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We present a model of inflation in which the inflaton field is charged under a triplet ofUð1Þ gauge fields.
The model enjoys an internal Oð3Þ symmetry supporting the isotropic FRW solution. With an appropriate
coupling between the gauge fields and the inflaton field, the system reaches an attractor regime in which the
gauge fields furnish a small constant fraction of the total energy density. We decompose the scalar
perturbations into the adiabatic and entropy modes and calculate the contributions of the gauge fields into
the curvature perturbations power spectrum. We also calculate the entropy power spectrum and the
adiabatic-entropy cross-correlation. In addition to the metric tensor perturbations, there are tensor
perturbations associated with the gauge field perturbations that are coupled to metric tensor perturbations.
We show that the correction in the primordial gravitational tensor power spectrum induced from the matter
tensor perturbation is a sensitive function of the gauge coupling.
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I. INTRODUCTION

Models of inflation based on a single scalar field with a
flat potential are quite consistent with cosmological obser-
vations [1,2]. Among the basic predictions of models of
inflation are that the primordial perturbations are nearly
scale invariant, nearly adiabatic, and nearly Gaussian, in
very good agreement with observations. Having said this,
there is no unique realization of inflation dynamics in the
context of high-energy physics or beyond the Standard
Model (SM) of particle physics. For example, what is the
nature of the inflaton field(s)? What mechanism keeps the
inflationary potential flat enough to sustain a long enough
period of inflation to solve the flatness and the horizon
problems?
It is generally believed that there may exist many fields

during inflation that can play some roles. If the fields are
very heavy compared to the Hubble scale during inflation,
then they are not expected to play important roles.
However, if the fields are light or semiheavy, they can

have nontrivial effects on cosmological observables such as
the power spectrum and bispectrum; see, e.g., Refs. [3–5].
In addition, there is no reason that only scalar fields play
important roles during inflation. Specifically, the gauge
fields and vector fields are essential ingredients of the SM
and any theory of high-energy physics. Therefore, it is quite
natural to look for the imprints of the vector fields during
inflation. One issue with the vector fields in the background
is that they have preferred directions, so in general, models
of inflation with background vector fields are anisotropic.
The second issue with the vector fields is that, because of
the conformal invariance, they are quickly diluted in an
expanding background, so their effects become rapidly
insignificant during inflation.
Anisotropic inflation is a model of inflation based on a

Uð1Þ gauge field dynamics. To remedy the second issue
mentioned above, the gauge kinetic coupling in thesemodels
is a function of the inflaton field, so the conformal invariance
is broken. By choosing an appropriate form of the gauge
kinetic coupling, the electric field energy density becomes
nearly constant, so the gauge field survives the expansion
until end of inflation [6]. In addition, the gauge field
perturbations become nearly scale invariant and can take
part in generating cosmological perturbations. In particular,
quadrupolar statistical anisotropies are generated in these
models, which can be observed in cosmic microwave back-
ground (CMB) maps. For various works on anisotropic
inflation and their cosmological imprints, see Ref. [7].
The anisotropic inflation model [6] has been extended to

the case in which the scalar field is charged under the Uð1Þ
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gauge field in Refs. [8–10], while its isotropic realization
containing a triplet ofUð1Þ gauge fields has been studied in
Refs. [11,12]. In this work, we consider the isotropic
extension of Ref. [6], in which the inflaton is charged
under a triplet of Uð1Þ gauge fields. We show that the
model has some interesting features such as containing the
entropy mode in addition to the adiabatic mode and the fact
that the gravitational tensor modes are sourced by the tensor
modes coming from the gauge fields.
The rest of the paper is organized as follows. In Sec. II,

we present our setup and study its background dynamics. In
Sec. III, we study the cosmological perturbations in this
setup, while the power spectra of the adiabatic and entropy
perturbations and their cross-correlations are studied in
Sec. IV. The tensor perturbations of the metric and the
matter fields are studied in Sec. V, followed by the
summaries and discussions in Sec. VI. The gauge sym-
metries of the setup are studied in the Appendix A, while
the analysis of quadratic action is relegated to Appendix B.

II. SETUP AND BACKGROUND DYNAMICS

In this section,we introduce our setup, inwhichwe extend
the model of anisotropic inflation to the setup that can
support an isotropic Friedmann–Robertson–Walker (FRW)
solution. A realization of this was studied inRefs. [11,12], in
which the model contains a triplet ofUð1Þ gauge fields with
an additional global internal Oð3Þ symmetry. The internal
Oð3Þ symmetry allows one to obtain the isotropic FRW
solution [13]. In this work, we extend the setup of
Refs. [11,12] to a model containing three complex scalar
fields ϕðaÞ; a ¼ 1, 2, 3, charged under Uð1Þa gauge sym-
metry with gauge coupling e. In a sense, our setup is the
isotropic realization of the model of anisotropic charged
inflation studied in Refs. [8–10].

A. Setup

We consider a model consisting of a triplet of Uð1Þ
gauge fields that may be thought of as three independent
copies of the Uð1Þ scalar electrodynamics. The desired
gauge symmetry is Uð1Þa ¼ Uð1Þ1 ×Uð1Þ2 ×Uð1Þ3, and
the scalar sector is defined by a triplet Φ,

Φ ¼

0
B@

ϕð1Þ
ϕð2Þ
ϕð3Þ

1
CA; ð2:1Þ

in which ϕðaÞ; a ¼ 1, 2, 3 are complex scalar fields that are
charged under Uð1Þa gauge fields Aμ

ðaÞ with the covariant

derivative denoted as

Dμ ¼ 1∂μ þ ieAμ: ð2:2Þ

The gauge coupling constant e assigns the same charges to
each scalar field.
Similarly to the original model of anisotropic inflation

[6], the action of the model is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
R −

1

2
ðDμΦÞ†ðDμΦÞ − VðjΦjÞ

−
1

4
f2ðjΦjÞTrðFμνFμνÞ

�
; ð2:3Þ

whereMP is the reduced Planck mass, R is the Ricci scalar,
jΦj ¼

ffiffiffiffiffiffiffiffiffiffi
Φ†Φ

p
, V is the potential, f is the conformal factor,

and Fμν is the field strength tensor defined in the spirit of
the covariant derivative (2.2). To simplify the setup, we
have assumed that V and f are only functions of the
magnitude jΦj.
The details of the gauge symmetries of the model are

presented in Appendix A. Gauge fields AðaÞ
μ enjoy the

associated Uð1Þa gauge symmetry for a ¼ 1, 2, and 3. To
fix the Uð1Þa gauge freedoms, we work in the gauge in
which all scalar fields ϕðaÞ are real. In other words, we fix
the Uð1Þa gauges by going to the unitary gauge in which
the phases of the complex scalar field are set to zero. In
addition, in order to obtain the isotropic FRW solution,
similarly to the setup of Ref. [14], we consider a subset of
the model in which ϕð1Þ ¼ ϕð2Þ ¼ ϕð3Þ ≡ ϕ=

ffiffiffi
3

p
, where the

kinetic term ðDμΦÞ†ðDμΦÞ takes the isotropic form

ðDμΦÞ†ðDμΦÞ ¼ ∂μϕ∂μϕþ e2

3
ϕ2AðaÞ

μ Aμ
ðaÞ: ð2:4Þ

Putting these all together, the action (2.3) takes the
following isotropic form:

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
R−

1

2
∂μϕ∂μϕ−

e2

6
ϕ2AðaÞ

μ Aμ
ðaÞ −VðϕÞ

−
1

4
f2ðϕÞFðaÞ

μν F
μν
ðaÞ

�
: ð2:5Þ

As expected, the action (2.5) has the same form as in
models of anisotropic inflation [6], but the gauge fields here
enjoy an additional internal Oð3Þ symmetry, admitting a
FRW background solution. As in Ref. [6], the conformal
coupling fðϕÞ will be chosen so as to prevent the dilution
of the gauge field energy density in the inflationary
background.
It is constructive to compare our model with the other

inflationary models that are constructed by means of Uð1Þ
gauge fields. The isotropic extension of the setup of
anisotropic inflation[6] is suggested in Refs. [11,12] by
means of a triplet of Uð1Þ gauge fields, while the charged
extension of Ref. [6] is considered in Ref. [8]. The model
considered in Refs. [11,12] has local Uð1Þa symmetry,
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while it enjoys global Oð3Þ symmetry. In this work, we
have constructed the charged isotropic extension of aniso-
tropic inflation [6]. In other words, our model is the charged
generalization of Refs. [11,12] and isotropic extension
of Ref. [8].
With the above discussions in mind, our setup with the

action (2.5) has similarities with the model studied in
Ref. [15], in which the authors extended the setup of
anisotropic inflation to a model in which the inflaton field is
coupled to a SUð2Þ gauge kinetic function. In a sense, the
model considered in Ref. [15] can be thought of as the
charged extension of Refs. [11,12]. The authors in Ref. [15]
studied the background dynamics, verifying the existence
of the attractor solution and studying the shapes of
anisotropies.
It is worth mentioning that we can achieve the isotropic

setup with more than two gauge fields [16], so having three
gauge fields is the minimal setup that we have considered in
this paper. Moreover, as was mentioned above, this case
can be thought of as the global limit of non-Abelian gauge
field models [15].

