do not find a
significant advantage for using the alternative parametriza-
tion, although the bispectrum can be analyzed that way if
one wishes.

B. Details of the fit

Our analysis is performed averaging the bispectrum
as in Eq. (9) over hard modes ranging from k ¼
0.52h=Mpc to k ¼ 0.65h=Mpc (corresponding to k ¼
199kf to k¼ 251kf, with kf ¼ 2π=L ≃ 2.6 × 10−3h=Mpc
being the fundamental mode), and over all the relative
angles, θ ∈ ½π=2; π�.12 As one can see from Fig. 2 the hard
modes we are considering are well within the nonlinear
regime.
We also measure the bispectrum for soft momenta

ranging from q ¼ 3kf to q ¼ 19kf, with a bin size
Δk ¼ 2kf. The choice of this window for q’s requires
some explanations. The high end q ¼ 19kf is chosen to
include as many modes as possible (thus minimizing error
bars on ā−2 and ā−1), while still staying within the
squeezed limit such that the expansion in Eq. (9), truncated
at n of a few, is a good approximation.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.01

0.05

0.10

0.50

1

5

10

FIG. 2. Measured value of Δ2ðkÞ ¼ 4πk3PδðkÞ. For the hard
modes under consideration, k ∈ ½0.52; 0.66�h=Mpc, one notices
that Δ2ðkÞ≳ 5, i.e., we are far away from the linear regime.

10In practice, this means when we loop through the triangles
for a given q, we weigh them by 1=Ni;q.

11Even in those cases where the squeezed bispectrum para-
metrized according to [40] appears as an even-power series in q,
the information does not allow us to for instance infer ā−1 from
ā−2 (these are parameters we are ultimately interested in, using
our parametrization). In those cases, ā−1 is not directly related to
ā−2 but is instead related to the average over k and θ of the
derivatives of a−2 with respect to k and θ.

12As a simple check, we also repeated our analysis averaging
over θ ∈ ½π=2; 3π=4�. The conclusions are largely unchanged,
suggesting that adjusting the angular weighting does not have a
significant impact on the outcome, and that the vanishing of ā−2
and ā−1 for Gaussian initial conditions is not the result of
accidental cancellation when averaging over angles.
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The low end q ¼ 3kf is chosen because the procedure of
eliminating the unwanted q dependence in ān, described in
Sec. II A, is actually not perfect. Recall that we form bins,
labeled as ðki; θiÞ, and compute B̄δ and ān [Eqs. (9) and
(10)] by giving these bins equal weights. In doing so, it is
important that each bin is actually not empty, that there are
triangles that fall into them. Thus, the bins have to be
sufficiently wide. But there is some tension between using
wide bins and using the bin-averaged an as a fair repre-
sentation of how an varies with k and θ.

13 In the Appendix,
we show a test of our procedure for a particular model of
anðk; θÞ (one motivated by perturbation theory), and check
to what extent our procedure yields ān that is truly q
independent. We find that this works well as long as
q ≥ 3kf. Hence we restrict our analysis only to soft modes
such that q ≥ 3kf.
To determine the best-fit values for the parameters ān we

maximize the following likelihood for each realization,
r ¼ 1;…; Nr:

LðrÞ ∝
1ffiffiffiffiffiffiffiffiffiffi
detC

p exp

�
−
1

2
ΔðrÞ · C−1 · ΔðrÞ

�
: ð12Þ

We define the vector ΔðrÞ ¼ B̄ðrÞ
δ −

P
n ā

ðrÞ
n M̄ðrÞ

n , and
the covariance matrix Cij ¼ hΔiΔji. All vectors run
over the soft momenta, fi ≡ fðq̄iÞ, and the angular brackets
stand for an average over the available realizations, i.e.,

hfii ¼ 1
Nr−1

P
r f

ðrÞ
i (for instance, the covariance matrix is

obtained by averaging over realizations).
Note that the vector Δ depends on the fit parameters ān,

and so the covariance matrix itself depends on the param-
eters. We use an iterative procedure (akin to the Newton-
Raphson algorithm) to determine the optimal ān’s that
maximize the likelihood. First, we determine Cij with the
ān’s set to zero. The maximization of the likelihood can
thus be done analytically, because the remaining depend-
ence on ān shows up only in the exponent of the likelihood
in the standard χ2 fashion (essentially equivalent to fitting
the slope of a straight line). The resulting best-fit ān’s are
plugged back into the definition of Cij, and the whole
procedure is repeated again to obtain a new set of best-fit
ān’s; so on and so forth until convergence is achieved.
Once this is done, the final value of the ML estimators

and their uncertainties is computed from the average and
variance over realizations, i.e.,

