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In this paper, we test the perturbative halo bias model at the field level. The advantage of this approach is
that any analysis can be done without sample variance if the same initial conditions are used in simulations
and perturbation theory calculations. We write the bias expansion in terms of modified bias operators in
Eulerian space, designed such that the large bulk flows are automatically resummed and not treated
perturbatively. Using these operators, the bias model accurately matches the Eulerian density of halos in
N-body simulations. The mean-square model error is close to the Poisson shot noise for a wide range of
halo masses, and it is rather scale independent, with scale-dependent corrections becoming relevant at the
nonlinear scale. In contrast, for the linear bias, the mean-square model error can be higher than the Poisson
prediction by factors of up to a few on large scales, and it becomes scale dependent already in the linear
regime. We show that by weighting simulated halos by their mass, the mean-square error of the model can
be further reduced by up to an order of magnitude, or by a factor of 2 when including 60% mass scatter. We
also test the standard Eulerian bias model using the nonlinear matter field measured from simulations and
show that it leads to a larger and more scale-dependent model error than the bias expansion based on
perturbation theory. These results may be of particular relevance for cosmological inference methods that
use a likelihood of the biased tracer at the field level or for initial condition and baryon acoustic oscillation
reconstruction that requires a precise estimate of the large-scale potential from the biased tracer density.

DOI: 10.1103/PhysRevD.100.043514

I. INTRODUCTION

The bias expansion forms the basis for the analytical
description of the clustering of biased tracers on large
scales (for a recent review, see Ref. [1]). There are many
checks in the literature showing that it works well at the
level of summary statistics such as the power spectrum of
halos, cross-spectra of halos with the matter density, and
different higher-point correlation functions (recent studies
include, e.g., Refs. [2–8]). In this paper, we explore how
well the bias expansion can match simulations at the field
level. This is closely related to previous studies on the
stochasticity of biased tracers (e.g., Refs. [7,9–25]) but
requires modifications for nonlinearly biased tracers, as we
shall see.
The main motivation for testing the bias expansion at the

field level is that it is more stringent than a comparison of
summary statistics. A model that predicts the simulated
halo or galaxy density correctly for all pixels also predicts
all summary statistics correctly; the reverse is generally not

true. Also, overfitting, which can be a potential issue when
fitting bias predictions for summary statistics, is not a
concern because at the field level all pixels or Fourier mode
phases must be fitted, and the fit is not dominated by the
Fourier modes with highest signal-to-sample-variance
noise.
A second, closely related motivation is to avoid sample

variance. It is difficult to use correlation functions to
accurately test the bias expansion because the correlation
functions are subject to sample variance in the simulation
volume. That sample variance is not present when compar-
ing prediction and simulation at the field level for the same
initial conditions. This simplifies quantifying the accuracy
and regime of validity of the bias expansion. Specifically, it
enables simulations of moderate volumes with accurate
mass and spatial resolution to characterize the bias expan-
sion and its error with a precision corresponding to the
cosmic variance of surveys that cover a much larger
volume. The model error determined in this way can then
inform cosmological analyses of galaxy survey data, e.g.,
by predicting the fiducial stochastic model error or shot
noise to be included in the likelihood.
A third motivation is that a bias model that works at the

field level could turn out useful for other applications. For
example, it could serve as a forward model predicting the
halo density given a linear initial density, which is one of
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the ingredients of cosmological inference methods that use
a likelihood of the biased tracer at the field level [26–34].
Or it could help to optimize initial condition and baryon
acoustic oscillation (BAO) reconstruction, which requires a
precise estimate of the large-scale potential field from the
biased tracer density (see Ref. [35] and references therein
and Refs. [33,36–46] for more recent developments).
Two major goals of our analysis are to check how well

the bias expansion describes the simulated overdensity of
dark matter halos, which we will refer to as “true” halo
overdensity δtruthh , and to measure the amplitude and the
scale dependence of the residual noise. These two questions
are tightly related to each other. To illustrate this, let us
consider the simplest model with the linear bias b1,

δtruthh ¼ b1δþ ϵ; ð1Þ

where δ is the nonlinear dark matter field. The stochastic
term ϵ in this formula must be present, since we do not
expect that the relation between dark matter and halos is
perfectly deterministic [9–17]. The best possible b1 that
describes the halo density field can be found by minimizing
the mean-square difference hjδtruthh − b1δj2i, leading to the
usual formula

b1ðkÞ ¼
hδtruthh ðkÞδ�ðkÞi

hjδðkÞj2i : ð2Þ

If the fields δtruthh and δ share the same initial conditions, the
measurement of b1ðkÞ can be done without sample vari-
ance. Notice that the bias measured in this way is a function
of k. One way to argue how well the linear bias model
works is to ask up to which scales b1ðkÞ is a constant. A
significant scale dependence is a sign that higher-order
corrections must be included.
An equally relevant question is how big an error we

make, using the best-fit values for bias parameters [in our
simple example, b1ðkÞ]. The power spectrum of this model
error, or noise (sometimes also referred to as stochasticity
[7,18–22,24,25]), is for the linear bias model given by

PerrðkÞ≡ hjδtruthh ðkÞ− b1ðkÞδðkÞj2i

¼ hjϵðkÞj2i ¼ hjδtruthh ðkÞj2i− hδtruthh ðkÞδ�ðkÞi2
hjδðkÞj2i ; ð3Þ

where in the last equality we have used Eq. (2). The naive
expectation for the large-scale amplitude of Perr is that it is
close to Poisson noise 1=n̄≡ V=Nparticles, which is
expected when randomly sampling the continuous density
with pointlike particles. However, the amplitude of the
noise measured in simulations is larger than 1=n̄ for low-
mass halos and smaller than 1=n̄ for high-mass halos
[7,24,25,47,48]. The noise can also have a significant scale
dependence, even at relatively large scales. In some cases,

the amplitude of the noise on mildly nonlinear scales can
differ from the amplitude in the low-k limit even by tens of
percent. Large amplitude and large scale dependence, if
real, are dangerous because they can significantly impact
the inference of cosmological parameters.
One possible interpretation of these results is that the

scale dependence of the noise is due to the higher-order
terms in the bias expansion. Indeed, in definition (1), the
noise field ϵ contains operators constructed from matter
fields that are not included in the model. Even though one
may naively think that the higher-order terms are irrelevant
at large scales, as we are going to see they can significantly
change the behavior of the noise even in the low-k limit.
Therefore, a more appropriate relation between dark matter
and halos on large scales is [1,34,49]

δtruthh ¼ δmodel
h ½δ� þ ϵ; ð4Þ

where δmodel
h ½δ� stands for the model based on perturbative

bias expansion.1 The success of the perturbative description
can then be rephrased as the question of whether or not
including higher orders in perturbation theory leads to a
PerrðkÞ that has an amplitude closer to the Poisson noise
and no significant scale dependence up to the nonlinear
scale. To test whether the noise of the perturbative bias
models has these properties, we estimate ϵ as the field
difference between the true halo density, obtained, e.g.,
from an N-body simulation, and the perturbation theory
prediction,

ϵ̂≡ δtruthh − δmodel
h : ð5Þ

This model error vanishes on average, hϵ̂i ¼ 0, and its
power spectrum,

PerrðkÞ≡ hjϵ̂ðkÞj2i; ð6Þ

describes the mean-square deviation of a Fourier mode
δtruthh ðkÞ from the bias model prediction δmodel

h ðkÞ. For linear
bias, this definition coincides with Eq. (3). If the higher-
order operators in the bias expansion are included in the
model δmodel

h ½δ�, the model error ϵ̂ in Eqs. (5) and (6) is free
from these higher-order bias terms. It only contains other
higher-order bias terms, which are not included in the
model, and stochastic noise terms. We are going to show
that, as a consequence, the model error power spectrum
becomes more flat and has an amplitude closer to the
Poisson prediction. This is because the higher-order bias
operators not included in the model make only small
k-dependent contributions to the model error, and
k-dependent corrections to the stochastic noise become

1For simplicity, throughout the paper, we will also use the
notation δh ≡ δmodel

h when the confusion with the simulated halo
density field is not possible.
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only relevant on small scales. We will discuss these points
in more details throughout the paper.
One technical challenge in predicting the halo over-

density at the field level in perturbation theory is the
treatment of large IR displacements (bulk flows). Com-
parisons with simulations are naturally done in Eulerian
space in the final conditions, but the large displacements
are treated perturbatively in standard Eulerian perturbation
theory. This causes significant decorrelation of the pre-
dicted fields and simulations even on perturbative scales.
To solve this problem, we introduce a bias expansion using
a new basis of Eulerian bias operators that fully include the
Zel’dovich displacement. We call these operators shifted
operators and define them as

ÕðkÞ≡
Z

d3qOðqÞe−ik·ðqþψ1ðqÞÞ; ð7Þ

where q is a Lagrangian coordinate in the initial condition,
ψ1 is the Zel’dovich displacement field, andOðqÞ is any of
the standard bias operators written in Lagrangian coordi-
nates. We will show that the bias expansion defined in this
way successfully describes the number density of halos in
simulations, without the aforementioned decorrelation.
Furthermore, we will show that the correlation functions
of the shifted operators are closely related to the standard
IR-resummed Eulerian counterparts, making a clear con-
nection to the usual one-loop power spectrum for biased
tracers.
Another important technical point is that the bias

parameters obtained by minimizing the difference between
the true halo density field and the model do not generally
correspond to the physical (renormalized) bias parameters
measured from the low-k limits of the n-point functions.
The reason for this is that the shifted operators Õi depend
on small scales and they are not renormalized bias
operators. We make the choice of not smoothing the
density fields for two reasons. First, our goal is not to
merely measure the bias parameters but also to push the
bias expansion to its limits and see how high in k we can in
principle go, maintaining a good correlation with the halo
density field. Second, we want to see how much of the halo
density field on large scales can be explained by the Fourier
modes that are not in the perturbative regime. The main
advantage of our approach is that it leads to a lower model
error than using the bias parameters defined and measured
in the standard way. Given a fixed survey volume, this,
in principle, leads to more powerful measurements of
cosmological parameters.
One may be tempted to argue that, instead of using an

analytical bias model, one could directly use a full N-body
simulation as the forward model for cosmological param-
eter inference [31]. This would capture small-scale modes
and should therefore reduce the model error. But a critical
component of this simulation-based approach is to obtain

the halo density from the simulated nonlinear dark matter
density. Applying a halo finder to the simulated dark matter
density has led to complications because it renders the
forward model nondifferentiable [31,33]. A possible sol-
ution is to use a neural network or other machine-learning
techniques to approximate the result of nondifferentiable
halo-finding algorithms with a differentiable model [33].
However, such an approximation typically makes some
stochastic error. If an analytical bias model can predict the
halo density field from the dark matter field with a similar
error, then it may be a potentially simpler and useful
alternative to a neural net.
Nonlinear bias has been tested against simulations at the

field level before [23]. Using a different method to fit bias
parameters (fitting scatter plots of the model and simulation
halo density smoothed on a particular scale as opposed to
minimizing the mean-square model error for each wave
number k) and using the local standard Eulerian bias
model, Ref. [23] found the scatter of the predicted halo
density around the simulated halo density to be much larger
than expected by the Poisson shot noise prediction. We
confirm this result for standard Eulerian bias and provide
possible explanations in Sec. VII A. This motivates us to
employ a bias model different from the standard Eulerian
one when working at the field level.
The paper is organized as follows. We introduce the bias

model in terms of shifted operators in Sec. II, in which we
also describe our method to fit bias parameters at the field
level and list other bias models that wewill compare against
simulations. Section III presents the numerical implemen-
tation of the bias model and the N-body simulations. We
then compare the model against simulations in position
space in Sec. IVand in Fourier space in Sec. V, in which we
analyze the size and scale dependence of the model error
and the size of the bias terms contributing to the bias model.
Section VI presents a perturbative description of the
transfer functions associated with the shifted bias operators
that we use and perturbative fits of these transfer functions.
The rest of the paper consists of two stand-alone sections.
In the first of these two sections, Sec. VII, we discuss the
relation to the standard Eulerian bias and perturbation
theory. Specifically, we show in Sec. VII A that the
standard Eulerian bias expansion fails to describe biased
tracers at the field level. In Sec. VII B, we discuss the
connection with the usual IR-resummed power spectrum.
In the second stand-alone section, Sec. VIII, we explore
how an extension of our work using mass-weighted halos
can reduce the stochastic noise and therefore the error of the
bias model. We end by summarizing the main results in
Sec. IX. All technical details are described in Appendixes.
For readers interested mainly in our theoretical inves-

tigation and its relation to previous work and other models,
see Secs. II, VI, and VII, as well as Appendixes A and D.
For readers interested in measures of success when
comparing against simulations, see Secs. IV and V and
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Appendix B. For readers interested in the numerical
implementation of the model at the field level, see
Sec. III and Appendix C.

II. BIAS MODEL AT THE FIELD LEVEL

The perturbative approach to halo biasing has a long
history and has been well studied both in Eulerian and
Lagrangian space (see the review [1] and references therein,
including, e.g., Refs. [7,50–61]). However, most of the
focus has been on the prediction of summary statistics, such
as the power spectrum or the bispectrum of biased tracers.
In contrast, in this paper, we are interested in perturbation
theory predictions at the level of realizations. In this
section, we describe a perturbative bias model that we
are going to use to make comparisons with simulations.

A. Bias expansion in terms of shifted operators

Describing dark matter or biased tracers at the field level
is a nontrivial challenge for perturbation theory. For
instance, it is well known that the large IR displacements
(bulk flows) induced by long modes cannot be treated
perturbatively. If they were, the positions of particles
computed in perturbation theory would be off by as much
as Oð10Þ h−1Mpc compared to their true values. This
means that the density field obtained from N-body simu-
lations and the one computed treating the large IR displace-
ments perturbatively (using the same initial conditions)
would be completely uncorrelated on scales smaller than
Oð10Þ h−1Mpc.2 This is precisely what happens in stan-
dard Eulerian perturbation theory, making it deficient for
the description of realizations of dark matter or halo density
fields. We will come back to the details of this failure of
standard Eulerian perturbation theory in Sec. VII A.
On the other hand, in Lagrangian perturbation theory the

large IR displacements are naturally taken into account.
However, this framework has a different problem. It
predicts only the nonlinear displacement field ψ and not
the density field δ. Going from one to the other is a
nontrivial step. Given that the relation between δ and ψ is
very nonlinear, even a very good knowledge of the
displacement field up to some scale does not guarantee
that the density field will be correct up to the same scale
with the same precision [71,72].

In this paper, we present one possible perturbative
description that circumvents these problems by construct-
ing a bias expansion tailored to describe biased tracers at
the field level. We put forward the following requirements:
(a) The bias expansion must be perturbative.
(b) The bias operators have to be written in Eulerian

space, given that we are comparing theoretical
predictions and simulations of the final Eulerian
density field.

(c) The large IR displacements have to be treated
nonperturbatively.

Our strategy to achieve all of these goals is to combine the
virtues of Eulerian and Lagrangian descriptions into a
hybrid scheme. We start with the description of biased
tracers in Lagrangian space. The displacement field is then
split into the dominant linear contribution and smaller
higher-order corrections. The nonlinear corrections to ψ are
treated perturbatively, while the linear piece is kept in the
exponent. In this way, the dominant part of the large
displacements can be treated exactly, and the resulting
operators once written in Eulerian space are automatically
IR resummed. In the rest of this section, we give the details
of this construction.
We first motivate the construction by considering the

protohalo density at Lagrangian position q, which can be
modeled using a bias expansion in the linear Lagrangian-
space density δ1ðqÞ,

δLhðqÞ ¼ bL
1δ1ðqÞ þ bL

2ðδ21ðqÞ− σ21Þ þ bL
G2
G2ðqÞ þ � � � ; ð8Þ

where bL
1, b

L
2, b

L
G2
;… are Lagrangian bias parameters, σ21 is

the rms fluctuation of the linear density field

σ21 ¼ hδ21ðqÞi ¼
Z

∞

0

dk
2π2

k2P11ðkÞ; ð9Þ

and the tidal operator G2ðqÞ is defined as3

G2ðqÞ≡
�∂i∂j

∂2
δ1ðqÞ

�
2

− δ21ðqÞ: ð10Þ

The representation of this operator in momentum space is
given by

G2ðkÞ ¼
Z
p

�ðp · ðk − pÞÞ2
p2jk − pj2 − 1

�
δ1ðpÞδ1ðk − pÞ: ð11Þ

2It is important to stress that the effect of this decorrelation is
much more dramatic at the field level than for the correlation
functions. This is due to the general statement that the effects of
bulk flows have to cancel in equal-time n-point functions [62–
65]. The only exception to this theorem is cases in which there are
sharp features in the correlation function, such as the BAO peak.
For example, the only effect of large displacements on the power
spectrum is to smooth out the BAO wiggles (or spread the BAO
peak in the real-space two-point function) [66–70], while the
smooth part of the power spectrum at small scales remains
unchanged.

3The basis of operators at second order (and higher orders) in
perturbation theory is not unique. One of the advantages of
working with fδ21;G2g is that the autopower spectrum of G2 and
its cross-spectrum with δ21 vanish in the low-k limit. This
simplifies our analysis and helps to disentangle relevant con-
tributions to the shot noise in the low-k limit. For other common
choices of the basis operators and their relation to fδ21;G2g, see
Ref. [1].
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Notice that in our notation
R
p≡
R
d3p=ð2πÞ3. For the rest of

this section, we will also use δh ≡ δmodel
h . In the bias

expansion (8), we kept only terms up to second order in
perturbation theory. We will continue to work at this order
throughout this section because it is sufficient for intro-
ducing notation and motivating the bias model that we are
going to use to make comparisons with simulations. The
higher-order or higher-derivative operators needed for the
consistent one-loop calculation can be straightforwardly
included. We will come back to this in Sec. VI.
The bias expansion in Eq. (8) is in Lagrangian space. To

go to Eulerian space, let us start from Eq. (8) and include
the gravitational evolution. The gravitational evolution is
encoded in the nonlinear displacement field,4 such that the
Eulerian coordinates x of a halo at the initial position q are
given by x ¼ qþ ψðqÞ. The overdensity generated in this
way is given by

1þ δhðxÞ ¼
Z

d3qð1þ δhðqÞÞδDðx − q − ψðqÞÞ; ð12Þ

where δD is the Dirac delta. The Fourier transform of this
field in Eulerian space is

δhðkÞ≡
Z

d3xð1þ δhðxÞÞe−ik·x

¼
Z

d3qð1þ δhðqÞÞe−ik·ðqþψðqÞÞ: ð13Þ

For simplicity, in this equation and in the rest of the paper,
we restrict the range of momenta to k ≠ 0 so that the zero
modes or mean density does not enter our formulas. The
nonlinear displacement from the Lagrangian to Eulerian
position can be expanded in a perturbative series
ψ ¼ ψ1 þ ψ2 þ � � �. At first order, we have the well-known
Zel’dovich approximation [73]

ψ1ðqÞ ¼
Z
k
eik·q

ik
k2

δ1ðkÞ: ð14Þ

The second-order displacement can be written as

ψ2ðqÞ ¼ −
3

14

Z
k
eik·q

ik
k2

G2ðkÞ: ð15Þ

Using the perturbative description of the nonlinear dis-
placement field and expanding the exponent e−ik·ψðqÞ in

Eq. (13), it is possible to recover the usual standard
Eulerian bias expansion. This procedure also fixes the
relation between Lagrangian bias parameters and their
standard Eulerian counterparts. Of course, this is not a
surprise, as we expect the two descriptions to agree order
by order in perturbation theory.
On the other hand, we do not want to expand the full

nonlinear displacement. We are going to keep the largest
part ψ1ðqÞ exponentiated and expand only the higher-
order terms.5 In this way, the largest part of the problematic
IR displacements is not expanded in perturbation theory.
With this in mind, we can rewrite Eq. (13) as

δhðkÞ ¼
Z

d3qð1þ bL
1δ1ðqÞ þ bL

2ðδ21ðqÞ − σ21Þ þ bL
G2
G2ðqÞ

þ � � � − ik · ψ2ðqÞ þ � � �Þe−ik·ðqþψ1ðqÞÞ; ð16Þ

where the new contributions come from expanding the
second- (and higher-)order displacement field in the expo-
nent. It is important to stress that at leading order this new
term can be expressed through the second-order operator G2

[see Eq. (15)]. Therefore, at second order in perturbation
theory, expanding the nonlinear terms in the displacement
field ψðqÞ only shifts some of the standard Lagrangian bias
parameters by a calculable constant. We will give more
details about higher-order terms in Sec. VI.
The previous expression motivates us to write down the

bias expansion in Eulerian space in terms of shifted
operators defined as

ÕðkÞ≡
Z

d3qOðqÞe−ik·ðqþψ1ðqÞÞ; ð17Þ

whereO ∈ f1; δ1; δ2 ≡ ðδ21 − σ21Þ;G2;…g.6 We stress again
some of the advantages of using an expansion in this basis:

4We are assuming that the halos are formed in the initial
conditions and displaced by ψ. In reality, the evolution is more
complicated and in general nonlocal in time. However, it can be
shown that these complications can be rewritten such that they
only change the values of bias coefficients in the perturbative
approach to halo clustering (for more details, see Refs. [58,59]).
For this reason, we proceed with the simplified picture of halo
formation and evolution.

