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We perform for the first time a dynamical system analysis of both the background and perturbation
equations, of ΛCDM cosmology, and quintessence scenario with an exponential potential. In the former
case the perturbations do not change the stability of the late-time attractor of the background equations, and
the system still results in the dark-energy-dominated, de Sitter solution, having passed from the correct
dark-matter era with γ ≈ 6=11. However, in the case of quintessence the incorporation of perturbations
changes the stability and properties of the background evolution, and the only conditionally stable points
present an exponentially increasing matter clustering, not favored by observation; thus, this situation is not
physically interesting. This result is a severe disadvantage of quintessence cosmology compared to the
ΛCDM paradigm.
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I. INTRODUCTION

The dynamical system approach is a powerful tool that
allows us to extract information on the evolution of a
cosmological model, independently of the initial conditions
or its specific behavior at intermediate times [1]. In particular,
although a general cosmological scenario may exhibit an
infinite number of possible evolutions, its asymptotic behav-
ior, namely, its behavior at late times, can be classified in a
few different classes, which correspond to the stable critical
points of the autonomous-form transformed cosmological
equations. Thus, through such an analysis, one obtains
information of the late-time universe, bypassing the com-
plications of the cosmological equations, which prevent
complete analytical treatments, as well as the ambiguity of
the initial conditions.
The dynamical system approach has been applied to

numerous cosmological scenarios since the late 1990s (see
[2] and references therein); nevertheless, up to now it
remained only at the background level, namely, examining
the behavior of the background equations and calculating,
at the critical points, the values of background-related
quantities such as the density parameters, the equation-of-
state parameter, etc. Although this analysis was important
and adequate for the earlier cosmology advance, signifi-
cantly advancing cosmological progress, and especially the

huge amount of data related to perturbations (such as the
growth index and the large scale structure), leads to the
need to extend the dynamical system approach in order to
investigate cosmological scenarios at both the background
and perturbation levels.

II. DYNAMICAL ANALYSIS AT THE
BACKGROUND LEVEL

Let us briefly review thephase-space analysis of theΛCDM
paradigm, as well as of the basic dynamical dark-energy
scenario, namely, the quintessence one with an exponential
potential, which is the archetype quintessence scenario due
to the well-posed theoretical justification of exponential
potentials. Considering a flat Friedmann-Robertson-Walker
(FRW) metric ds2 ¼ dt2 − a2ðtÞδijdxidxj, the equations of
a general cosmological scenario read as

H2 ¼ κ2

3
ðρm þ ρdÞ; ð1Þ

_H ¼ −
κ2

2
ðρm þ pm þ ρd þ pdÞ; ð2Þ

with κ2 ¼ 8πG, and where ρm, pm are, respectively, the
energy density and pressure of thematter fluid, while ρd,pd
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are the energy density and pressure of the (effective) dark-
energy fluid. Finally, assuming that interactions do not take
place among the cosmic fluid components, the system of
equations closes with the conservation equations

_ρm þ 3Hð1þ wmÞρm ¼ 0; ð3Þ

_ρd þ 3Hð1þ wdÞρd ¼ 0; ð4Þ

where we have introduced the equation-of-state parameters
wi ≡ pi=ρi. Note that only three out of four equations (1)–(4)
are independent.
The above framework provides ΛCDM cosmology for

ρd ¼ −pd ¼ Λ=κ2, with Λ the cosmological constant, and
in this case, Eq. (4) becomes trivial. Additionally, for the
case of the basic quintessence scenario, in which a scalar
field ϕ is introduced, we have ρd ¼ _ϕ2=2þ V and pd ¼
_ϕ2=2 − V, with VðϕÞ its potential, and then Eq. (4)
becomes the Klein-Gordon equation ϕ̈þ 3H _ϕþ V0 ¼ 0,
with V 0ðϕÞ≡ ∂V=∂ϕ.
The essence of the dynamical system approach is to

transform the equations into an autonomous system, using
τ≡ ln a as the dynamical variable, extract its critical points,
perturbing around them, and investigate their stability by
examining the eigenvalues of the involved perturbation
matrix [1,2].
For ΛCDM cosmology, the cosmological equations can

be transformed into an autonomous form by simply using
the matter density parameter Ωm ≡ κ2ρm=ð3H2Þ as the
auxiliary variable. Thus, Eqs. (1) and (3) give rise to the
one-dimensional system

