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We study gravitational waves induced from the primordial scalar perturbations at second order around
the reheating of the Universe. We consider reheating scenarios in which a transition from an early matter-
dominated era to the radiation-dominated era completes within a timescale much shorter than the Hubble
time at that time. We find that an enhanced production of induced gravitational waves occurs just after the
reheating transition because of fast oscillations of scalar modes well inside the Hubble horizon. This
enhancement mechanism just after an early matter-dominated era is much more efficient than a previously
known enhancement mechanism during an early matter era, and we show that the induced gravitational
waves could be detectable by future observations if the reheating temperature TR is in the range
TR ≲ 7 × 10−2 GeV or 20 GeV ≲ TR ≲ 2 × 107 GeV. This is the case even if the scalar perturbations on
small scales are not enhanced relative to those on large scales, probed by the observations of the cosmic
microwave background.
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I. INTRODUCTION

Recently, gravitational waves (GWs) have been attract-
ing more and more attention. So far, LIGO and Virgo
collaborations have succeeded in detecting GWs from
merging black holes [1,2]. KAGRA is also expected to
detect GWs in a few years [3]. GWs provide a lot of
information about not only the nature and the origins of
black holes, but also about the early Universe. Stochastic
GWs induced by curvature perturbations at second order
are one of the cosmological GW sources closely related
to the study of the early Universe [4–8]. There are a
number of recent studies about such induced GWs
[9–22], some of which are related to primordial black
holes. The induced GWs, along with other GW back-
grounds of astrophysical as well as cosmological origins,
can be investigated by the ongoing or future GW pro-
jects, such as pulsar timing array observations (EPTA
[23], PPTA [24], NANOGrav [25], SKA [26,27]),
ground based interferometer experiments (advanced
LIGO (aLIGO) [28], Virgo [29], KAGRA [3], Einstein
Telescope (ET) [26,30,31], Cosmic Explorer [32]), and
space based interferometer experiments (LISA [26,30,33],
DECIGO [34,35], BBO [35,36]). Future measurements of
stochastic GWs can be a key to reveal the evolution
history of the Universe.

In this work, we focus on the relation between the
induced GWs and an early matter-dominated era (eMD
era). An eMD era is a period during which the energy
density of a massive field dominates the Universe before
the reheating. Although the eMD effects on the induced
GWs have been discussed in Refs. [10,37,38], in our
accompanying paper [39], we find that if we carefully
take into account the evolution of the gravitational poten-
tial, which is the source of the induced GWs, around
the transition from an eMD era to the radiation-dominated
era (RD era), the predictions for the induced GWs can
change. In particular, we show that the induced GWs can be
significantly suppressed for a gradual transition, whose
transition timescale is comparable to the Hubble time
at that time. In some cosmological scenarios (see the
Appendix A), however, the transition from an eMD era
to the RD era is sudden; i.e., the timescale of the transition
is much shorter than the Hubble time at that time. The
purpose of this paper is to study the induced GWs in such
sudden transition cases.
The effects on the induced GWs of a sudden reheating

mainly arise during the RD era by the scalar perturbations
that have already entered the horizon during an eMD era.
Although GWs induced during an eMD era have been
studied in Refs. [10,37,38], GWs induced during the RD
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era by the perturbations experiencing an eMD era on
subhorizon scales have not been investigated in the
previous studies. However, we point out that, in sudden-
reheating scenarios, GWs induced during the RD era can be
larger than GWs induced during an eMD era by several
orders of magnitude. Making use of this enhancement, we
might be able to determine the reheating temperature by
future GW detectors, as we discuss later.
We begin by reviewing the equations to calculate the

induced GWs in Sec. II, and based on these equations we
obtain the power spectra for the induced GWs in Sec. III
assuming a sudden transition from an eMD era to the RD
era. We explore possibilities to determine the reheating
temperature in Sec. IV by making use of the enhancement
of the induced GWs associated with a sudden reheating,
and Sec. V is dedicated to conclusions. In Appendix A, we
discuss two models that can realize a sudden transition
from an eMD era to the RD era, and in Appendix B we
present approximate formulas for the induced GWs in
sudden-reheating scenarios.

II. FORMULAS FOR INDUCED
GRAVITATIONAL WAVES

In the following, we briefly review the equations to
calculate induced GWs (see Ref. [10] for more details). We
assume that an eMD era ended abruptly with the Universe
entering into the RD era at a conformal time η ¼ ηR. Then
the scale factor and the conformal Hubble parameter are
given by

aðηÞ
aðηRÞ

¼
( ð η

ηR
Þ2

2 η
ηR
− 1

; HðηÞ ¼
(

2
η ðη ≤ ηRÞ

1
η−ηR=2

ðη > ηRÞ
: ð1Þ

We also assume that the curvature perturbations follow a
Gaussian distribution1 and adopt the conformal Newtonian
gauge2 for simplicity. Since we focus on the effects of
an eMD era, relevant to very small-scale fluctuations

(k ≫ keq ¼ 0.0103 Mpc−1 [44]), in this paper we do not
consider the enhancement of the induced GWs during the
late MD era (z≲ 3400) [5,45].
The energy density parameter of GWs per logarithmic

interval in k is given by

ΩGWðη; kÞ ¼
ρGWðη; kÞ
ρtotðηÞ

¼ 1

24

�
k

aðηÞHðηÞ
�

2

Phðη; kÞ; ð2Þ

where Phðη; kÞ is the time averaged power spectrum of
GWs. It can be evaluated from the power spectrum Pζ of
the curvature perturbations by [10]

Phðη; kÞ ¼ 4

Z
∞

0

dv
Z

1þv

j1−vj
du

�
4v2 − ð1þ v2 − u2Þ2

4vu

�
2

× I2ðu; v; k; η; ηRÞPζðukÞPζðvkÞ: ð3Þ

Here, Iðu; v; k; η; ηRÞ, describing the time dependence of
GWs, is given by

Iðu; v; k; η; ηRÞ ¼
Z

x

0

dx̄
aðη̄Þ
aðηÞ kGkðη; η̄Þfðu; v; x̄; xRÞ; ð4Þ

where x and xR are defined as x≡ kη and xR ≡ kηR. In this
equation, Gk is the Green’s function being the solution of

G00
kðη; η̄Þ þ

�
k2 −

a00ðηÞ
aðηÞ

�
Gkðη; η̄Þ ¼ δðη − η̄Þ; ð5Þ

where a prime denotes differentiation with respect to η, not
η̄. Note that the concrete expression of Gk depends on the
background evolution of the Universe, which is an eMD era
or the RD era in our problem. In addition, fðu; v; x̄; xRÞ is
the source function defined as

fðu; v; x̄; xRÞ ¼
3ð2ð5þ 3wÞΦðux̄ÞΦðvx̄Þ þ 4H−1ðΦ0ðux̄ÞΦðvx̄Þ þΦðux̄ÞΦ0ðvx̄ÞÞ þ 4H−2Φ0ðux̄ÞΦ0ðvx̄ÞÞ