ān ¼
1

Nr

XNr

r¼1

āðrÞn ; ð13aÞ

σ2ān ¼
1

NrðNr − 1Þ
XNr

r¼1

ðāðrÞn − ānÞ2: ð13bÞ

Note that the likelihood analysis itself, applied to each
realization, does yield an error estimate, but we deem σ2ān
estimated from the spread between independent realiza-
tions as more reliable. For one thing, the likelihood analysis
treats the data vector as Gaussian distributed, which is an
approximation. The desire to have an accurate error

FIG. 3. Left panel: Comparison between N-body data (points with error bars) and some of the models (lines with different styles/
colors), including different sets of parameters. The y-axis is the bispectrum B̄δ while the x-axis is soft momentum q̄. Note that B̄δ is a
function only of q̄, because we have already summed over k’s and θ’s [see Eqs. (9) and (11)]. Here, the error bars reflect the statistical
spread in B̄δ. Right panel: Percentage difference between data and model for the same set of models as the left panel, i.e., the y-axis is
½B̄δðq̄Þ −

P
n ānMnðq̄Þ�=½B̄δðq̄Þ þ

P
n ānMnðq̄Þ��, expressed in percentage. The error bars shown represent the statistical spread in this

residue. The error bars are model dependent—the ones shown correspond to that of the ðā0; ā1Þ model. Note that the error bars are
correlated across different q̄’s, which partly explains why the ðā0; ā1Þ model appears well within the error bars at all momenta.

13In other words, within a wide bin, the precise set of k’s and
θ’s that fall into that bin would depend on q, and thus we are not
achieving the goal of eliminating the unwanted q dependence.
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estimate is why we analyze the realizations one at a time, as
opposed to using all of them in one go.14

To determine the goodness of the fit, we rely on the
Bayesian information criterion (BIC) [41,42]:

BIC ¼ −2 logLmax þ Npar logNq; ð14Þ
which has been shown to be dimensionally consistent, i.e.,
not to favor overfitted models [42]. Here Lmax is the
maximum likelihood combining all realizations, Npar the
number of parameters of the model and Nq the number of
data points used. A model with the lowest BIC represents
the best compromise between maximizing likelihood and
minimizing the number of parameters.

C. Results

Let us now present the results of our analysis. In Fig. 3
we report some of the fits including different sets of
parameters as well as the corresponding residues. In
Table I we compare all the models we have tested.
Focus first on the first three models in the table, which do

not involve ā−2 nor ā−1. We see that the first model,
involving ā0 alone, is not a good fit to the N-body data
(from both the BIC value in the table and from Fig. 3).
Adding ā1 greatly improves the fit, while further adding ā2
does not lower the BIC score. Recall that in our power-
series fit of the squeezed bispectrum as a function of a range
of soft momenta [Eq. (11)], we do not know a priori how
many higher order terms we need. This exercise tells us it is
sufficient to stop at ā1 (but necessary to include it), with the
kind of precision and the range of soft momenta we have.
The rest of the models in the table involve ā−1 and/or

ā−2. In all cases, the BIC score worsens. The inferred
values for ā−1 and ā−2 are consistent with zero, except for
the ðā−2; ā−1; ā0Þ model. For this model, the fit prefers
nonzero values for ā−2 and ā−1 to compensate for the lack
of a ā1 term. Note however this model has a worse BIC

score compared to the ðā0; ā1Þ model. It is also reassuring
that the ðā0; ā1Þ fits the data well, with residues that have no
clear trend with momenta (see the right panel of Fig. 3).
We conclude from this exercise that the N-body data,

with Gaussian initial conditions, are consistent with a
vanishing value for ā−2 and for ā−1, confirming expect-
ations from the consistency relations.