Ω0
m ¼ 3ðΩm − 1ÞΩm; ð5Þ

where primes denote derivatives with respect to τ. The
system has two critical points, characterized by Ωm ¼ 1
and Ωm ¼ 0, and one can see that the former is unstable
while the latter is stable. Therefore, for ΛCDM cosmology,
the cosmological-constant-dominated [Ωm ¼ 0 according
to (1) implies that Ωd ≡ ðκ2ρd=3H2Þ ¼ 1], de Sitter

solution is the stable late-time attractor, and thus the
universe will result in it independently of the initial
conditions and its evolutions at intermediate times. We
mention that the dynamical system analysis is actually not
needed in this scenario, since the equations are integrable,
with the solution

Ωm ¼ Ωm0

e3ð1þwmÞτð1 − Ωm0Þ þ Ωm0

; ð6Þ

with Ωm0 the value of Ωm at a ¼ 1. Hence, we can
immediately see that at late times the system always reaches
the de Sitter solution (for matter sectors that do not violate
the null energy condition).
In the case of the quintessence scenario, and focusing

on the basic model where an exponential potential V ¼
V0e−λκϕ for the scalar field is imposed, introducing the
auxiliary variables [3]

x≡ κ _ϕffiffiffi
6

p
H
; y≡ κ

ffiffiffiffi
V

p
ffiffiffi
3

p
H
; ð7Þ

we obtain the dynamical system

x0 ¼ 3

2
xð2x2 þ γmð1 − x2 − y2ÞÞ − 3xþ

ffiffiffi
3

2

r
λy2; ð8Þ

y0 ¼ 3

2
yð2x2 þ γmð1 − x2 − y2ÞÞ −

ffiffiffi
3

2

r
λxy; ð9Þ

in terms of which the various density parameters are
expressed as Ωd ¼ x2 þ y2, Ωm ¼ 1 −Ωd, γm ≡ wm þ 1,

while wd ¼ x2−y2
x2þy2. The critical points of the system (8) and

(9), along with their stability conditions and the corre-
sponding values of Ωd and wd, are shown in Table I. As we
observe, the scenario possesses two stable late-time attrac-
tors, with the scalar-field-dominated solution D being the
most physically interesting.

TABLE I. The critical points, their stability conditions (the corresponding eigenvalues are given in [3]), and the values of Ωd and wd,
for the quintessence scenario with exponential potential, with γm ≡ wm þ 1.

C.P. x y Existence Stability Ωd wd

A 0 0 Always Saddle for 0 < γm < 2 0 Undefined
B 1 0 Always Unstable node for λ <

ffiffiffi
6

p
1 1

Saddle for λ >
ffiffiffi
6

p
C −1 0 Always Unstable node for λ > −

ffiffiffi
6

p
1 1

Saddle for λ < −
ffiffiffi
6

p
D λ=

ffiffiffi
6

p ½1 − λ2=6�1=2 λ2 < 6 Stable node for λ2 < 3γm 1 λ2

3
− 1

Saddle for 3γm < λ2 < 6
E ð3=2Þ1=2γm=λ ½3ð2 − γmÞγm=2λ2�1=2 λ2 > 3γm Stable node for 3γm < λ2 < 24γ2m=ð9γm − 2Þ 3γm=λ2 wm

Stable spiral for λ2 > 24γ2m=ð9γm − 2Þ
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III. DYNAMICAL ANALYSIS AT THE
PERTURBATION LEVEL