25ð1þ wÞ ; ð6Þ

where ω ¼ P=ρ is the equation-of-state parameter with P
and ρ being the pressure and the energy density, respec-
tively. Φ is the transfer function of the gravitational poten-
tial, which satisfiesΦðx → 0; xRÞ → 1, and a prime denotes
differentiation with respect to the conformal time, that is,
Φ0ðux̄Þ≡ ∂Φðux̄Þ=∂η̄ ¼ uk∂Φðux̄Þ=∂ðux̄Þ. The second

argument of Φ is abbreviated in Eq. (6) for compact
notation. Φðux̄Þ actually means Φðux̄; ux̄RÞ, and Φðvx̄Þ
should be understood similarly.
The evolution equation for Φ is [46]

Φ00 þ 3ð1þ wÞHΦ0 þ wk2Φ ¼ 0: ð7Þ
By solving this equation, we find

Φðx;xRÞ ¼
�
1 ðfor x≤ xRÞ;
AðxRÞJ ðxÞþBðxRÞYðxÞ ðfor x≥ xRÞ;

ð8Þ

1GWs induced by the curvature perturbations with non-
Gaussianity are discussed in Refs. [11,14,40,41].

2The gauge dependence of induced GWs is discussed in
Refs. [42,43].

INOMATA, KOHRI, NAKAMA, and TERADA PHYS. REV. D 100, 043532 (2019)

043532-2



where we have dropped the decaying mode for η < ηR. In
this expression, J ðxÞ and YðxÞ are defined from the first
and second spherical Bessel functions, j1ðxÞ and y1ðxÞ, as

J ðxÞ ¼
3

ffiffiffi
3

p
j1ðx−xR=2ffiffi3p Þ

x − xR=2
; ð9Þ

YðxÞ ¼
3

ffiffiffi
3

p
y1ðx−xR=2ffiffi3p Þ

x − xR=2
; ð10Þ

and the coefficients AðxRÞ and BðxRÞ are determined so that
ΦðxÞ and Φ0ðxÞ are continuous at x ¼ xR:

AðxRÞ ¼
1

J ðxRÞ − YðxRÞ
Y0ðxRÞJ

0ðxRÞ
; ð11Þ

BðxRÞ ¼ −
J 0ðxRÞ
Y0ðxRÞ

AðxRÞ: ð12Þ

In Appendix A, we introduce a model realizing a sudden-
reheating transition and check that the above analytic
expression for Φ with these connection conditions coin-
cides well with the numerical solution for Φ calculated for
that model.
We can reexpress Eq. (4) as in Ref. [10] with a slight

refinement of the time dependence of the scale factor:

Iðu; v; x; xRÞ ¼
Z

xR

0

dx̄

�
1

2ðx=xRÞ − 1

��
x̄
xR

�
2

× kGeMD→RD
k ðη; η̄Þfðu; v; x̄; xRÞ

þ
Z

x

xR

dx̄

�
2ðx̄=xRÞ − 1

2ðx=xRÞ − 1

�
× kGRD

k ðη; η̄Þfðu; v; x̄; xRÞ
≡ IeMDðu; v; x; xRÞ þ IRDðu; v; x; xRÞ; ð13Þ

where IeMD and IRD represent the contributions from
GWs induced during an eMD era and the RD era,
respectively. See our accompanying paper [39] for the
concrete expressions of the Green functions. We approxi-

mate I2ðu; v; x; xRÞ in Eq. (3) as

I2ðu; v; x; xRÞ ≃ I2eMDðu; v; x; xRÞ þ I2RDðu; v; x; xRÞ: ð14Þ

Correspondingly, we approximately split ΩGW into two
parts as ΩGW ≃ΩGW;RD þΩGW;eMD, where ΩGW;RD and

ΩGW;eMD are calculated from I2RD and I2eMD, respectively.
The analytic formulas for IeMD and IRD are derived in

Ref. [10]. In this reference, we adopted an implicit
assumption that GWs induced during the RD era by the
perturbations having entered the horizon during an eMD
era, which we focus on in this work, are subdominant
compared to the GWs: 1) which are induced during the
eMD era, and 2) which are induced by the perturbations

entering the horizon after the reheating. However, this
assumption is not true in realistic situations. In our
accompanying paper [39], we consider a gradual reheating
transition and show that the contributions from IRD play an
important roll for the suppression of induced GWs. In
addition, in a sudden-reheating scenario, the dominant
contribution comes from IRD as we will show in Sec. III.
During the RD era, the gravitational potential, the source

of GWs, decays on subhorizon scales, and therefore ΩGW
becomes constant after the gravitational potential has
sufficiently decayed. Here, we define ηc as the moment
when ΩGW becomes constant. Note that since we focus on
small scales, where the effects of an eMD era may leave
traces, ηc is well before the standard matter-radiation
equality time. Taking into account the evolution of GWs
during the late MD era and the change in the effective
relativistic degrees of freedom (d.o.f.), we can write the
current energy density parameter ΩGWðη0; kÞ as [47]

ΩGWðη0; kÞ ¼ 0.39

�
gc

106.75

�
−1=3

Ωr;0ΩGWðηc; kÞ; ð15Þ

where Ωr;0 is the current value of the energy density
parameter for radiation. In this paper, we denote the
effective relativistic d.o.f. by g, and gc in this equation is
its value at η ¼ ηc.

III. CALCULATIONS OF INDUCED
GRAVITATIONAL WAVES

Using the above equations and the analytic formulas in
Ref. [10], we calculate induced GWs. To be specific, we
assume the following power spectrum of the curvature
perturbation:

PζðkÞ ¼ Θðkmax − kÞAs

�
k
k�

�
ns−1

; ð16Þ

whereAs is the amplitude at the pivot scale k�, ns is the tilt of
the power spectrum, and Θ is the Heaviside step func-
tion. We introduce kmax as the cutoff scale of the power
spectrum. Since matter density perturbations grow in pro-
portion to the scale factor during a MD era, perturbations
may enter into the nonlinear regime, depending on the
amplitude of primordial fluctuations and the duration of an
eMD era. If perturbations remain in the linear regime during
an eMD era, the cutoff scale is the Hubble radius at the
beginning of an eMD era. On the other hand if such
nonlinearities arise, kmax should be chosen as the wave
number of perturbations that are entering the nonlinear
regime at the end of an eMD era, since our formalism is
based on the linear theory.3 In this case, the smallest scale on
which we can apply the linear theory is approximated as [39]

3There are works discussing GWs induced by nonlinear
perturbations, though the results inevitably involve some un-
certainties [48,49].
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kNL ∼ 470=ηR: ð17Þ