B. Background equations

Since the action (2.5) isOð3Þ invariant, the model admits
the flat FRW cosmological background

ds2 ¼ −dt2 þ aðtÞ2δijdxidxj; ð2:6Þ

with the ansatz [13]

AðaÞ
μ ðtÞ ¼ AðtÞδaμ: ð2:7Þ

The model behaves like three mutually orthogonal gauge
fields with Uð1Þa gauge symmetry, and the ansatz (2.7)
assigns the same magnitudes AðtÞ to each gauge field [17].
Note that the ansatz (2.7) is not the only solution. Indeed,
one can imagine a situation in which the initial amplitudes

of the gauge fields are not equal to each other, AðaÞ
μ ðtÞ ≠

AðbÞ
μ ðtÞ for a ≠ b. In this case, the spacetime metric will be

in the form of a Bianchi type I Universe. However, as
shown in Ref. [18], one expects the isotropic FRW back-
ground to be the attractor solution of the system so the
spacetime rapidly approaches the FRW background and the
gauge field amplitudes become equal. In addition, it is
shown in Ref. [16], see also Ref. [17], that with a large
multiplet of Uð1Þ gauge fields and with the appropriate
form of the conformal factor fðϕÞ the FRW solution is the
attractor limit of arbitrary initial conditions with back-
ground anisotropies.
Varying the action (2.5) with respect to the gauge fields,

we obtain the associated Maxwell equation

∂tðf2a _AÞ ¼ −
1

3
e2ϕ2aA; ð2:8Þ

where a dot indicates a derivative with respect to the cosmic
time t.
The variation of the action (2.5) with respect to the scalar

field gives the Klein-Gordon equation

ϕ̈þ 3H _ϕþ V;ϕ ¼
�
3ff;ϕ _A

2 −
1

3
e2ϕA2

�
a−2; ð2:9Þ

where ;ϕ denotes the derivative with respect to the scalar
field. Note the important effects of the gauge field back-
reactions on the scalar field as captured by the source term
on the right-hand side of the above equation.
Finally, the corresponding Einstein equations are

3M2
PH

2¼1

2
_ϕ2þVðϕÞþ3f2 _A2

2a2
þe2ϕ2A2

6a2
; ð2:10Þ

M2
Pð2 _Hþ3H2Þ¼−

�
_ϕ2

2
−Vþf2 _A2

2a2
−
e2A2ϕ2

6a2

�
: ð2:11Þ

The right-hand side of Eq. (2.10) is the total energy density,
while the expression in the parentheses on the right-hand
side of Eq. (2.11) is the total pressure. In the absence of e,
from the above relations, we see that the pure gauge
field contributions behave like radiation thanks to the
conformal symmetry. Let us consider the effects of the
gauge coupling e. We see from the second term on the right-
hand side of Eq. (2.9) that the interaction e2ϕ2A2a−2 induces
a time-dependent mass for the inflaton. However, the
exponential time dependence of this induced mass makes
its main effect occur toward the end of inflation when the
exponential growth of the gauge field has its main influence.
Thus, to have a long enough period of inflation, the
backreaction e2ϕ2AμAμ is negligible during much of the
period of inflation, and it only controls the mechanism of
the end of inflation [8,9]. In this approximation, one can
easily solve the Maxwell equation (2.8) to obtain

_A ¼ q0
a
f−2; ð2:12Þ

where q0 is an integration constant.
Now, as in the anisotropic inflation model [6], it is

convenient to define the ratio of the energy density of the
gauge fields to the energy density of the inflaton field as

R≡ ρA
ρϕ

¼ 3q20
2V þ _ϕ2

a−4f−2: ð2:13Þ

To obtain a long period of inflation with a de Sitter–like
background, we expect the contribution of the gauge
field to the total energy density to be small. This is
because, as just mentioned above, the gauge fields’ con-
tributions are like radiation and cannot support inflation by
themselves. In other words, as in conventional models of
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slow-roll inflation, we expect that inflation to be driven
predominantly by the scalar field. As a result, we require
R ≪ 1 in order to obtain a long period of inflation.
The dynamics of the background is very similar to the

setup of anisotropic inflation. During the early stage of
inflation, the gauge fields do not drag enough energy from
the inflaton field, so the parameter R is much smaller
than the slow-roll parameters. In this limit, we can safely
neglect the contributions of the gauge fields in the total
energy density and pressure and solve the system as in
single-field slow-roll models with

3M2
PH

2 ≃ V; 3H _ϕ ≃ −V;ϕ: ð2:14Þ

Therefore, in the slow-roll limit, and for a given potential
VðϕÞ, the above equations provide the solution

a ≃ exp

�
−

1

M2
P

Z
ϕ

ϕi

V
V;ϕ

dϕ

�
: ð2:15Þ

Now, as inflation proceeds, the gauge fields drag more and
more energy from the inflaton field via the conformal
coupling fðϕÞ. As shown in Ref. [6], the system reaches an
attractor limit in which the fraction of the gauge field
energy density to total energy density reaches a constant
value. During the attractor stage, R becomes the order of
the slow-roll parameter, and it stays nearly constant until
end of inflation.
For R to reach a constant value, from Eq. (2.13), one

must choose fðϕÞ ∝ aðtÞ−2. Therefore, it is reasonable to
assume that

fðϕÞ ¼ exp

�
2c
M2

P

Z
V
V;ϕ

dϕ

�
; ð2:16Þ

with a constant parameter c.
As the roles of the gauge fields become important, they

backreact on the inflaton dynamics as given by the source
term in Eq. (2.9). Taking into account the backreactions of
the gauge fields on the inflationary trajectory fixes the
relation between R and the slow-roll parameter ϵ.
The scalar field equation in the slow-roll limit is given by

3H _ϕ ¼ 3q20f;ϕ
a4f3

− V;ϕ: ð2:17Þ

Using Eqs. (2.14) and (2.17), we obtain the following
equation for ϕ in terms of the number of e-folds ln a ¼ N
(setting MP ¼ 1 for simplicity):

ϕ
dϕ
dN

¼ −
V;ϕ

V
þ 6q20c

V;ϕ
e−4c

R
ðV=V;ϕÞdϕe−4N: ð2:18Þ

Now, it is suitable to rearrange Eq. (2.18) into the following
form:

4ce4Ne4c
R
ðV=V;ϕÞdϕ

�
1þ V

V;ϕ

dϕ
dN

�
¼ 24c2q02

�
V
V2
;ϕ

�
:

ð2:19Þ

Defining GðNÞ≡ e4Ne4c
R
ðV=V;ϕÞdϕ, the above equation

takes the following form:

dG
dN

þ 4ðc − 1ÞG ¼ 24c2q02
�

V
V2
;ϕ

�
: ð2:20Þ

One can solve this differential equation in the slow-roll
limit to obtain

GðNÞ ¼ 6c2q20C
ðc − 1Þ

�
V
V2
;ϕ

��
1þ 6c2q20C

ðc − 1Þ
�

V
V2
;ϕ

�
e4Nð1−cÞ

�
;

ð2:21Þ
where C is a constant of integration. We see that for
sufficiently small values of q20C the last term in the above
bracket falls off during inflation, and Eq. (2.21) implies

GðNÞ−1 ¼ e−4Ne
−4c

R
V
V;ϕ

dϕ ¼ ðc − 1Þ
6c2q20

�
V2
;ϕ

V

�
: ð2:22Þ

Consequently, ρA becomes nearly constant during the
second phase of inflation, and after straightforward calcu-
lations, we obtain

R ¼ c − 1

4c2

�
V;ϕ

V

�
2

: ð2:23Þ

Substituting Eq. (2.22) into the modified slow-roll
equation (2.17), we obtain

3H _ϕ ≈ −
V;ϕ

c
: ð2:24Þ

This shows that during the second phase of inflation the
effective mass squared of the inflaton fieldm2 is reduced by
the factor 1=c compared to the first stage of inflation [6].
Moreover, from Eqs. (2.10), (2.11), and (2.22), one can

also obtain the slow-roll parameter as follows:

ϵ≡ −
_H
H2

¼ 1

2c

�
V;ϕ

V

�
2

: ð2:25Þ

Therefore, we find

R ¼ c − 1

2c
ϵ ¼ I

2
ϵ; ð2:26Þ

in which we have defined the parameter I ≡ ðc − 1Þ=c.
Interestingly, the relation between R and ϵ given in
Eq. (2.26) is the same as in anisotropic inflation.
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In the left panel of Fig. 1, the phase space plot of ðϕ; _ϕÞ
for the potential V ¼ 1

2
m2ϕ2 for a fixed value of e and for

three different values of c is plotted. In the right panel of
Fig. 1 the behavior of ðϕ; _ϕÞ as a function of the number of
e-folds N is plotted. As we see from the plots, initially, the
inflaton field evolves independently of the effects of the
gauge field, so all three curves coincide during the first
phase of inflation. However, as the gauge fields drag
enough energy from the background, they kick in, and
after a short transient period, the system reaches the
attractor phase. The attractor phase starts sooner for the
larger value of c. This is understandable, since the larger
the value of c is the more energy is pumped into the gauge
field from the inflaton field. We also see that the attractor
phase is longer and the total number of e-folds is higher for
larger values of c. This can be seen from our equations, too.
Starting from N ¼ −

R
H
_ϕ
dϕ, and using Eq. (2.24), we

obtain N ¼ −c
R

V
V;ϕ

dϕ. Therefore, the total number of

e-folds increases by increasing the value of c.
In Fig. 2, the phase space plot of ðϕ; _ϕÞ (left panel) and

its dependence on N (right panel) are plotted for the same
potential as in Fig. 1, but this time, c is held fixed, while e is
varied. As can be seen from the plots, e does not play
important roles during much of the period of inflation.
However, its effect becomes important during the final
stage of inflation, modifying the total number of e-folds
slightly. More specifically, the coupling e induces an
effective mass m2 ∼ e2A2e−2N for the inflaton field.
When this induced mass becomes comparable to H, then
the slow-roll conditions are violated, and inflation ends

abruptly. During the attractor phase, A ∝ eð4c−1ÞN , so the
induced mass scales like e2eð8c−4ÞN . Consequently, the
total number of e-folds depends only logarithmically on e.
In other words, holding other parameters such as c fixed
while varying e, as in Fig. 2, the total number of e-folds
changes as

ΔN ∼ −
1

2ð2c − 1Þ ln e: ð2:27Þ

Although e does not play important roles during the
inflation background, it has important effects on curvature
perturbations power spectra and other cosmological
observables.