D. Violation of the consistency relations from
non-Gaussian initial conditions

In this section we show that, when the initial conditions
for the cosmological fields are non-Gaussian (of the local
fNL type), statistically significant deviations from the
consistency relations in Eq. (5) are observed.15

We employ a smaller set ofNr ¼ 12 realizations with the
same cosmological parameters as before, but with an initial
matter distribution characterized by a local non-Gaussian
parameter fNL ¼ 100. The details of the measurement and
the analysis are the same as in Secs. II A and II B. For the
sake of checking whether or not deviations from consis-
tency relations occur we limit our analysis to models that
only include ā0 and ā1 (in addition to possibly ā−2 and
ā−1). We leave a more detailed study of the realizations
with non-Gaussian initial condition for future work [43].
The result of our analysis is unambiguous. The model

with just ā0 and ā1 (i.e., no poles in the soft limit), which fits
very well the bispectrum in the case of Gaussian initial
conditions, is not a good description of the data obtained
from fNL ¼ 100. From the fit we obtain BIC ¼ 74.12, much
larger than the one reported in Table I for the Gaussian case.
Moreover, Fig. 4 shows that the likelihood fit for this model
is not a good description of the data, which is also confirmed
by the fact that the residues exhibit a parabolic pattern
around zero. Indeed, introducing either ā−2 or ā−1 to the fit
one obtains values that are statistically different from zero:
ā−2 ¼ ð11.3� 1.8Þ × 10−5 Mpc=h with BIC ¼ 30.39, or
ā−1 ¼ ð16.5� 2.8Þ × 10−3 ðMpc=hÞ2 with BIC ¼ 36.79.16

The inferred values for ā−2 and ā−1 can in principle be turned
into an estimate of fNL, which we leave for future work.
This shows that, in the presence of a non-Gaussian

distribution (of the local fNL type) for the initial cosmo-
logical fields, the consistency relations in Eq. (5) are
violated as expected [12,14,38].

TABLE I. Detailed results of the likelihood fits with different
sets of parameters (ān’s). The Bayesian information criterion
clearly selects the ðā0; ā1Þ model.

ān included ā−2ð10−6 Mpc=hÞ ā−1ð10−2 Mpc=hÞ2 BIC

ā0 � � � � � � 99.63
ā0; ā1 � � � � � � 17.77
ā0; ā1; ā2 � � � � � � 19.82
ā−2; ā0 −30.4� 5.1 � � � 65.50
ā−2; ā0; ā1 0.2� 6.7 � � � 19.84
ā−1; ā0 � � � −42.3� 5.4 39.57
ā−1; ā0; ā1 � � � 0.6� 10.3 19.84
ā−2; ā−1; ā0 69� 16 111� 17 22.35
ā−2; ā−1; ā0; ā1 16� 55 26� 87 21.83

14Analyzing the realizations all at once would give us
essentially the same final best-fit ān, but would not let us reliably
estimate the associated error bar.

15Specifically, the local fNL model is this: the primordial
Bardeen potential Φpðx⃗Þ¼ϕðx⃗ÞþfNLðϕðx⃗Þ2−hϕ2iÞ, where ϕ is
a Gaussian random field. The Bardeen potential (after
multiplication by the transfer function) gives the gravitational
potential used in initializing N-body simulations (see [39]
for details). A primordial non-Gaussianity of this type is
motivated by the curvaton and modulated reheating models
[27–29].

16For completeness, let us mention several additional models
we investigated: the ðā0; ā1; ā2Þmodel has a BIC of 56.5, and the
ðā−2; ā0; ā1; ā2Þ=ðā−1; ā0; ā1; ā2Þ=ðā−2; ā−1; ā0; ā1; ā2Þ=ðā−2; ā−1;
ā0; ā1Þ models have respectively a BIC score of 31.8,34.3,
32.2,31.2.
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III. DISCUSSION