Hence, to ensure the validity of our analysis, we limit our
analysis to cases with kmax ≤ 450=ηR. That is, we do not
take into account GWs that are generated from nonlinear
perturbations, and this means our analysis would lead to
conservative estimations of the GW spectrum.
Figure 1 shows the scale dependence of the spectrum of

induced GWs. In this figure, we take ns ¼ 1 for simplicity.
We can see that ΩGW;RD is much larger than ΩGW;eMD. This
is because the GWs induced during the RD era by the
subhorizon perturbations that entered the horizon during an
eMD era, neglected in the previous works but taken into
account in this work, are significant. For comparison, we
also plot the GW spectra induced by the power spectra
of PðkÞ ¼ Θðkmax − kÞΘðk − 0.7kmaxÞAs and PðkÞ ¼
Θð0.7kmax − kÞΘðk − 0.4kmaxÞAs with blue and red lines.
As shown in the figure, the contributions from the smallest
scales (blue dashed line) are the dominant contributions to
the total spectrum (solid black line) except for the large-
scale-side tail of the sharp peak (0.3≲ k=kmax ≲ 1). This
sharp peak is due to the resonance effect, which is a
characteristic feature of GWs induced during the RD era
[4], when the gravitational potential oscillates. The tail of
the sharp peak is formed by the envelope of the resonance
effects on these scales (see the red dot-dashed line). In this
way, the spectrum of the induced GWs is produced
dominantly by the smallest scales, and the resonant
amplification plays a key role. This understanding becomes
clearer in Appendix B, where we derive approximate

analytic formulas for induced GWs for sudden-reheating
scenarios. On much larger scales, the contributions from
the perturbations entering the horizon after the reheating
dominate induced GWs, whose spectrum becomes scale
invariant ΩGWðηc; kÞ ≃ 0.8222A2

s [10]. This can be
observed in the GW spectrum for k < 109 Mpc−1 in
Fig. 2, though in that figure a slightly scale-dependent
primordial spectrum is assumed, leading to a slight scale
dependence of ΩGW.
The main reason why induced GWs are enhanced is that

the gravitational potential Φ with large k (≫1=ηR) is
constant until η ¼ ηR, and, after the reheating, it oscillates
with the timescale ∼1=k, much shorter than its decay
timescale ∼ηR. Due to the fast oscillations of perturbations
with unsuppressed amplitudes, which remained constant
until the moment of the reheating, induced GWs are
significantly enhanced.4 Note that the dominant contribu-
tions come from the last term in Eq. (6), which involves two

FIG. 1. Energy density parameters of GWs, for each logarith-
mic interval of wave number, induced during the RD era
[ΩGW;RDðηc; kÞ] and during an eMD era [ΩGW;eMDðηc; kÞ], as
well as the power spectrum PζðkÞ of curvature perturbations.
They are normalized by A2

s or As, respectively, and we take
ηR ¼ 450=kmax. The black lines are derived from PζðkÞ ¼
Θðkmax − kÞAs. For comparison, the blue and red lines are also
shown, which are derived from PζðkÞ ¼ Θðkmax − kÞΘðk −
0.7kmaxÞAs and PζðkÞ ¼ Θð0.7kmax − kÞΘðk − 0.4kmaxÞAs,
respectively.

FIG. 2. Effective sensitivities to stochastic GWs of current and
future experiments. Note that we plot ΩGW;effh2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tobsf=10

p
as a

sensitivity curve for each experiment. We consider the same
experiments and take the same parameters as in Ref. [16]. In
particular, we take the same parameter sets of observation time
for each experiment: Tobs ¼ 18 years for EPTA, Tobs ¼ 20 years
for SKA, and Tobs ¼ 1 year for the other experiments. The
shaded regions have already been excluded by the existing
observational data. See Ref. [16] for more details about the
sensitivity curve of each experiment. Black lines show the energy
density parameters of the GWs induced by the power spectrum of
PζðkÞ ¼ 2.1 × 10−9ðk=0.05 Mpc−1Þ−0.04Θðkmax − kÞ. We take
kmax¼1014 Mpc−1 for all these three lines and ηR ¼ 450=kmax,
ηR ¼ 200=kmax and ηR ¼ 100=kmax for each line, respectively.

4Although the perturbations entering the horizon during the
RD era also oscillate with the timescale much shorter than their
decay timescale well after (not soon after) the horizon entry,
the amplitudes of the perturbations start to decay soon after
the horizon entry, unlike during an eMD era, and, therefore, the
enhancement is not caused by the perturbations entering the
horizon during the RD era.
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time derivatives of the gravitational potential. This is
because, at the beginning of the RD era, the last term
can be approximated as H−2Φ0Φ0 ∼ ðkηRÞ2Φ2 ≫ Φ2 for
the perturbations that entered the horizon well before the
sudden reheating. In other words, the factor ðkηRÞ2 in
the source term and the amplitude of Φ that remained
constant until the reheating are the main causes for the
enhancement.
In addition to numerical solutions, we also obtain appro-

ximate analytic formulas of ΩGW;RD in Appendix B,
with ΩGW;RD given by the sum of Eqs. (B5) and (B7).
Using these expressions, the GW spectrum is roughly
expressed as

ΩGWðηc;kÞ
A2
s

≃

8>>>>>>>><
>>>>>>>>:

0.8 ðxR≲ 150x−5=3max;RÞ
3× 10−7x3Rx

5
max;R ð150x−5=3max;R≲ xR ≪ 1Þ

1× 10−6xRx5max;R ð1≪ xR≲ x5=6max;RÞ
3× 10−7x7R ðx5=6max;R≲ xR≲ xmax;RÞ
ðsharp dropÞ ðxmax;R≲ xR ≤ 2xmax;RÞ

;

ð18Þ

neglecting a logarithmic factor for the second line.

IV. DETERMINATION OF REHEATING
TEMPERATURE

In the previous section, we have shown that the induced
GWs can be much larger than those previously reported
[10,37,38]. In the following, we consider the GWs induced
by the almost scale-invariant power spectrum, given in
Eq. (16), with As ¼ 2.1 × 10−9, k� ¼ 0.05 Mpc−1, and
ns ¼ 0.96 [44]. Figure 2 shows the sensitivity curves of
current and future GW experiments and plots for ΩGW of
the GWs induced by this power spectrum with kmax ¼
1014 Mpc−1. This figure shows that the induced GWs
associated with a sudden transition from an eMD era to
the RD era could, in principle, be observable by future
projects. Since the height and scale of the peak are
determined by the scale of the reheating and the
cutoff kmax, we discuss what range of the reheating
temperature could be probed by future observations search-
ing for GWs.
We adopt an analysis similar to that in our previous paper

[16] (see also Ref. [50]). We use the signal-to-noise ratio ρ
for GW interferometers given by [50].

