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In this paper, we introduce an action for the warm inflation model with direct coupling between the
pseudoscalar field and massless SUð2Þ gauge fields. The potential of the inflaton is protected against the
thermal corrections in a thermal bath of gauge fields even with strong direct interaction between the inflaton
and light fields. The dissipation parameter of this model is approximately constant in the high-dissipative
regime. In this regime, the model is compatible with observational data and non-Gaussianity is in the order
of the Hubble slow-roll parameter ϵϕ

1þQ even in the f < Mp limit.
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I. THE SETUP AND MOTIVATION

We can show that the inflation epoch occurs at the finite
temperature T > H. The model with interaction between
the inflaton and other (mainly) light fields is named warm
inflation (WI) [1,2]. Out of the warm inflation condition,
i.e., T < H, the nearly thermal bath of light particles cannot
be sustained because of the accelerated expansion of the
Universe. In the WI model, there is an energy exchange
between the inflaton field and other light fields during the
slow-roll epoch, which leads to an additional friction term
in the equation of motion (EOM) of the inflaton scalar field
at the background level:

ϕ̈þ 3H _ϕþϒ _ϕþ dV
dϕ

¼ 0: ð1Þ

On the other hand, when the light fields thermalize, the
evolution of radiation energy density is presented by

_ρR þ 4HρR ¼ ϒ _ϕ2: ð2Þ
Transferring the energy density of the inflaton field into the
cosmic plasma may sustain the condition T ≥ H during
inflation. In the slow-roll regime of radiation fluid,

_ρR ≪ 4HρR ⇒ ρR ¼ ϒ _ϕ2

4H
¼ π2

30
g�T4; ð3Þ

we can find

T
H

¼
�
ϒ
H

_ϕ2

H4

15

2g�π2

�1
4

: ð4Þ

If we have _ϕ ≫ H2, even for weak dissipation regime
(ϒ<H), the main condition of warm inflation (T > H) can
be sustained in the slow-roll regime [ _ϕ≪ ðVðϕÞÞ12≃HMp].

Therefore, the presence of the dissipative effect may
lead to WI rather than supercold inflation. In the above
equations, g� is the relativistic degree of freedom (DOF)
and the source of radiation varies adiabatically when
ϒ ¼ ϒðϕ; TÞ. The slow-roll conditions in the WI model
are modified,

ϵϕ ηϕ ≪ 1þQ; ð5Þ

where

ϵϕ ¼ 1

2
M2

p

�
V 0

V

�
2

ηϕ ¼ M2
p

�
V 00

V

�
Q ¼ ϒ

3H
ð6Þ

[3–5]. These new slow-roll conditions show that the
additional friction term ϒ _ϕ in modified EOM can
alleviate the required flatness of the potential in the
slow-roll regime. Using EOM (1) of the thermalized
inflaton, we can find

ρR
VðϕÞ ≃

1

2

ϵϕ
1þQ

Q
1þQ

; ð7Þ

where

ϕ̈ < 3Hð1þQÞ _ϕ; ð8Þ

which presents ρR < VðϕÞ during the accelerated expan-
sion epoch of the Universe’s evolution (slow-roll inflation).
But the radiation energy density can smoothly become the
dominant component at the end of inflation, where ϵϕ ∼
1þQ with Q ≫ 1, without the need for a separate
reheating epoch. Dissipation effects also modify the growth
of inflaton fluctuations with a distinctive imprint on the
primordial spectrum.
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II. PROBLEMS OF WARM INFLATION

It was shown that the idea of WI is not easy to present as
a concrete model [6]. An inflation field with direct coupling
to light fields has problems. For example, Yukawa inter-
action λϕψ̄ψ leads to fermions with mass mψ ¼ λϕ.
Typically large inflaton values are needed in the slow-roll
limit. But we want light fermions. On the other hand, when
the small coupling λ is considered, the thermal bath
condition T > H may not be sustained. Direct coupling
to light fields may add a large thermal correction to inflaton
mass ∼λT, which can stop the slow-roll condition _ϕ2 ≪
VðϕÞ in the warm inflation regime T > H. In the literature,
WI has mostly been explained by inflatons, which indi-
rectly couple to light DOF through heavy intermediate
fields [7,8]. Thermal correction of the inflaton mass is
exponentially suppressed, but there is a new problem in this
realization: The dissipation coefficient is suppressed by
powers ð T

Mm
Þ < 1, where Mm is the mediator mass. Solving

this problem implies that we need a large number of
intermediate fields, which is required to hold a thermal
bath for 50–60 e-folds of inflation. The case of the brane
constructions can be used for WI realization, which is
discussed in [9].