5Let us define WðkÞ to be a low-pass filter, compared to the
wavelength of a Fourier mode δ1ðkÞ. For a given wave number k,
the linear displacement can be split into the long-wavelength and
short-wavelength parts: ψ1 ¼ ψL

1 þ ψS
1 , where ψL

1 ¼ WðkÞψ1

and ψS
1 ¼ ð1 −WðkÞÞψ1. The effect of ψL

1 on the short modes is
fixed by the equivalence principle. Therefore, strictly speaking,
only ψL

1 should be kept exponentiated, and in any perturbative
calculation, ψS

1 has to be expanded order by order in perturbation
theory. The error in our formulas introduced by keeping the full
ψ1 in the exponent is always higher order in ψS

1 than terms we
calculate. Also, this error is mainly relevant on small scales. To
keep the formulas simple, we decide not to do the long-short
splitting in our calculation.

6Notice that these shifted fields are not just given by a
translation of the position argument because they implicitly
include the inverse of the determinant of the Jacobian ∂xi=∂qj
due to the coordinate transformation. This is similar to the
Zel’dovich density, which is given by a uniform field in
Lagrangian space shifted by ψ1ðqÞ.
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(a) The shifted operators are written in Eulerian space and
therefore allow for easy comparisons with simulations
and quantification of their importance.

(b) The large displacement terms ψ1ðqÞ are kept re-
summed, which is crucial for comparisons with
simulations at the field level. Notice that this also
implies that in this description the BAO wiggles are
properly suppressed (the BAO peak is spread). How-
ever, the model is still perturbative in small quantities,
such as derivatives of the linear displacement
δ1 ¼ −∇ · ψ1. The power spectrum calculated using
the shifted operators is identical on large scales to the
standard one-loop result with IR resummation.

(c) The shifted operators are easy to generate on a three-
dimensional (3D) grid for a given initial condition
realization on a 3D grid, by shifting properly weighted
particles from Lagrangian to Eulerian coordinates
using the Zel’dovich displacement (see Sec. III below).

One term in the previous equations that has a somewhat
special role is the shift of a uniform density, O ¼ 1. This
contribution to δhðkÞ is equal to the Zel’dovich density field

δZðkÞ≡
Z

d3qe−ik·ðqþψ1ðqÞÞ: ð18Þ

It is fixed by dynamics, and it is not a part of the bias
expansion in the usual sense (it has no free parameters).
However, the Zel’dovich density δZðkÞ can also be expanded
in the basis of shifted operators (see Appendix A),

δZðkÞ ¼ δ̃1ðkÞ þ
1

2
G̃2ðkÞ −

1

3
G̃3ðkÞ þ � � � ; ð19Þ

where G̃3 is a cubic operator analogous to G̃2 (see
Appendix D). In other words, δZðkÞ can be absorbed in
the bias expansion by simply changing the bias parameters.
Of course, this is just a choice, and there is nothing wrong in
keeping δZ explicitly in the formulas. As we are going to see
later, different choicesmay bemore appropriate for different
applications. Let us point out that in the formula (19) the
displacements ψ1ðqÞ are treated exactly. In other words, the
exponential e−ik·ψ1ðqÞ is never expanded in ψ1ðqÞ. The only
expansion parameter is the derivative of the displacement,
∇ · ψ1ðqÞ ¼ −δ1ðqÞ, which is a small quantity.7 This is
consistent with the way the shifted operators are defined.
Using the basis of shifted operators (17), we can there-

fore write the bias expansion of the halo density field in
Eulerian coordinates, up to second order in perturbation
theory, as

δhðkÞ ¼ b1δ̃1ðkÞ þ b2δ̃2ðkÞ þ bG2
G̃2ðkÞ þ � � � : ð20Þ

This is the main result of this section. Notice that the
new bias parameters bi differ from the original Lagrangian
biases bL

i by a constant. This difference comes from ex-
panding the nonlinear part of the displacement [Eq. (16)]
and writing the Zel’dovich density field in terms of shifted
operators [Eq. (19)]. We give the explicit relation of bi and
bL
i in Sec. VI.
Equation (20) has a structure similar to the usual

standard Eulerian bias expansion

δhðkÞ ¼ bE
1δðkÞ þ bE

2δ2ðkÞ þ bE
G2
G2ðkÞ þ � � � ; ð21Þ

where δ2ðkÞ is the Fourier transform of the squared
Eulerian density δ2ðxÞ [as opposed to δ̃2ðkÞ, which is
obtained by squaring in Lagrangian coordinates and then
transforming to Eulerian coordinates using Eq. (17)].
Notice that all fields in Eq. (21) are nonlinear. In contrast,
in the expansion (20), all operators are expressed in terms
of the linear field δ1, which, as we are going to see, is more
suitable for describing biased tracers at the field level.
Another virtue of the expansion (20) is that the theo-

retical calculation of the power spectrum is quite straight-
forward (see Sec. VI C). It involves the calculation of the
power spectra of shifted operators, which have a familiar
form, for instance,

hÕiðkÞÕ�
jðkÞi¼

Z
d3qhOiðqÞOjð0Þe−ik·ðψ1ðqÞ−ψ1ð0ÞÞie−ik·q:

ð22Þ

The expression on the rhs is common in Lagrangian
perturbation theory. This connection is not surprising,
given that we started our derivation in Lagrangian space.
Even though we have come to the definition of the shifted
operators using a different motivation, a lot of literature
already exists on the power spectrum of biased tracers in
Lagrangian perturbation theory (e.g., Refs. [50,55]). In this
paper, we are going to use some results presented there. For
some recent developments, such as convolution Lagrangian
effective field theory, see, e.g., Refs. [61,74–76] and
references therein.

B. Promoting bias parameters to transfer functions

So far, we wrote the bias expansion in terms of shifted
operators, keeping only terms up to second order in
perturbation theory. If we want to describe the density
field of biased tracers deeper in the nonlinear regime, we
have to include higher-order terms. For instance, even for
the evaluation of the one-loop power spectrum, one has to
keep all cubic operators. Let us take a closer look at this
example,

7This may seem counterintuitive at the first sight because there
are no derivatives of the displacement field in Eq. (18). However,
they do appear once the momentum k in e−ik·ψ1ðqÞ is written as a
derivative with respect to q. A much easier derivation of Eq. (19)
is in real space, as presented in Appendix A.
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δhðkÞ ¼ b1δ̃1ðkÞ þ b2δ̃2ðkÞ þ bG2
G̃2ðkÞ þ

X
i

bi3Õ
i
3ðkÞ;

ð23Þ

where Õi
3 is a set of cubic operators and bi3 are the

corresponding bias parameters. At lowest order in pertur-
bation theory, the cubic operators correlate only with δ̃1.
We can split the cubic operators into parts parallel and
orthogonal to δ̃1,

Õi
3ðkÞ ¼

hδ̃�1ðkÞÕi
3ðkÞi

hjδ̃1ðkÞj2i
δ̃1ðkÞ

þ
�
Õi

3ðkÞ −
hδ̃�1ðkÞÕi

3ðkÞi
hjδ̃1ðkÞj2i

δ̃1ðkÞ
�

≡ hδ̃�1ðkÞÕi
3ðkÞi

hjδ̃1ðkÞj2i
δ̃1ðkÞ þ Õi⊥

3 ðkÞ: ð24Þ

In this way, allowing for a scale-dependent bias parameter
b1ðkÞ, we can write

δhðkÞ ¼ b1ðkÞδ̃1ðkÞ þ b2δ̃2ðkÞ þ bG2
G̃2ðkÞ þ

X
i

bi3Õ
i⊥
3 ðkÞ:

ð25Þ

At one-loop order, the new cubic operators are orthogonal
to all other fields. This implies that even the bias expansion
up to second order in the fields, with the appropriate b1ðkÞ,
is sufficient to describe the density field with the correct
one-loop power spectrum. Allowing for scale-dependent
bias parameters effectively allows us to reduce the order in
perturbation theory that we need to describe the density
field of biased tracers at a given order in perturbation
theory.
This example provides motivation to promote all bias

parameters to k-dependent functions

δhðkÞ ¼ b1ðkÞδ̃1ðkÞ þ b2ðkÞδ̃2ðkÞ þ bG2
ðkÞG̃2ðkÞ þ � � � ;

ð26Þ

in order to take into account as much nonlinearity as
possible. This expression can be compared to realizations
of N-body simulations. Calculating the operators with the
same initial conditions, the sample variance can be can-
celed [71]. The bias functions can be measured from the
condition that the difference between realizations in sim-
ulations and theory is minimal. This procedure allows us to
ask a very general question: how much of the real halo
density field can be described with a few leading-order
operators, even beyond the perturbative regime? In a setup
this general, a perturbation theory–inspired model can be
considered successful if it leads to small (close to Poisson)
and scale-independent mean-square model error.

When fitting the above model to a halo density at the
field level, the bias coefficients bi are correlated with each
other because the shifted fields δ̃1, δ̃2, and G̃2 are correlated
among themselves (they are defined using the same initial
conditions and the same displacement field ψ1). When
interpreting the bias parameters, it is useful to change
the basis to avoid this correlation. We therefore rotate the
shifted operators to mutually orthogonal fields using the
Gram-Schmidt algorithm:

δ̃⊥1 ðkÞ ¼ δ̃1ðkÞ; ð27Þ

δ̃⊥2 ðkÞ ¼ δ̃2ðkÞ þM10ðkÞδ̃1ðkÞ; ð28Þ

G̃⊥
2 ðkÞ ¼ G̃2ðkÞ þM20ðkÞδ̃1ðkÞ þM21ðkÞδ̃2ðkÞ: ð29Þ

The Gram-Schmidt rotation matrix MijðkÞ is M10ðkÞ ¼
−Pδ̃2δ̃1

ðkÞ=Pδ̃1δ̃1
ðkÞ, etc., and can be computed using a

Cholesky decomposition of the 3 × 3 correlation matrix
between the three shifted fields fδ̃1; δ̃2; G̃2g in every k bin
as described in Appendix C. The bias expansion in this
orthogonal basis is then

δhðkÞ ¼ β1ðkÞδ̃1ðkÞ þ β2ðkÞδ̃⊥2 ðkÞ þ βG2
ðkÞG̃⊥

2 ðkÞ þ � � � :
ð30Þ

These new bias parameters, or transfer functions, βiðkÞ are
independent from each other. We can therefore add higher-
order operators using the same procedure without changing
any of the lower-order bias parameters, which is a useful
property. In our framework, where transfer functions are
determined by minimizing the mean-square model error at
the field level, the change of basis, i.e., going from bi
to βi, does not change the predicted halo density; it
merely provides a more convenient way to interpret the
numerical values of bias parameters. Also notice that
the first parameter remains unchanged, β1ðkÞ ¼ b1ðkÞ. In
Sec. VI, we will present one-loop perturbation theory
predictions for βiðkÞ and compare against measurements
of βiðkÞ from N-body simulations.

C. Relation to renormalized bias parameters

Before we close this section listing all bias models that
we use in the paper, we get back to an important point that
we have only briefly mentioned in the Introduction: the
low-k limit of the transfer functions βiðkÞ does not
necessarily approach the values of physical (renormalized)
bias parameters. This means that the bias parameters we
measure at the field level are not generally expected to be
the same as the bias parameters measured from correlation
functions of the halo density field. In the terminology of
renormalization, what we measure at the field level is
closer to “bare” bias parameters. These biases depend on
the cutoff scale, or the way the small scales are regulated.
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For example, as we are going to see, using the linear or the
nonlinear matter density field to construct bias operators
leads to very different transfer functions in the low-k limit.
One easy way to see why this happens is to take a look at
the expression for a transfer function obtained using the
minimization described above. If we assume that the basis
of operators is orthogonal, we can write

βiðkÞ ¼
hδtruthh ðkÞÕ⊥�

i ðkÞi
hjÕ⊥

i ðkÞj2i
: ð31Þ

The power spectrum in the denominator in general involves
loops, and therefore it is obviously dependent on how the
high-k modes are treated. The usual way to deal with this
issue is to renormalize the bias operators, subtracting the
cutoff-dependent counterterms [57]. Away from the per-
turbative regime and at the field level, this becomes
challenging. Take, for example, the operator δ2. The power
spectrum of this operator is constant in the low-k limit. This
constant comes from integrating very short scales and can
be always absorbed by the free amplitude of the shot noise
in the power spectrum. However, this is not possible at the
field level. If we add an independent field with a constant
power spectrum to the model with the hope to fix the
problem, it can only give a positive definite contribution to
the model error power spectrum, making the model worse.
At this point, it is important to clarify the relation to other

works (see, e.g., Refs. [8,77]) in which similar techniques
were exploited to measure the physical bias parameters.
The idea is that the bias parameters can be measured by
projecting the halo density field on the basis of bias
operators, leading to equations very similar to Eq. (31).
One major difference is that the bias operators in
Refs. [8,77] are constructed from the smoothed density
field. The smoothing scale R is chosen to ensure that only
the Fourier modes in the perturbative regime contribute,
and it is typically R ∼Oð10Þ Mpc at z ¼ 0.8 In this way, it
is indeed possible to measure the low-k limit of the transfer
functions and rigorously prove that they can be identified
with the renormalized bias parameters.
However, this program is somewhat orthogonal to our

goals in this paper. We do not necessarily restrict to the
perturbative regime k ≪ kNL, but we want to test how well
we can reproduce the halo density field even around the
nonlinear scale. Using the smoothed density field to
construct the basis operators would imprint the smoothing
scale in all our calculations and lead to significant decor-
relation with the halo density field already around
k ∼ 0.1 hMpc−1. In this context, keeping the short scales
in the bias operators seems to lead to better results. We

therefore do not apply any smoothing to the fields.9 The
price that we have to pay for this choice is that the low-k
limit of the transfer functions does not correspond to bias
parameters defined in the usual way.
Let us finish by saying that one important exception in

this discussion is the linear bias. In this case,

β1ðkÞ ¼
hδtruthh ðkÞδ̃�1ðkÞi

hjδ̃1ðkÞj2i
: ð32Þ

The low-k limit of this expression coincides with the usual
definition of the renormalized linear bias, since the power
spectrum in the denominator approaches P11ðkÞ. Therefore,
we do expect to find that b1 ¼ β1ðk → 0Þ is indeed the
same as inferred from the power spectrum or separate
universe simulations.

D. List of bias models

When comparing against simulations, we will mostly use
the bias expansion in terms of shifted operators described
above, but sometimes we will also show comparisons with
other bias expansions. The following list provides an
overview over all bias models that we will use for the
analysis:

(i) Quadratic bias model:

δhðkÞ ¼ β1ðkÞδ̃1ðkÞ þ β2ðkÞδ̃⊥2 ðkÞ þ βG2
ðkÞG̃⊥

2 ðkÞ:
ð33Þ

This is our perturbation theory prediction described
above for the density field of biased tracers in a
realization. We are going to use this, or the cubic
extension described below, as the reference model
for comparisons with simulations and with other
biasing schemes.

(ii) Linear bias model:

δhðkÞ ¼ δZðkÞ þ bL
1ðkÞδ̃1ðkÞ: ð34Þ

We include this model in the analysis to study how
the second-order terms in Eq. (33) affect results,
particularly the amplitude and scale dependence of
the model error. The transfer functions in this model
approach the usual linear Lagrangian bias parame-
ters on large scales. This is because we have kept the
Zel’dovich density δZ explicitly in the formula. At
leading order in perturbation theory, there is no
reason not to replace δZ with δ̃1 [see Eq. (19)].

8In principle, the bigger the smoothing scale R, the less
sensitive the results are to the nonlinear corrections. In practice,
the choice of the smoothing scale is dictated by the volume of N-
body simulations and convergence tests.

9The only exception is δ3ðqÞ, which, as we discuss below, is
smoothed with a sharp k filter at kmax ¼ 0.5 hMpc−1. There is
also an implicit smoothing of all fields due to the cell size Δx ≃
1 h−1 Mpc of the Eulerian grid, but this is only relevant on very
small scales.
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However, the second-order contributions in δZ,
which are fixed by the gravitational evolution and
come with fixed coefficients, can be significantly
larger than the second-order bias contributions
(depending on the halo mass). Dropping them would
then affect the model error (shot noise) of the linear
bias model, making it larger and more scale depen-
dent. For this reason, we choose to keep δZ in the
formula. In other words, the linear bias model as we
choose to write it here is the best possible one-
parameter model that we can use in comparisons
with realizations. This is a conservative choice
because the impact of the additional second-order
terms in Eq. (33) compared to Eq. (34) is minimized.
Even then, as we will see, the second-order bias
terms will be quite significant.