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2Tobs

p �Z
fmax

fmin

df

�
ΩGWðfÞ
ΩGW;effðfÞ

�
2
�
1=2

: ð19Þ

Here, Tobs is the observation time, and ðfmin; fmaxÞ is the
range of observable frequencies for each project. ΩGW;eff is
the effective sensitivity curve, which is calculated for each

project (see Ref. [16] for detail). For pulsar timing array
(PTA) observations, we use [51–53]

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2Tobs

p �XM
I¼1

XM
J>I

χ2IJ

�1=2

×

�Z
fmax

fmin

df

�
ΩGWðfÞ

ΩnðfÞ þ ΩGWðfÞ
�

2
�
1=2

: ð20Þ

In this expression,M is the number of the observed pulsars,
χIJ is the Hellings and Downs coefficient, and Ωn is the
energy density parameter for noise of each pulsar. We take
the same parameters and noise power spectrum as in
Ref. [16] assuming that the noise is dominated by the
white timing noise [50].
Using the effective sensitivity curves in Fig. 2, we

derive the cutoff scale to give ρ ¼ 1 for each project and
reheating temperature. The numerical results are shown in
Fig. 3. When we derive the curves, we use the approxi-
mation formulas given in Eqs. (B5), (B7), and (B9) to
save the computational time.5 In this figure, we take
Tobs ¼ 20 years for SKA and Tobs ¼ 1 year for the

FIG. 3. Relation between the cutoff scale multiplied by ηR and
the reheating temperature that can be probed by the future
observations. We take Tobs ¼ 20 yr for SKA and Tobs ¼ 1 yr
for the others. The curves correspond to the values of kmaxηR
required to reach the signal-to-noise ratio of unity (ρ ¼ 1) for the
experiments at each reheating temperature. The brown shaded
region is already excluded by the big bang nucleosynthesis and
the Planck data [55].

5For simplicity, we use the formulas for the scale-invariant
spectrum, given in Eqs. (B5), (B7), and (B9), instead of those
for the power-law spectrum, given in Eqs. (B10)–(B13). Since
the enhancement of the induced GWs is mainly caused by the
perturbations on the smallest scales (k ∼ kmax) and the tilt of the
power spectrum is small, we can approximately use the formulas
for the scale-invariant spectrum whose amplitude is given by
Asðkmax=k�Þns−1. We have also numerically checked that the
effect of the tilt with ns ¼ 0.96 around the smallest scale on the
enhanced GW spectrum is negligible.
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other projects and assume no foreground for simplicity.
When we obtain these plots, we have used the follow-
ing relation between the conformal time and the temper-
ature [16]6:

aH
aeqHeq

¼ 1ffiffiffi
2

p
�
gs;eq
gs

�
1=3

�
g
geq

�
1=2 T

Teq
;

⇒
ηR

10−14 Mpc
¼

�
gs

106.75

�
1=3

�
g

106.75

�
−1=2

×

�
TR

1.2 × 107 GeV

�
−1
; ð21Þ

where the subscript “eq” means the value at the late
matter-radiation equality (z ∼ 3400), and gs is the effective
d.o.f. for the entropy density. Note again that the peak
scale of the induced GWs corresponds to k ∼ kmax, not
k ∼ 1=ηR. Figure 3 shows that, in the case of kmaxηR ¼
450, the ranges of reheating temperature that future
observations could investigate are TR≲7×10−2GeV
for SKA, 20 GeV≲ TR ≲ 4 × 103 GeV for LISA,
20 GeV≲ TR ≲ 1 × 107 GeV for DECIGO, 20 GeV≲
TR ≲ 2 × 107 GeV for BBO, and 4 × 105 GeV≲ TR≲
2 × 107 GeV for ET.

V. CONCLUSIONS

We have studied the effects of an eMD era on the
induced GWs. In particular, we have focused on a sud-
den-reheating scenario, in which the reheating completes
on a timescale much shorter than the Hubble time at that
time. Then, we have found that the induced GWs can be
significantly enhanced in such a scenario. The main
contributions to the enhanced GWs come from the GWs
induced during the RD era by the perturbations that entered
the horizon during the eMD era. This is due to the fast
oscillations of the perturbations after the sudden transition.
This enhancement is qualitatively opposite to the suppres-
sion of induced GWs in gradual-reheating scenarios, which
we report in our accompanying paper [39]. This means that
the eMD effects on the induced GWs strongly depend on
how the reheating takes place.
We have also numerically calculated the induced GWs

with realistic power spectra of curvature perturbations and
discussed possibilities of determining the reheating temper-
ature observationally for sudden-reheating scenarios. We
have found that if an eMD era lasts for 224ηeMD;start, where
ηeMD;start is the conformal time at the start of the eMD era,7

the reheating temperatures in the range TR≲7×10−2 GeV
or 20 GeV≲ TR ≲ 2 × 107 GeV could be probed by future
GW projects, such as SKA, LISA, DECIGO, BBO, and ET.
Note that, if an eMD era starts right after the inflation era,
the duration of the eMD era ofOð100ÞηeMD;start corresponds

to ρ1=4inf =T R ∼Oð103Þ, where ρinf is the energy density
during the inflation era.
Since the enhancement of the induced GWs we find is

so significant, one may wonder if it is consistent with
some physical requirements. Hence, we briefly mention
some consistency checks. Let us first discuss energy
conservation and backreaction. Note that the dominant
part of the energy density of the induced GWs is
generated soon after the reheating transition by the
short-wavelength modes at around k ∼ kmax, and the
enhancement is stronger for kmax closer to the nonlinear
scale kNL. By definition, the energy density of density
perturbations at scales around kNL is comparable to the
energy density of the homogeneous component. On the
other hand, in Fig. 1, we have seen that the energy
density of the induced GWs is ΩGWðηcÞ ∼ 1012A2

s ∼
Oð10−6Þ even for kmaxηR ¼ 450 (kmax ∼ kNL). The small-
ness of ΩGW implies that the energy density of the
induced GWs is much smaller than both the energy
density of its source, namely the density perturbations,
and the homogeneous component. Thus, a backreaction
of the GW production to the thermal history of the
Universe would be negligible.
Another concern may be whether or not GWs induced

at third order in scalar perturbations are negligible, given
the fact that the second-order contributions have turned
out to be significant. In other words, one might wonder
whether or not sources coming from third-order scalar
perturbations appear with many derivatives, which can be
larger than the dominant source in second-order scalar
perturbations, H−2Φ0Φ0, even when the perturbations are
linear ðkηRÞ2Φ≲ 1. Complete evaluations of the third-order
contributions are much more complicated than those for the
second-order analysis. Thus, we estimate their orders of
magnitudes by listing up possible third-order terms that
appear in the evolution equation for tensor perturbations
and are consistent with general covariance and the trans-
verse traceless condition. Most of them turned out to be
negligible provided that we are in the linear regime, where
the density perturbations are less than unity. However, we
need to carefully evaluate the contributions involving the
first-order scalar perturbations multiplied by the second-
order vector perturbations, which are sourced by first-
order scalar perturbations at second order, similarly to the
induced GWs we have studied. That is because the power
spectrum of second-order vector perturbations is larger than
that of second-order tensor perturbations [56]. Full eval-
uations of these contributions are beyond the scope of this
work, but we expect that the third-order GWs can be
subdominant as long as kmax ≪ kNL.

6To derive Eq. (21), we use the relation aeqHeq ¼
keqð¼0.0103 Mpc−1Þ [44,54]. This relation corrects the factor
given in Ref. [16].