III. COSMOLOGICAL PERTURBATIONS

In this section, we present the perturbations of our model
based on action (2.5). From now on, we work with the
conformal time τ defined as dτ ¼ dt=aðtÞ.
The metric perturbations around the background geom-

etry (2.6) are given by

δg00 ¼ 2a2α; δg0i ¼ a2ð∂iβ þ BiÞ;
δgij ¼ a2ð2ψδij þ 2∂i∂jEþ ∂iFj þ ∂jFi þ hijÞ; ð3:1Þ

where α, β, ψ , and E are scalar modes; Bi and Fi are vector
modes; and hij are the tensor perturbations that satisfy the
following transverse and traceless conditions:

c=2.2 c=2 c=1

−2 0 2 4 6 8 10 12

−5

0

5

FIG. 1. Left: The phase space plot of ðϕ; _ϕÞ for the potential V ¼ 1
2
m2ϕ2 with parametersm ¼ 10−6MP, ϕð0Þ ¼ 12MP, and _ϕð0Þ ¼ 0.

We have fixed e ¼ 0.01 and varied the parameter cwith three values c ¼ 1, 2, and 2.2. The latter two values of c are too large to generate
a scale-invariant power spectrum, but we have chosen them for better visualizations of the effects of gauge fields on inflation dynamics.
Right: The three-dimensional plot of ðϕ; _ϕÞ with respect to N for the same parameters as in the left figure.
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∂iBi ¼ ∂iFi ¼ ∂ihij ¼ hii ¼ 0: ð3:2Þ

The gauge fields enjoy internal Oð3Þ symmetry, and the
perturbations should be defined in the spirit of Oð3Þ
symmetry as [13]

δAðaÞ
0 ¼ Ya þ ∂aY;

δAðaÞ
i ¼ δQδia þ ∂ið∂aM þMaÞ þ ϵiabð∂bU þ UbÞ þ tia;

ð3:3Þ

where ðY; δQ;M;UÞ are scalar modes, ðYa;Ma;UaÞ are
vector modes, and ðtiaÞ label the tensor modes associated
with the gauge field perturbations that are subject to the
transverse and traceless conditions

∂iYi ¼ ∂iMi ¼ ∂iUi ¼ ∂itij ¼ tii ¼ 0: ð3:4Þ

In addition to the above perturbations, we also have the
inflaton perturbations δϕ.
The gauge freedom associated with the four-dimensional

diffeomorphism invariance fixes two scalar modes and two
vector modes of metric perturbations. For the scalar modes,
we work in the spatially flat gauge in which

ψ ¼ 0; E ¼ 0; ð3:5Þ

while for the vector perturbations, we fix the gauge by
setting Fi ¼ 0.
Apart from the diffeomorphism invariance, the gauge

fields enjoy the Uð1Þa gauge invariance given by Eq. (A7).

But we have already fixed the Uð1Þa gauge in choosing the
scalar fields to be real, i.e., going to the unitary gauge,
yielding to the action (2.5).
In summary, after fixing the gauges associated

with the diffeomorphism invariance and local Uð1Þa
invariance, we have seven scalar degrees of freedom
(d.o.f.) ðα; β; δϕ; δQ; Y;U;MÞ, eight vector d.o.f.
ðBi; Ua; Ya;MaÞ, and four tensor perturbations ðhij; tijÞ.
In total, we have 19 physical d.o.f.
Since the model with the action (2.5) enjoys Oð3Þ

symmetry, the scalar, vector, and tensor perturbations
decouple at the linear order of perturbations. Moreover,
since our setup is isotropic, the vector perturbations decay
as usual in an expanding Universe, and we will not consider
them from now on.

IV. SCALAR PERTURBATIONS

Working in the spatially flat gauge (3.5) and fixing local
gauge symmetry (A7), we deal with seven scalar modes
ðα; β; Y; δQ;U; δϕ;MÞ. Direct calculations shows that α
and β appear with no time derivatives in the quadratic
action, and therefore they can be substituted from their
algebraic equations of motion. Moreover, the contributions
coming from these nondynamical modes are slow-roll
suppressed [9,10], and we therefore neglect them.
The quadratic action for the remaining modes

ðY; δQ;U; δϕ;MÞ is presented in Appendix B. As dis-
cussed there, the contributions of the perturbations Y andM
are suppressed during much of the period of inflation and
therefore can be neglected. Therefore, the quadratic action
for the remaining light scalar perturbations in Fourier space
is given by

FIG. 2. Left: The phase space plot of ðϕ; _ϕÞ with c held fixed at c ¼ 2, while varying e with e ¼ 0, 0.001, and 0.01. Other parameters
are the same as in the top figures. Right: The three-dimensional plot of ðϕ; _ϕÞ with respect to N for the same parameters as in left figure.
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Sð2Þ ¼ 1

2

Z
dτd3k

�
δQ0

c
2 −

�
k2 −

2

τ2

�
δQ2

c þ δϕ02
c

−
�
k2 −

1

τ2
ð2þ 4IÞ

�
δϕ2

c þU0
c
2 −

�
k2 −

2

τ2

�
U2

c

þ 8

ffiffi
I

p

τ2

�
2 −

e2

9H2

�
τe
τ

�
4
�
δQcδϕc −

8
ffiffi
I

p

τ
δQ0

cδϕc

�
;

ð4:1Þ

in which a prime indicates the derivative with respect to the
conformal time, τe is the time of the end of inflation, and we
have defined the canonically normalized fields

δQc ≡
ffiffiffi
2

p
fδQ; Uc ≡ kfU; δϕc ≡ aδϕ: ð4:2Þ

We have ignored pure slow-roll corrections, i.e., terms
containing the slow-roll parameters ϵ and its derivative
without the factor I since they are the same as those coming
from the gravitational backreactions and can be absorbed
into the power spectrum in the absence of gauge fields. In
addition, as we shall show later on, I ≪ 1, so we have kept
the leading terms of I in the action (4.1), which turns out to
be proportional to

ffiffi
I

p
.

Form the action (4.1), we see that the field U is
decoupled from the other fields. In addition, it did not
exist at the background level. Therefore, the field U is a
pure isocurvature mode. This is unlike the mode δQ, which
is the perturbations associated with the diagonal component

of AðaÞ
i , which also had a background component, given in

Eq. (2.7). We see that both the scalar field and the diagonal

component of AðaÞ
i contribute to the background energy and

interact with each other. In this view, we are dealing with a
multiple field model of inflation that is studied vastly in the
literature. In particular, similar to the logic of Ref. [19], we
expect a combination of the fields ðδϕ; δQÞ to play the roles
of the adiabatic mode and a different combination to play
the role of the entropy perturbations.

A. Adiabatic and entropy decompositions

To find the adiabatic and entropy modes, we first find the
comoving curvature perturbations R from the standard
definition

R ¼ ψ þHδu; ð4:3Þ

where ψ measures the spatial curvature and δu is the
velocity potential, which is defined as δTt

i ¼ ðρþ pÞ∂iδu.
Calculating the energy-momentum tensor at the linear order
of perturbations, and noting that we work in a spatially flat
gauge, Eq. (3.5), the comoving curvature perturbation takes
the following form:

R ¼ −aH
ffiffiffi
2

p
fA0δQc þ aϕ0δϕc þ ðe2=9Þa2Aϕ2Y

2f2A02 þ a2ϕ02 : ð4:4Þ

We need to substitute the nondynamical perturbation Y in
the above relation from Eq. (B2). As discussed in
Appendix B, the contribution of Y in curvature perturbation
is subleading during the inflationary stage. Therefore, to
leading order, the curvature perturbation takes the follow-
ing simple form:

R ¼ −
H
ϕ0 ½ð1 − IÞδϕc −

ffiffi
I

p
δQc�: ð4:5Þ

The above formula is interesting, showing that the con-
tribution of each field into the total curvature perturbation is
weighted by the fraction of the corresponding field into the
total energy density [20,21]. Since I ≪ 1, the dominant
contribution into curvature perturbations is given by the
inflaton field perturbations δϕ. But we expect to have
subleading contributions from the diagonal component of

AðaÞ
i , which is given by the fraction

ffiffi
I

p
in the above

formula.
Following the logic of Ref. [19], the scalar modes δϕc

and δQc can be decomposed into the adiabatic and entropy
components as

δσc ¼ cos θδϕc þ sin θδQc; ð4:6Þ

δsc ¼ − sin θδϕc þ cos θδQc; ð4:7Þ

where we have defined

cos θ≡ ffiffiffiffiffiffiffiffiffiffi
1 − I

p
; sin θ≡ −

ffiffi
I

p
: ð4:8Þ

The canonical variables δσc and δsσ are related to the
standard adiabatic and entropy perturbations defined in
Ref. [19] via

δσc ¼ aδσ δsc ¼ aδs: ð4:9Þ

Using the decomposition defined in Eq. (4.6) into
Eq. (4.5), the comoving curvature perturbations are given
by

R ¼ −
H
_ϕ
cos θδσ: ð4:10Þ

In the limit I → 0, we have cos θ ¼ 1, and Eq. (4.6) gives
δσ ¼ δϕ, in which we find the well-known result R ¼
− H

_ϕ
δϕ for the curvature perturbations.