(iii) Cubic bias model:

δhðkÞ ¼ β1ðkÞδ̃1ðkÞ þ β2ðkÞδ̃⊥2 ðkÞ
þ βG2

ðkÞG̃⊥
2 ðkÞ þ β3ðkÞδ̃⊥3 ðkÞ: ð35Þ

Another possible modification is to include addi-
tional operators in the bias model. Here, we include
the shifted cubic term δ31ðqÞ, ignoring all other
contributions at the same order. Strictly speaking,
this choice is not consistent with perturbation theory,
and we should not trust this model on small scales
where the two-loop terms become important.
However, our motivation to keep δ31 is due to the
fact that we want to study the impact of this operator
on the amplitude of the shot noise in k → 0 limit.
As it turns out, in the basis of cubic operators
fδ31; δ1G2;G3;Γ3g, the only operator that has a
constant contribution to its autopower spectrum in
the large-scale limit is δ31. Therefore, unlike in the
case of correlation functions, at the level of realiza-
tions, it does make sense to add a subset of bias
operators at the given order in perturbation theory, as
long as they can have a large contribution on very
large scales. We find that adding δ31 is most effective
when we remove small-scale modes from δ1 before
cubing the field; we therefore apply a smoothing
to δ1 with a sharp cutoff at kmax ¼ 0.5 hMpc−1

when computing δ31 (none of the other fields are
smoothed because their autopower spectra are less
UV sensitive).10

(iv) Standard Eulerian bias model:

δhðkÞ ¼ βE
1ðkÞδðkÞ þ βE

2ðkÞδ⊥2 ðkÞ þ βE
G2
ðkÞG⊥

2 ðkÞ:
ð36Þ

This is the standard expression for the density field
of biased tracers using the standard Eulerian bias.
This model assumes that we can perfectly model the
fully nonlinear dark matter density field δ. In
practice, we measure this from N-body simulations,
i.e., we use the best standard Eulerian bias model we
could ever hope for. Notice that the second-order
operators are also evaluated using the nonlinear
field and they are orthogonal to each other and δ.
We are going to compare both first- and second-
order terms with simulations. We have already
discussed some shortcomings of modeling δ with
the standard Eulerian perturbation theory. As we are
going to see, using the full nonlinear density field
from N-body simulations also has its own problems.
We will get back to these issues in Sec. VII A, in
which we will also consider possible modifications
of this model by smoothing δ or replacing δ by the
perturbative dark matter density.

For each of the biasmodels listed above,we allow the bias
parameters or transfer functions βX

i ðkÞ to be free functions of
wave number k. We will measure them from simulations as
described in the next section and show that they are smooth
functions. On large scales, the k dependence of these
functions can be predicted using perturbation theory with
a few free parameters. The number of these free parameters
is the same as the number of usual bias parameters.

III. NUMERICAL IMPLEMENTATION

To test these bias expansions against simulations, we
proceed as follows. We first draw a Gaussian linear density
from a fiducial linear power spectrum, computed with
CAMB [78] for a flat ΛCDM cosmology with Ωm¼0.3075;
Ωbh2¼0.0223; Ωch2¼0.1188; h¼0.6774, σ8 ¼ 0.8159,
and ns ¼ 0.9667 based on Planck 2015 [79]. Using this
linear density, we evaluate each halo bias model on a 3D
grid in Eulerian coordinates and compare this against the
halo density obtained from N-body simulation initialized
with the same linear density. We then compute the differ-
ence between the model and simulation density, which is
free of sample variance and directly measures the error of
the bias model in Eulerian coordinates.11 Before showing

10With Gaussian smoothing, the model can be improved
further for high-mass halos, but this typically increases the scale
dependence of the transfer function associated with δ31. The
sensitivity of δ31 on smoothing suggests that a more systematic
investigation of the optimal smoothing of this term could improve
the bias model. Including the full set of allowed cubic operators
can lead to further improvements but also requires more bias
parameters.

11Alternatively, the comparison between the model and sim-
ulation can be performed in Lagrangian space by evaluating the
model in Lagrangian space and tracing simulated halos back to
their Lagrangian positions (e.g., Refs. [7,8]); converting this
Lagrangian-space modeling error to Eulerian space is nontrivial,
though, which is why we evaluate model and simulations directly
in Eulerian space.
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the results of this, let us briefly discuss in more detail how
the model density and simulations are generated.

A. Halo bias model on 3D grid in Eulerian space

To evaluate the linear, quadratic, and cubic bias models
in Eqs. (33), (34), and (35), we must evaluate the shifted
operators (7) on a 3D grid in Eulerian coordinates. To do
this, we generate a uniform catalog with 15363 particles
located at the vertices q of a regular 15363 grid in a 3D box
with side length L ¼ 500 h−1 Mpc, corresponding to a
particle separation of Δq ¼ 0.33 h−1 Mpc. We then dis-
place each particle, q → qþ ψ1ðqÞ, where ψ1ðqÞ is the
linear displacement in Lagrangian coordinates q from
Eq. (14), rescaled linearly to redshift z ¼ 0.6 using the
linear growth function DðzÞ. To compute the shifted
operator corresponding toOðqÞ ¼ 1, we paint the displaced
particles to a 5123 grid using the standard cloud-in-cell
(CIC) algorithm so that each grid cell stores the number of
nearby particles, weighted by the distance of each particle
from the cell center. The corresponding overdensity is the
Zel’dovich density δZðxÞ in Eulerian coordinates. Notice
that this procedure is the same as when initializing N-body
simulations from a regular grid, except that the displace-
ment is evaluated at late time, z ¼ 0.6.
To generate the shifted linear density δ̃1, we proceed in a

similar way.We again start with the uniform catalog of 15363

particles but now assign each particle an artificial mass given
by δ1ðqÞ, rescaled linearly to z ¼ 0.6. [Notice that the density
of this catalog is δ1ðqÞ.] We displace these particles using
q → qþ ψ1ðqÞ as before. To paint the resulting catalog to a
grid, we modify the CIC painting scheme such that now each
particle contributes to nearby grid cells with the usual CIC
distance weight multiplied by the mass of each particle. We
sum thesemasses,without dividingby the number of particles
that contribute to each cell, so that nearby particles with equal
mass [i.e., particles that originate from a region in Lagrangian
spacewhere δ1ðqÞ is constant] can cluster and create a density
that is larger than themass of these particles. This ensures that
the volume factor given by the determinant of the Jacobian
∂xi=∂qj between Eulerian and Lagrangian coordinate sys-
tems is included in δ̃1 and that the mean density remains
unchanged. The shifted squared density δ̃2 and shifted tidal
field G̃2 are computed similarly, using δ21ðqÞ or G2ðqÞ for the
particle mass.
Next, the fields entering the model are orthogonalized

using the Gram-Schmidt procedure in Eq. (27). Details
specific to this orthogonalization procedure are described in
Appendix C. Finally, we compute all power spectra
between these orthogonalized model contributions and
the true halo density obtained from an N-body simulation
started from the same linear density, get the optimal model
transfer functions βiðkÞ using linear regression (40), and
sum up the model contributions weighted by the transfer
functions.

B. Phase-matched N-body simulations

The phase-matched N-body simulations are generated as
follows. Using the same initial linear Gaussian density as
above, initial particle positions and velocities at z ¼ 99 are
set up using the Zel’dovich approximation for 15363 dark
matter particles in a L ¼ 500 h−1Mpc box. These particles
are evolved to redshift z ¼ 0.6 using the TreePM N-body
code MP-GADGET [80,81], with Nmesh ¼ 3072 for the
particle-mesh grid. The code makes about 4200 time steps
to reach z ¼ 0.6. The mass of each dark matter particle
is 2.94 × 109 h−1 M⊙.
In the resulting dark matter snapshot, we identify halos

using the standard friends-of-friends (FOF) algorithm with
linking length of 0.2 using NBODYKIT [82,83]. We require
halos to have at least 25 dark matter particles, correspond-
ing to a minimum halo mass of 7.4 × 1010 h−1M⊙; the
heaviest halo weighs about 1.3 × 1015 h−1 M⊙. We define
four halo mass bins with number densities roughly corre-
sponding to different future experiments as indicated in
Table I. For each mass bin, we compute the halo density on
a 5123 grid using standard CIC painting.
To estimate uncertainties, we generate five independent

realizations of the linear density using different random
seeds and generate the bias expansion density and simu-
lations for each of these five realizations. Whenever we
compare model and simulations, we first compute their
difference for each random seed and then average the result
over the five realizations, to avoid sample variance.
We will refer to these simulations as the ground truth,

and we will ask how well the analytic halo bias expansion
can describe them. Of course, the simulations could be
made more realistic by populating the halos with galaxies
and including redshift-space distortions, but we will restrict
ourselves to halos in real space in this work.

C. Determining bias transfer functions

To compute the bias transfer functions βiðkÞ, we min-
imize the mean-square model error defined in Eq. (6),

PerrðkÞ ¼
1

NmodesðkÞ
X
k;jkj≈k

jδtruthh ðkÞ − δmodel
h ðkÞj2; ð37Þ

TABLE I. Simulated halo populations at z ¼ 0.6.

logM½h−1 M⊙� n̄½ðh−1 MpcÞ−3� n̄ is comparable to

10.8–11.8 4.3 × 10−2 LSST [84,85],
Billion Object
Apparatus [86]

11.8–12.8 5.7 × 10−3 SPHEREx [87,88]
12.8–13.8 5.6 × 10−4 BOSS CMASS [89],

DESI [90,91],
Euclid [92–94]

13.8–15.2 2.6 × 10−5 Cluster catalogs
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in every k bin. This minimization is meaningful because
Perr is non-negative and vanishes if and only if the
amplitude and phases of all Fourier modes match perfectly,

PerrðkÞ ¼ 0 ⇔ δtruthh ðkÞ ¼ δmodel
h ðkÞ

for all k with jkj ≈ k: ð38Þ

Since all bias expansions that we consider are of the form

δmodel
h ðkÞ ¼ cðkÞ þ

X
i

βiðkÞOiðkÞ; ð39Þ

i.e., linear in the bias transfer functions βi, the minimization
of PerrðkÞ in each k bin is equivalent to linear regression or
ordinary least squares in each k bin, which gives

βðkÞ ¼ O−1ðkÞhOðkÞ½δtruthh ðkÞ − cðkÞ��i: ð40Þ

Here, OijðkÞ≡ hOiðkÞO�
jðkÞi is the covariance matrix

between the model operators Oi in a k bin, and O−1ðkÞ
is the inverse of this matrix in that k bin.12 As described
above, we orthogonalize these model operators using
Gram-Schmidt orthogonalization (27) so that the covari-
ance matrix is diagonal for every k. These scale-dependent
transfer functions yield the model with the lowest possible
noise when compared against the simulated halo density.
We then fit these orthogonalized transfer functions using
perturbation theory as described in Sec. VI below and test if
the noise is close to the minimal one and can be described
by a constant.
Similarly to the measured model error, the transfer

functions determined in this way avoid sample variance.
Related methods have also been used to model the
displacement field [71], the nonlinear dark matter density
[72,95], or the 21 cm radiation from reionization [96].
While one could include regularization or prior terms likeP

i β
2
i in the minimization, we find no need for this if fields

are orthogonalized.

IV. SIMULATION RESULTS IN POSITION SPACE

We start the comparison of the bias models against
simulations in position space in this section, turning to
Fourier space in the subsequent section.

A. Two-dimensional slices

Figure. 1 shows two-dimensional slices of the 3D
overdensity of halos δhðxÞ in one of the simulations,
compared with two of the bias models. This shows that
the cubic bias model provides an accurate description of the
density contrast of these halos, with minor differences only
visible on rather small scales. The linear standard Eulerian

bias provides a less accurate description but still gets most
of the structure on large scales right.
For more massive and less abundant halos, we obtain

Fig. 2. The cubic model is less successful for these halos,
especially on small scales. For example, the model predicts
a large spherical overdensity up from the center of the slice,
but this does not exist for these halos in the simulation; in
many other regions, the model tends to underpredict the
peaks of the true halo overdensity. This is even more severe
for the linear standard Eulerian bias model and for more
massive halo populations. On large scales, however, the
models still work well, as we will see more clearly when we
turn to Fourier space later.

FIG. 1. Two-dimensional slices of the overdensity δhðxÞ of
simulated 1010.8–1011.8 h−1 M⊙ halos (top), compared with the
cubic bias model (center), and the linear standard Eulerian
bias model (bottom). Each panel is 500 h−1 Mpc wide and
110 h−1 Mpc high, and each density is smoothed with a R ¼
2 h−1 Mpc Gaussian, WRðkÞ ¼ exp½−ðkRÞ2=2�. The color bar
indicates the values of this smoothed overdensity δhðxÞ.

FIG. 2. Same as Fig. 1, but for more massive and less abundant
1011.8–1012.8 h−1 M⊙ halos.

12Different k bins are uncorrelated because all model operators
Oi are statistically isotropic and homogeneous.
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B. One-point probability distribution

To get a more global view of the position-space halo
density, we estimate its one-point probability distribution
by computing the histogram of the halo density for different
smoothing scales. Figure 3 compares the simulations
against the linear standard Eulerian bias model evaluated
on the 3D grid, while Fig. 4 compares against the cubic bias
model. We focus on the halos corresponding to Fig. 2 in
which we found clearly visible differences between models
and simulations. The variance, skewness, and kurtosis of
the densities shown in the histograms are listed in Table II

for the full simulated and modeled densities and in Table III
for the model error.
The linear standard Eulerian bias model tends to under-

predict troughs and overpredict peaks of the halo density, as
shown in Fig. 3. The model error is not Gaussian for any of
the shown smoothing scales; in particular, its kurtosis is
larger than 1 for all smoothing scales.
The cubic model provides a more accurate description of

the halo density probability distribution function, as shown
in Fig. 4. This emphasizes the importance of using non-
linear bias terms even on rather large scales. Still, the cubic

δtruth

δmodel

Gaussian

Model error
δtruth−δmodel

FIG. 3. Histogram of simulated 1011.8–1012.8 h−1 M⊙ halo overdensity (grey shaded area in upper panel) and the linear standard
Eulerian bias model generated on a 3D grid (solid black curve in upper panel). Different columns represent different Gaussian
smoothing scales R applied to these densities. Lower panels show the model error, ϵ̂ ¼ δtruthh − δmodel

h (red shaded area), and a Gaussian
curve (black dashed) using the sample variance of the model error. All curves are normalized to integrate to unity. The variance,
skewness, and kurtosis of the true halo overdensity and the model error are reported in Tables II and III. The linear model tends to
overpredict the peaks and underpredict the troughs of the halo density.

δtruth

δmodel

Gaussian

Model error
δtruth−δmodel

FIG. 4. Same as Fig. 3, but using the cubic bias model. This provides a better description of the one-point pdf of the simulated halos
than the linear model in Fig. 3, showing that nonlinear bias terms improve the description of the one-point pdf as expected.
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model tends to underpredict the peaks of the true halo
density, especially on small scales. This agrees with Fig. 2
in which the model also underpredicts the simulated
density in more regions than it overpredicts it (considering
only overdense regions that are easiest to pick up by eye).
Related to this, the variance, skewness, and curtosis of the
cubic model halo density are similar to that of the true
simulated density, especially for large smoothing scale (see
Table II). The model error of the cubic model looks most
Gaussian for large smoothing scales, but it is never
completely Gaussian, with a skewness of 0.13 and a
kurtosis of 0.68 even for R ¼ 10 h−1Mpc smoothing.
Most of this is caused by the tails of the distribution,
i.e., by outliers of ϵ. Quantifying the non-Gaussianity of the
error in more detail, e.g., by measuring bispectra, would be
interesting. In what follows, we will only consider the
power spectrum of the error, however.

V. SIMULATION RESULTS IN FOURIER SPACE

The one-point pdf and histograms shown above quantify
the number of pixels at which model and simulation density
have the same value. Even if there is a good match between
model and simulations, the densities might not be spatially
coherent and differ at the pixel by pixel level [23]. To test
this, we turn to Fourier space and compute two perfor-
mance measures quantifying the size of the model error
mode by mode. First, in Sec. VA 1, we compute the model
error power spectrum PerrðkÞ ¼ hjδtruthh ðkÞ − δmodel

h ðkÞj2i
for the simulated halos as introduced in the Introduction.

Second, in Sec. VA 2, we discuss the cross-correlation
coefficient

rccðkÞ≡ hδmodel
h ðkÞ½δtruthh ðkÞ��i

ðhjδmodel
h ðkÞj2ihjδtruthh ðkÞj2iÞ1=2 ð41Þ

between Fourier modes of the model and simulated (truth)
halo density. As we are going to see in Sec. VA 3, the size
of the model error Perr and the cross-correlation coefficient
rcc are directly related to the amount of cosmological
information that can be extracted when using the model to
describe a measurement of the halo density. (Also, Perr and
rcc are closely related to each other by relations given in
Appendix B.)
Following these results on the size of the model error

and the cosmological constraining power, we proceed in
Sec. V B to investigate the scale dependence of the model
error, which, if ignored, can lead to biases of cosmological
parameter measurements. In particular, we determine the
maximum wave number kmax up to which it is safe to
assume a scale-independent model error power spectrum or
shot noise.
We end the section by showing how large the contribu-

tion from the different bias terms is to the total model as a
function of wave number, demonstrating the importance of
including nonlinear bias terms.
Throughout the section, Pmodel and Ptruth refer to the halo

power spectrum of the model and simulations, respectively.
As described in the Introduction, our measurements differ
quantitatively from previous measurements of stochasticity
because we work at the field level and include nonlinear
bias terms in the perturbative model.

A. Size of the model error

1. Model error power spectrum

Figure 5 shows the broadband power spectra of the four
halo mass bins of simulated halos and the best-fit model for
one of the bias models introduced above (the quadratic
bias model). The mean-square difference between the
simulation and model density, given by the error power
spectrum PerrðkÞ, is shown in orange. It is rather flat as a

TABLE II. Variance, skewness, and kurtosis of the halo density from the linear standard Eulerian bias model, the cubic model, and the
simulations (“Truth”), for 1011.8–1012.8 h−1 M⊙ halos, after smoothing the density with different smoothing scales R (given in units of
h−1 Mpc). The skewness and kurtosis are computed as hδ3i=hδ2i3=2 and hδ4i=hδ2i2 − 3, respectively; both vanish for a Gaussian
distribution.

Variance[δh] Skewness[δh] Kurtosis[δh]

R Linear Cubic Truth Linear Cubic Truth Linear Cubic Truth

10 0.29 0.3 0.31 0.97 0.33 0.35 1.9 −0.051 0.0012
5 0.5 0.53 0.56 2.0 0.78 0.83 8.3 0.53 0.7
2 0.91 1.1 1.2 5.2 1.6 2.0 70 3.6 5.4
1 1.3 1.7 2.4 11 2.7 3.9 320 12 20

TABLE III. Variance, skewness, and kurtosis of the model error
ϵ̂ ¼ δtruthh − δmodel

h for the linear standard Eulerian bias model and
for the cubic model, for different smoothing scales R. The
skewness and kurtosis of the model error tend to be smallest
for large smoothing scale R, as expected.