7Note that the wave number corresponding to the horizon scale
at ηeMD;start satisfies keMD;startηR ¼ 450 because keMD;start ¼
aeMD;startHeMD;start ¼ 2=ηeMD;start and ηR ¼ 225ηeMD;start in this
case (the duration is ηR − ηeMD;start ¼ 224ηeMD;start).
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In this paper, we do not take into account the gauge
dependence of the induced GWs [43], GW foregrounds due
to other astrophysical as well as cosmological sources, and
the possible contributions from nonlinear perturbations
[48,49], which can arise depending on the length of the
eMD era and the amplitude of the small-scale primordial
fluctuations. Although these issues remain to be inves-
tigated, our result shows that observations of GWs could
possibly reveal the reheating history of the Universe in the
near future.

ACKNOWLEDGMENTS

K. I. and T. N. thank KEK, Johns Hopkins University,
and Research Center for the Early Universe, University of
Tokyo, for hospitality received during this work. K. I.
acknowledges Tomohiro Fujita, Teruaki Suyama, and
Masahide Yamaguchi for useful comments. This work
was supported in part by World Premier International
Research Center Initiative (WPI Initiative), MEXT,
Japan, the JSPS Research Fellowship for Young
Scientists (K. I. and T. T.), JSPS KAKENHI Grants
No. JP18J12728 (K. I.), No. JP17H01131 (K. K.), and
No. JP17J00731 (T. T.), MEXT KAKENHI Grants
No. JP15H05889 (K. K.), No. JP18H04594 (K. K.),
and No. JP19H05114 (K. K.), and Advanced Leading
Graduate Course for Photon Science (K. I.).

APPENDIX A: A MODEL THAT REALIZES A
SUDDEN-REHEATING TRANSITION

In this Appendix, we build a concrete model in which
the reheating happens in a timescale much shorter than
the Hubble time at that time. This ensures that Φ does
not decay during the reheating transition, leading to the
enhancement of induced GWs, reported in this paper, in
contrast to the suppression of induced GWs for a gradual
transition, reported in our accompanying paper [39].
Our idea for a sudden reheating is to initially block the

decay of the field ϕ, dominating the energy density in the
eMD era, into relativistic daughter particles, collectively
denoted by χ, for some reason related to kinematics or
symmetry, and then to remove the cause of the blocking
in a dynamical manner. For this purpose, we introduce a
field τ, which dynamically triggers the decay of ϕ into χ.
We dub such a field τ “triggeron”. In the models we
discuss below, the mass of χ is dependent on the field
value of τ and a quick change of that field value causes a
sudden decay of ϕ to χ, which we identify as a sudden
reheating.

1. A scenario for a sudden reheating
triggered by a fast rolling field

The main ideas of this model are as follows. At first,
the initial triggeron value is sufficiently large so that the
decay of ϕ into two χ particles is kinematically forbidden.

When the Hubble parameter becomes comparable to the
triggeron mass m, the triggeron starts to roll down its
potential quickly, and it passes through some critical value
at which the decay channel of ϕ opens. If the decay rate is
much larger than the Hubble scale, the reheating transition
completes quickly.
We consider a simple model that involves three

canonically normalized real scalar fields ϕ, τ, and χ to
demonstrate the ideas. One can easily generalize this
model by considering, e.g., complex scalar fields, fer-
mions, or gauge bosons. The Lagrangian density we
assume is

L ¼ −
1

2
∂μϕ∂μϕ −

1

2
∂μχ∂μχ −

1

2
∂μτ∂μτ − V; ðA1Þ

V ¼ 1

2
M2ϕ2 þ 1

2
m2τ2 þ λ

4
τ2χ2 þ c

2
Mϕχ2; ðA2Þ

where M and m denote the masses of ϕ and τ,
respectively, satisfying M2 ≫ m2, and λ and c are
dimensionless coupling constants. The third term in the
potential can be interpreted as the τ-dependent mass term
for χ, and the last term provides the decay channel of ϕ
into 2χ particles, once the decay becomes kinematically
allowed. The decay rate of ϕ into 2χ particles is

Γ ¼ c2M
32π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
χ;eff

ðM=2Þ2

s
ΘðM2 − 4m2

χ;effÞ; ðA3Þ

where m2
χ;eff ¼ hλτ2=2i is the effective mass squared of χ

and it is determined by the time-dependent expectation
value of τ, as mentioned above. Note that the decay rate
is nonzero only when the decay is kinematically possible,
i.e., mχ;eff < M=2, otherwise, it vanishes. The critical
value of the triggeron field at which the decay channel
opens is τc ¼ M=

ffiffiffiffiffi
2λ

p
.8

There are some conditions for this scenario to work.
Obviously, the initial field value of triggeron τ0 should be

8To follow the evolutions of the mass of the daughter particles
χ after the decay of ϕ, we need to take into account the
backreaction of the particle production effect to the dynamics
of τ, whose dedicated analysis is beyond the scope of this paper.
Once most of the energy density in ϕ has been converted to a
large number of χ particles when they are almost massless, energy
conservation implies that τ cannot move significantly. A similar
backreaction effect is discussed in the context of preheating [57].
We expect that τ is trapped around the origin and assume that the
daughter particles χ remain relativistic in the following analyses.
Even if the daughter particles do not behave as relativistic
particles due to their varying mass, the sudden reheating is
realized in the case where the daughter particles decay or
annihilate to other light particles, including the Standard Model
particles, within a timescale much shorter than the Hubble time at
that time.
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large enough to satisfy τ0 > τc. (We may assume τ0 ≥ 0
without loss of generality.) To make the reheating transition
quick, the speed of τ needs to be sufficiently large when it
passes through the critical point τc; hence, we assume
τ0 ≫ τc. On the other hand, the triggeron field should not
dominate the energy density, and so τ0 should be much less
than the reduced Planck mass MP. Thus, the required
condition for τ0 is

τc ≪ τ0 ≪ MP: ðA4Þ

Second, once the decay becomes kinematically possible,
the typical decay rate should be much larger than the
Hubble scale, Γ ≫ H. This requires c2M ≫ m. We also
assume that τ eventually decays into radiation before it
would dominate the energy density.
Let us present the time evolution of the gravitational

potential Φ to show how this model works. Figure 4 shows
the evolution of Φ in addition to that of the field τ. For Φ,
we use the equations for perturbations that are used in our
accompanying paper [39] to take into account the decay of
ϕ to χ. This figure shows that the analytical expression of
Φ, given in Eq. (8), is satisfactorily accurate in sudden-
reheating scenarios.
Since ϕ and τ are independent d.o.f., fluctuations in τ

will introduce additional curvature perturbations and non-
Gaussianity due to the modulated reheating mechanism
[58–62]. To estimate those quantities, let us first note
that the time evolution of the triggeron is given by
τ ¼ τ0 sinðmtÞ=ðmtÞ. The time when it reaches the mini-
mum (τ ¼ 0) is mt ¼ π, but it reaches the critical value
slightly before. The decay time is thus estimated to be

mt ¼ π

�
1 −

τc
τ0

�
: ðA5Þ

As discussed e.g., in Ref. [63], the e-folding number is
related to the decay time as

eN ∝ t1=6: ðA6Þ

Thus, we can calculate N0 ¼ ð1=6Þt0=t and N00 ¼ ð1=6Þ ×
ðt00=t − ðt0=tÞ2Þ where the prime denotes differentiation
with respect to τ0, and t is evaluated at the decay time.
Explicitly,