Correspondingly, we define the associated normalized
entropy perturbation via
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S ≡ −
H
_ϕ
cos θδs: ð4:11Þ

Our final aim is to find the power spectrum for the
observable quantitiesR and S. For this purpose, we rewrite
the quadratic action (4.1) in terms of the adiabatic and
entropy modes, yielding

Sð2Þ ¼ 1

2

Z
dτd3k

�
U0

c
2 −

�
k2 −

2

τ2

�
U2

c

þ δs2c −
�
k2 −

2

τ2

�
1þ 6I −

4e2I
9H2

�
τe
τ

�
4
��

δs2c

þ δσ02c −
�
k2 −

2

τ2

�
1 − 4I þ 4e2I

9H2

�
τe
τ

�
4
��

δσ2c

þ 8
ffiffi
I

p

τ2

�
2 −

e2

9H2

�
τe
τ

�
4
�
δscδσc −

8
ffiffi
I

p

τ
δs0cδσc

�
:

ð4:12Þ

We see that the adiabatic and entropy modes are coupled to
each other with the couplings proportional to

ffiffi
I

p
.

We calculate the power spectra of PR and PS and their
cross-correlation PRS in the next subsections. However,
before that, let us consider the perturbation U, which is a
pure isocurvature mode and does not couple to other
modes. Decomposing U into the creation and the annihi-
lation operators with the Minkowski (Bunch-Davies) initial
condition, we have

UcðkÞ ¼ uðkÞak þ u�ðkÞa†−k; uðkÞ ¼ ie−ikτffiffiffiffiffiffiffi
2k3

p
τ
ð1þ ikτÞ:

Correspondingly, the dimensionless power spectrum for
U ¼ Uc=a, defined as usual via hU†ðτ;kÞUðτ;k0Þi≡
2π2

k3 PUð2πÞ3δð3Þðk − k0Þ, on superhorizon scales is given by

PU ¼
�
H
2π

�
2

: ð4:13Þ

The above result shows that the scalar modeU behaves like
an spectator field with the amplitude H=2π.

B. Curvature perturbations power spectrum

In this subsection, we calculate the curvature perturba-
tion power spectrum PR. From Eq. (4.10), the power
spectrum of curvature perturbation at the end of inflation τe
is given by

hR†ðτe;kÞRðτe;k0Þi¼
�
H
_ϕ

�
2

cos2θhδσ†δσi

≡2π2

k3
PRð2πÞ3δð3Þðk−k0Þ: ð4:14Þ

The leading contribution to the curvature perturbation
power spectrum comes from the adiabatic mode δσ.
However, the adiabatic and the entropy modes are coupled
to each other with the interactions given by the last two
terms in the action (4.12). Therefore, we also have to
calculate the corrections from the entropy mode in PR.
Since we assume I ≪ 1, this analysis can be done pertur-
batively using the standard in-in formalism [22].
The two-point function for the adiabatic mode is then

given by

hδσ2ðτeÞi¼h0j
�
T̄ exp

�
i
Z

τe

τ0

HIðτ00Þdτ00
��

×δσðτeÞ2
�
T exp

�
−i

Z
τe

τ0

HIðτ0Þdτ0
��

j0i

¼h0jδσ2j0iþ ih0j
Z

τe

τ0

dτ1½HIðτ1Þ;δσ2ðτeÞ�j0i

−h0j
Z

τe

τ0

dτ1

Z
τ1

τ0

dτ2½HIðτ2Þ; ½HIðτ1Þ;δσ2ðτeÞ��j0i

þ��� ; ð4:15Þ
where T̄ and T are the time-ordered and anti–time ordered
operators and HI is the interaction Hamiltonian. The
integrals are taken from the initial time τ0 → −∞ when
the modes are deep inside the horizon to the end of inflation
τe → 0. The first term in the second line of Eq. (4.15) is the
two-point function of the adiabatic mode in the absence of
interaction determined by the free action of δσ in
Eq. (4.12). This gives the leading contribution to the

curvature perturbations power spectrum, denoted by Pð0Þ
R ,

which is given by

Pð0Þ
R ¼ H2

8π2ϵM2
P
: ð4:16Þ

In obtaining the above result, we have substituted
h0jδσ2j0i ¼ H2=2k3 and ðH_ϕÞ2cos2θ ¼ 1=2ϵ. To be more

precise, from Eqs. (2.24) and (2.25), we find ðH_ϕÞ2 ≃
ð1þ IÞ=2ϵ. On the other hand, from Eq. (4.8), we
find that cos2 θ ¼ 1 − I and therefore ðH_ϕÞ2cos2θ ¼
1=ð2ϵÞ þOðI2Þ.
To calculate the corrections in the curvature perturba-

tions power spectrum, we need to obtain the interaction
Hamiltonians. In addition to the two interactions that
directly couple the fields δσ and δs [the last line in action
(4.12) containing

ffiffi
I

p
], we also have new interactions in the

action from the second and third lines of Eq. (4.12)
containing I. Note that we treat I as the parameter of
the perturbations, so any term containing this parameter
should be treated as interaction compared to the free theory.
In total, we have seven interaction Hamiltonians for the
scalar perturbations, Hs

I ¼
P

7
i H

s
i with
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Hs
1 ¼ −

8
ffiffi
I

p

τ2
δσcδsc; Hs

2 ¼
4

ffiffi
I

p

τ
δσcδs0c;

Hs
3 ¼

4e2
ffiffi
I

p

9H2

�
τ4e
τ6

�
δσcδsc; Hs

4 ¼
12I
τ2

δσ2c;

Hs
5 ¼ −

6I
τ2

δs2c; Hs
6 ¼ −

4e2I
9H2

�
τ4e
τ6

�
δσ2c;

Hs
7 ¼

4e2I
9H2

�
τ4e
τ6

�
δs2c: ð4:17Þ

Note that, because of the kinetic coupling δσδs0, the
interaction Hamiltonian is not simply −LI. One has to
calculate the conjugate momenta pj corresponding to each
field δqj ¼ fδσ; δsg and then construct the Hamiltonian
using the standard formula H ¼ P

ipjδq0j − L. Doing this,
we find that the interactions containing δσ2 and δs2 receive
additional contributions compared to what one may naively
construct using HI ¼ −LI.
Let us denote the correction induced from the inter-

actions to the adiabatic mode correlation by Δhδσ2i.
Looking at Eq. (4.15), there are two possible ways for
the interaction Hamiltonians to contribute in Δhδσ2i. If the
contribution comes from the single Hamiltonian from the
second line of Eq. (4.15), we denote it by Δð1Þhδσ2ii; i.e., it
is linear inHs

i . On the other hand, if the contribution comes
from the nested integral containing two Hamiltonians in
third line of Eq. (4.15), then we denote it by Δð2Þhδσ2iij,
in which the indices i and j are for Hs

i ðτ1Þ and Hs
jðτ2Þ,

respectively.
The free wave function forMik ¼ fδσcðkÞ; δscðkÞg with

the Bunch-Davies initial condition, is given by

Mik ¼ vðkÞaik þ vðkÞ⋆a†i−k;

vðkÞ ¼ ie−ikτffiffiffiffiffiffiffi
2k3

p
τ
ð1þ ikτÞ: ð4:18Þ

To simplify the notation, let us pull out the factor
ð2πÞ3δð3Þðk − k0Þ and denote the corresponding correla-
tions by Δ0. Then, the leading-order corrections in Δhδσ2i
are obtained as