The investigation of scalar perturbations is crucial in
every cosmological scenario since they are connected to
perturbation-related observables such as the growth index
γ and σ8 [4]. From now on, and for the convenience of
calculation, we focus on the most interesting case of dust
matter; namely, we set γm ¼ 1 (wm ¼ 0) since a nonzero
wm does not qualitatively affect our results.
In a general noninteracting scenario, which includes dust

matter and dynamical dark energy, the scalar perturbations
in the Newtonian gauge are determined by the equations [5]

_δm þ θm
a

¼ 0; ð10Þ

_δd þ ð1þ wdÞ
θd
a
þ 3Hðc2eff − wdÞδd ¼ 0; ð11Þ

_θm þHθm −
k2ψ
a

¼ 0; ð12Þ

_θd þHθd −
k2c2effδd

ð1þ wdÞa
−
k2ψ
a

¼ 0; ð13Þ

where k is the wave number of Fourier modes and ψ the
scalar metric perturbation assuming zero anisotropic stress.
Additionally, δi ≡ δρi=ρi are the density perturbations, and
θi are the velocity perturbations [5]. Furthermore, c2eff is the
effective sound speed of the dark-energy perturbations (the
corresponding quantity for matter is zero in the dust case),
which determines the amount of dark-energy clustering.
Note that the above equations can be simplified by
considering the Poisson equation, which in subhorizon
scales becomes [5]

−
k2

a2
ψ ¼ 3

2
H2½Ωmδm þ ð1þ 3c2effÞΩdδd�: ð14Þ

Finally, we mention that the above perturbation equations
must be considered alongside the background evolution
equations (1)–(4).
In general, the fact that Λ does not change in space and

time implies that the cosmological constant cannot cluster
like dark matter. On the other hand, dynamical dark energy
may cluster, and the amount of clustering is affected by the
effective sound speed. Specifically, in the case of c2eff ¼ 1,
pressure suppresses any dark-energy fluctuation at subhor-
izon scales. Therefore, for homogeneous dark energy, the
quantities δd and θd vanish. On the other hand, for c2eff ¼ 0

dark energy clusters similar to dark matter, and perturba-
tions will grow with time. The clustering of dark energy
modifies the evolution of dark matter fluctuation perturba-
tions; hence, it affects the structure formation rate of the

universe (for more discussion see [6] and references
therein).
Let us first investigate the case of the ΛCDM paradigm,

which is obtained by the above general framework for
wd ¼ −1 and ρd ¼ Λ=κ2, alongside δd ¼ 0 and θd ¼ 0
(i.e., dark energy is not clustering and thus its perturbation
equations can be completely ignored). As auxiliary vari-
ables we introduce Ωm, as well as the variable

Um ≡ δ0m
δm

: ð15Þ

Hence, in terms of Ωm, Um, Eqs. (1)–(4) and (10)–(13)
become

Ω0
m ¼ 3ðΩm − 1ÞΩm; ð16Þ

U0
m ¼ 3

2
ðUm þ 1ÞΩm −UmðUm þ 2Þ: ð17Þ

The critical points of the system (16) and (17), along with
the corresponding eigenvalues and their stability condi-
tions, are presented in Table II. The system admits four
critical points, with P3 being the stable one. It corresponds
to the cosmological-constant-dominated, de Sitter solution,
which moreover has δm ¼ const (since Um ¼ 0). Similarly,
one can observe the saddle point P4, which is a matter-
dominated universe in which the perturbations increase as
δm ∝ eτ ¼ a exactly at the critical point. Thus, for ΛCDM
cosmology the incorporation of perturbations does not
change the late-time attractor of the background evolution.
For completeness we must examine the possibility

of critical points that exist at “infinity” and hence that
are missed through the above basic analysis. Introducing
the transformation fΩm;Umg → fΩm; Ūmg with Ūm ¼
2
π arctanðUmÞ, we find that such critical points at infinity
do not exist, since Ū0

mjŪm¼�1 ¼ −2=π ≠ 0.
Finally, we note that in the literature it is standard to

consider that in the matter-dominated phase, in which the
large scale structure builds up due to the increase of matter
perturbations, we have the relation d ln δm=d ln a ≃Ωγ

m,
where γ is the growth index [7], which in our notation
becomes just Um ≃Ωγ

m. Inserting this into (17) we obtain

TABLE II. The critical points and their stability conditions, of
both background and perturbation equations, in the case of the
ΛCDM paradigm.