III. WARM INFLATION WITH
A FEW LIGHT FIELDS

Recently a new idea of WI was published called “warm
little inflaton” (WLI) [5]. In the WLI scenario, for the first
time, WI may be realized by directly coupling pseudo-
Nambu-Golden bosons (PNGBs) of broken gauge sym-
metry as an inflaton field to a few light fields. The critical
point in WLI is that the Higgs boson is the PNGB of a
broken gauge symmetry breaking which has a protected
mass against large radiative corrections [10]. In this paper,
we will introduce a new warm inflation model where the
inflaton directly couples to light fields. In our scenario,
Chern-Simons interaction between the inflaton field and
non-Abelian gauge fields will be proposed:

L¼ ffiffiffiffiffiffi
−g

p �
−
R
2
−
1

4
Fa
μνF

μν
a −

1

2
∂μ∂μφ−VðφÞ− φ

8M
Fa
μνF̃

μν
a

�
;

ð9Þ

whereM is the symmetry breaking scale, F̃μν ¼ 1
2
ϵμνρσFaμν

is the dual field strength [11,12], and

Fa
μν ¼

1

ig
½Da

μ;Da
ν � Da

μ ¼ ∂μ − igAμJa Tr½Ja; Jb� ¼
1

2
δab:

ð10Þ

The EOM for the gauge field strength tensor F in the
presence of Chern-Simons-like coupling is presented as

ðδab∇α − gfabcAc
αÞFaαβ −

ϵμνβα

2M
∂ab
α ðϕFb

μνÞ ¼ 0; ð11Þ

where ∇α is the space-time covariant derivative of the
inflaton field and ϕ ¼ hφi is the thermal average of the
inflaton field φ. A thermal system with the finite temper-
ature T in our model is a cosmic expanding plasma which is
composed of inflatons with an equation of state (EOS)
w ¼ P

ρ < 0 and gauge-light field particles with a radiation-

like equation of state w ¼ P
ρ ¼ 1

3
[13].

Light particles are quanta of the gauge field

Aa
i ¼

Z
d3k
ð2πÞ3 ε

a
i ðk; tÞeikμxμ

¼
Z

d3k
ð2πÞ3 δ

a
i Jaεðk; tÞeikμxμ A0 ¼ 0; ð12Þ

where Ja is a generator of SUð2Þ with commutation
relations

½Ja; Jb� ¼ ifabcJc; ð13Þ

with the SUð2Þ structure function fabc ¼ ϵabc. Averaging
on quantum fields leads to a homogeneous and isotropic
EOM of gauge fields (11),

Φ̈
a
þH

_Φ
a
þ 2g2

Φ3

a3
¼ g

2M
_ϕ
Φ2

a2
; ð14Þ

where

ΦðtÞδai ¼ aðtÞψðtÞδai ¼ hAa
i i: ð15Þ

The background evolution of a warm pseudoscalar (WPS)
field in an isotropic and homogeneous thermal bath, using
(15) and action (9), is presented by

ϕ̈þ 3H _ϕþ dV
dϕ

¼ −
1

2Ma3
g∂tðΦ3Þ: ð16Þ

In the slow-roll limit of warm inflation Φ̈
a ≪ H _Φ

a (see the
Appendix) and in the g ≪ 1 limit, the equations (14),

_Φ
a
≃

gψ2

2MH
_ϕ; ð17Þ

and (16),

ϕ̈þ 3H _ϕþ dV
dϕ

¼ −3H
gψ2

2MH

_Φ
a
; ð18Þ

lead to the EOM of warm inflation,
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ϕ̈þ 3Hð1þQÞ _ϕþ dV
dϕ

¼ 0; ð19Þ

where Q ¼ ð gψ2

2MHÞ2 > 1, which is a function of background
variables. In the high dissipative regime, the variation of
background variables during the last 60 e-folds of inflation
is very hard [19], so we have an approximately constant
dissipation parameter Q. In our model, the main properties
of warm inflation ½TH > 1; ρr

VðϕÞ < 1� can be sustained:

ρr
V

¼ ϵϕ
1þQ

Q
1þQ

; ð20Þ

where Q > 1 [20].