Δ0ð1Þhδσ2ci4 ¼ i
Z

τe

τ0

dτ1½H4ðτ1Þ; δσ2cðτÞ�

¼ −48IRe
�
i
Z

τe

τ0

dτ1

�
1

τ1

�
2

ðvðτ1Þv⋆ðτeÞÞ2
�

¼ 8INe

k3τ2e
; ð4:19Þ

Δ0ð2Þhδσc2i11 ¼ 512I
Z

τe

τ0

dτ1

Z
τ1

τ0

dτ2

�
1

τ1τ2

�
2

× Im½vðτ1Þv⋆ðτeÞ�
× Im½vðτ2Þv̄⋆ðτeÞvðτ2Þv⋆ðτ1Þ�

¼ 64IN2
e

9k3τ2e
; ð4:20Þ

Δ0ð2Þhδσc2i12 ¼ −256I
Z

τe

τ0

dτ1

Z
τ1

τ0

dτ2

�
1

τ21τ2

�

× Im½vðτ1Þv⋆ðτeÞ�
× Im½vðτ2Þv⋆ðτeÞv0ðτ2Þv⋆ðτ1Þ�

¼ −
16IN2

e

9k3τ2e
; ð4:21Þ

Δ0ð2Þhδσc2i21 ¼ −256I
Z

τe

τ0

dτ1

Z
τ1

τ0

dτ2

�
1

τ1τ
2
2

�

× Im½vðτ1Þv⋆ðτeÞ�
× Im½vðτ2Þv⋆ðτeÞvðτ2Þv0⋆ðτ1Þ�

¼ 32IN2
e

9k3τ2e
; ð4:22Þ

Δ0ð2Þhδσc2i22 ¼ 128I
Z

τe

τ0

dτ1

Z
τ1

τ0

dτ2

�
1

τ1τ2

�

× Im½vðτ1Þv⋆ðτeÞ�
× Im½vðτ2Þv⋆ðτeÞv0ðτ2Þv0⋆ðτ1Þ�

¼ −
8IN2

e

9k3τ2e
; ð4:23Þ

Δ0ð2Þhδσc2i33 ¼
128Ie4

81H4

Z
τe

τ0

dτ1

Z
τ1

τ0

dτ2

�
τ8e
τ61τ

6
2

�

× Im½vðτ1Þv⋆ðτeÞ�
× Im½vðτ2Þv⋆ðτeÞvðτ2Þv⋆ðτ1Þ�

¼ Ie4

4851H4k3τ2e
; ð4:24Þ

Δ0ð2Þhδσc2i31 ¼ −
256Ie2

9H2

Z
τe

τ0

dτ1

Z
τ1

τ0

dτ2

�
τ4e
τ61τ

2
2

�

× Im½vðτ1Þv⋆ðτeÞ�
× Im½vðτ2Þv⋆ðτeÞvðτ2Þv⋆ðτ1Þ�

¼ −
16Ie2Ne

189k3H2τ2e
; ð4:25Þ
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Δ0ð2Þhδσc2i32 ¼
128Ie2

9H2

Z
τe

τ0

dτ1

Z
τ1

τ0

dτ2

�
τ4e
τ61τ2

�

× Im½vðτ1Þv⋆ðτeÞ�
× Im½vðτ2Þv⋆ðτeÞv0ðτ2Þv⋆ðτ1Þ�

¼ 4Ie2Ne

189k3H2τ2e
; ð4:26Þ

where Ne ¼ − lnð−kτeÞ is the number of e-folds at
the end of inflation and Δ0ð1Þhδσc2i5 ¼ Δ0ð2Þhδσc2i13 ¼
Δ0ð2Þhδσc2i23 ¼ 0. Note that with Ne ∼ 50–60 we have
neglected the subleading corrections containing INe com-
pared to IN2

e in the last nested integrals above.
Now, combining the above results, and neglecting the

subleading INe contributions against the IN2
e contributions,

the total curvature perturbation power spectrum is obtained as

PR ¼ Pð0Þ
R ð1þ 16IN2

eFðβÞÞ; ð4:27Þ
with

β≡ e2M2
P

126H2Ne
; FðβÞ≡ 1 − β þ 9

22
β2: ð4:28Þ

The parameter β measures the effects of the gauge coupling
e2. With MP=H ∼ 105, we have β ≳ 1 for e≳ 10−3. For a
large value of e, the function FðβÞ grows like β2.
Interestingly, the correction from the gauge field dynam-

ics in curvature perturbations in Eq. (4.27) has the same
form as in Ref. [10], studied in the context of the charged
anisotropic inflation model. However, in the model of
Ref. [10] with a single copy of the Uð1Þ gauge field, the
gauge field corrections in the power spectrum induce
statistical anisotropy ΔPR=PR

ð0Þ ¼ g� cos2ðk̂ · n̂Þ with
the quadrupolar amplitude g� ¼ −24IFðβÞN2

e in which n̂
is the preferred direction (direction of anisotropy) in the
sky. Note that when e ¼ β ¼ 0 then FðβÞ ¼ 1 and one
recovers the well-known results [9,23–25] g� ¼ −24IN2

e.
To be consistent with the observational constraints jg�j ≲
10−2 [26,27], one then requires I ≲ 10−7. However, in our
setup with internal Oð3Þ symmetry, we have three orthogo-
nal gauge fields with equal amplitude, so there is no
statistical anisotropy. As a result, we have a less stringent
constraint on the value of I.

Having calculated the corrections in the curvature
perturbation power spectrum, we can also calculate the
corrections in the spectral index Δns, given by

Δns ¼ Δ
d lnPR

d ln k

				
�

¼
�
32INeFðβÞ þ 16Iβ

�
−1þ 9

11
β

��
dNe

d ln k

¼
�
32INeFðβÞ − 16INeβ

�
−1þ 9

11
β

��
; ð4:29Þ

in which the subscript � represents the time of horizon
crossing for the mode of interest k.
To have a nearly scale-invariant power spectrum, we

require Δns to be at the order of the slow-roll parameters.
As a result, we conclude that I ≲ ϵ=10Ne. This justifies our
assumption in taking I ≪ 1. However, the above result
also indicates that I is parametrically at the order
I ∼ 10−2ϵ ∼ 10−4, assuming that ϵ is at the order of a
few percent. This is less restrictive compared to the
constraint imposed on the magnitude of I in models of
anisotropic inflation discussed above.
The smallness of I may raise concerns about the

existence of the background attractor regime [28,29].
One may require some fine-tunings on the combination
q20C in order to neglect the last term in the brackets in
(2.21). To be specific, for the chaotic inflation with

V ¼ 1
2
m2ϕ2, the condition 6c2q2

0
C

ðc−1Þ ð V
V2
;ϕ
Þe4Nð1−cÞ ≪ 1 requires

q20C < Iϵ ∼ ϵ2=N ∼ ϵ3: ð4:30Þ

This indicates the level of fine-tuning required in order for
the gauge field dynamics to actually reach the attractor
phase.

C. PS and PRS

In this subsection, we calculate the power spectrum of
entropy mode PS and its cross-correlation with the curva-
ture perturbation PRS .
For the cross-correlation, we find

Δ0ð1Þhδσcδsci ¼ i
Z

τe

τ0

dτ1½Hs
1ðτ1Þ þHs

2ðτ1Þ þHs
3ðτ1Þ; δσcδscðτeÞ�

¼ 16
ffiffi
I

p
Re

�
i
Z

τe

τ0

dτ1

�
1

τ1

�
2

vðτ1Þ2v⋆2ðτeÞ2
�
− 8

ffiffi
I

p
Re

�
i
Z

ηe

τ0

dτ1

�
1

τ1

�
v0ðτ1Þv⋆ðτeÞvðτ1Þv⋆ðτeÞ

�

− 8
ffiffi
I

p e2τ4e
9H2

Re

�
i
Z

τe

τ0

dτ1

�
1

τ1

�
6

vðτ1Þ2v⋆ðτeÞ2
�

¼ −
2

ffiffi
I

p
Ne

k3τ2e
þ e2

ffiffi
I

p

63H2k3τ2e
: ð4:31Þ
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We see that, unlike in previous integrals, the cross-
correlation is proportional to

ffiffi
I

p
. The reason is that we

did not have to calculate a nested integral. Correspondingly,
the cross-correlation of the entropy and the curvature
perturbation is given by

PRS ¼ −4
ffiffi
I

p
Pð0Þ

R Neð1 − βÞ: ð4:32Þ

To calculatePS, we can perform similar in-in integrals as
in the case of curvature perturbations in the previous
subsection. However, there is a less cumbersome way to
obtain PS, as we describe below. Let us first look at the
interaction Hamiltonians Hs

1 and Hs
2, which are given by

Eq. (4.17). We can perform an integration by parts and find

Hs
1 þHs

2 ¼ − 4
ffiffi
I

p
τ2

δσcδsc − 4
ffiffi
I

p
τ δσ0cδsc. Now, we make the

identification δσc ↔ δsc with

Hs
1 ↔

1

2
Hs

1; Hs
2 ↔ −Hs

2; ð4:33Þ

from which we can easily find

Δ0ð2Þhδsc2i11 ¼
1

4
× Δ0ð2Þhδσ2ci11 ¼

16IN2
e

9k3τ2e
; ð4:34Þ

Δ0ð2Þhδsc2i12 ¼ −
1

2
× Δ0ð2Þhδσ2ci12 ¼

8IN2
e

9k3τ2e
;

Δ0ð2Þhδsc2i21 ¼ −
1

2
× Δ0ð2Þhδσ2ci21 ¼ −

16IN2
e

9k3τ2e
;

Δ0ð2Þhδsc2i22 ¼ Δ0ð2Þhδσ2ci22 ¼ −
8IN2

e

9k3τ2e
: ð4:35Þ

Summing up all the above corrections, we see that they
neatly cancel each other, and therefore we do not have any
IN2

e correction to the power spectrum of the entropy mode.
We have already seen that Hs

4 gives corrections at the order
INe to the curvature perturbation power spectrum, which
we have neglected in comparison with the IN2

e corrections.
Here, however, we have to consider it since there is no IN2

e
correction. The INe correction to the entropy mode comes
from the interaction Hamiltonian Hs

5. From Eq. (4.17), we
can see that we should consider the identification

Hs
5 ↔ −

1

2
Hs

4; ð4:36Þ

which implies

Δ0ð1Þhδsc2i5 ¼ −
1

2
× Δ0ð1Þhδσ2ci4 ¼ −

4INe

k3τ2e
: ð4:37Þ

From Eq. (4.17), it is clear that the interaction
Hamiltonians Hs

1 and Hs
3 are symmetric in δσc ↔ δsc.

Therefore, we simply have

Δ0ð2Þhδsc2i31 ¼ Δ0ð2Þhδσ2ci31 ¼ −
16Ie2Ne

189k3H2τ2e
;

Δ0ð2Þhδsc2i33 ¼ Δ0ð2Þhδσ2ci33 ¼
Ie4

4851H4k3τ2e
: ð4:38Þ

The last correction to the power spectrum of the entropy
mode comes from the interaction Hamiltonians Hs

2 and H
s
3.