C.P. Ωm Um Existence Eigenvalues Stability

P1 0 −2 Always f−3; 2g Saddle
P2 1 − 3

2
Always f3; 5

2
g Unstable

P3 0 0 Always f−3;−2g Stable
P4 1 1 Always f3;− 5

2
g Saddle
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3γðΩm − 1ÞΩγ
m þ ðΩγ

m þ 2ÞΩγ
m −

3

2
ΩmðΩγ

m þ 1Þ ¼ 0;

ð18Þ

which, expanded around Ωm ¼ 1, leads to

−
�
11γ

2
− 3

�
ð1 − ΩmÞ þOðð1 − ΩmÞ2Þ ¼ 0: ð19Þ

As expected, the asymptotic value of the growth index is
γ ¼ 6

11
. The curve (18) is depicted in Fig. 1 with a thick

(brown) line, and as we observe, it coincides with the
unstable manifold of the matter-dominated solution P4.

We mention here that the dynamical system analysis is
not needed for ΛCDM cosmology since, even including the
perturbations, the system remains integrable. In particular,
the general solution reads

ΩmðτÞ ¼
Ωm0

e3τð1 −Ωm0Þ þΩm0

; ð20Þ

UmðτÞ ¼ f2Ωmð2Um0 þ 3Ωm0ÞðΩ2=3
m0 g0 −Ω2=3

m gÞ
þ 8ð1 − Ωm0Þ5=6Ω2=3

m0 g−1

· f3Ωmð2Um0 þ 3Ωm0ÞðΩ2=3
m g −Ω2=3

m0 g0Þ
þ 4Ω2=3

m ½ð2Um0 þ 3Ωm0Þð1 − ΩmÞ5=6

− 3Ω2=3
m0Ω

1=3
m ð1 −Ωm0Þ5=6�g; ð21Þ

where gðτÞ¼2F1½16;23;53;ΩmðτÞ� and g0 ¼ 2F1½16 ; 23 ; 53 ;Ωm0�,
withΩm0 andUm0 the values ofΩm andUm at τ ¼ 0 (i.e., at
a ¼ 1). From the analytical solutions (20) and (21) we can
easily see that for τ → ∞ we have Ωm → 0 and Um → 0;
i.e., the system results in the de Sitter point P3.
We now proceed to the investigation of perturbations in

quintessence with an exponential potential. As we men-
tioned above, this simple dark-energy scenario has c2eff ¼ 1,
which implies that dark energy is nonclustering, and hence
one should consider only the perturbation equations (10)
and (12), alongside the background ones (1)–(4). In order
to transform them into autonomous form, we use the
variables x, y of (7), as well as the additional variable

3 2 1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

Um

m

P1

P2

P3

P4

FIG. 1. The phase-space diagram for ΛCDM cosmology, at
both background and perturbation levels. At late times the system
is attracted by the de Sitter point P3. The thick line is the curve
(18), which coincides with the unstable manifold of the matter-
dominated solution P4, and which for Ωm close to 1 gives γ ¼ 6

11

analytically as expected (see text).

TABLE III. The physical (real with 0 ≤ Ωm ≤ 1 and expanding) critical points, their stability conditions, and their properties, of both
background and perturbation equations, in the case of quintessence with exponential potential. The stability conditions arise from the
examination of the sign of the eigenvalues of the involved perturbation matrix.