IV. PERTURBATION

In the warm inflation scenario, the curvature power
spectrum is modified by the dissipation effect:

Δ2
R ¼ V�ð1þQ�Þ2

24π2M4
pϵϕ�

�
1þ 2n� þ

2
ffiffiffi
3

p
πQ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 4πQ�
p T�

H�

�
GðQÞ:

ð21Þ

The first term is the power spectrum of quantum fluctua-
tions which is introduced in the cold model of inflation.
Another two terms are the modification of the power
spectrum in the warm scenario of inflation and G is
calculated numerically for temperature dependent dissipa-
tion parameters Q [5]. A well-known potential of pseudo-
scalar fields,

UðϕÞ ¼ m2
ϕf

2

�
1þ cos

�
ϕ

f

��
; ð22Þ

is suitable for the inflation epoch, where ϕ
f is not close to π.

We can study this potential in the context of the warm
pseudoscalar field model. Leading terms of perturbation
parameters in slow-roll and high dissipative Q > 1 limits
are presented in Table I. In Figs. 1 and 2, the best fits of the
model with observational data are presented for Q > 1 and
f < Mp limits.

V. NON-GAUSSIANITY

Now we consider the non-Gaussianity of our model
using δN formalism [21]. In this method, the perturbation
theory of cosmology is studied by a quasihomogene-
ous, spatially flat, Friedman–Lemaitre–Robertson–Walker
(FLRW) space-time with scale factor aðtÞ. The spatial part
of the FLRW metric is presented by

gij ¼ a2ðtÞe2ζðt;xÞγijðt;xÞ; ð23Þ
where the primordial curvature perturbation ζ is actually
the perturbation of lnðaÞ, which has an approximately
Gaussian power spectrum, and γij is the tensor perturba-
tion. The nearly Gaussian term ζ, at least at second order,
which has good accuracy, is presented by derivatives of the
number of e-folds with respect to the inflaton field ϕ:

ζðt;xÞ ¼ Nϕδϕþ 1

2
NϕϕðδϕÞ2: ð24Þ

TABLE I. Important perturbation parameters of pseudoscalar
warm inflation in the high dissipative regime Q > 1 compared
with observational data.

Q > 1 Theoretical amount Constant parameter

ΔR Δ0RðUϵϕÞ
3
2 Δ0R ¼ Q

9
4

2
ffiffi
2

p
πð2πM2

pÞ
3
2

ns − 1 − 1.5
N − 4.5

α α ¼ 2ð1þQÞf2
M2

p
, α > N

r r0ϵ
3
4

ϕU
1
4 r0 ¼ 16

3πM4
pΔ0R

sinðϕ�
2fÞ A0 expð− 3

αNÞ A0 ¼ cosð
ffiffi
2

p
α Þ

FIG. 1. Variation of ns in terms of parameter α for three cases of
numbers of e-folds.

FIG. 2. (r, ns) of our model for two cases N ¼ 60 and N ¼ 50
in the 1 − σ confidence level of r − ns Planck results [22].
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Perturbation of the inflaton field δϕ in the warm inflation
scenario is almost Gaussian, which leads to the scale
independent nonlinear parameter fNL as a function of
derivatives of N with respect to the inflaton field [21]:

−
3

5
fNL ¼ 1

2

Nϕϕ

N2
ϕ

; ð25Þ

where Nϕ ¼ − 1
M2

p

Uð1þQÞ
Uϕ

. The nonlinear parameter of the

non-Gaussianity parameter fNL in the Q ≃ const case is
presented by

fNL ¼ 5

6

1

1þQ
ð2ϵϕ − ηϕÞ; ð26Þ

which is in order of the Hubble slow-roll parameters. For
our potential (22), the level of non-Gaussianity is a function
of the number of e-folds and parameter α:

fNL ¼ 5

3αcos2ð
ffiffi
2

p
α Þ

exp

�
−
6

α
N

�
: ð27Þ

Therefore, we have an insignificant non-Gaussianity of
warm pseudoscalar inflation even with f < Mp. In Fig. 3,
the variations of non-Gaussianity, during inflation, in terms
of parameter α are presented.

VI. OBSERVATION CONSTRAINT

In Fig. 1, we show the spectral index in terms of
parameter α for some amounts of the number of e-folds.
The yellow region is the 1σ confidence level of the spectral
index. For the N ¼ 60 case, we have 450 < α < 4500
amounts, which agree with observational data. Using α ¼
600 and two cases N ¼ 50 and N ¼ 60, we present two
points in the 1σ confidence level of the r − ns graph (2),

where the upper point is the case (α ¼ 600, N ¼ 50) and
the next is (α ¼ 600, N ¼ 60), which are in good agree-
ment with observational data with a very small amount of
tensor-to-scalar ratio. Using CMB observational data, we
found that the sub-Planckian limit of symmetry breaking
parameter f is happened in high dissipative regime Q > 1.
There are some methods to constrain these parameters
ðf;QÞ in warm inflation [23,25,26,36]. We will use these
methods for more exact constraints of our model param-
eters in future works. In a phase space of model parameters
ðα; NÞ we show that our model has small amounts of
non-Gaussianity (3).