Performing an integration by parts, it is easy to see that the
appropriate identification will be

Hs
2 ↔ −Hs

2 −
1

2
Hs

1; Hs
3 ↔ Hs

3; ð4:39Þ

which gives

Δ0ð2Þhδsc2i32 ¼ −Δ0ð2Þhδσ2ci32 −
1

2
× Δ0ð2Þhδσ2ci31

¼ 4Ie2Ne

189k3H2τ2e
: ð4:40Þ

In the same manner, we can easily see Δ0ð2Þhδsc2i13 ¼
Δ0ð2Þhδsc2i23 ¼ 0.
All of these results can also be confirmed from the direct

in-in calculations. Summing up all the above corrections,
we find

PS ¼ Pð0Þ
R ½1 − 8INe þ 16IN2

eðFðβÞ − 1Þ�; ð4:41Þ

where β and FðβÞ are defined in Eq. (4.28).

V. TENSOR PERTURBATIONS

There are two different types of tensor perturbations in
our model. One is the usual tensor perturbations of the
metric hij. The other one is tij coming from the matter
sector of the Oð3Þ gauge fields in Eq. (3.3). We therefore
have four tensor modes in our model.
Using the transverse and traceless conditions, the quad-

ratic action in Fourier space is obtained as

Sð2Þ ¼ 1

2

Z
d3kdτ

�
h̄02ij −

�
k2 −

2þ 2Iϵ
τ2

�
h̄2ij þ t̄02ij

−
�
k2 −

2 − 5Iϵ
τ2

�
t̄2ij þ

4
ffiffiffiffiffi
Iϵ

p

τ2
ðτh̄ijt̄0ij − 2h̄ijt̄ijÞ

þ 8
ffiffiffiffiffi
Iϵ

p
e2

9τ2H2ϵ

�
τe
τ

�
4

t̄ijh̄ij

�
; ð5:1Þ

where we have defined the canonically normalized fields as
follows:

h̄ij ≡ a
2
hij; t̄ij ≡ ftij: ð5:2Þ

It is convenient to write the tensor modes in terms of their
polarizations. To do this, we note that the traceless and
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transverse conditions imply h̄ii ¼ kih̄ij ¼ t̄ii ¼ kit̄ij ¼ 0.
Consequently, we can express them in terms of the
polarization tensor as h̄ij¼

P
þ;×h̄

λeλij and t̄ij¼
P

þ;×t̄
λeλij,

where we have eλii ¼ kieλij ¼ 0 and eλije
λ0
ij ¼ 2δλλ0 .

The interaction terms in (5.1) are proportional to
ffiffiffiffiffi
Iϵ

p
. In

the previous section, we have seen that I ≲ 10−2ϵ and
therefore

ffiffiffiffiffi
Iϵ

p ≲ ϵ=10, which is small. On the other hand,
the interactions in (5.1) have the same form as the
interactions in (4.12). Therefore, from our results for the
scalar modes, the leading corrections in tensor correlations
are at the order IϵN2

e.
The wave functions for the free tensor modes Nik ¼

fh̄λðkÞ; t̄λðkÞg are given by

Nik ¼ nðkÞaik þ nðkÞ�a†i−k;

nðkÞ ¼ i
e−ikτffiffiffiffiffiffiffi
2k3

p
τ
ð1þ ikτÞ: ð5:3Þ

The interaction Hamiltonians associated with the
quadratic action (5.1) in the interaction picture are
given by

Ht
1 ¼

8
ffiffiffiffiffi
Iϵ

p

τ2
X
þ;×

h̄λ t̄λ; Ht
2 ¼ −

4
ffiffiffiffiffi
Iϵ

p

τ

X
þ;×

h̄λ t̄0λ;

Ht
3 ¼ −

8
ffiffiffiffiffi
Iϵ

p
e2

9τ2H2ϵ

�
τe
τ

�
4X
þ;×

h̄λt̄λ;

Ht
4 ¼

2Iϵ
τ2

X
þ;×

h̄λh̄λ; Ht
5 ¼

5Iϵ
τ2

X
þ;×

t̄λ t̄λ: ð5:4Þ

Similar to the analysis of entropy power spectrum in
Sec. IV C, we do not need to explicitly perform the
cumbersome in-in calculations since we can simply model
the above interaction Hamiltonians to those we had in the
case of scalar perturbations given in Eq. (4.17) via the
following identifications:

Ht
1 ↔ −

ffiffiffi
ϵ

p
Hs

1; Ht
2 ↔ −

ffiffiffi
ϵ

p
Hs

2;

Ht
3 ↔ −

2ffiffiffi
ϵ

p Hs
3; Ht

5 ↔ −
5

6
ϵHs

5: ð5:5Þ

Using the above identifications and the results obtained
from Eqs. (4.20)–(4.26), we can easily obtain the
nonzero corrections to the power spectrum of the tensor
modes as

Δ0ð2Þhðh̄λÞ2i11 ¼ ϵΔ0ð2Þhδσ2ci11 ¼
64IϵN2

e

9τ2ek3
;

Δ0ð2Þhðh̄λÞ2i12 ¼ ϵΔ0ð2Þhδσ2ci12 ¼ −
16IϵN2

e

9τ2ek3
;

Δ0ð2Þhðh̄λÞ2i21 ¼ ϵΔ0ð2Þhδσ2ci21 ¼
32IϵN2

e

9τ2ek3
;

Δ0ð2Þhðh̄λÞ2i22 ¼ ϵΔ0ð2Þhδσ2ci22 ¼ −
8IϵN2

e

9τ2ek3
;

Δ0ð2Þhðh̄λÞ2i33 ¼
4

ϵ
Δ0ð2Þhδσ2ci33 ¼

4e4ðI=ϵÞ
4851H4k3τ2e

;

Δ0ð2Þhðh̄λÞ2i31 ¼ 2Δ0ð2Þhδσ2ci31 ¼ −
32e2INe

189H2k3τ2e
;

Δ0ð2Þhðh̄λÞ2i32 ¼ 2Δ0ð2Þhδσ2ci32 ¼
8e2INe

189H2k3τ2e
;

with Δ0ð2Þhðh̄λÞ2i13 ¼ Δ0ð2Þhðh̄λÞ2i23 ¼ 0.
Summing up all the above corrections, we find

Δ0ð2Þhh̄λ†h̄λ0 i ¼ 8I
k3τ2e

�
ϵN2

e −
e2Ne

63H2
þ ðe4=ϵÞ
9702H4

�
δλλ0 : ð5:6Þ

Note the important effect that the charge coupling inter-
action induces 1=ϵ enhancement to the tensor power
spectrum, which is the specific feature of this model.
This is similar to the results obtained in the model of
charged anisotropic inflation [10] in which the statistical
anisotropy induced in the tensor power spectrum is more
pronounced compared to statistical anisotropy induced in
the scalar power spectrum.
To calculate the power spectrum of the gauge field tensor

mode, we note that it appears exactly the same as in the
entropy mode. Therefore, upon making the appropriate
identifications of the interaction Hamiltonians, we find the
results

Δ0ð2Þhðt̄λÞ2i11¼
64IϵN2

e

9k3τ2e
; Δ0ð2Þhðt̄λÞ2i12¼−

16IϵN2
e

9k3τ2e
;

Δ0ð2Þhðt̄λÞ2i21¼−
64IϵN2

e

9k3τ2e
; Δ0ð2Þhðt̄λÞ2i22¼

16IϵN2
e

9k3τ2e
;

Δ0ð2Þhðt̄λÞ2i33¼
4e4ðI=ϵÞ

4851H4k3τ2e
; Δ0ð2Þhðt̄λÞ2i31¼−

32INee2

189k3H2τ2e
;

Δ0ð2Þhðt̄λÞ2i32¼
8INee2

189k3H2τ2e
; Δ0ð1Þhðt̄λÞ2i5¼

10IϵNe

3k3τ2e
;

with Δ0ð2Þhðt̄λÞ2i13 ¼ Δ0ð2Þhðt̄λÞ2i23 ¼ 0.
Summing the above corrections, we see that they cancel

one another and, similar to the case of PS, there is no IϵN2
e

correction to the two-point function of t̄λ, and we have to
keep the IϵNe corrections.
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What remains is the cross-correlation between h̄λ and t̄λ.
Keeping the above identifications in mind, looking at
Eq. (4.31), we see that the first term in the last line comes
from the interaction HamiltoniansHs

1 and H
s
2 in Eq. (4.17),

while the second term comes from Hs
3 in Eq. (4.17).