C.P. fx; yg Um Ωm wd Existence Eigenvalues Stability

A1 f0; 0g − 3
2

1 Undefined Always 5
2
;− 3

2
; 3
2

Saddle

A2 f0; 0g 1 1 Undefined Always − 5
2
;− 3

2
; 3
2

Saddle
B1 f1; 0g 0 0 1 Always

3; 1; 3 −
ffiffi
3
2

q
λ Unstable for λ <

ffiffiffi
6

p

Saddle for λ >
ffiffiffi
6

p
B2 f1; 0g 1 0 1 Always

3;−1; 3 −
ffiffi
3
2

q
λ Saddle

C1 f−1; 0g 0 0 1 Always
3; 1; 3þ

ffiffi
3
2

q
λ Unstable for λ > −

ffiffiffi
6

p

Saddle for λ < −
ffiffiffi
6

p
C2 f−1; 0g 1 0 1 Always

3;−1;
ffiffi
3
2

q
λþ 3

Saddle

D1

�
λffiffi
6

p ;
ffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

6

q �
1 0 −1þ λ2

3
λ2 ≤ 6 λ2 − 3; 1

2
ðλ2 − 6Þ; 1

2
ðλ2 − 8Þ Stable for λ2 < 3

Saddle for λ2 > 3
D2

�
λffiffi
6

p ;
ffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

6

q �
λ2

2
− 3 0 −1þ λ2

3
λ2 ≤ 6 λ2 − 3; 1

2
ðλ2 − 6Þ;− 1

2
ðλ2 − 8Þ Saddle

E1
n ffiffi

3
2

p
λ ;

ffiffi
3
2

p
λ

o 1 1 − 3
λ2

0 λ2 ≥ 3 − 5
2
;− 3

4
ð1�

ffiffiffiffiffiffiffiffiffiffiffi
24−7λ2

p
λ Þ Stable for λ2 > 3

E2
n ffiffi

3
2

p
λ ;

ffiffi
3
2

p
λ

o − 3
2 1 − 3

λ2
0 λ2 ≥ 3 5

2
;− 3

4
ð1�

ffiffiffiffiffiffiffiffiffiffiffi
24−7λ2

p
λ Þ Saddle
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Um ¼ δ0m
δm

: ð22Þ

Therefore, the autonomous dynamical system consists of
Eqs. (8) and (9) and

U0
m ¼ −U2

m −
Um

2
ð1 − 3x2 þ 3y2Þ þ 3

2
ð1 − x2 þ y2Þ;

ð23Þ

i.e., it is now 3 dimensional, in contrast to the 2-dimensional
one of the background equations. Since the first two
equations are decoupled from the third one, the system
admits the five critical points of the background analysis of
Table I, each of which is now split into two points due to
the additional variable Um. The physical critical points and
their stability conditions are presented in Table III. Finally,
the analysis at infinity shows that stable critical points do
not exist.
The crucial feature, which lies in the center of the

analysis of this work, is that the stability and properties
of the points change due to the existence of extra dimen-
sions (reflecting the incorporation of perturbation equa-
tions) in the phase space. In particular, we can see that
the only two points that can be conditionally stable, namely,
D1 and E1, have Um ¼ 1, which implies that δm increases
exponentially in an expanding universe; hence, they are

not physically interesting. Therefore, the incorporation of
perturbation ruins the dark-energy-dominated, de Sitter
solution, which is the physically interesting late-time attrac-
tor of the background equations, since it induces an asymp-
totically infinite clustering in an expanding universe.

IV. CONCLUSIONS

We performed for the first time a dynamical system
analysis of both the background and perturbation equations,
in ΛCDM cosmology and a quintessence scenario with
exponential potential. In the former case, the incorporation
of perturbations does not change the stability of the late-time
attractor of the background equations, and the system still
results in the dark-energy-dominated, de Sitter solution,
having passed the correct dark matter era with γ ≈ 6=11
(actually, in this scenario one extracts analytical solutions).
However, in the case of quintessence, the incorporation of
perturbation changes the stability and properties of the
background evolution, and the only conditionally stable
points present an exponentially increasing matter clustering,
not favored by observation; thus, this situation is not
physically interesting. In summary, the above results have
a severe disadvantage of quintessence with exponential
potential (which is the scenario archetype due to the well-
posed theoretical justification of exponential potentials)
compared to the ΛCDM paradigm.
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