Variance[ϵ̂] Skewness[ϵ̂] Kurtosis[ϵ̂]

R Linear Cubic Linear Cubic Linear Cubic

10 0.099 0.065 −0.42 0.13 3.2 0.68
5 0.25 0.18 −0.51 0.31 11 2.7
2 0.85 0.67 0.0081 0.92 34 8.8
1 2 1.7 1.7 2.3 53 22
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function of k, and it deviates from the Poisson prediction by
up to a factor of 2, depending on halo mass.
Our goal is to study the amplitude and the scale

dependence of the model error in more detail and also
for the other halo bias models introduced previously in
Sec. II D. For this purpose, we show Perr divided by the
Poisson prediction 1=n̄ in Fig. 6.
Let us first discuss the low-mass halos, M ≤

1012.8 h−1 M⊙. We find that for the linear bias models
the mean-square model error is larger than the Poisson
prediction by a factor of a few, and it is rather scale
dependent, even on large scales. In contrast, the mean-
square model error of the quadratic bias model deviates
only by a few tens of percent from the Poisson prediction
and is rather scale independent, with some scale depend-
ence only visible at k≳ 0.2 hMpc−1. This shows that
including the quadratic bias terms δ̃2 and G̃2 reduces the
mean-square model error on large scales by a factor of 4 to
6 and reduces its scale dependence.
Formoremassive halos and clusters,M > 1012.8 h−1M⊙,

we find that the mean-square model error of the quadratic
and cubic bias models is smaller than the Poisson prediction
1=n̄ by up to a factor of 2, which is about 30% smaller than
the mean-square model error of the linear bias models for

these halos. Qualitatively similar sub-Poissonian errors for
heavy halos have been reported in the literature before
[7,24,25]. This is theoretically expected because of the self-
exclusion and clustering of halos [24,47,97], which violate
the assumption of placing point particles randomly in space
(sampling the continuous density uniformly). Although less
clearly visible than for the low-mass halos, the model error
of the nonlinear bias models is again less scale dependent
than the model error of linear bias, which deviates by tens of
percent froma k-independent shot noise at k≳ 0.1 hMpc−1.
The model errors shown in color in Fig. 6 represent the

minimum mean-square model error if the transfer functions
βiðkÞ of the bias models are allowed to be free functions of
k, obtained using linear regression in each k bin as
described in Sec. III C above. If we instead restrict the
functional form of these transfer functions to a theory
prediction by fitting the linear regression transfer functions
βiðkÞ using five k-independent parameters b1, cs, bΓ3

, b2,
and bG2

(see Sec. VI D below for details), we obtain the
black dashed curves in Fig. 6 in the case of the quadratic
and cubic bias model [for the latter, we fit β3ðkÞ with a
constant sixth parameter]. This more conservative model
error is only minimally larger than before, which shows that
the transfer functions can be well described with a five- or

Poisson noise 1/n̄

Perr = 〈|δtruth
h − δmodel

h |2〉

Simulated halos (truth)
Quadr. bias (model)

FIG. 5. Broadband power spectra of the simulated halo overdensity (solid grey), the best-fit quadratic bias model of that overdensity
(dashed grey), and the field-level difference between simulation and model (orange), which represents the mean-square model error or
error power spectrum PerrðkÞ ¼ hjδtruthh ðkÞ − δmodel

h ðkÞj2i. Different panels show different halo mass bins. The amplitude of the model
error is larger than the Poisson prediction for low-mass halos and smaller for high-mass halos, and it is rather scale independent. The
results are averaged over five independent simulations. The uncertainty of Perr estimated from the scatter between these simulations is
indicated by the width of the shaded orange region at low k, and it is smaller than that at high k.
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six-parameter fit as we are going to see in more detail in
Sec. VI D below.
For the lowest halo mass bin, shown in the top left panel

of Fig. 6, we show two dashed lines corresponding to the
quadratic bias model. The difference between them is
whether or not the Zel’dovich density δZ is absorbed in
the bias expansion using Eq. (19). The grey dashed curve is
obtained keeping δZ explicitly in the bias expansion as an
extra field with the fixed transfer function. In this case, the
noise is somewhat different with respect to the standard
second-order bias model, which implies that G̃3 and higher-
order terms in the expansion of the Zel’dovich field become
important. This is not surprising, since the amplitude of the
noise for the lowest halo mass bin is very small and
comparable to hjG̃3ðkÞj2i around k ∼ 0.1 hMpc−1. Our
results suggest that in the limit of very low shot noise it
is better to keep δZ explicitly in the bias expansion because
this leads to an error with smaller amplitude and scale
dependence. One may wonder whether this is consistent,
given that we are anyway neglecting higher-order bias
operators. One way to justify keeping the Zel’dovich

density field explicitly is to note that the coefficients in
the expansion of δZ in terms of shifted operators are
possibly significantly larger than typical Lagrangian bias
parameters. It would be interesting to further explore this
question. However, in cases with realistic halo masses, the
difference between the two approaches is very small
compared to the amplitude of the shot noise.
Of course, it is a well-known result from the literature

that nonlinear bias is required to describe summary
statistics such as the galaxy power spectrum or bispectrum
on mildly nonlinear scales. For example, analyses of data
from the recent SDSS BOSS galaxy survey found that
nonlinear bias terms are required to model their measure-
ments [98–102]. It is therefore not surprising that we also
find nonlinear bias to be important when comparing at the
field level. What is more surprising is that δ̃2 has a nearly
constant autopower spectrum on large scales (see Fig. 13
below), but nevertheless it describes part of the true halo
density on large scales, substantially lowering the large-
scale model error. As we will find in Sec. VII A, this is a
consequence of working with the shifted operator δ̃2; when

Linear Std. Eul. bias

Linear bias

Cubic bias

Phh

Poisson prediction

Quadr. bias

FIG. 6. Mean-square model error PerrðkÞ ¼ hjδtruthh ðkÞ − δmodel
h ðkÞj2i of different halo bias models, divided by the Poisson prediction

1=n̄. Different panels show different halo mass bins; different colors represent different bias models. For all mass bins, the quadratic and
cubic bias models have the smallest large-scale model error and the smallest scale dependence. Shaded areas represent the 1σ credibility
interval if bias transfer functions are allowed to be free functions of k (the uncertainty is computed as the standard error of the mean
estimated from the scatter between the five independent simulations). If we instead fit these transfer functions using five k-independent
parameters b1, cs, bΓ3

, b2, and bG2
, we obtain the dashed curves for the quadratic and cubic bias models. For the densest halo sample (top

left panel), keeping δZ as an extra field in the quadratic model without a transfer function yields the grey dashed curve when fitting the
other transfer functions with the theory model. For the two most massive halo samples (lower panels), we include the cubic bias model
with δ̃3ðkÞ, which helps to describe these halos. The small suppression of all curves at high k is due to the CIC window used to paint
particles to the grid.
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instead working with the squared nonlinear Eulerian dark
matter density, as is done in the standard Eulerian bias
expansion, the resulting field is dominated by UV modes
and does consequently not correlate well with the true halo
density on large scales.
Overall, we have shown in this section that the quadratic

bias model performs substantially better than the linear
models because its model error is smaller and less scale
dependent. As we are going to discuss in Sec. VII A later, the
quadratic bias model also performs better than nonlinear
standard Eulerian bias models because it avoids squaring the
nonlinear darkmatter density and expanding large bulk flows.

2. Correlation coefficient

A related question is how well the model density is
correlated with the simulated halo density. This is shown in

Fig. 7. For the lightest halos, we find that the model and
simulated halo density are more than 75% correlated at
k ≤ 1 hMpc−1 and more than 99.5% correlated at k ≤
0.08 hMpc−1 for the quadratic bias model, which is similar
to the level of correlation expected from Poisson shot noise
for the number density of these halos. For the heavier and
less abundant halo samples, the cross-correlation coeffi-
cient is lower, as expected, because the shot noise is larger.
The linear bias models are less correlated with the simu-
lated halo density than the quadratic and cubic bias model
are, reflecting their larger model error (this is best seen in
the upper panels of Fig. 7, which show 1 − r2cc).
Perhaps surprisingly, the quadratic bias model is more

than 50% correlated with the simulated halo density for all
halo mass bins up to k ¼ 1 hMpc−1. This implies that, even
on such small scales, which are expected to be well inside

FIG. 7. Mean-square model error PerrðkÞ ¼ hjδtruthh ðkÞ − δmodel
h ðkÞj2i divided by the true halo power spectrum from simulations (upper

subpanels) and cross-correlation coefficient rcc ¼ rccðδtruthh ; δmodel
h Þ between simulations and model (lower subpanels). This

demonstrates that the correlation between model density and halo density in simulations is similar to that expected from the Poisson
prediction on all scales. In detail, it is somewhat larger than that for low-mass halos and somewhat smaller for high-mass halos because
Perr deviates from 1=n̄ as shown previously. The curves in the upper subpanels coincide with 1 − r2cc, and the curves in the lower panel
are equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pmodel=Ptruth

p
because the model transfer functions minimize Perr (see Appendix B). The cubic bias model is only shown

for the two heaviest halo samples because they are identical to the quadratic bias model for the other halo samples.
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the one-halo term regime, there is significant information
about the phases of the linear initial conditions that are used
to generate the bias model density. One might think that this
is impossible, at least for themostmassive halos, because the
radius of these halos is larger than 1 h−1Mpc and modes
smaller than the halo radius are virialized, which should
destroy any memory of the initial conditions. A possible
explanation could be that we know the center of mass
positions of these massive halos very accurately (to a
fraction of the halo radius), which can probe modes on
scales smaller than the radius of these halos.13

Figure 7 also shows the mean-square model error divided
by the power spectrum of the simulated halos, which
represents the fractional mean-square error of the model
and coincides with 1 − r2cc (see Appendix B). For the
quadratic bias model, this fractional mean-square error is
less than 1% for the lowest halo mass bin on large scales
k ≤ 0.1 hMpc−1. This means that the rms fluctuations of
the model Fourier modes around the truth are less than 10%
at k ≤ 0.1 hMpc−1 for these halos. The error increases on
smaller scales and for the heavier, less abundant halos, as
expected.
In addition to the stochastic model error, the bias model

is expected to fail on small scales because of missing two-
loop terms. To get a rough estimate of their size, Fig. 7 also
shows the error that the cubic bias model makes when
predicting the fully nonlinear dark matter field measured
from the N-body simulations, which is essentially free from
shot noise (thin solid grey curve). For the densest halo
sample, this error becomes comparable to the error of the
bias model in describing the halo density on very small
scales, but at all other scales and for all other halo samples,
the error of the dark matter model is much smaller. This
suggests that the model error is dominated by stochastic
noise rather than missing higher-order terms in the bias
expansion, at least for the heavier halo samples.

3. Relation to cosmological information content

In the last two subsections, we have characterized the
size of the model error ϵ̂ ¼ δtruthh − δmodel

h and the cross-
correlation coefficient rcc between the truth and model. But
how is this related to the cosmological information one
would hope to extract when applying this model to a
measurement of the halo density? As we are going to show
in this section, the size of the model error discussed above
determines the amount of cosmological information one
can extract from the halo density relative to the total
information one would get with a perfect model.

To see this, let us first write the true halo density as the
sum of the model density and the model error,

δtruthh ¼ δmodel
h þ ϵ̂; ð42Þ

and assume that the model is evaluated for the optimal
transfer functions that minimize Perr ¼ hjϵ̂j2i and enforce
hδmodel

h ϵ̂i ¼ 0. Since we know how this model density
depends on the linear density and therefore on cosmology,
we can use it to measure cosmological parameters. In
contrast, we do not attempt to use any potential cosmology
information of the model error ϵ̂—otherwise, we would
include it in the model density. The model error therefore
acts as an uncorrelated noise contribution to the field.14 The
size of the model error relative to the size of the true halo
density therefore determines how noisy the field is and how
much cosmological information we can extract from it. In
the last two subsections, we have quantified this by
comparing the noise power, Perr ¼ hjϵ̂j2i, against the power
of the measurable true density, Ptruth ¼ hjδtruthh j2i.
To illustrate this more clearly, consider the amplitude A

of the model power spectrum, PmodelðkÞ → APmodelðkÞ, as a
proxy for the cosmological information content. How well
can we determine A given a measurement of δtruthh modeled
with δmodel

h ? This is given by the Fisher information

FAA ¼
X
k

∂PmodelðkÞ
∂A

�
2P2

truthðkÞ
NmodesðkÞ

�−1 ∂PmodelðkÞ
∂A

¼
X
k

NmodesðkÞ
2

�
PmodelðkÞ
PtruthðkÞ

�
2

; ð43Þ

where we assumed a diagonal Gaussian covariance given
the observed power spectrum Ptruth. We have also assumed
that there are no other parameters in the analysis (in
practice, one would usually need at least one parameter
to describe Perr, and marginalizing over this can degrade
FAA in Eq. (43) [103].
If the model were perfect, i.e., Perr ¼ 0 and Pmodel ¼

Ptruth, Eq. (43) would give the optimal amount of informa-
tion, which is determined by the total number of Fourier

13We can tell if the halos are located at positions x and y or x
and yþ Δ, where Δ is only limited by the resolution with which
we can measure center-of-mass halo positions and not directly by
the radius of the halos, as long as the halos are separated by a few
halo radii, which is usually the case given the low number density
of very massive halos.

14In our approach, the model error ϵ̂ has two contributions: First
is the stochastic noise terms, which cannot be predicted given the
initial condition Fourier modes on large scales. Second is the
higher-order bias terms not included in the model, or more
specifically, the components of these higher-order bias terms that
are orthogonal to any bias term in the model (so they cannot be
absorbed by transfer functions; for example, G̃⊥

3 is part of ϵ̂ for our
models). These orthogonal higher-order bias terms do depend on
cosmology, but tomake use of this, wewould have to include them
in themodel. All cosmological information that we extract from an
observation of δtruthh is therefore contained in δmodel

h , and the model
error ϵ̂ acts as a noise contribution. Notice that the model error is
uncorrelated with the model density, hδmodel

h ϵ̂i ¼ 0, because both
the stochastic and orthogonal higher-order terms are orthogonal to
all terms in δmodel

h . As a consequence, Ptruth ¼ Pmodel þ Perr.
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modes. For an imperfect model, Pmodel < Ptruth, the ratio
Pmodel=Ptruth in Eq. (43) determines how much less infor-
mation one gets per Fourier mode. The square root of this is
shown in the lower subpanels of Fig. 7 above. This
therefore shows how close the bias expansion gets to
keeping the information on the model amplitude A, which
contains cosmological information; on large scales, it
typically keeps 99% or more of the cosmological informa-
tion, but it retains less on smaller scales.
Using the results from Appendix B, Eq. (43) can be

rewritten in several ways if transfer functions are chosen
such that Perr is minimized. For example,

FAA ¼
X
k

NmodesðkÞ
2

r4ccðkÞ: ð44Þ

This shows that the amount of information on the amplitude
A is given by the correlation coefficient between the
perturbative bias model (the cosmology dependence or
dependence on A of which we know) and the true density.
We can also rewrite this as

FAA ¼
X
k

NmodesðkÞ
2

½1 − ð1 − r2ccðkÞÞ�2: ð45Þ

The first term in square brackets corresponds to the optimal
amount of information; the second term, 1 − r2cc, represents
the fractional amount of information we lose if the
perturbative model and truth are not perfectly correlated
(if they are perfectly correlated, we lose no information
because 1 − r2cc ¼ 0; if they are completely uncorrelated,
we lose 100% of the cosmological information because
1 − r2cc ¼ 1). This is indicated by the upper subpanels in
Fig. 7 above. This shows that the bias expansion with
optimal transfer functions loses 0.2% of the cosmological
information at k ≃ 0.02 hMpc−1 for the lightest and most
abundant halos, while it loses more of that information on
smaller scales and for the heavier and less abundant halos.
A third way to rewrite the above formula follows from

1 − r2cc ¼ Perr=Ptruth (assuming optimal transfer functions):

FAA ¼
X
k

NmodesðkÞ
2

�
1 −

Perr

Ptruth

�
2

: ð46Þ

Similarly to before, the first term in brackets gives the
optimal amount of information, and the second term
represents the penalty we get if the field level model error
Perr is large, which is the case if stochastic noise terms or
higher-order bias terms not included in the model are large.
In practice, when analyzing data from a galaxy survey,

the noise power spectrum Perr is not known a priori—we
only know this for the particular set of halos that we
selected from our simulations and compared against the
model density, and it is difficult to determine which halos
exactly host the galaxies observed by a survey and what

noise power spectrum they have. This reflects an important
difference between large-scale structure and cosmic micro-
wave background (CMB) data analysis: for the CMB, the
noise power spectrum is known if the detector noise of the
experiment is known, and the noise bias it imprints on
CMB autopower spectra can be subtracted, or it can be
avoided by using cross-correlations. In contrast, for large-
scale structure, the theoretical model itself has a noise,
which imprints a noise bias (Perr) on the measured galaxy
power spectrum. Its amplitude and potential scale depend-
ence depend on the sample of galaxies under consideration;
since they are unknown in general, the amplitude and scale
dependence of Perr need to be marginalized over, and Perr
cannot simply be subtracted from the measured galaxy
power. Our goal in this paper is to characterize the model
error and the induced power spectrum noise bias for
simulated halos. This can serve as a guide for the expected
amplitude and scale dependence of the noise bias of the
galaxy power spectrum in a real survey, and as explained
above, it quantifies the amount of cosmological informa-
tion retained by the bias expansion.

B. Scale dependence of the model error

The above Fisher information represents the inverse
variance with which parameters like the model amplitude
A can be measured when modeling a measurement of the
halo density with the bias expansion. A different question is
whether the resulting parameter measurements are also
unbiased. This is not determined by the fractional size of
the model error or noise relative to the size of the true halo
density but by our ability to describe the expectation value
of the true halo power spectrum (or any other observable).
For that, we need to parametrize the noise power spectrum
PerrðkÞ and ask how accurate that parametrization is, i.e.,
how well the sum of PmodelðkÞ and the parametrized PerrðkÞ
matches the observable PtruthðkÞ.
A common and simple choice for data analyses is to

parametrize the model error with a scale-independent con-
stant, PerrðkÞ ¼ const. This approach is correct if PerrðkÞ is
really independent of scale, which is expected theoretically
on scales much larger than the typical size of halos (e.g.,
Refs. [34,49]), and this is indeed what we found for the
nonlinear bias models on large scales. But on small scales,
the measured model error does depend on scale. If that scale
dependence is sufficiently strong, ignoring it can potentially
bias cosmological parameter measurements because the
scale dependence of the error could be misinterpreted as a
cosmological signal. To account for this, we either need a
more general parametrization of PerrðkÞ or we need to
exclude from data analyses all small scales k > kmax in
which the scale dependence of the model error is significant.
In the next subsections, we will investigate the latter
approach in more detail, quantifying the scale dependence
of the model error and determining the kmax up to which it is
safe to assume a constant PerrðkÞ.
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1. Simulation results

Let us start by quantifying the scale dependence of the
model error. Figure 8 shows the fractional deviation of
the measured model error power spectrum PerrðkÞ from the
constant low-k component of Perr, for the linear standard
Eulerian (black) and cubic (orange) bias model. For the
linear standard Eulerianmodel,PerrðkÞ starts to deviate from
a constant bymore than 5%at k ≃ 0.1–0.15 hMpc−1; for the
cubic model, that only happens at k ≃ 0.3–0.4 hMpc−1 for
the three low halo mass bins and at k ≃ 0.5 hMpc−1 for the
most massive bin. Including the nonlinear bias terms there-
fore increases the k range in which Perr is approximately
constant by a factor of more than 2.
We can also ask how large this scale dependence ofPerr is

compared to the amplitude of the measured halo power
spectrum, ½PerrðkÞ − const�=PtruthðkÞ. This is shown in
Fig. 9. For the linear standard Eulerian bias model, the
scale dependence ofPerr exceeds 1% ofPtruth (shown in blue
in Fig. 9) again around k ≃ 0.1–0.15 hMpc−1. In contrast,
the flatterPerr of the cubicmodel exceeds 1%ofPtruth only at
k ≃ 0.25–0.5 hMpc−1, depending on halo mass.

These results depend only mildly on details of the
quadratic or cubic bias model. Expanding the Zel’dovich
density δZ in the bias model using Eq. (19) only has a
visible effect for the lowest halo mass bin in which
the number density is so large that Perr ≃ 30 h−3Mpc3 at
low k, which is sufficiently small that corrections from
expanding δZ become relevant. The cubic term δ̃3 only
affects the model error of the 1012.8–1013.8 h−1 M⊙ halos;
for these halos, the quadratic bias parameter β2 is close to
crossing zero and is smaller than the linear and cubic bias
parameters so that the cubic bias is relatively more
important (see also Sec. V C and Figs. 12 and 17 below).
Other than that, the scale dependence of the model error
with full or expanded δZ and with or without the cubic bias
term is rather similar.