N0 ≃
τc
6τ20

; N00≃ −
τc
3τ30

; ðA7Þ

noting τc ≪ τ0. Using these values, we obtain

PζðτÞ ¼ðN0δτ0Þ2 ≃
1

36

�
τc
τ0

�
2
�
Hinf

2πτ0

�
2

; ðA8Þ

fNL ¼ 5

6

�
PζðτÞ

Pζ

�
2 N00

ðN0Þ2 ≃ −10
�
PζðτÞ

Pζ

�
2 τ0
τc
; ðA9Þ

where ζ represents the total curvature perturbation, and
ζðτÞ is the contribution to ζ from τ. Note that fNL appears
to contain a large factor τ0=τc, but the above expression
implicitly contains the inverse of this factor with a higher
power. Hence, fNL can be sufficiently small. We con-
clude that non-Gaussianity can be small enough to be
consistent with observations provided that τ0 ≫ τc is
satisfied.
Let us interpret the above model. It is quite natural that

the decay of a field is prohibited by some symmetry. For
example, the lightest particle charged under some unbro-
ken symmetry is absolutely stable. This is usually applied
to dark matter model building to explain its stability [64].
Thus, we assume that ϕ is charged under some sym-
metry. If the scalar field is real, as in the above toy
model, the possible charge assignment is limited, and so
the scalar fields will be complex in a more realistic
situation. In this context, τ must be assumed to be a
singlet (noncharged) with respect to the symmetry that
protects ϕ’s stability because otherwise its initial nonzero
expectation value spontaneously breaks the symmetry. χ
can be interpreted as some charged particle, initially
heavier than ϕ due to its τ-dependent mass. However, it
subsequently becomes lighter than ϕ, which triggers the
ϕ decay. For example, we can assign ϕ charge þ2 and χ
charge −1. Or, we can assign ϕ and χ the same charge
and introduce a chargeless field χ0 with an interaction
such as ϕχ†χ0. In this way, various generalizations of our
simple model would be possible. The produced relativ-
istic χ particles and antiparticles are assumed to produce
a thermal bath containing Standard Model particles
through scattering and annihilation, which reheats the
Universe.

FIG. 4. Numerical results for the evolutions of the gravitational
potentialΦ and the triggeron τ, normalized byM. We also plot the
analytical formula of Φ, given by Eq. (7), with the black dotted
line. We take λ ¼ 0.1, c ¼ 0.1, and τ0 ¼ 1000M.
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Alternatively, we may interpret τ as some symmetry
breaking field. When a symmetry is broken, it is often the
case that charged fields (corresponding to χ) become
massive. For example, the Higgs mechanism makes gauge
bosons massive. In the Standard Model, it also makes
fermions massive through Yukawa interactions. One of the
flat directions in the minimal supersymmetric standard
model [65] would be a good candidate for this purpose
since most of the fields in the theory (corresponding to χ)
can be massive when it obtains a finite expectation value. In
this case, all the possible decay channels of ϕ must be
kinematically blocked or sufficiently suppressed.

2. Another sudden-reheating scenario realized by a field
that experiences a first-order phase transition

Suppose that ϕ is protected by a symmetry from
decaying, without any decay channels of ϕ to lighter
particles. Let us further assume that τ is charged under
the symmetry and is too heavy for ϕ to decay into. There
may be an interaction term of the form

L ¼ cτϕχχ þ…; ðA10Þ

where c is a coupling constant. Suppose that initially the
field value of τ is zero, to be contrasted with the previous
model. Then the decay of ϕ becomes possible once τ
acquires a finite vacuum expectation value, thereby sponta-
neously breaking the symmetry.
Such a symmetry-breaking phase transition can occur

suddenly if the phase transition is first order. The transition
occurs through the tunneling effect, and the tunneling rate
is exponentially sensitive to the cosmic temperature (to be
more precise, the temperature of the thermal bath to which τ
is coupled), and hence such a transition is sudden [66].
After the transition, ϕ becomes able to decay into χ
particles. Provided that this decay rate is much larger than
the Hubble parameter, the decay completes within a time-
scale much shorter than the Hubble time at that time.
Associated with the decay of ϕ, the temperature increases,
which may restore the symmetry temporarily. Thus, the
importance of the backreaction to the decay of ϕ requires a
further study. Eventually, the temperature decreases, and τ
settles to the symmetry-breaking vacuum.
One way to suppress the backreaction may be to assume

that the initial thermal bath is made up of a hidden sector
with τ being a portal to the visible sector. Then, the increase
in the temperature felt by τ would not be significantly
affected by the decay of ϕ.

APPENDIX B: APPROXIMATE ANALYTIC
FORMULAS FOR INDUCED GWs

Here, we derive analytic formulas of the spectrum
of induced GWs with some approximations based on

sudden-reheating scenarios. During an eMD era, Φ is
constant, and in the RD era, after reheating, the general
solution of Φ is given by the sum involving spherical
Bessel functions. These solutions for the two epochs are
connected at the transition.
As we can see in Fig. 4, Φ can be well approximated by

Eq. (8) in sudden-reheating scenarios. The explicit forms of
the coefficients A and B in Eqs. (11) and (12) are

AðxRÞ ¼
�
−
x2R
36

þ 1

�
cos

xR
2

ffiffiffi
3

p þ
ffiffiffi
3

p

6
xR sin

xR
2

ffiffiffi
3

p ; ðB1Þ

BðxRÞ ¼
�
−
x2R
36

þ 1

�
sin

xR
2

ffiffiffi
3

p −
ffiffiffi
3

p

6
xR cos

xR
2

ffiffiffi
3

p : ðB2Þ

Note that if we replace x − xR=2 in the expression for Φ
by x, our formulas become those in the case of a pure RD
era, and hence we can use the general formulas in
Appendix A of Ref. [10]. We substitute the above A
and B as well as C ¼ − cosðx − xR=2Þ and D ¼ sinðx −
xR=2Þ into these equations with x1 and x2 replaced by
x1 − xR=2 and x2 − xR=2, respectively. The function I is
split into two terms as in Eq. (13). The contributions
generated during an eMD era have been derived in
Ref. [37] and revised in Ref. [10], and so we here
mainly discuss the contributions generated during the RD
era, IRD. As explained in the main text, this behaves very
differently from the counterpart for a pure RD era, which
is obtained in the limit xR → 0, because of fast oscil-
lations of the modes that are already inside the horizon at
the reheating transition. Extracting the redshift factor
from the function, IRD ¼ 1

x−xR=2
IRD, we first calculate

IRD, for which we can use the results of Ref. [10].
Below, we use two different approximations to obtain

two main contributions. The first approximation is valid for
the large-scale modes with k ≪ kmax, and the second
approximation extracts the resonant contributions at
k≲ 2kmax=

ffiffiffi
3

p
. The sum of these two contributions turns

out to explain the results of numerical integrations well. For
simplicity, we first consider the spectrum given in Eq. (16)
with ns ¼ 1. Generalization to cases with an arbitrary
nsð>−3=2Þ is discussed at the end of this Appendix.