The search for primordial non-Gaussianities has been so
far a challenging task. This is partly due to our lack of
theoretical control over observables that are outside the linear
regime.Consistency relations are nonperturbative statements
that follow solely from symmetry arguments and, as such,
might provide a key tool to overcome these difficulties.
In this paper we successfully test them, for the first time,

in a regime well outside the domain of perturbation theory.
In doing so, we highlight and solve a number of technical
and conceptual subtleties associated with the analysis of the
bispectrum in the squeezed regime from N-body simula-
tions, whose systematic study has been lacking from the
literature (see [35] for an exception, though see footnote 7).
Moreover, we show how in the presence of non-Gaussian

initial conditions of the local fNL type, significant deviations
from the standard consistency relations are observed. This is
the first step towards extracting constraints on fNL from
observational data, using the consistency relations (or
violations thereof). The appeal is that with this method,
(nonlinear) modes that are normally discarded can now be
used. Several issues need to be investigated before this goal
can be realized. They include: checking the consistency
relations (1) for biased observables such as halos inN-body
simulations or galaxies in hydrodynamic simulations, and
(2) including redshift space distortions. As explained in
Sec. I, the consistency relations are expected to be robust
against these complications, but it would be useful to test the
expectations against simulations—our simple exercise pre-
sented in this paper suggests there could well be subtleties
that need to be understood and addressed.
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APPENDIX: CHECKING SOFT MOMENTUM
FACTORIZATION

In this Appendix we show that the procedure outlined
around Eqs. (9) and (10) might not eliminate the unwanted
q dependence if q is extremely small.
As an explicit check let us consider the result obtained in

perturbation theory. When the hard mode k is within the

FIG. 4. Left panel: Comparison between N-body data and a ðā0; ā1Þ model fit for a case where the initial conditions are non-Gaussian
(of the local fNL type, with fNL ¼ 100). Right panel: The blue circles represent the residues for the (ā0, ā1) model, i.e., ½B̄δðq̄Þ −P

nānMnðq̄Þ�=½B̄δðq̄Þ þ
P

nānMnðq̄Þ� expressed in percentage, where B̄δ is the N-body bispectrum with initial conditions of local
fNL ¼ 100. The error bars shown represent the statistical spread in this residue. Also shown as green squares are the same residues as the
green squares in Fig. 3, i.e., residues for the Gaussian case (fNL ¼ 0). The larger error bars compared to those in Fig. 3 reflect the fact
that fewer realizations are used in this analysis.
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FIG. 5. Comparison between f̄ðq̄Þ and āpt0 q̄. The procedure
outlined around Eqs. (9) and (10), if it works, should make the
two very close to each other. (Here, f̄ is the analog of B̄δ over
there.) One can notice that, for very small soft momenta, the
procedure does not work so well.
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linear regime one can easily show that the squeezed limit of
the bispectrum (see e.g., [14,44]) gives

apt0 ðk; θÞ ¼
�
13

7
þ 8

7
cos2θ

�
PδðkÞ − cos2θkP0

δðkÞ:

Let us then consider the toy model fðq; k; θÞ ¼ apt0 ðk; θÞq
(i.e., f is our toy bispectrum for which apt0 as a function of k
and θ is exactly known), and bin it as in Eqs. (9) and (11)
over k ∈ ½79; 91�kf and all relative angles. Let us call the
result f̄. Recall that the worry was that, with a discrete set
of triangles, the average over k and θ of apt0 (we call this āpt0 )
would secretly depend on q. In our toy example, since the k
and θ dependence of apt0 are precisely known, we can
compute this average exactly without reference to the

particular triangles we happen to have in our discrete grid.
If our procedure to remove the unwanted q dependence
works, then it should be f̄ðq̄Þ ¼ āpt0 q̄.
In Fig. 5 we report the result of our measurement. As one

can see, the procedure works reasonably well only if the
soft momentum is q≳ 3kf. In the analysis reported in
Sec. II C we therefore exclude the lowest momentum bin.
See Sec. II B for a discussion of why our procedure does
not perfectly remove the unwanted q dependence.
Finally, it can be checked that, in the presence of local

fNL non-Gaussianities, the factorization in Eq. (11) holds
better, even for low momenta. Indeed, the dominant a−2ðkÞ
term is expected to have no θ-dependence and only a mild
k-dependence [12].
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