2. Detectability of the scale dependence of the model error

The scale dependence of the model error is only relevant
if it is strong enough to be statistically detectable by galaxy
surveys because in that case it may bias cosmological
parameters if unaccounted for. We therefore compute the

Cubic bias

±1%
of

P hh

±5% of const.

Linear Std.
Eul. bias

FIG. 8. Fractional deviation of the mean-squared model errorPerrðkÞ from a constant in k, for the linear standard Eulerian bias (black) and
cubic bias (orange). Including the nonlinear bias terms makesPerrðkÞ flatter at k ≳ 0.1 hMpc−1, thereby pushing thewave number in which
the deviationofPerr froma constant exceeds�1% of the halo power spectrumPhh (blue region), or�5% of the low-k constant (green region),
to higher k. As a consequence, including nonlinear bias terms can extend the k range usable in a data analysis that assumes a k-independent
model error or shot noise, although at the price of introducing more free bias parameters. In this figure and the next ones, the linear standard
Eulerian biasmodel uses a free transfer functionβ1ðkÞ; the cubicmodel instead uses the six-parameter theory fit described in themain text and
includes the full δZ field. The low-k constant againstwhichwe compare is computedby tripling thewidth ofk bins toΔk ≃ 0.038 hMpc−1 to
reduce the noise of the measured Perr, averaging over realizations and computing the mean of this rebinned PerrðkÞ at k < 0.15 hMpc−1.
Shaded regions around solid curves represent the 1σ uncertainty estimated from the scatter between the five simulations.

MODELING BIASED TRACERS AT THE FIELD LEVEL PHYS. REV. D 100, 043514 (2019)

043514-19



significance with which any scale dependence of Perr could
be detected in the halo power spectrum for a survey
covering a volume Vsurvey and using Fourier modes up
to kmax. This is given by

SNR2ðPerr ≠ constÞ

¼ Vsurvey

2

Xkmax

k¼kmin

Δkk2

2π2

�
PerrðkÞ − const

PtruthðkÞ
�

2

: ð47Þ

Here, a Gaussian covariance is assumed for the measured
halo power spectrum Ptruth, and the sum is over k
bins with width Δk (the result does not depend on Δk
if the binning is sufficiently fine). As expected, the
significance of the scale dependence of the model error
is determined by the size of the scale dependence relative
to the amplitude of the measured halo power spectrum
(shown in Fig. 9), and it increases with the survey volume
and with the highest included wave number kmax because
these determine the number of 3D Fourier modes.
Importantly, this is the best-case scenario for the model

error because we assume all bias parameters to be
perfectly known (by matching the field level prediction
against the simulations).
We evaluate Eq. (47) for Vsurvey ¼ 1 h−3Gpc3 as a fun-

ction of kmax in Fig. 10. This shows that the scale dependence
of PerrðkÞ cannot be detected for kmax < 0.1 hMpc−1, but it
becomes a 1σ effect around kmax ≃ 0.1 hMpc−1 for the
linear standard Eulerian biasmodel and at higher kmax for the
cubic model.
Figure 11 shows this critical value of kmax when a

deviation from a scale-independent model error becomes a
1σ effect as a function of the survey volume. We also
summarize this in Table IV for two survey volumes.
For the linear standard Eulerian bias, we find the following.

For the lowest halo mass bin, the scale dependence becomes
significant for kmax ≃ 0.1 hMpc−1 in a 10 h−3Gpc3 volume
or for kmax ≃ 0.14 hMpc−1 in a 0.5 h−3 Gpc3 volume. For
the highest halomass bin, the critical kmax is similar, while for
the intermediate mass halos, it is somewhat lower,
kmax ≃ 0.07–0.1 hMpc−1. For the cubic bias model, the
model error is much less scale dependent, and its scale

±1% of Phh

Expanding δZ

Quadratic bias

Cubic bias

Linear Std.

Eul. bias

FIG. 9. Deviation of the model error power spectrum PerrðkÞ from a constant in k, relative to the halo power spectrum Ptruth, for the
linear standard Eulerian bias (black) and cubic bias model (orange). The blue band shows �1% of Ptruth. This shows that by including
nonlinear bias terms the deviation of the model error from a constant in k becomes relevant compared to the halo power spectrum at
higher k than for linear bias, allowing smaller scales to be included in an analysis that assumes a constant model error power spectrum.
The cubic model shown in solid orange includes the full δZ. Expanding δZ gives a slightly larger error at k ≃ 0.2–0.3 hMpc−1 for the
halos in the top left panel (as expected theoretically for such low levels of noise; see Sec. VA 1) but does not visibly affect the curves for
the halos in the other panels. Dropping the cubic δ̃3 term from the model increases the scale dependence of Perr at k≳ 0.1 hMpc−1 for
the halos in the lower left panel but does not visibly affect Perr for the halos in the other panels. As before, shaded regions around solid
curves represent the 1σ uncertainty estimated from the scatter between the five simulations.

MARCEL SCHMITTFULL et al. PHYS. REV. D 100, 043514 (2019)

043514-20



dependence becomes a 1σ effect only at higher kmax, typically
around kmax ≃ 0.15–0.3 hMpc−1 (see Table IV).
The cubic model therefore extends the k range where an

analysis with scale-independent model error may in prin-
ciple be safe by a factor of 2 to 3 compared to the linear
standard Eulerian bias model. In principle, this could
reduce cosmic variance error bars of parameters by a factor
of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Nmodes

p
∝ k3=2max ≃ 3–5. To illustrate the resulting

increase in constraining power, we consider an idealized
example in which all parameters are fixed except for the
overall amplitude A of the clustering part of the halo power
spectrum and ask how well this amplitude can be measured.
For this purpose, bold black lines in Fig. 11 show for what
volume and kmax the amplitude A can be constrained to 1%,
0.5%, or 0.1% [the lines are obtained similarly to Eq. (47)
but by summing over ðPmodel=PtruthÞ2].

FIG. 10. Cumulative squared signal-to-noise ratio for detecting a deviation of Perr from a constant in k, SNR2ðPerr ≠ constÞ, in a
survey volume of 1 h−3 Gpc3, as a function of kmax, for the linear standard Eulerian (solid black) and the cubic (solid orange) bias
models. Including nonlinear bias terms reduces the scale dependence of the model error so that it becomes only detectable at higher kmax;
this allows one to use more Fourier modes in an analysis that assumes a k-independent model error, at the price of having more model
parameters. For high kmax, the SNR2 roughly follows a power law (dashed orange), as discussed in Sec. V B 3. To suppress noise in our
measurement of Perr, the constant part of PerrðkÞ is determined by rebinning Perr and Ptruth to three times wider k bins than before,
averaging the result over the five simulations, and then taking the average of Perr at k < 0.1 hMpc−1 for the linear model and
k < 0.15 hMpc−1 for the cubic model. For comparison, the semitransparent lines show results when averaging only at k <
0.06 hMpc−1 or k < 0.15 hMpc−1 for the linear model or at k < 0.1 hMpc−1 or k < 0.2 hMpc−1 for the cubic model. The linear
standard Eulerian model uses the fully nonlinear dark matter density as an input and allows the linear bias transfer function to be an
arbitrary function of k, which provides an optimistic estimate for how well the linear standard Eulerian bias can do. The cubic model
instead uses the six-parameter theory fit of the transfer functions βiðkÞ described in the main text and only requires the linear density as
an input. We use the cubic model that includes the full δZ field.

TABLE IV. Maximum wave number kmax when a scale
dependence of the model error can be detected with 1σ in a
10 h−3 Gpc3 volume (or in a 0.5 h−3 Gpc3 volume, shown in
brackets), for the linear standard Eulerian (Lin. Std. Eul.) and the
cubic bias models. The kmax of the cubic model is typically 2 to 3
times higher than max of Lin. Std. Eul. bias. This can improve
measurements of cosmological parameters that affect the galaxy
power spectrum at these scales, e.g., the sum of neutrino masses.
The values carry a significant uncertainty due to the noise in our
measurement of the model error, as shown in Fig. 11.

kmax½hMpc−1�
logM½h−1 M⊙� n̄½ðh−1 MpcÞ−3� Lin. std. Eul. Cubic

10.8–11.8 4.3 × 10−2 0.1 (0.14) 0.3 (0.37)
11.8–12.8 5.7 × 10−3 0.08 (0.1) 0.18 (0.24)
12.8–13.8 5.6 × 10−4 0.07 (0.1) 0.13 (0.18)
13.8–15.2 2.6 × 10−5 0.1 (0.14) 0.24 (0.32)
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For the lowest halo mass bin, using the linear standard
Eulerian bias with a scale-independent model error can
safely constrain the amplitude A to 0.5% if the volume is
larger than approximately 3 h−3Gpc3 (corresponding to
volumes in which the black long-dashed curve in Fig. 11 is
in the grey shaded area). In contrast, using cubic bias for
these halos, the amplitude can be constrained to 0.1% if the
volume is larger than approximately 3 h−3Gpc3 because
the model error is less scale dependent.

For the more massive halos with a more realistic
number density, the scale dependence of the error becomes
relevant on larger scales so that the amplitude cannot be
constrained as well, typically σA=A ≃ 0.7%–1% for linear
standard Eulerian bias and σA=A ≃ 0.3%–0.5% for cubic
bias in a 3 h−3Gpc3 volume. Therefore, parameter con-
straints that rely on measuring the halo power spectrum at
redshift z ¼ 0.6 with subpercent level precision while
assuming a scale-independent model error or shot noise

σ
A
/A

=
1%

σ
A
/A

=
0.5%

σ
A /A

=
0.1%

Cubic bias
Lin. Std.
Eul. bias

FIG. 11. Relevance of the scale dependence of the model error as in Table IV, but for more survey volumes. For kmax and Vsurvey within
shaded regions, it is safe to assume a scale-independent model error, Perr ¼ const. Outside shaded regions, the scale dependence of the
model error is detectable with more than 1σ, so that assuming Perr ¼ const can bias cosmological parameters by 1σ or more. For the
linear standard Eulerian bias, the threshold is typically at kmax ≃ 0.1–0.15 hMpc−1 (grey region). In contrast, for the cubic bias model,
the maximum wave number kmax is higher by a factor of 2 to 3 (orange region). For comparison, the bold black lines show what kmax is
required for a given volume to measure the amplitude A of the model power spectrum to 1% (solid), 0.5% (dashed), or 0.1% (short-
dashed), assuming Gaussian cosmic variance and that all other parameters (six parameters for transfer functions and one for Perr) are
perfectly known. In the case of a 10 h−3 Gpc3 volume, the total number of halos in the four panels is n̄Vsurvey ¼ 430 M, 57 M, 5.6 M,
and 0.26 M. All results apply to a single redshift at z ¼ 0.6. Because of noise in our determination of Perr, the shaded regions are
somewhat uncertain. This is indicated by the semitransparent lines, which show results when the k range for determining the constant
part of Perr is changed in the same way as in Fig. 10. Alternative estimates for the breakdown of the bias models are shown as solid
horizontal lines at the bottom of each panel. These are computed as the value of kwhere jPerrðkÞ − constj=PtruthðkÞ first exceeds 0.5% or
1% for the linear standard Eulerian bias model, or 0.2% and 0.5% for the cubic model (to reduce the impact of noise, we use a spline
smoothed Perr). For the linear standard Eulerian bias, we assume that the transfer function β1ðkÞ is a free function k, whereas for the
cubic bias, we use the six-parameter fit of the transfer functions βiðkÞ described in the main text. For the cubic model in the lower right
panel, we use the fitting formula from Fig. 10 because it looks more robust in that case; otherwise, we use the full
k dependence shown in Fig. 10.
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will require nonlinear bias terms, or a rather large volume,
Vsurvey > 10 h−3Gpc3.15

We can also ask which volume and kmax are needed to
constrain the model amplitude A with a certain precision.
Let us pick the halo sample in the upper right panel in
Fig. 11. If this is modeled with linear standard Eulerian
bias, a 1% amplitude measurement is possible by using all
modes up to kmax ¼ 0.1 hMpc−1 in a 1 h−3 Gpc3 volume.
Or one could observe a larger volume, so that there are
more 3D modes per k, and use a lower kmax. Using kmax >
0.1 hMpc−1 for these halos with the linear standard
Eulerian bias model would require accounting for scale-
dependent corrections of Perr. Measuring the amplitude to
0.5% in a volume smaller than 10 h−3Gpc3 requires a
higher kmax. When assuming Perr ¼ const, this is only
possible with the cubic bias model. A 0.1% amplitude
measurement is not possible with these halos when assum-
ing Perr ¼ const, except maybe for very large volumes.
In reality, the signal one is after may only come from

some range of scales, and there may be degeneracies
between parameters so that cosmological parameters will
be less well constrained than the simple model amplitude A
that we used above. We also emphasize that the kmax values
reported here are only approximate estimates because of
uncertainty in our measurement of PerrðkÞ from only five
simulations. This is indicated by thin grey lines in Fig. 11,
which show how the critical kmax changes when computing
the low-k constant part of PerrðkÞ from a different k range.
We emphasize that the primary goal of this section was to

investigate whether there is any physical scale dependence
of the model error when describing simulated halos with
the best possible bias expansion based on the shifted
operators we include, and how relevant this may be. If
such a scale dependence of Perr is too strong, it is wrong to
account for it with scale-independent rescaling of the shot
noise in data analyses, and we have quantified for what
scales and volume this is the case. In practice, there can be
other reasons and systematics that may require a lower kmax
cutoff in data analyses.

3. Interpretation of the scale dependence
of the model error

The critical kmax values shown in Fig. 11 and Table IV
above depend only weakly on the survey volume. The
reason for this is that the assumption of a scale-independent
model error breaks down abruptly once a critical kmax value
is exceeded, which is the case because the detectability of a
scale dependence of the model error scales strongly with

kmax, as shown in Fig. 10. This strong scaling with kmax can
be understood as follows. On scales larger than the typical
size RM of a halo, the true stochastic part of the modeling
error ϵstoch can be written as [49,59]

ϵstochðxÞ ¼ d1ϵ0ðxÞ þ d2ϵ0ðxÞδ0ðxÞ þ � � � þ d̄1R2
M∇2ϵ0ðxÞ

þ d̄2R2
M∇2½ϵ0ðxÞδ0ðxÞ� þ � � � ; ð48Þ

where di and d̄i are k-independent parameters and ϵ0ðxÞ is a
stochastic noise field with Pϵ0ϵ0ðkÞ ¼ const ∼ 1=n̄ and
hϵ0Oii ¼ 0 for all model operatorsOi. The power spectrum
of ϵ0ðxÞδ0ðxÞ is constant in k,

Pϵ0δ0;ϵ0δ0ðkÞ ¼
Z
p
Pϵ0ϵ0ðjk − pjÞP11ðpÞ ¼ Pϵ0ϵ0σ

2
1: ð49Þ

On scales larger than the typical size of a halo,
k ≪ kM ∼ 1=RM, the stochastic contribution to the error
power spectrum therefore takes the form [34,49]

PstochðkÞ ¼ c1 þ c2k2 þOððk=kMÞ4Þ: ð50Þ
Even if Pϵ0ϵ0 had some k dependence, expanding Pϵ0ϵ0ðjk −
pjÞ in k=p ≪ 1 on large scales would again lead to a
constant term and a correction scaling like k2. In addition to
the stochastic term, the error power spectrum also has a part
related to the higher-order contributions in the bias model

PerrðkÞ ¼ PstochðkÞ þ P2-loopðkÞ þ…: ð51Þ
Let us briefly discuss the relative size of the different
contributions to the noise power spectrum. The k2 correc-
tion to Perr is roughly given by

c2k2 ∼
1

n̄

�
k
kM

�
2

∼
1

n̄
ðkRMÞ2

∼
1

n̄
ðkRMmin

Þ2
�

M
Mmin

�2
3

∼
1

n̄min

�
k
kNL

�
2
�

M
Mmin

�5
3

:

ð52Þ
In this formula, Mmin is a typical mass of a halo in the
lowest mass bin, and 1=n̄min is the corresponding shot
noise. In the last step, we have for simplicity assumed that
RMmin

∼ 1=kNL and that the number density of halos scales
like n ∼M−1, which is consistent with the halo mass
function in the relevant range of masses. On the other
hand, the two-loop contribution at z ¼ 0.6 is roughly given
by [103]

P2-loopðkÞ ∼ 0.3b21ðMÞ
�

k
kNL

�
3.3
PðkÞ; ð53Þ

where PðkÞ is the nonlinear matter power spectrum.
Comparing the two contributions, we find that the two-
loop power spectrum is subdominant when

15As a caveat, the scale dependence of the model error could
have a functional form that gets absorbed by nuisance parameters
rather than cosmological parameters. In that case, cosmological
parameters would remain unbiased even when including scales in
which the scale dependence of Perr is significant. Relying on such
a coincidence may be challenging, though.
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0.3b21ðMÞ
�

k
kNL

�
1.3
�

M
Mmin

�
−5
3ðn̄minPðkÞÞ < 1: ð54Þ

For the lowest mass bin, the number on the lhs of this
inequality is of order OðfewÞ. This is expected, as we have
already seen that the two-loop contribution has a size
similar to the shot noise for the least massive halos.
However, for higher halo masses, the relevant number
quickly becomes much less than 1. Even though the linear
bias increases with mass, this is not nearly as fast as needed
to compensate the strong mass dependence M−5=3. For this
reason, it is safe to assume that for the halo masses relevant
for future large-scale structure surveys the stochastic k2

contribution dominates over the two-loop contribution to
Perr so that the following relation holds on scales in the
perturbative regime: PerrðkÞ − c1 ∝ k2. Then, the SNR2 for
the scale dependence of Perr, given by Eq. (47), scales as

SNR2ðPerr ≠ constÞ ∝
Xkmax

k¼kmin

k2
�
k2

kn

�
2

∝ k3max × k4−2nmax ;

ð55Þ

where the k3max factor represents the number of modes and
we assumed PmodelðkÞ ∝ kn in the range of wave numbers
that dominates the sum in Eq. (47). Typically, n ≃ −1.5 at
k ≃ 0.2 hMpc−1 so that we expect SNR2 ∝ k3þγ

max with
γ ≃ 7. Indeed, fitting the SNR2 shown in Fig. 10 with a
power law in kmax,

SNR2ðPerr ≠ constÞ≈N
�

Vsurvey

1 h−3Gpc3

��
kmax

0.2 hMpc−1

�
3þγ

;

ð56Þ

with dimensionless fitting parameters N and γ, we find that
γ ≃ 6–7 provides an acceptable fit for the cubic model, in
agreement with the expected value of γ ≃ 7. An exception
to this is the halos in the lower left panel of Fig. 10, for
which we find γ ≃ 3.2; this might be an indication of
missing bias terms for these halos, which represent a
somewhat special case as we already saw above because
the cubic bias term is so important for these halos. Because
of the steep scaling with kmax, deviations from a scale-
independent model error become almost immediately
relevant once a critical value of kmax is exceeded, without
much dependence on the survey volume, as noted above.
One may wonder whether fitting the measured PerrðkÞ

with c1 þ c2k2 provides a better fit than fitting PerrðkÞ with
just a constant c1. As expected from the scaling arguments
above, we find indeed that adding the c2k2 term allows us
to describe the measured PerrðkÞ up to higher k. However,
depending on the range of scales and on the mass bin, it is
not entirely clear whether this is due to the expected k2 term
or higher-order bias terms that we have ignored in the

model and that contribute to PerrðkÞ in a way that might
mimic k2 over a small k range. After all, in the previous
analysis, we have only kept the leading two-loop term, and
our estimates break down close to kNL. Additional con-
fusion comes from the fact that including c2k2 to describe
Perr requires adding another free parameter c2 so that the k
range where the fit holds always gets extended just because
there is more flexibility to fit the measured PerrðkÞ. Another
problematic aspect of this measurement is that in some
cases Perr is orders of magnitude smaller than the halo
power spectrum so that our determination of PerrðkÞ − c1
has significant noise because of the small number of
simulations used. With more simulations it may be possible
to establish the presence of the k2 term in PerrðkÞ or higher-
order bias terms more conclusively.
At this stage, it is therefore not clear whether adding a k2

term to the noise or including higher-order bias parameters
leads to a larger improvement of cosmological constraining
power for different ranges of scales and halo mass. We
leave this question for future work. At a practical level, it is
of course always possible to include a k2 term in the noise,
marginalize over its amplitude, and see if it improves
cosmological constraining power. Even if the k2 term only
happens to describe missing two-loop terms (without
exploiting their cosmology dependence), it may extend
the k range where the model fits the data, potentially
improving the cosmological constraining power from the
other terms in the model of which the cosmology depend-
ence is included.