Therefore, from the identifications (5.5), we easily find

Δ0ð1Þhh̄λ t̄λi ¼ 2
ffiffiffiffiffi
Iϵ

p

k3τ2e

�
Ne −

ðe2=ϵÞ
63H2

�
; ð5:7Þ

which can also be justified from the direct in-in calculation.
Having obtained the two-point function of h̄λ and t̄λ and

their cross-correlation, we can obtain the power spectra.
The power spectra of the gravitational tensor modes as
usual are defined via

X
þ;×

hhλ†ðτ;kÞhλ0 ðτ;k0Þi¼ 2hhλ†hλi

≡2π2

k3
Phð2πÞ3δð3Þðk−k0Þ: ð5:8Þ

From Eq. (5.2), we have hhλ†hλi ¼ 4hh̄λ†h̄λi
a2 , and after

substituting from Eq. (5.6), we obtain the expression for
the power spectrum of the gravitational tensor modes,

Ph ¼ Pð0Þ
h ð1þ 16IϵN2

eFðβ̂ÞÞ; ð5:9Þ

in which

Pð0Þ
h ≡ 2H2

π2
ð5:10Þ

is the standard tensor power spectrum for gravitons. The
function Fðβ̂Þ is defined as in Eq. (4.28) with the new
dimensionless parameter β̂ given in terms of β as

β̂≡ 2β

ϵ
: ð5:11Þ

Interestingly, the corrections induced from the gauge field
dynamics in the gravitational tensor power spectrum in
Eq. (5.9) have the same form as statistical anisotropy
induced in the tensor power spectrum in the model of
charged anisotropic inflation [10]. As discussed before,
with e≳ 10−3, we have β ≳ 1, and therefore one can easily
have β̂ ≳ 100. For our perturbative approach to be valid, we
require that 16IϵN2

eFðβ̂Þ ≪ 1. Using the form of the
function Fðβ̂Þ and the definition of β̂, this is translated into

e≲ 10H
MP

�
ϵ

16I

�
1=4

∼ 10−3; ð5:12Þ

in which the approximations I ≲ 10−4; ϵ ∼ 10−2, and
H=MP ∼ 10−5 have been used to obtain the final result.

In conclusion, for e > 10−3 or so, the corrections induced
from the gauge field into the gravitational tensor power
spectrum become large, and our perturbative approxima-
tions break down. This conclusion is in line with the result
obtained in Ref. [10].
Similarly, for Pt and Pht, we find

Pt ¼ Pð0Þ
h

�
1þ 20

3
IϵNe þ 16IϵN2

eð1 − Fðβ̂ÞÞ
�
; ð5:13Þ

Pht ¼ 4
ffiffiffiffiffi
Iϵ

p
Pð0Þ

h Neð1 − β̂Þ: ð5:14Þ

We see interesting similarities between Pt and PS in
Eq. (4.41) and between Pht and PSR in Eq. (4.32).
Having calculated the curvature perturbation and the

gravitational tensor power spectra in Eqs. (4.27) and (5.9),
the ratio of the tensor to scalar power spectra, denoted by
the parameter r, is given by

r ≃ 16ϵð1 − 16IN2
eFðβÞ þ 16IϵN2

eFðβ̂ÞÞ: ð5:15Þ

For large enough β̂, the last term above dominates over the
second term, and we will have a positive contribution for r,
modifying the standard result r ¼ 16ϵ in single-field slow-
roll models of inflation. For example, if we take e such that
β̂ ∼ 10, then the last term above is at the order of unity in
the chaotic model. A large value of r is disfavored in light
of the recent constraint r≲ 0.07 [30].

VI. CONCLUSIONS

In this work, we considered a model of inflation
containing three complex scalar fields charged under
Uð1Þa gauge symmetry with gauge coupling e. The

corresponding gauge fields AðaÞ
μ enjoy an internal Oð3Þ

symmetry associated with the rotation in field space. In a
sense, this model is a hybrid of models of anisotropic
inflation and models based on non-Abelian gauge fields
[31–37]. Similar to anisotropic inflation models, with
appropriate coupling of the gauge fields to the inflaton
field, the system reaches an attractor phase in which the
energy density of the gauge fields reaches a constant
fraction of the total energy density and the gauge field
perturbations become scale invariant.
We have decomposed the scalar perturbations into the

adiabatic and entropy modes. The corrections from the
gauge fields to the curvature perturbations are given by
Eq. (4.27), in which the effects of gauge coupling are
captured by the function FðβÞ. As expected, it has the same
structure as in models of anisotropic inflation, i.e., being
proportional to IN2

e. However, because of the background
isotropy, no quadrupolar statistical anisotropy is generated.
We have also calculated the corrections in the spectral
index. Requiring a nearly scale-invariant curvature pertur-
bation power spectrum requires I ≲ ϵ=10Ne ∼ 10−4.
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This should be compared to models of anisotropic inflation
in which the amplitude of quadrupolar anisotropy g� is
given by g� ¼ 24IN2

e and demanding jg�j≲ 10−2 from
CMB observations requires I ≲ 10−7.
We have calculated the tensor power spectra of the

model. In addition to tensor perturbations coming from the
metric sector, we also have new tensor perturbations from
the gauge fields sector. The interactions between the matter
and metric tensor perturbations induce corrections into the
primordial gravitational wave spectra given by Eq. (5.9).
We have shown that the effects of gauge coupling e are
more pronounced in the tensor power spectrum, controlled
by the function Fðβ̂Þ. For example, in the simple model of
chaotic inflation with H=MP ∼ 10−5, we require e≲ 10−3

in order for the corrections in the tensor power spectrum to
be perturbatively under control. This originates from the

interaction e2gμνAðaÞ
μ AðaÞ

ν ϕ2 as in the Higgs mechanism. In
the large field model with ϕ > MP, large interactions
between the tensor perturbations and gauge field perturba-
tions are generated, which induces large corrections in the
tensor power spectrum. We also calculated the power
spectrum of the matter tensor perturbation and the cross-
correlation between the matter and metric tensor perturba-
tions, given, respectively, by Eqs. (5.13) and (5.14).
One shortcoming of our analysis is that in order to

simplify the setup we have restricted ourselves to the subset
of the model in which ϕð1Þ ¼ ϕð2Þ ¼ ϕð3Þ ≡ ϕ=

ffiffiffi
3

p
. This

requires some levels of fine-tuning. However, similar to the
analysis of Ref. [16], one expects that the isotropic FRW
background is an attractor solution at least in some corners
of model parameters, so we may assume ϕð1Þ ¼ ϕð2Þ ¼
ϕð3Þ ¼ ϕðtÞ= ffiffiffi

3
p

at the background level. However, to
simplify the analysis further, we impose a stronger con-
dition and assume that these scalar fields behave similarly
at the level of perturbations, i.e., δϕð1Þ ¼ δϕð2Þ ¼ δϕð3Þ ¼
δϕðt;xÞ= ffiffiffi

3
p

. If we do not take this simplification into
account, we will find three entropy modes, whereas in our
simplified setup studied here, the three entropy modes are
treated as identical. While we expect that the structure of
the main results obtained here will remain unchanged, it is
an important question to study the general case in which all
three entropy modes are turned on.
There are a number of directions in which the current

study can be extended. One natural question is the non-
Gaussianity of the model. In particular, in models of
anisotropic inflation, large anisotropic non-Gaussianities
are generated. Correspondingly, we expect observable
local-type non-Gaussianity to be generated in our model.
In addition, there will be cross-correlation between tensor-
scalar-scalar correlations that may have observable impli-
cations such as for the fossil effects [38–44]. Another open
question in our model is the reheating mechanism, which is
not specified. One simple mechanism, as in the standard
mechanism of reheating, is that at the end of inflation the

gauge fields simply transfer all their energies to conven-
tional radiation, i.e., photons and other d.o.f. in the
Standard Model. Another option is that the gauge fields
do not decay. In this case, their energy density has the form
of radiation, which will be quickly diluted in subsequent
expansion of the Universe. Another open question in our
setup is the roles of the entropy perturbations. This question
is also linked to the previous question about the mechanism
of reheating. Observationally, there are stringent constraints
on entropy perturbations. Therefore, the model should not
generate too many entropy perturbations. To study this
question, we have to specify how the reheating mechanism
works in this model and whether or not the gauge fields
decay to photons, baryons, etc. Finally, in this work, we did
not elaborate on the observational implications of the
model. It is an interesting question to study the predictions
of the model for the CMB temperature perturbations and
polarizations. The contributions of the entropy modes and
the corrections in the primordial tensor power spectrum can
have interesting observational implications in light of the
Planck CMB data.
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APPENDIX A: GAUGE SYMMETRIES
OF THE MODEL

Here, we study the gauge symmetries of the model in
some details.
We have three independent gauge fields AðaÞ

μ with
gauge symmetry Uð1Þa, and therefore we should demand
that the three generators τa of the algebra uð1Þa be
independent. In the matrix notation, we choose the follow-
ing representation:

τ1¼

0
B@
1 0 0

0 0 0

0 0 0

1
CA; τ2¼

0
B@
0 0 0

0 1 0

0 0 0

1
CA; τ3 ¼

0
B@
0 0 0

0 0 0

0 0 1

1
CA:

ðA1Þ
The above matrices are clearly independent and further
satisfy

τaτb ¼ τaδab: ðA2Þ
Moreover, the generators in Eq. (A1) satisfy the Abelian
algebra
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½τa; τb� ¼ 0: ðA3Þ

The field strength tensor associated with three copies of
gauge fields is given by

ieFμν ¼ ½Dμ;Dν�: ðA4Þ

Substituting Eq. (2.2) into Eq. (A4) and then using
Eq. (A3), we find

FðaÞ
μν ¼ ∂μA

ðaÞ
ν − ∂νA

ðaÞ
μ ; ðA5Þ

where as usual Fμν ¼ FðaÞ
μν τa and Aμ ¼ AðaÞ

μ τa.
Because of the Abelian structure (A3) of the algebra

uð1Þa, the gauge coupling e did not appear in the above
curvature tensor, which confirms that we deal with three
independent copies of Uð1Þ gauge fields.
The model (2.3) is invariant under the Uð1Þa gauge

symmetry

Φ → expðiΛÞΦ; Aμ → Aμ −
1

e
∂μΛ; ðA6Þ

where Λ is a general matrix in the field space. More
specifically, the matrix Λ can be expressed in terms of
the basis as Λ ¼ λðaÞτa, which, after substituting from
Eq. (A1), takes the form Λ ¼ diagðλ1; λ2; λ3Þ. The gauge
transformations (A6) then imply