VII. DISCUSSION AND CONCLUSIONS

In this paper, we introduce a model of warm inflation
with a direct connection between axion inflaton fields
and light gauge fields. In the slow-roll limit, we have
found approximately constant dissipation parameter Q in
term of background parameters of the model. The model is
in good agreement with observational data in the
high dissipative regime Q > 1, which can resolve the
swampland conjecture [27–32]. The small amounts of
non-Gaussianity are found for the allowed phase space
of the model parameters. We can compare our model with
the famous Starobinsky cold inflation model with the
asymptotic behavior of the effective potential as VðϕÞ ∝
½1 − 2e−Bϕ=Mpl þOðe−2Bϕ=MplÞ� in the slow-roll limit where
the perturbation parameters are presented by [33–35]: r ≈
8=B2N2 and ns ≈ 1–2=N, where B2 ¼ 2=3. For N ¼ 60
and N ¼ 50, the Starobinsky perturbation parameters are
ðns; rÞ ≈ ð0.967; 0.0033Þ and ðns; rÞ ≈ ð0.96; 0.0048Þ,
respectively, but our model has smaller values of a
tensor-to-scalar ratio (see Fig. 2). On the other hand, the
comparison with warm little inflation [5], which agrees
with observation in theQ < 1 limit, shows that our result is
in a better situation with the smaller value of the tensor-to-
scalar ratio in Q > 1, which is needed to resolve the
swampland conjecture [27–32]. Non-Gaussianity of our
model (27) is also very small in comparison with other
warm inflation models [21,36].
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APPENDIX: SLOW-ROLL CONDITION OF
LIGHT FIELDS

In this section, we present the slow-roll condition of the
effective radiation field Φ and EOMs by using energy
conservation:

FIG. 3. Small values of non-Gaussianity are presented for
reasonable values of α.
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_ρþ 3Hðρþ PÞ ¼ 0

ρ ¼ ρϕ þ ρr

P ¼ Pϕ þ Pr; ðA1Þ

which leads to

_ρϕ þ 3Hðρϕ þ PϕÞ ¼ −½_ρr þ 3Hðρr þ PrÞ�: ðA2Þ

Using the action of our model, we present

ρϕ ¼ 1

2
_ϕ2 þ VðϕÞ

Pϕ ¼ 1

2
_ϕ2 − VðϕÞ ðA3Þ

and

ρr ¼
3

2

�
_Φ2

a2
þ g2

Φ4

a4

�

Pr ¼
1

2

�
_Φ2

a2
þ g2

Φ4

a4

�
: ðA4Þ

In the warm inflation scenario, the slow-roll limit of the
radiation part is presented by _ρr ≪ 4Hρr. Using the above
equation, we present

_ρr ¼
3 _Φ
a

�
Φ̈
a
−H

_Φ
a
þ 2g2Φ3

a3

�
−
6Hg2Φ4

a4
: ðA5Þ

In the slow-roll and g ≪ 1 limits, we find the slow-roll
condition for thermalizing the radiation field Φ as

Φ̈
a
≪ 3H

_Φ
a
: ðA6Þ

On the other hand, we can find the lhs of the scalar
field and effective radiation field EOMs using energy
conservation (A1):

_ϕ

�
ϕ̈þ 3H _ϕþ dVðϕÞ

dϕ

�
¼ −

3 _Φ
a

�
Φ̈
a
þH

_Φ
a
þ 2g2Φ3

a3

�
:

ðA7Þ
This relation agrees with the EOMs

_ϕ

�
ϕ̈þ 3H _ϕþ dV

dϕ

�
¼

�
−

1

a3
g
2M

∂tðΦ3Þ
�
_ϕ

3 _Φ
a

�
Φ̈
a
þH

_Φ
a
þ 2g2

Φ3

a3

�
¼

�
g
2M

_ϕ
Φ2

a2

�
3 _Φ
a

; ðA8Þ

which come from the variation of the effective action. We
note that the rhs’s of the EOMs come from the Chern–
Simons interaction in the action.
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