C. Size of the bias terms

1. Relative size

We have demonstrated that nonlinear bias terms can lead
to a substantial reduction of the model error at the field
level. But which of the nonlinear bias terms are most
important? To answer this, we compute the contributions of
the individual bias terms to the complete model power
spectrum, for the case of the cubic bias model, which is the
most successful model that we have tested. We work with
the orthogonalized bias operators so that there are no
contributions from cross-spectra between different bias
terms.
Figure 12 shows the contribution of each bias term

relative to the total halo power spectrum model. As
expected, the linear bias term is clearly the most important
one, contributing more than 50% in power to the total
model at all wave numbers and for all halo masses and
more than 98% in power on large scales for all halos except
the most massive ones.
For the two low-mass halo bins, the second largest

contribution is the quadratic bias β2δ̃
⊥
2 . It contributes about

1%–2% to the model power spectrum on large scales
k ¼ 0.02 hMpc−1, about 8%–10% at k ¼ 0.1 hMpc−1,
and about 20% at k ¼ 0.2 hMpc−1. The quadratic tidal
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term and the cubic term contribute about an order of
magnitude less in power but still contribute more than 1%
to the total model power spectrum at k > 0.1 hMpc−1,
especially the quadratic tidal term.
For the more massive 1012.8–1013.8 h−1M⊙ halos, the

cubic term is the second-largest contribution for all wave
numbers, contributing 2% to the power spectrum on large
scales and up to 20% on smaller scales. The quadratic bias
contributes less, but it is still between 1% and 4% of the
total power spectrum on most scales. The quadratic tidal
term is somewhat smaller than that, reaching a maximum
contribution of about 2% at k ¼ 0.2–0.4 hMpc−1. This is
roughly the halo mass range in which we expect the
quadratic bias to cross zero, while the linear and cubic
biases are large, so it is not surprising that the quadratic
contribution is smaller than that of the cubic term for
these halos.
For the most massive halos, with 1013.8–1015.1 h−1M⊙,

the quadratic bias term is the second-largest contribution at
k < 0.6 hMpc−1, representing 5% to 15% of the total

model power spectrum, and the cubic term takes over at
higher k. The cubic term is again larger than 2% of the total
power spectrum on all scales.
This shows that different bias terms dominate on differ-

ent scales for different halo masses, which is not surprising
because the bias parameters change with halo mass. Also,
their contribution to the total model power spectrum is
often larger than 1%, which supports the finding above that
they should be included when modeling the halo power
spectrum to 1% or better.
Given the size of the individual bias terms, we can also

estimate how well bias parameters need to be known to be
able to predict the halo power spectrum with a given
precision [103]. For example, for the two low-mass halo
bins, modeling the halo power spectrum to 1% at k ¼
0.1 hMpc−1 (k ¼ 0.2 hMpc−1) requires β2 to be known to
10% (5%) because β2δ̃

⊥
2 contributes 10% (20%) in power.

The shifted quadratic tidal bias contributes less, so knowing
βG2

to 50% is sufficient to model the halo power spectrum
to 1% at k ≤ 0.2 hMpc−1.

FIG. 12. Fractional size of bias terms contributing to the best-fit cubic bias model. The linear bias term is clearly the dominant
contribution for all halo samples on all scales. The next most important term is typically the quadratic bias term δ̃⊥2 . It typically
contributes 10% in power at k ≃ 0.1 hMpc−1. As expected, it contributes less (1–10% in power), on larger scales,
0.02 hMpc−1 ≤ k < 0.1 hMpc−1, while it contributes more (up to 50% in power) on smaller scales, k > 0.1 hMpc−1. An exception
is the halos in the lower left panel, in which this term is smaller (as expected for this range of halo mass), and the cubic term δ̃⊥3 is more
important, contributing between 2% and 20% in power. The shifted quadratic tidal bias term G̃⊥

2 is always smaller than δ̃⊥2 , but it still
contributes more than 1% in power at k ≳ 0.1 hMpc−1. Grey shaded areas represent the standard error of the mean estimated from five
independent realizations. We use the model in which δZ is expanded and absorbed by bias operators using Eq. (19). Results are averaged
over five simulations, and the shaded regions represent the 1σ uncertainty estimated from the scatter between them.
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2. Absolute size

To see the broadband scale dependence of the different
bias terms contributing to the power spectrum, Fig. 13
shows the absolute power spectra of the bias terms. The
power spectra of the quadratic and cubic bias terms, δ̃⊥2 and
δ̃⊥3 , are mostly constant in k at low k and become only
visibly k dependent at k≳ 0.1 hMpc−1. If we were to
perform a data analysis using only the halo power spec-
trum, we would not be able to separate such constant terms
from the constant part of the model error or shot noise; i.e.,
it seems challenging to constrain β2 and β3 using mea-
surements of the halo power spectrum at k≲ 0.1 hMpc−1.
This would be a potential concern because such a data
analysis might not be able to identify a reduced model error
for the correct bias parameter values. The k dependence of
quadratic and cubic bias terms at higher k might come as a
rescue, as might a different type of data analysis that uses a
likelihood at the field level or higher-order statistics like the
bispectrum.
Figures 12 and 13 also show that the tidal quadratic bias

term G̃⊥
2 contributes more than 1% in power only at

k≳ 0.1 hMpc−1, and it contributes typically a few times
fewer in power than the quadratic bias term δ̃⊥2 , although
both terms are at the same order in perturbation theory. This
might just be a consequence of the ordering we use to
orthogonalize bias operators. An alternative explanation
would be that Lagrangian-space protohalos may be less
sensitive to the quadratic tidal field than to the local

quadratic bias term, which may also be the reason why
the quadratic tidal bias of Lagrangian protohalos has only
recently been identified with simulations [7,8].

VI. TRANSFER FUNCTIONS
IN PERTURBATION THEORY

The main purpose of this section is to derive the k
dependence of the transfer functions βiðkÞ at leading order
in perturbation theory. At the level of a single realization, this
means that we have to keep all relevant cubic operators in the
bias expansion that contribute to the one-loop power spec-
trum. The steps in the derivation are the same as in Sec. II. In
this section, we use the simplified notation δh ≡ δmodel

h .

A. Bias expansion including cubic operators

Let us begin with the expression for the halo density field
in Lagrangian space, keeping all cubic operators in the bias
expansion

δLhðqÞ ¼ bL
1δ1ðqÞ þ bL

2½δ2ðqÞ − σ21� þ bL
G2
G2ðqÞ

þ bL
3δ3ðqÞ þ bL

G2δ
½G2δ�ðqÞ þ bL

G3
G3ðqÞ þ bL

Γ3
Γ3ðqÞ:
ð57Þ

The explicit formulas for the cubic operators can be found
in Appendix D. As before, to go to Eulerian coordinates,
we have to displace halos using the nonlinear displacement
field ψ:

FIG. 13. Similar to Fig. 12 but showing the broadband shape of the bias terms contributing to the cubic model.

MARCEL SCHMITTFULL et al. PHYS. REV. D 100, 043514 (2019)

043514-26



δhðkÞ ¼
Z

d3qð1þ δLhðqÞÞe−ik·ðqþψðqÞÞ: ð58Þ

Our goal is to rewrite this expression in terms of shifted
operators

ÕðkÞ≡
Z

d3qOðqÞe−ik·ðqþψ1ðqÞÞ: ð59Þ

To achieve this, we split the displacement field in the halo
density, Eq. (58), into the linear piece ψ1, which is kept in
the exponent, and the nonlinear correction ψ̄ ≡ ψ2þ
ψ3 þ � � �, which is expanded. Keeping all terms up to third
order, as required for the one-loop power spectrum, we
get16

δhðkÞ ¼
Z

d3qe−ik·ψ1ð1þ δLhÞð1þ ψ̄ · ∇Þe−ik·q: ð60Þ

Notice that we have rewritten k, which multiplies ψ̄ as a
derivative with respect to q. After integration by parts, the
derivative can act on ψ1, δLh, and ψ̄, so we get

δhðkÞ ¼
Z

d3qe−ik·ψ1 ½1þ δLh þ ikað1þ δLhÞ∂bψ
a
1ψ̄

b

− ð1þ δLhÞ∇ · ψ̄ − ψ̄ · ∇δLh�e−ik·q: ð61Þ

The third term in the square brackets can be further
simplified. The product ∂bψ

a
1ψ̄

b starts at third order in
perturbation theory, and we can neglect δh. One ka that
appears in this term can be written as a derivative with
respect to qa. After another integration by parts and
keeping terms of order 3 or less, we find

δhðkÞ ¼
Z

d3q½1þ δLh þ ∂bψa
1∂aψ2b

− ð1þ δLhÞ∇ · ψ2 −∇ · ψ3

− ð1þ bL
1Þψ2 ·∇δ1�e−ik·ðqþψ1Þ: ð62Þ

Each term in this formula has the form of a shifted operator
(17). We have already mentioned that the shift of the
uniform density, i.e., the Zel’dovich density, can be written
in terms of bias operators (see Appendix A). Similarly, the
other terms f∂bψa

1∂aψ2b;∇ · ψ2;∇ · ψ3g can each be
expressed as linear combinations of bias operators. We
leave the details of this calculation for Appendix D. As a
result, the effect of these terms is to effectively change the
values of the bias parameters in the original Lagrangian-
space bias expansion in δLh. On the other hand, the last term
S3 ≡ ψ2 · ∇δ1 is a shift term of the linear field by ψ2, which
cannot be expressed in terms of bias operators. It is a new
contribution that has to be taken into account separately.

However, the coefficient of this term is completely fixed by
the equivalence principle—i.e., this term does not come
with an extra free parameter.
Putting everything together, the bias model becomes

δh ¼ ð1þ bL
1Þδ̃1 þ bL

2δ̃2 þ bG2
G̃2

þ bL
3δ̃3 þ bG2δ½ ˜G2δ� þ bG3

G̃3 þ bΓ3
Γ̃3 − ð1þ bL

1ÞS̃3:

ð63Þ

Notice that the local bias parameters remain unchanged in
this process (apart from the linear bias bL

1, which, as
expected, increases by 1 when going to Eulerian space).
Indeed, this is a general statement that is true at all orders in
perturbation theory. The simplest way to see this is to
consider the limit of the dark matter density field, when all
Lagrangian bias parameters are equal to zero. In this limit,
all local operators δ̃n [i.e., shifted δnðqÞ] with n ≥ 2 have to
drop from the expression for the nonlinear dark matter
density field because otherwise the power spectrum would
have nonphysical shot noise contributions. The other,
nonlocal bias parameters are related to the original
Lagrangian ones in the following way:

bG2
¼ 2

7
þ bL

G2
ð64Þ

bG2δ ¼ −
3

14
ð1þ bL

1Þ þ bL
G2δ

ð65Þ

bG3
¼ −

2

9
þ bL

G3
ð66Þ

bΓ3
¼ 1

6
þ bL

Γ3
: ð67Þ

B. Transfer functions

In Secs. IV and V, we compared the halo density field
with the bias model

δhðkÞ ¼ β1ðkÞδ̃1ðkÞ þ β2ðkÞδ̃⊥2 ðkÞ þ βG2
ðkÞG̃⊥

2 ðkÞ: ð68Þ

We can use the perturbative bias expansion derived in the
previous section, Eq. (63), to predict the shapes of the
transfer functions β1ðkÞ, β2ðkÞ, and βG2

ðkÞ at one-loop
order in perturbation theory as follows.
Let us first consider the cubic operators Õ3 in Eq. (63).

These operators can easily be decomposed into the part
parallel to δ̃1 and the part orthogonal to δ̃1,

Õk
3ðkÞ≡ hδ̃1Õ3i

hδ̃1δ̃1i
δ̃1ðkÞ; Õ⊥

3 ðkÞ≡ Õ3ðkÞ−
hδ̃1Õ3i
hδ̃1δ̃1i

δ̃1ðkÞ:

ð69Þ16For simplicity, we will suppress the argument q in all fields.
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At one-loop level, the orthogonal cubic fields are also
effectively orthogonal to second-order operators because
their correlation is higher order in perturbation theory. This
means that the fields Õ⊥

3 ðkÞ do not contribute to the one-
loop power spectrum and we can drop them from our
expressions. In a similar fashion, we can project δ̃2 and G̃2

to δ̃1 and make the remaining fields orthogonal to each
other. It is then straightforward to compute the transfer
functions in terms of the bias parameters,

β1ðkÞ ¼ b1 þ b2
hδ̃1δ̃2i
hδ̃1δ̃1i

þ bG2

hδ̃1G̃2i
hδ̃1δ̃1i

þ
X
i

bi
hδ̃1Õi

3i
hδ̃1δ̃1i

;

ð70Þ

β2ðkÞ ¼ b2 þ bG2

hδ̃⊥2 G̃⊥
2 i

hδ̃⊥2 δ̃⊥2 i
; ð71Þ

βG2
ðkÞ ¼ bG2

; ð72Þ

where b1 ¼ bL
1 þ 1, b2;3 ¼ bL

2;3, and other bias parameters
are given by Eqs. (64)–(67). Indeed, it is easy to check that
with these transfer functions the power spectrum of the halo
density field in Eq. (68) exactly agrees with the usual one-
loop halo power spectrum (up to the fact that the IR
resummation is automatically included if one uses shifted
operators).
These transfer functions can be further simplified in

practice. For example, not all cubic operators contribute to
β1ðkÞ with independent shapes. At leading order in
perturbation theory, the only two nontrivial k-dependent
terms come from Γ̃3 and S̃3. The other operators give
constant contributions, which are degenerate with b1.

17

Once this is taken into account, β1ðkÞ becomes

β1ðkÞ ¼ b1 þ b2
hδ̃1δ̃2i
hδ̃1δ̃1i

þ bG2

hδ̃1G̃2i
hδ̃1δ̃1i

þ bΓ3

hδ̃1Γ̃3i
hδ̃1δ̃1i

− b1
hδ̃1S̃3i
hδ̃1δ̃1i

: ð73Þ

Notice that b1 in this formula is different from its starting
value due to the degenerate contributions from cubic
operators. The new value corresponds to the so-called
renormalized bias b1. The important point is that we kept
the same parameter multiplying the operator S̃3. Even
though this may not be obvious from just a few leading
orders in perturbation theory, this choice is imposed by the
fact that S̃3 comes from the shift of the halo density field by

the second-order displacement. This term is fixed and has
no extra free parameters, even when renormalization is
taken into account. Finally, we have to add a k2 term to the
transfer function β1ðkÞ with a free coefficient. In analogy
with the effective field theory counterterm for the one-loop
matter power spectrum, we label this parameter c2s, even
though this counterterm is there to absorb all UV con-
tributions from correlation functions of the form hδ̃1Õ3i
and the bias coefficients from the higher-derivative bias
operators such as ∇2δ.
Let us now turn to the second transfer function. This

expression can be further simplified. The first step is to
write

hδ̃⊥2 δ̃⊥2 i ¼ hδ̃2δ̃2i −
hδ̃2δ̃1i2
hδ̃1δ̃1i

; ð74Þ

which implies that at one loop hδ̃⊥2 δ̃⊥2 i ¼ hδ̃2δ̃2i because the
second term is higher order in perturbation theory. For the
same reason, at large scales, we can replace hδ̃⊥2 G̃⊥

2 i with
hδ̃2G̃2i. As a result, we can write the transfer function β2ðkÞ
as follows:

β2ðkÞ ¼ b2 þ bG2

hδ̃2G̃2i
hδ̃2δ̃2i

: ð75Þ

In the limit k → 0, the numerator of the second term scales
like Oðk2Þ, while the denominator approaches a constant.
Therefore, the second term vanishes on very large scales.
Notice that this contribution is not suppressed by loop
factors because both the numerator and denominator are of
the same order in perturbation theory. For this reason, when
the transfer functions are measured at not-so-large scales in
which the scaling Oðk2Þ is not valid, the second term is not
necessarily negligible. However, because of the large
constant contribution to hδ̃2δ̃2i, the second term turns
out always to be small enough, given the size of the
higher-loop corrections that we are neglecting and final
error bars with which we determine the bias parameters.
To summarize, we use the following minimal model to fit

the k-dependent transfer functions:

β1ðkÞ ¼ b1 þ c2sk2 þ b2
hδ̃1δ̃2i
hδ̃1δ̃1i

þ bG2

hδ̃1G̃2i
hδ̃1δ̃1i

þ bΓ3

hδ̃1Γ̃3i
hδ̃1δ̃1i

− b1
hδ̃1S̃3i
hδ̃1δ̃1i

; ð76Þ

β2ðkÞ ¼ b2; and βG2
ðkÞ ¼ bG2

: ð77Þ

This model has five free parameters, the same as the one-
loop power spectrum. When we use the cubic bias model,
we add one extra parameter, b3, which is fitted from the
low-k limit of β3ðkÞ.