ϕðaÞ → expðiλðaÞÞϕðaÞ; AðaÞ
μ → AðaÞ

μ −
1

e
∂μλ

ðaÞ: ðA7Þ

As expected, each copy of the gauge fields AðaÞ
μ enjoys

Uð1Þ gauge symmetry. To fix the Uð1Þa gauge freedoms,
we work in the unitary gauge in which the phases of the
complex scalar field are set to zero and all scalar fields ϕðaÞ
are real.
We are interested in isotropic FRW solution, so let us

check if this solution can be supported in our setup. The
Maxwell kinetic term in the action (2.3) takes the compo-
nent form FðaÞ

μν F
μν
ðaÞ, where we have used the fact that

TrðτaτbÞ ¼ δab, as can easily be deduced from Eq. (A1).
We see that the Maxwell kinetic term enjoys an internal

Oð3Þ symmetry; i.e., it is invariant under an Oð3Þ rotation
in field space AðaÞ

μ → RðaÞ
ðbÞA

ðbÞ
μ , where RðaÞ

ðbÞ are the compo-

nents of theOð3Þ rotation matrices. Therefore, the Maxwell
term can support an isotropic FRW background solution.
On the other hand, the kinetic term of the scalar sector in
the unitary gauge where all ϕðaÞ are real is given by

ðDμΦÞ†ðDμΦÞ ¼ ∂μΦ†∂μΦþ e2Φ†A†
μAμΦ

þ ieð∂μΦ†AμΦ −Φ†A†
μ∂μΦÞ

¼ ∂μϕðaÞ∂μϕðaÞ þ e2ϕ2
ðaÞA

ðaÞ
μ Aμ

ðaÞ; ðA8Þ

where in the second line we have substituted from Eq. (2.1)
and the summation rule on the repeated index a is
understood.
The term ϕ2

ðaÞA
ðaÞ
μ Aμ

ðaÞ in Eq. (A8) is not invariant under
internal Oð3Þ rotation, so in general, an isotropic FRW
background may not be supported by this model. As
mentioned in the main text, in order to obtain an isotropic
solution, we consider a subset of the model in which
ϕð1Þ ¼ ϕð2Þ ¼ ϕð3Þ ≡ ϕ=

ffiffiffi
3

p
, upon which the kinetic term

(A8) takes the isotropic form [14]

ðDμΦÞ†ðDμΦÞ ¼ ∂μϕ∂μϕþ e2

3
ϕ2AðaÞ

μ Aμ
ðaÞ: ðA9Þ

Plugging this in the starting action (2.3) yields the reduced
action Eq. (2.5).

APPENDIX B: QUADRATIC ACTION FOR
SCALAR PERTURBATIONS

Here, we present the quadratic action of the scalar
perturbations. As discussed in the main text, we neglect
the gravitational backreactions from the nondynamical
fields ðα; βÞ.
Going to the Fourier space δXðτ; xÞ ¼ R

d3k
ð2πÞ3 δXkðτÞeik:x

and plugging the perturbations defined in Eqs. (3.1) and
(3.3) into the action (2.5) and performing some integration
by parts, it is cumbersome but straightforward to show that
the quadratic action for the scalar modes is given by

Sð2Þ ¼
Z

dτd3k

�
1

2
a2δϕ02 −

�
1

2
a4V 00 þ 1

2
a2A2e2 þ a2k2

2
−
3

2
fA02f00 −

3

2
A02f02

�
δϕ2 þ 3

2
f2δQ02 −

�
1

2
a2e2ϕ2 þ f2k2

�
δQ2

þ 1

2
k4f2M02 −

1

6
e2k4a2ϕ2M2 þ f2k2U02 −

�
1

3
a2e2k2ϕ2 þ f2k4

�
U2 þ Y2

�
1

6
a2e2k2ϕ2 þ f2k4

2

�

þ Yðf2k2δQ0 − k4f2M0 þ 2fk2A0f0δϕÞ þ 6fA0f0δQ0δϕ− 2a2Ae2ϕδQδϕ

þ 1

3
e2a2k2ð2AϕδϕMþϕ2δQMÞ− 2k2f0fA0δϕM0 − k2f2δQ0M0

�
; ðB1Þ
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where we have represented the amplitude of the Fourier
modes δXkðτÞ with δXðτÞ and a prime indicates the
derivative with respect to the conformal time τ.
From the above action, we see that the mode Y is

nondynamical and can be solved from its equation of
motion as

Y ¼ −
3fð2δϕA0f0 þ fðδQ0 − k2M0ÞÞ

a2e2ϕ2 þ 3f2k2
: ðB2Þ

We can substitute the above solution into the action (B1).
Before doing this, we note that in the denominator of (B2)
we can neglect e2a2ϕ2 in comparison with 3f2k2. To see
this, let us find time τc when these two terms become
comparable

−τc ¼
�
−
eϕ
Hk

� 1
3cð−τeÞ23: ðB3Þ

The ratio of the second term compared to the first term

scales as e2a2

f2 ∼ e2H2τ4ce
τ6

. Hence, during the early stage of

inflation in which jτj ≫ jτej, the second term is negligible
compared to the first term. Then, the effect of gauge
coupling e is subdominant at this stage, and the leading
interactions comes from fðϕÞ2F2. However, as inflation
proceeds, the effect of the second term becomes important,
and the interaction e2ϕ2A2 dominates only near the time of
the end of inflation. Therefore, neglecting a2e2ϕ2 in
comparison with 3f2k2 in Eq. (B2) and then substituting
the result into the action (B1), we find

Sð2Þ ¼
Z

dτd3k

�
1

2
a2δϕ02 −

�
1

2
a4V 00 þ 1

2
a2A2e2 þ 1

2
f02A02 −

2

3

e2a2ϕ2f02A02

k2f2
þ a2k2

2
−
3

2
fA02f00

�
δϕ2

þ f2
�
1þ 1

6k2f2
e2a2ϕ2

�
δQ02 − f2k2

�
1þ 1

2f2k2
a2e2ϕ2

�
δQ2

þ 1

6
e2k2a2ϕ2ðM02 − k2M2Þ þ f2k2U 02 − f2k4

�
1þ 1

3f2k2
a2e2ϕ2

�
U2

þ 4fA0f0
�
1þ 1

6k2f2
e2a2ϕ2

�
δQ0δϕ − 2a2Ae2ϕδQδϕ

þ e2

3
a2ϕk2ð2AδϕM þ ϕδQMÞ − 2

3f
e2a2ϕ2f0A0δϕM0 −

1

3
e2a2ϕ2δQ0M0

�
: ðB4Þ

We now consider the field redefinition M̄ ¼ k2M − δQ in terms of which the above action takes the following form:

Sð2Þ ¼
Z

dτd3k

�
1

2
a2δϕ02 −

�
1

2
a4V 00 þ 1

2
a2A2e2 þ 1

2
f02A02 −

2

3

e2a2ϕ2f02A02

k2f2
þ a2k2

2
−
3

2
fA02f00

�
δϕ2 þ f2δQ02

− f2k2
�
1þ 1

3f2k2
a2e2ϕ2

�
δQ2 þ 1

6k2
e2a2ϕ2ðM̄02 − k2M̄2Þ þ f2k2U02 − f2k4

�
1þ 1

3f2k2
a2e2ϕ2

�
U2

þ 4fA0f0δQ0δϕ −
4

3
a2Ae2ϕδQδϕþ 2e2

3
a2ϕAδϕM̄ −

2e2

3k2f
a2ϕ2f0A0δϕM̄0

�
: ðB5Þ

The advantages of working with M̄ are that not only does
the quadratic action take a more simple form but also that
this mode is heavy during most of the inflationary era and
we can therefore neglect it. To see this, we compare the two
scalar modes δQ and M̄ in the above action as

LδQ2

LM̄2

∼
k2f2

e2a2ϕ2
≫ 1; ðB6Þ

which clearly shows that the contribution from the mode M̄
is negligible during much of the period of inflation.

Now, neglecting the subleading slow-roll corrections
containing ϵ and its derivative and working to linear order
in I, we obtain the action (4.1). In principle, we could
calculate the quadratic action nonperturbatively in terms of
the parameter I (i.e., to all orders in powers of I). However,
as demonstrated in Sec. IV B, requiring nearly scale-
invariant corrections from the gauge field into the curvature
perturbation power spectrum requires I ≪ 1, justifying our
approximation in keeping only terms linear in I in the
quadratic action (4.1).
In obtaining the action (4.1), we have used the following

formula:

HASSAN FIROUZJAHI et al. PHYS. REV. D 100, 043530 (2019)

043530-16



V ≃ 3H2

�
1 −

ϵ

6
ðI þ 2Þ

�
; ðB7Þ

A0 ¼
ffiffiffiffiffi
Iϵ

p
ð−τÞ−1 a

f
; eϕA ¼ e

ffiffiffiffiffi
2I

p

3

a
f
; ðB8Þ

f ¼ðτ=τeÞ2; ðB9Þ

ϕ ¼
ffiffiffiffiffiffiffi
2=ϵ

p
: ðB10Þ
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