1. Large-scale approximation

As long as the scale k−1 under consideration is much
larger than the smallest scale k−1max, the integrations
over u and v, wave numbers in units of k, are dominated
by the large tð≡uþ v − 1Þ region (t ∼ xmax;R=xR), hence
txR ∼ xmax;R ≫ 1. After taking the late-time (x ≫ 1) oscil-
lation average and changing variables from u and v, to t and
s≡ u − v, we find
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I2
RD ≃

9t4x8R
163840000

�
π2 þ π2 cos

sxRffiffiffi
3

p þ 2Ci

�
xR
2
−

sxR
2

ffiffiffi
3

p
�

2

þ 2Ci

�
xR
2
þ sxR
2

ffiffiffi
3

p
�

2

þ 4 cos
sxRffiffiffi
3

p Ci

�
xR
2
þ sxR
2

ffiffiffi
3

p
�
Ci

�
xR
2
−

sxR
2

ffiffiffi
3

p
�

þ 2π sin
sxRffiffiffi
3

p
�
Ci

�
xR
2
þ sxR
2

ffiffiffi
3

p
�
−Ci

�
xR
2
−

sxR
2

ffiffiffi
3

p
��

− 2π

�
1þ cos

sxRffiffiffi
3

p
��

Si

�
xR
2
−

sxR
2

ffiffiffi
3

p
�
þ Si

�
xR
2
þ sxR
2

ffiffiffi
3

p
��

þ 4 sin
sxRffiffiffi
3

p
�
Ci

�
xR
2
−

sxR
2

ffiffiffi
3

p
�
Si

�
xR
2
þ sxR
2

ffiffiffi
3

p
�
−Ci

�
xR
2
þ sxR
2

ffiffiffi
3

p
�
Si

�
xR
2
−

sxR
2

ffiffiffi
3

p
��

þ 2Si

�
xR
2
−

sxR
2

ffiffiffi
3

p
�

2

þ 2Si

�
xR
2
þ sxR
2

ffiffiffi
3

p
�

2

þ 4 cos
sxRffiffiffi
3

p Si

�
xR
2
þ sxR
2

ffiffiffi
3

p
�
Si

�
xR
2
−

sxR
2

ffiffiffi
3

p
��

; ðB3Þ

where we have kept only terms with highest powers of t. The sine and cosine integrals are defined as SiðxÞ ¼ R
x
0 dz sinðzÞ=z

and CiðxÞ ¼ −
R
∞
x dz cosðzÞ=z. When we vary s, the above quantity varies approximately by a factor of two at most.

However, the angular factor [the factor in the first line of Eq. (3)] in the large t limit is ðs2 − 1Þ2, which suppresses the
nonzero s part, and so it turns out that setting s ¼ 0 is a good approximation for calculatingΩGW with 10% errors at most. If
we set s ¼ 0, it is simplified as

I2
RDjs¼0 ≃

9t4x8Rð4CiðxR2 Þ2 þ ðπ − 2SiðxR
2
ÞÞ2Þ

81920000
: ðB4Þ

This expression is so simple that we can analytically integrate it over t and s. The integration region is 0 ≤ s ≤ 1 and
0 ≤ t ≤ −sþ 2

xmax;R

xR
− 1 for xR ≤ xmax;R, and 0 ≤ s ≤ 2

xmax;R

xR
− 1 and 0 ≤ t ≤ −sþ 2

xmax;R

xR
− 1 for xR > xmax;R. For each

case, there is also an integration region obtained by the replacement s → −s, but the symmetry under this inversion ensures
that the total result is obtained by doubling the result obtained from the integration region with s > 0. Then the GW
spectrum under the large-scale (LS) approximation is

ΩðLSÞ
GW;RDðηc; kÞ ≃

4CiðxR
2
Þ2 þ ðπ − 2SiðxR

2
ÞÞ2

86016000000
A2
sx3Rx

5
max;R

× ðΘðxmax;R − xRÞð5376 − 17640k̃þ 23760k̃2 − 16425k̃3 þ 5825k̃4 − 847k̃5Þ
þ ΘðxR − xmax;RÞk̃−5ð2 − k̃Þ6ð4 − 8k̃ − 9k̃2 þ 13k̃3 þ 49k̃4ÞÞ; ðB5Þ

where k̃ ¼ xR=xmax;R ¼ k=kmax.

2. The resonant peak contributions

It seems challenging to obtain a simple expression for the
contributions from the xR ≃ xmax;R region. This is partly
because the leading-order terms (with the highest power of
xR) cancel for generic values of t and s, and the next-to-
leading order terms are complicated.
Let us focus on a specific contribution that corresponds

to the resonancelike peak (logarithmic divergence) at t ¼ffiffiffi
3

p
− 1 in the case of the monochromatic source in a pure

RD era [4]. The origin of the peak is the limit xR → 0 of the
Ci function. In the present case, we do not take the limit
xR → 0, but instead we focus on contributions from the
region where the integration variable t hits the zero of the Ci
function, possibly causing an enhancement. For this pur-
pose, we do not take the large t limit. Instead, we can take
the large xR limit since it turns out that this effect is most
efficient for the smallest-scale modes.
We focus on the terms containing the Ci function

whose argument can vanish, neglecting the other terms.

Furthermore, we take the late time limit x → ∞ as well as
oscillation average. With these approximations, we find

I2
RD ≈

9ð−5þ s2 þ 2tþ t2Þ4x8R
81920000ð1 − sþ tÞ2ð1þ sþ tÞ2 CiðjyjÞ

2; ðB6Þ

where y≡ ðt − ffiffiffi
3

p þ 1ÞxR=ð2
ffiffiffi
3

p Þ. We focus on spiky
contributions around y ¼ 0 or equivalently t ¼ ffiffiffi

3
p

− 1.
Except for the argument of the Ci function, we may set
t ¼ ffiffiffi

3
p

− 1, which enables us to do the integration over s.
Then, the resonant contribution to the GW spectrum is

ΩðresÞ
GW;RDðηc; kÞ ≃

Z
s0ðxRÞ

−s0ðxRÞ
ds

3ð1 − s2Þ2
81920000

A2
sx8R

× 2

Z
1

0

dyCiðyÞ2 2
ffiffiffi
3

p

xR

¼ 2.30285
102400000

ffiffiffi
3

p
A2
sx7Rs0ðxRÞ

× ð15 − 10s20ðxRÞ þ 3s40ðxRÞÞ; ðB7Þ
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where

s0ðxRÞ ¼

8>>><
>>>:

1 xR ≤ 2xmax;R

1þ ffiffi
3

p

2
xmax;R

xR
−

ffiffiffi
3

p 2xmax;R

1þ ffiffi
3

p ≤ xR ≤ 2xmax;Rffiffi
3

p

0
2xmax;Rffiffi

3
p ≤ xR

: ðB8Þ

In the first equality in Eq. (B7), we have changed the
integration variable from t to y with the Jacobian factor

2
ffiffiffi
3

p
=xR. This integration is for the spiky part, and so we

limit the integration region to jyj < 1. The choice of the
integration boundary here is somewhat arbitrary, and this
causes uncertainties of order unity.
The total spectrum is approximated by the contribution

produced after the reheating transition, ΩGW ≃ΩGW;RD,
which is given by the sum of Eqs. (B5) and (B7):

ΩGW;RD ≃ΩðLSÞ
GW;RD þ ΩðresÞ

GW;RD: ðB9Þ

This is compared with the numerical result in Fig. 5. From
this figure, we can see that those approximate analytic
formulas fit the numerical result very well.
The k dependence ofΩGW is summarized as follows. It is

proportional to k3, neglecting a logarithmic factor, for
k≲ 1=ηR, then it scales as k for k≳ 1=ηR. The slope of the
resonant contribution is k7, which peaks at k ≃ 2kmax=

ffiffiffi
3

p
.

Finally, it decreases sharply, and vanishes at k ¼ 2kmax.
This behavior is summarized in Eq. (18).

3. Approximate analytic formulas for induced GWs
from power-law primordial spectra

We can generalize our calculations to power-law pri-
mordial spectra with a cutoff [see Eq. (16)]. We can use the
formulas of I2

RD obtained above. Using the large t
approximation and assuming ns > −3=2, we obtain the
following expression:

ΩðLSÞ
GW;RD ≃

3ð4CiðxR
2
Þ2 þ ðπ − 2SiðxR

2
ÞÞ2ÞA2

sx8max;R

217þ2ns × 625ð3þ 2nsÞ
�
2xmax;R

xR
− 1

�
2ns

�
xR
x�;R

�
2ðns−1Þ

× ðΩ̃ðLS;1Þ
GW;RDΘðxmax;R − xRÞ þ Ω̃ðLS;2Þ

GW;RDΘðxR − xmax;RÞÞΘð2xmax;R − xRÞ; ðB10Þ

where

Ω̃ðLS;1Þ
GW;RD ¼ 1

ð2þ nsÞð3þ nsÞð4þ nsÞð5þ 2nsÞð7þ 2nsÞ
× ð1536 − 6144k̃þ ð7168 − 1920ns − 256n2s Þk̃2

þ ð5760ns þ 768n2s Þk̃3 þ ð1328ns þ 3056n2s þ 832n3s þ 64n4s Þk̃4
− ð7168þ 12256ns þ 7392n2s þ 1664n3s þ 128n4s Þk̃5 þ ð7392þ 10992ns þ 5784n2s þ 1248n3s þ 96n4s Þk̃6
− ð2784þ 3904ns þ 1960n2s þ 416n3s þ 32n4s Þk̃7 þ ð370þ 503ns þ 247n2s þ 52n3s þ 4n4s Þk̃8

− 256

�
1 − k̃Þ6ð6þ 6ð2þ nsÞk̃þ ð2þ nsÞð5þ 2nsÞk̃2Þ

�
1 −

k̃

2 − k̃

�
2ns

�
; ðB11Þ

Ω̃ðLS;2Þ
GW;RD ¼ 2ð2 − k̃Þ4Γð4þ 2nsÞ

�
k̃4

Γð5þ 2nsÞ
−
4k̃2ð2 − k̃Þ2
Γð7þ 2nsÞ

þ 24ð2 − k̃Þ4
Γð9þ 2nsÞ

�
; ðB12Þ

with ΓðxÞ denoting the Gamma function. The other important component, the resonance contribution, is obtained as

FIG. 5. Comparison of the analytic and numerical results for the
induced GWs. The blue solid line shows the numerical result. The
orange dotted, green dashed, and red dot-dashed lines show the
large-scale approximation [Eq. (B5)], the resonant contribution
[Eq. (B7)], and their sum, respectively. We take the power
spectrum given in Eq. (16) with kmax ¼ 450=ηR and ns ¼ 1.
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ΩðresÞ
GW;RD ¼ 2.30285 ×

ffiffiffi
3

p
3ns

213þ2ns × 625
x7R

�
xR
x�;R

�
2ðns−1Þ

s0ðxRÞ

×

�
42F1

�
1

2
; 1 − ns;

3

2
;
s20ðxRÞ

3

�
− 32F1

�
1

2
;−ns;

3

2
;
s20ðxRÞ

3

�
− s20ðxRÞ2F1

�
3

2
;−ns;

5

2
;
s20ðxRÞ

3

��
; ðB13Þ

where 2F1ða; b; c; zÞ is the hypergeometric function, and s0ðxRÞ is defined in Eq. (B8). The total spectrum is again

approximated by the sum: ΩGW ≃ΩðLSÞ
GW;RD þ ΩðresÞ

GW;RD.
For completeness and comparison, we also present the formulas of the component of the induced GWs produced during

the eMD era, ΩGW;eMD. Such a formula is presented in Ref. [10] for the scale-invariant power spectrum of the curvature
perturbations with a cutoff scale kmax. We generalize it to the power-law spectrum with a cutoff scale. For this purpose, we
use the large t approximation once again.

ΩðLSÞ
GW;eMDðηc; kÞ ¼

3RðxRÞA2
s ð xR

x�;R
Þ2ðns−1ÞΘð2xmax;R − xRÞ

25 × 21þ2nsnsð1þ nsÞð2þ nsÞð−1þ 2nsÞð1þ 2nsÞð3þ 2nsÞk̃4þ2ns

× ð−42þnsð1 − k̃Þ2ð1þnsÞð6þ 6nsk̃þ nsð1þ 2nsÞk̃2ÞΘð1 − k̃Þ þ ð2 − k̃Þ2nsð96 − 192k̃

þ ð96 − 8nsð7þ 2nsÞÞk̃2 þ 8nsð7þ 2nsÞk̃3 þ nsð1þ 2nsÞð11þ nsð9þ 2nsÞÞk̃4ÞÞ; ðB14Þ

where RðxRÞ is the relative suppression factor given by Eq. (45) of Ref. [10]. In the scale-invariant case (ns ¼ 1), this
reproduces the leading term in the large-scale limit k ≪ kmax of the formula in Ref. [10] up to the factor 1=4 revised in our
accompanying paper [39]. The above formula is derived assuming ns > 1=2. There are no resonance contributions for

ΩGW;eMD, so that the total spectrum can be approximated by the above formula, ΩGW;eMD ≃ΩðLSÞ
GW;eMD for k ≪ kmax.

However, this contribution is subdominant compared to ΩGW;RD as shown in Fig. 1 for ns ¼ 1.
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