17Note that this degeneracy is exact with standard fields. With
shifted fields, there can be some k dependence due to the
nontrivial effects of the displacement field. However, any such
k-dependent contribution must be at higher order in perturbation
theory, and thus we neglect it.
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C. Power spectra of shifted fields from theory
and on a grid

To fit the transfer functions with Eq. (76), we need to
calculate the power spectra hÕaÕbi of shifted operators
that enter Eq. (76). As we already mentioned, this calcu-
lation is the same as in Refs. [61,74], and more details can
be found there. Here, we summarize only the main steps.
Let us start from the definition

hÕaÕbiðkÞ ¼
Z

d3qe−ik·qhOaðqÞObð0Þe−ik·ðψ1ðqÞ−ψ1ð0ÞÞi:

ð78Þ

The strategy to evaluate the expectation value is to bring the
operators Oa and Ob to the exponent and use the cumulant
theorem. This can be achieved using the following trick:

hÕaÕbiðkÞ

¼ i
d
dλ

Z
d3qe−ik·qhe−i½k·ðψ1ðqÞ−ψ1ð0ÞÞþλOaðqÞObð0Þ�ijλ¼0:

ð79Þ

The cumulant theorem reads

he−iXi ¼ Exp

�X∞
n¼0

ð−iÞn
n!

hXnic
�
; ð80Þ

and since we are interested only in terms at leading order in
λ, the final expression for the expectation value of the
exponential is given by

he−i½k·ΔψþλOab�i

¼ Exp

�
−
1

2
kikjhΔψ iΔψjic

��
1 − iλhOabic

− λkihΔψ iOabic þ
iλ
2
kikjhΔψ iΔψjOabic

þ λ

6
kikjkmhΔψ iΔψjΔψmOabic

−
iλ
24

kikjkmknhΔψ iΔψjΔψmΔψnOabic þOðλ2Þ
�
;

ð81Þ

where Δψ ≡ ψ1ðqÞ − ψ1ð0Þ and Oab ≡OaðqÞObð0Þ.
Notice that we have truncated the sum. The reason is that
at one-loop level the operator Oab can be at most fourth
order in perturbation theory and therefore it can be
contracted with at most four displacement fields Δψ in a
connected n-point function. Furthermore, for different
terms in transfer functions, the operator Oab can be
proportional to even or odd powers of initial density fields,
and some of the correlation functions vanish for Gaussian

initial conditions. We will refer to the first nonvanishing
term proportional to λ as the leading-order term (LO)
and higher-order terms in perturbation theory as next-to-
leading- (NLO) and next-to-next-to-leading orders.
Let us take a look at the simplest example of hδ̃1δ̃1i. In

this case, only two terms are nonvanishing:

i
d
dλ

he−i½k·Δψþλδ1ðqÞδ1ð0Þ�ijλ¼0

¼
�
hδ1ðqÞδ1ð0Þi −

1

2
kikjhΔψ iΔψjδ1ðqÞδ1ð0Þic

�

× Exp

�
−
1

2
kikjhΔψ iΔψjic

�
: ð82Þ

All connected n-point functions on the rhs of this equation
involve only linear fields and can be calculated by going to
momentum space. The result is a function of q, and one can
do the Fourier transform to calculate the power spectrum.
Figure 14 shows the power spectrum prediction with and
without the NLO corrections. The points represent mea-
surements from a realization of the linear density field
shifted by ψ1. The agreement when NLO corrections are
included is quite good. Notice that in this example the NLO
term is of one-loop order and has to be kept for consistency.
Other correlators of interest for transfer functions are

those in which the shifted linear field is correlated with a

FIG. 14. Comparison of the power spectrum of a realization of
the linear density field shifted on a grid (red points) and
theoretical predictions for the mean (continuous curves). The
green dotted line is the linear power spectrum. The orange dashed
line is the power spectrum of the shifted density field evaluated
keeping only the LO term. The blue solid line represents the exact
result when the NLO term is taken into account. The NLO
correction is important for getting the correct prediction. In
contrast to all previous figures, the theory curves are not
computed for the same realization as the simulation but as
integrals over the mean linear theory power spectrum from
CAMB. The theory and realization on the grid therefore differ
by cosmic variance, especially on large scales.
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shifted second-order operator, such as hδ̃1δ̃2i or hδ̃1G̃2i.
These correlation functions would vanish for nonshifted
operators in the case of Gaussian initial conditions.
Because of the correlations induced by the linear displace-
ment field ψ1, they are not zero, but the LO terms are
roughly of the order of the one-loop corrections. For
example,

i
d
dλ

he−i½k·Δψþλδ1ðqÞδ2ð0Þ�ijλ¼0

¼
�
−ikihΔψ iδ1ðqÞδ2ð0Þic

þ λ

6
kikjkmhΔψ iΔψjΔψmδ1ðqÞδ2ð0Þic

�

× Exp

�
−
1

2
kikjhΔψ iΔψjic

�
: ð83Þ

A similar expression can be written for the correlation with
G̃2. The correlation functions in the brackets can be again
straightforwardly calculated. Notice that the NLO term in
this formula is higher order in perturbation theory because
it is proportional to the cubic power of the linear power
spectrum. Indeed, these NLO corrections are small. In
Fig. 15, we compare the theoretical prediction with LO and
NLO with the measurement of the cross-spectra of shifted
fields in a given realization. As we can see, the NLO
corrections are indeed small compared to one-loop terms.
Given that all our analysis is valid only at one-loop level,
the NLO terms in these correlation functions can be
neglected.
Finally, in a similar way, one can calculate the other two

correlation functions hδ̃1Γ̃3i and hδ̃1S̃3i in the transfer

function β1ðkÞ. In this case, there are three terms that
survive in the cumulant expansion, but the LO term is
already of one-loop order, and the higher-order contribu-
tions can be ignored.

D. Fitting the transfer functions from simulations

In the previous sections, we have derived the transfer
functions in perturbation theory. Working at the one-loop
level, for the cubic bias model, we got

β1ðkÞ ¼ b1 þ c2sk2 þ b2
hδ̃1δ̃2i
hδ̃1δ̃1i

þ bG2

hδ̃1G̃2i
hδ̃1δ̃1i

þ bΓ3

hδ̃1Γ̃3i
hδ̃1δ̃1i

− b1
hδ̃1S̃3i
hδ̃1δ̃1i

; ð84Þ

while the other three transfer functions are constant:

β2ðkÞ ¼ b2; βG2
ðkÞ ¼ bG2

and β3ðkÞ ¼ b3: ð85Þ

In this section, we compare this theoretical prediction with
the free transfer functions βiðkÞmeasured from simulations
by minimizing the mean-square model error.
One obvious problem with fitting of the transfer func-

tions is that the perturbation theory expressions are valid
only in the low-k limit, while most of the constraining
power in the fit comes from the small scales. To solve this
problem and avoid overfitting, we use the prescription from
Ref. [103] to consistently include theoretical errors in the
estimate of the bias parameters. The covariance matrix used
to calculate χ2 can then be written as a sum of two terms

Covðki; kjÞ ¼ CnoiseðkiÞδij þ δβðkiÞδβðkjÞe−
1
2

ðki−kjÞ2
Δk2 ; ð86Þ

FIG. 15. The cross-spectra of the shifted linear density field with shifted second-order operators. Red points are measurements from a
realization, with unfilled symbols representing negative values. The orange dashed curves are predictions keeping only the LO terms in
the formulas. The LO predictions agree quite well with the measurements. The blue solid line shows the result that includes the NLO
corrections. While these are important to get the exact result, such as in the example with hδ̃1δ̃2i, they are quite small. Notice that the size
of these cross-spectra is smaller than hδ̃1δ̃1i on all scales. As in the previous figure, the theory curves are evaluated as integrals over the
linear theory power spectrum and not matched to the realization of the simulation.
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where ki is the wave number in bin i. The first term is
related to the noise in the halo power spectrum. For
example, in the case of β1ðkÞ, this contribution in the
low-k limit can be estimated as

CnoiseðkÞ ¼
1

Nsim

k3F
4πk2δk

Perr

P11ðkÞ
; ð87Þ

where Nsim is the number of simulations, kF is the
fundamental mode of a simulation box, and δk is the width
of the bins. In practice, our model forCnoiseðkÞ is based on a
fit of the scatter between five simulations in the measure-
ment of each of the transfer functions. In this way, our
estimate of this contribution is valid on all scales and for
each βiðkÞ. As we already explained, the second term in the
covariance matrix comes from the theoretical uncertainties.
Our estimate for the size of the one- and two-loop
corrections to the transfer functions is

δβj1-loop ¼ b1

�
DðzÞ
Dð0Þ

�
2
�

k
0.3 hMpc−1

�
1.8
; and

δβj2-loop ¼ b1

�
DðzÞ
Dð0Þ

�
4
�

k
0.45 hMpc−1

�
3.3
: ð88Þ

Given that in our perturbative model β1ðkÞ is calculated up
to one loop, we use the two-loop error in the fit. For fitting
the other transfer functions, we use the one-loop contri-
butions to the covariance. Finally, the parameter Δk is the
coherence length of the transfer functions. In other words,
this is the typical scale at which the transfer functions
vary with k. Given that they are quite smooth, we choose
Δk ¼ 0.2 hMpc−1. Our fits are not sensitive to the choice
of Δk as long as it remains in a reasonable range of values.
We choose kmax ¼ 0.5 hMpc−1 for β1 and kmax ¼
0.2 hMpc−1 for all other transfer functions. Given our
theoretical errors, the values of the best-fit bias parameters
saturate well before kmax.
The result of fitting the transfer functions using the

procedure described so far is shown in Fig. 16 (red lines).
The k dependence of β1ðkÞ is well described at k ≤
0.3–0.4 hMpc−1 when using theoretical errors in the fitting
procedure. The constant pieces of the nonlinear bias
transfer functions β2ðkÞ, βG2

ðkÞ, and β3ðkÞ are in reasonable
agreement with those measured from simulations at low k.
The typical relative error of the fitted parameters is roughly
1% for b1 and roughly 10% for all other parameters. As we
have shown in Fig. 6 above, the model error changes only
minimally when using the theory fits instead of the full

FIG. 16. Transfer functions βiðkÞ of the cubic bias model, δh ¼ β1δ̃1 þ β2δ̃
⊥
2 þ βG2

G̃⊥
2 þ β3δ̃

⊥
3 , for the four mass bins. Treating all k

bins as independent and minimizing the power of the model error in each k bin gives the black lines, with uncertainty shown in grey
(estimated from the scatter between the five independent simulations). When fitting these transfer functions with the theoretical model
described in the text, using six k-independent parameters, we obtain the red and orange lines. These fits either include theoretical errors,
effectively restricting the fitting region to low k (red) or are fitted up to higher k without theoretical errors (orange). The model error is
almost the same for the free transfer functions and the smooth theory fits (see the dashed lines in Fig. 6 above).
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transfer functions from simulations for the cubic model,
confirming that a perturbative description of the transfer
functions is sufficiently accurate for our purposes.
If the Zel’dovich density is kept explicitly and not

absorbed by shifted bias operators using Eq. (19), the
transfer functions remain unchanged at low k (except for
the expected offset of 1 for β1 and 1=2 for βG2

), but they
change their shape at high k, as shown in Fig. 17. This is
because the higher-order corrections to Eq. (19) become
important at high k. However, the theory prediction for the
transfer functions with theoretical errors are flexible
enough to capture this difference.
So far, we have used the perturbation theory predictions

in a rigorous way, accompanied with the appropriate
estimate of the neglected higher-order corrections. This
effectively restricts the range of applicability of perturba-
tive results to k ≤ 0.4 hMpc−1, which is a bit smaller than
the rough estimate for the nonlinear scale kNL at z ¼ 0.6. In
what follows, we use the perturbation theory prediction for
β1ðkÞ in a different way—just as an ansatz for the fitting
function. We modify our fitting procedure to remove any
theoretical error for β1ðkÞ and extend the range of wave
numbers to kmax ¼ 0.8 hMpc−1. The theoretical errors and
range of scales remain the same for other transfer functions.

In other words, the point of this exercise is to test whether
the functional form of β1 with five free parameters has
enough freedom to fit the full shape of the measured
transfer function. The results are shown in Figs. 16 and 17
as orange lines. We can see that extending the fit to higher k
without accounting for theoretical error improves the fit of
β1ðkÞ almost up to k ≃ 1 hMpc−1, although in some cases
this gives a worse fit of the constant part of the higher-order
transfer functions, which have a smaller effect on the model
error than corrections to β1ðkÞ.
The best-fit values for the bias parameters are shown in

Fig. 18 and in Tables V and VI. The marginalized 1σ
uncertainty is typically approximately 1% for b1 and approx-
imately 10% for all other parameters. As expected, the linear
bias increases with halo mass, from b1 ≃ 0.9 for the lowest
halomass bin tob1 ≃ 3.5 for themostmassive halos; the local
quadratic and cubic bias parametersb2 andb3 are negative for
low and intermediate mass halos and become large and
positive for the more massive halos. The quadratic tidal bias
parameter is positive for lowmasses and negative for themost
massive halos. These trends broadly agree with theoretical
expectations and previous measurements of bias parameters
in the literature using different measurement techniques
[7,8,77]. However, let us again stress that we expect b1 to

FIG. 17. Same as Fig. 16 but for bias model in which δZ is kept explicitly in the expansion of the halo field. This changes the transfer
functions at high k because contributions to δZ that are not absorbed by the bias terms through Eq. (19) become relevant. The theory fit of
β1ðkÞ captures this well, though. The model error, shown in Fig. 6 above, is the same with or without δZ in the model, except for the
lowest halo mass bin, in which the model error is small enough that correction terms from expanding δZ become visible. We add 1 and
1=2 to β1 and βG2

for easier comparison against the bias model without δZ, noting that δh ¼ δZ þ β1δ̃1 þ � � � ≈ ðβ1 þ 1Þδ̃1 þ β2δ̃
⊥
2 þ

ðβG2
þ 1=2ÞG̃⊥

2 þ β3δ̃
⊥
3 .
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be the only bias parameter that is equal to its renormalized
value, measured, for example, from the power spectrum. The
other bias parameters can be different from thevalues inferred
from the correlation functions. The fact thatb2 orbG2

are close
to their renormalized values indicates that our prescription for
building shifted operators is not very sensitive to very high-k

modes. It would be interesting to see if this remains true at
higher orders in perturbation theory, and we leave this
question for future work.
In most cases, the best-fit parameters are similar with or

without theoretical errors included in the fitting procedure,
and with or without absorbing δZ in the bias operators. An
exception is cs and bΓ3

, which are fitted only from the k-
dependence of β1ðkÞ and which vary significantly between
fitting procedures. This is due to a strong degeneracy of
these two parameters when fitting only β1ðkÞ. This degen-
eracy could be broken by including the shifted Γ3 operator
in the bias expansion on the grid and measuring its transfer
function. We do not attempt to do this here, noting that the
transfer functions are fitted sufficiently well for our
purposes independently of the fitting method.

E. Power spectrum model using approximate
transfer functions

In Sec. V, above we focused on the model error power
spectrum Perr assuming optimal transfer functions that
minimize PerrðkÞ in every k bin. This led to several
simplifications, including a relation between Perr and the
cross-correlation coefficient rcc between the model and
truth (see Appendix B). How do these results change if we
instead use the approximate transfer functions from this
section? In particular, what are the implications for model-
ing of the power spectrum and inference of cosmological
parameters? We explore this by calculating the impact of
using approximate transfer functions β0i ¼ βi þ Δβi, where
βi are the optimal transfer functions that minimize Perr, and
β0i are their approximation using the perturbation theory fits
(or any other basis of smooth functions).

FIG. 18. Best-fit bias parameters as a function of halo mass,
obtained by fitting the transfer functions βiðkÞ shown in Fig. 16
and 17 using Eqs. (84) and (85). We show results when using the
cubic model with the full Zel’dovich density (circles) and when
absorbing it using bias operators (triangles). In the former case,
we plot b1 þ 1 and bG2

þ 1=2 to simplify the comparison. Filled
symbols use theoretical errors in the fitting process, while open
symbols are without theoretical errors and go to higher k. The
marginalized 1σ uncertainty is typically approximately 1% for b1
and approximately 10% for all other parameters.

TABLE V. Best-fit bias parameters fitting the transfer functions in Eqs. (84) and (85), when using the cubic bias model with the full
Zel’dovich density, δh ¼ δZ þ β1δ̃1 þ � � �. Numbers in brackets show results when ignoring the theoretical error when fitting the transfer
functions, effectively fitting to higher k. For the relation to usual Lagrangian bias parameters, see Eqs. (64)–(67). The marginalized 1σ
uncertainty is typically approximately 1% for b1 and approximately 10% for all other parameters.

logM½h−1 M⊙� 1þ b1 cs bΓ3
b2 1=2þ bG2

b3

10.8–11.8 0.88 (0.88) −0.17 (0.059) 0.26 (0.30) −0.18 (−0.18) 0.29 (0.28) 0.0023 (0.0023)
11.8–12.8 1.05 (1.05) 0.48 (0.23) 0.26 (0.26) −0.33 (−0.31) 0.34 (0.29) −0.085 (−0.085)
12.8–13.8 1.70 (1.67) 3.5 (1.2) 0.23 (0.061) −0.24 (−0.19) 0.57 (0.39) −0.39 (−0.39)
13.8–15.2 3.46 (3.47) −0.34 (3.0) 0.055 (1.2) 1.8 (2.0) −0.46 (−0.90) 0.65 (0.65)

TABLE VI. Same as Table V but absorbing the Zel’dovich density with bias operators using Eq. (19). Again, numbers in brackets
show results when ignoring the theoretical error when fitting the transfer functions, effectively fitting to higher k, and the marginalized
1σ uncertainty is typically approximately 1% for b1 and approximately 10% for all other parameters.

logM½h−1 M⊙� b1 cs bΓ3
b2 bG2

b3

10.8–11.8 0.88 (0.88) 0.012 (0.078) 0.60 (0.59) −0.22 (−0.22) 0.29 (0.27) 0.0029 (0.0029)
11.8–12.8 1.06 (1.05) 0.65 (0.25) 0.57 (0.57) −0.38 (−0.37) 0.34 (0.27) −0.084 (−0.084)
12.8–13.8 1.70 (1.67) 3.7 (1.2) 0.53 (0.35) −0.31 (−0.25) 0.57 (0.36) −0.39 (−0.39)
13.8–15.2 3.46 (3.47) −0.14 (3.0) 0.32 (1.4) 1.8 (1.9) −0.46 (−0.92) 0.66 (0.66)
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Let us begin with the power spectrum of the model error.
It is easy to show that the new Perr is given by

P0
err ¼ Perr þ

X
i

�
Δβi
βi

�
2

β2i hjO⊥
i j2i; ð89Þ

where for simplicity we have suppressed the explicit
dependence on k. The relative change can be written as

ΔPerr

Perr
¼
X
i

fi

�
Δβi
βi

�
2 Pmodel

Perr
; ð90Þ

where fi is the fraction of the model halo power spectrum
Pmodel that comes from the operator O⊥

i . The typical values
of fi are fi ∼ 1 for the shifted linear field and fi ≤ 0.1 for
higher-order operators (see Fig. 12). Close to the nonlinear
scale in which the perturbation theory fits break down, the
error power spectrum is roughly a few times smaller than
the halo power spectrum (depending on the halo mass).
Therefore, if the transfer functions can be fitted better than
Oð10%Þ, the change of Perr compared to the optimal value
is smaller than Oð1%Þ.
The situation is different if we are interested in the model

for the halo power spectrum. In this case,

P0
model ¼ Pmodel þ 2

X
i

Δβi
βi

β2i hjO⊥
i j2i þO

��
Δβi
βi

�
2
�
:

ð91Þ
Notice that the leading correction is linear in Δβi=βi, and
the model for the halo power spectrum is therefore more
sensitive to the error in the transfer functions. In cosmo-
logical parameter inference, in order not to get biased
results, we would have to marginalize over the uncertainty
ΔPmodel. In other words, this uncertainty acts like an extra
noise. It is then interesting to compare ΔPmodel and Perr and
see which one is expected to dominate. It is easy to see that

ΔPmodel

Perr
¼ 2
X
i

fi
Δβi
βi

Pmodel

Perr
: ð92Þ

Plugging in typical numbers, we can see that this ratio can
be easily of order 1 (or even higher for the low-mass halos)
if the transfer functions are not approximated to better than
Oð10%Þ at all scales of interest for β1, or few ×Oð10%Þ
for other transfer functions. In our perturbation theory fits,
this is marginally achieved.
It is important to point out that the transfer function fits

are dominated by the low-k data, particularly when the

FIG. 19. Comparison of the power spectrum of the quadratic bias model against the true halo power spectrum measured in simulations.
The orange solid curves assume best-fit transfer functions that minimize PerrðkÞ in every k bin for each realization. In contrast, the black
dashed curves use the five parameter approximation of the ensemble-averaged transfer functions using perturbation theory as described
in Sec. VI E, designed to fit both the best-fit transfer functions that minimize Perr and the true halo power spectrum. The five-parameter
fit describes the true halo power spectrum at the 1% to 2% level up to k ≃ 0.2–0.6 hMpc−1, depending on halo mass, although the
uncertainty, estimated from the scatter between the five independent simulations and shown by shaded regions, is considerable.
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theoretical errors are included. This leads to a relatively
large variance on the best-fit parameters as explained in the
previous section. It is then interesting to ask whether in this
range it is possible to find a set of bias parameters that gives
the correct model for the halo power spectrum. To answer
this question, we fit the measured power spectrum using the
same bias model as used for the transfer functions.
Importantly, we restrict the range of possible bias param-
eters to be compatible with the fits of the transfer functions.
The results are shown in Fig. 19 in which the relative error
for the halo power spectrum is plotted as a function of k.
The solid orange line corresponds to the model with the
optimal transfer functions (minimizing Perr). The dashed
black line corresponds to the perturbation theory model
with five bias parameters determined to give the best
possible fit to the halo power spectrum while still being
compatible with the fits of the transfer functions. Only for
the lowest-mass bin, the optimal transfer functions perform
better than the perturbation theory fits. In all other cases,
the simple fits are sufficient to model the measured halo
power spectrum accurately on perturbative scales. For these
halos (i.e., for all but the lightest halos), the approximate
transfer functions describe the true halo power spectrum
slightly better at high k than the optimal transfer functions
that minimize Perr; this is expected because the approxi-
mate transfer functions are fitted such that Perr is close to
the minimal value and at the same time the model power
spectrum is close to the true halo power spectrum, whereas
the optimal transfer functions only minimize Perr.

18

VII. RELATION TO STANDARD EULERIAN
PERTURBATION THEORY

In this section, we discuss how the above results relate to
previous approaches and calculations in the literature based
on standard Eulerian bias and standard Eulerian perturba-
tion theory. Specifically, we will demonstrate in Sec. VII A
that the Eulerian bias expansion fails to describe halos at
the field level, and we will discuss the connection with the
usual IR resummation in standard Eulerian perturbation
theory in Sec. VII B.

A. Failure of the standard Eulerian bias expansion
at the field level

The standard Eulerian bias model is given by

δhðkÞ ¼ bE
1δðkÞ þ bE

2δ2ðkÞ þ bE
G2
G2ðkÞ þ � � � ; ð93Þ

where all operators are evaluated using the nonlinear
matter density field δ. In the perturbative approach, δ is
calculated using the standard Eulerian perturbation theory.
Alternatively, the nonlinear matter density field can be
measured from simulations. In this section, we are going to
show that both these approaches face problems when
theoretical predictions are compared to simulations at the
level of realizations.

1. Standard Eulerian bias using the perturbative
matter density field

Let us begin by using the perturbative nonlinear matter
density field δ as the input for the standard Eulerian bias
model. As in the rest of the paper, we restrict ourselves to
operators up to second order and promote bias parameters
to k-dependent transfer functions. The model for the halo
density field then reads

δhðkÞ ¼ bE
1ðkÞðδ1ðkÞ þ δ½2�ðkÞÞ þ bE

2ðkÞδ21ðkÞ
þ bE

G2
ðkÞG2½δ1�ðkÞ þ � � � ; ð94Þ

where we explicitly wrote the operators at second order in
perturbation theory. For example, the second-order density
field can be calculated in a realization using a simple
convolution,

δ½2�ðkÞ ¼
Z
p1p2

ð2πÞ3δDðk− p1 − p2ÞF2ðp1;p2Þδ1ðp1Þδ1ðp2Þ;

ð95Þ

where the F2 kernel is given by

F2ðp1;p2Þ ¼
5

7
þ 1

2

p1 · p2
p1p2

�
p1

p2

þp2

p1

�
þ 2

7

ðp1 · p2Þ2
p2
1p

2
2

: ð96Þ

Notice that the displacements (the second term in F2) are
treated perturbatively. We have already emphasized that
this is the reason why standard Eulerian perturbation theory
fails on small scales in describing a realization of the
density field of biased tracers. To illustrate this point more
quantitatively, let us consider a very simple Universe in
which the true halo density field is exactly given by a linear
bias,

δhðkÞ ¼ bE
1δðkÞ þ ϵðkÞ; ð97Þ

where ϵ accounts for stochasticity. If we fit this halo density

field to the model δðmÞ
h based on the linear theory δ1ðkÞ with

a scale-dependent transfer function

δðmÞ
h ðkÞ ¼ βE

1ðkÞδ1ðkÞ; ð98Þ

linear regression gives

18One could choose to ignore Perr and determine bias transfer
functions such that Pmodel þ const matches the truth power
spectrum as well as possible. However, this would necessarily
increase Perr compared to what we obtain with transfer functions
that minimize Perr. Such an increased model error would act as a
larger noise, which would in general degrade the cosmological
information content (see Sec. VA 3 above).
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βE
1ðkÞ≡ hδhðkÞδ�1ðkÞi

P11ðkÞ
¼ bE

1

hδðkÞδ�1ðkÞi
P11ðkÞ

: ð99Þ

Let us compute the rhs of this equation using standard
Eulerian perturbation theory. On large scales, we expect
βE
1ðkÞ to be close to bE

1 with corrections of order Ploop=P11.
However, at next-to-leading order, we find that the transfer
function is

βE
1ðkÞ ¼ bE

1

�
1þ P13ðkÞ

P11ðkÞ
�
; ð100Þ

where P13 is one of the two contributions to the matter
power spectrum at one loop Ploop ≡ 2P13 þ P22 [104].
Famously, due to a large contribution from the IR shift
terms, P13 is much larger than Ploop [66], and being large
and negative causes a significant decay of the transfer
function even on scales larger than the nonlinear scale. This
decorrelation means that, even in the perturbative regime,
the model fails to predict the halo density field. As a result,
the residual noise becomes large and strongly scale
dependent. We find

PerrðkÞ ¼ hjϵ̂ðkÞj2i≡ hjδhðkÞ − βE
1ðkÞδ1ðkÞj2i

¼ α

n̄
þ ðbE

1Þ2P22ðkÞ: ð101Þ

Of course, the residual noise gets corrections from higher-
order loop contributions, too. However, the P22 term is

already much larger than the naive expectation—the one-
loop power spectrum. To conclude, if standard Eulerian
perturbation theory is used to predict the realization of the
halo density field, we expect to find a model error which
becomes large and strongly scale dependent around the
nonlinear scale.
To test this expectation, we use the model in Eq. (94) and

compare it to simulations. The plot of the power spectrum
of the model error normalized to the Poisson prediction is
shown in Fig. 20. As we expect, this model works very well
at large scales, and in the limit k → 0, the noise is close to
the Poisson expectation. However, already around
k ∼ 0.1 hMpc−1, the noise becomes scale dependent and
sharply rises. This is due to the decorrelation of the
predicted and simulated halo density fields at these scales.
In the high k limit, when the transfer functions approach
zero, the power spectrum of the model error by definition
approaches the halo power spectrum (black dotted curve).
This creates a characteristic bump in the noise curve. Notice
that the same quadratic model written in terms of shifted
operators performs much better and has the constant noise
practically all the way to k ∼ 1 hMpc−1.

2. Standard Eulerian bias using the matter density field
from simulations

One may be tempted to think that a simple way to fix the
problem from the previous section is to use the nonlinear
matter density field measured in simulations rather than the

FIG. 20. Left panel: Model error power spectrum for standard Eulerian bias models, for the lowest halo mass bin. Using the nonlinear
dark matter δNL from simulations as the input for the standard Eulerian bias model (purple) creates a large error on large scales because it
involves squaring δNL, which is rather UV sensitive. Alternatively, using the perturbative dark matter density as the input to the bias
model (dark orange) is treating large bulk flows perturbatively, which causes a decorrelation between the model and the true halo density
that shows up as a bump in the model error at k≳ 0.1 hMpc−1. The quadratic model with shifted bias operators (bright orange) avoids
both of these issues by squaring the linear density in Lagrangian space, where this operation is less UV sensitive, and then shifting the
resulting field to Eulerian space to achieve coherence with the Eulerian-space halo density of the simulations. Right panel: Similar, but
with Gaussian smoothing applied to δNL before computing the quadratic bias operators. For larger smoothing scale R, the model error
becomes larger because we keep less of the small-scale modes in δ2NL that describe the large-scale halo density. Gaussian smoothing does
therefore not resolve the above issues of standard Eulerian bias. In both panels, the width of the shaded regions at low k represents the 1σ
uncertainty estimated as the standard error of the mean of the five independent simulations; at high k, the uncertainty is smaller than the
width of the curves.
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perturbative prediction. After all, the N-body simulations
provide us with the best possible dark matter field that we
can hope for. How does the standard Eulerian bias model
work in this case?
Let us begin with the linear standard Eulerian bias. Its

model error is shown in Fig. 20 in dark purple. It is a few
times larger than the Poisson prediction, especially on very
large scales, which is not surprising because we only use a
linear bias term. The next step is to include the second-
order bias operators, that is, to use the model

δhðkÞ ¼ bE
1ðkÞδðkÞ þ bE

2ðkÞδ2ðkÞ þ bE
G2
ðkÞG2½δ�ðkÞ; ð102Þ

where all operators are evaluated using the nonlinear dark
matter field measured from simulations. The resulting
model error is shown by the light purple line in Fig. 20.
While the error is quite flat, its amplitude is still a few times
larger than the Poisson expectation. In particular, in the
low-k limit, the error is much larger than for the quadratic
bias model based on perturbation theory. This implies that,
even on very large scales, the bias model based on the
nonlinear matter density field fails to predict the realization
of halos.
This observation brings us back to the discussion of bare

vs renormalized bias parameters. As we already explained,
using different prescriptions for small-scale modes leads to
different results for transfer functions. The short modes can
have a significant impact on the long-wavelength fluctua-
tions through the nonlinear effects. This effect is amplified
when using the true nonlinear dark matter field, in which
the short modes have a large amplitude. In particular, the
low-k limit of the halo power spectrum is dominated by the
term

Pmodelðk → 0Þ ∼ 2ðbE
1Þ2
Z
p
P2ðpÞ; ð103Þ

where PðkÞ is the nonlinear matter power spectrum. The
integral, related to the variance of the square of the density
field, is large and dominated by the short modes. In other
words, the quadratic term δ2 in the bias expansion is
producing a large shot noise at large scales. When fitted to
simulations at the level of realizations, the minimization
procedure will favor very small values for bE

2 to compensate
for this large noise. On the other hand, if the optimal bE

2 is
chosen to be very small, then the quadratic operator δ2

essentially does not contribute to the model for the halo
density field, and consequently the noise of this model is
higher than expected.
To confirm that the second-order terms are the real cause

for the issue, we also use a hybrid model in which the field
multiplying bE

1 is nonlinear, while the second-order oper-
ators are calculated using δ1:

δhðkÞ¼bE
1ðkÞδðkÞþbE

2ðkÞδ21ðkÞþbE
G2
ðkÞG2½δ1�ðkÞ: ð104Þ

The error of this model is shown in the left panel in Fig. 20
in orange. As expected, on large scales, this model
performs as well as the other perturbative models. On
small scales, the error is not flat, even though the amplitude
of the “bump” is much smaller than before. The residual
scale dependence is due to the improper treatment of the
large IR displacements in the linear field, which enters
the second-order operators. This is resolved when using the
shifted operators (7) for the bias expansion as we do in the
other sections of the paper.
The final question that we can ask is how the results look

if the problematic high-k modes are removed from the
model. This can be achieved by constructing the bias
operators using the smoothed nonlinear density field. The
limit of large smoothing scale is particularly important
because in this limit the low-k values of the transfer
functions have to match the renormalized bias parameters
(this fact was used in Refs. [8,77] to infer the values of
biases at the field level). What kind of model error do we
get in this case? The left panel of Fig. 20 shows the answer.
Larger smoothing scales lead to larger model errors in the
low-k limit. In other words, in order to explain the halo
density field on large scales, it is better to keep the full
nonlinear density field than to smooth it out. These results
suggest that the description of the halo density field using
the renormalized bias parameters and operators is less
optimal than the basis Õi that we use in this paper.
In conclusion, both the standard Eulerian perturbation

theory and the standard Eulerian bias model have problems
when compared to realizations of the halo density field,
confirming the results of Ref. [23]. The perturbative
approach expands shift terms, which leads to a decorrela-
tion on short scales and a large scale dependence of the
model error around k ≃ 0.2 hMpc−1, while using the
nonlinear matter density field from simulations amplifies
the effects of very short modes and leads to a large model
error even in the low-k limit. Crucially, in both cases, some
information from the short scales has to be kept in the
model. Smoothing the nonlinear matter field always leads
to a larger error.

B. Connection to the IR resummation in standard
Eulerian perturbation theory

So far, we have argued that, in order to make a
perturbative prediction for the realization of the density
field of dark matter or biased tracers, one has to work with
shifted operators. However, at the level of the transfer
functions or predictions for the power spectra, only the
correlation functions of shifted operators appear. It is then
natural to ask how these correlation functions relate to the
more familiar counterparts in IR-resummed standard
Eulerian perturbation theory in which the large bulk flows
are also treated nonperturbatively. This question has been
explored previously (see, for instance, Ref. [74]), and in
this section, we review the main arguments and give some
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further details. We will begin with the simplest case of dark
matter only and then move to biased tracers.

1. Dark matter

The nonlinear dark matter field is given by the same
expression as δh, where all Lagrangian bias parameters are
set to zero:

δ̃ ¼ δ̃1 þ
2

7
G̃2 −

3

14
½ ˜G2δ� −

2

9
G̃3 þ

1

6
Γ̃3 − S̃3: ð105Þ

The power spectrum of this field up to one-loop order is
given by

P̃ðkÞ ¼ hδ̃1δ̃1i þ
4

7
hδ̃1G̃2i þ

4

49
hG̃2G̃2i −

3

7
hδ̃1½ ˜G2δ�i

−
4

9
hδ̃1G̃3i þ

1

3
hδ̃1Γ̃3i − 2hδ̃1S̃3i: ð106Þ

Let us make a few comments about some of the terms in
this expression. The kernel of the G3 operator is such that
hδ1G3i vanishes. This implies that the cross-spectrum of
shifted operators hδ̃1G̃3i is nonvanishing only at the two-
loop order, and we can neglect this contribution. The cross-
spectrum hδ1½G2δ�i is proportional to P11ðkÞ:

hδ1½G2δ�i ¼ −
8

3
P11ðkÞ

Z
∞

0

p2dp
4π2

P11ðpÞ: ð107Þ

The corrections to this expression for the shifted fields are
of the two-loop order, and we will ignore them. In the
standard calculation of the one-loop power spectrum for
biased tracers, this term renormalizes the linear bias b1.
However, given that in this case we are calculating the
power spectrum of the dark matter field, this contribution
has to cancel. Indeed, the cancellation is ensured by the
contribution from S̃3. The symmetrized kernel of this
operator is such that

Fs
S̃3
ðk; p;−pÞjk→0 ¼

4

21
þO

�
k2

p2

�
: ð108Þ

This implies that the low-k limit of the correlator hδ̃1S̃3i is
given by

hδ̃1S̃3ijk→0 ¼
4

7
P11ðkÞ

Z
∞

0

p2dp
4π2

P11ðpÞ: ð109Þ

This precisely cancels the contribution from hδ̃1½ ˜G2δ�i in
the power spectrum. Therefore, the nontrivial terms that
survive at one-loop order are

P̃ðkÞ ¼ hδ̃1δ̃1i þ
4

7
hδ̃1G̃2i þ

4

49
hG̃2G̃2i

þ 1

3
hδ̃1Γ̃3i − 2hδ̃1S̃new

3 i; ð110Þ

where S̃new
3 is derived from the S̃3 operator by subtracting

the constant 4=21 contribution from the kernel. This is the
prediction for the one-loop IR-resummed power spectrum
from a realization of the shifted fields.
Figure 21 shows the different contributions to the power

spectrum. The thin blue line is the power spectrum of the
shifted linear field. The thick brown line is the sum of all
four terms in the previous equation which represent the
one-loop contributions.19 One interesting point to notice is
that the total one-loop contribution is at least an order of
magnitude smaller than the leading term in the power
spectrum on all scales. This result is not surprising, since
the expansion of the nonlinear density field in terms of
shifted operators is closely related to the expansion of the
nonlinear displacement field in Lagrangian perturbation
theory, and it is well known that the one-loop power
spectrum of the displacement field is smaller than the linear
prediction on all scales.
In what follows, we are going to compare P̃ðkÞ to the

usual one-loop IR-resummed power spectrum in standard
Eulerian perturbation theory. Before showing the details, let
us make some general comments. The shifted power
spectrum P̃ðkÞ contains all terms of the standard
Eulerian perturbation theory up to one loop. Therefore,
the difference can be only two-loop and higher-order
contributions. Second, the large IR displacements are
resummed in P̃ðkÞ in the same way as in the usual IR
resummation, using the Zel’dovich displacement field ψ1.
This implies that the BAO wiggles must be suppressed in
the same way. Indeed, we are going to show that both these
expectations are correct.
Let us begin with a brief summary of how the IR-

resummed power spectrum is calculated. The starting point
is to split the linear power spectrum in the smooth (non-
wiggly) part Pnw

11 ðkÞ and the wiggly part that comes from
the BAO oscillations Pw

11ðkÞ. Algorithms to do this splitting
efficiently can be found in Refs. [105,106]. The effects of
the large displacements exactly cancel in the equal-time
correlation functions if the power spectrum is smooth.
Therefore, the nonwiggly part of the linear power spectrum
can be used to evaluate the loop integrals in the usual way.
On the other hand, the BAO wiggles are damped by the
large displacements (the BAO peak is broadened in the
real-space correlation function). For this reason, the wiggly
part of the one-loop power spectrum evaluated using Pw

11ðkÞ
has to be suppressed by the appropriate exponential factor
(for more details, see Refs. [66–70]). The final formula is
given by

PIRðkÞ ¼ Pnw
11 ðkÞ þ Pnw

1-loopðkÞ
þ e−Σ

2
λkk

2ð1þ Σ2
λkk

2ÞPw
11 þ e−Σ

2
λkk

2

Pw
1-loop; ð111Þ

19Notice that there is also a one-loop contribution in hδ̃1δ̃1i,
which we do not write explicitly.
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where

Σ2
Λ ¼ 1

6π2

Z
Λ

0

dpP11ðpÞð1 − j0ðplBAOÞ þ 2j2ðplBAOÞÞ:

ð112Þ

The parameter λ in Σ2
λk is usually chosen to be smaller than

1, in order to ensure that the displacements with a given
wave number affect only the fluctuations on shorter scales.
However, in our definition of shifted operators, such a
condition is not imposed, and for the purposes of the
comparison, we will use the k-independent Σ2

∞. In a
ΛCDM-like cosmology, the difference between the two
definitions is small.
Figure 22 shows the comparison of the one-loop dark

matter power spectrum calculated using the shifted

operators and the standard formula for the IR resummation.
The agreement between the two is reasonably good. The
left panel shows different power spectra normalized to the
standard one-loop nonwiggly power spectrum. The thin
dashed and solid gray lines are the estimate for the typical
relative size of the one- and two-loop corrections, respec-
tively, at z ¼ 0.6. We can see that the wiggles in the non–IR
resummed one-loop power spectrum are irregular, unlike
the case with the IR resummation. As expected, the
difference between the broadband of P̃ðkÞ and the standard
Eulerian prediction is of the order of two-loop terms (within
a factor of 2). Figure 22 also shows that the wiggles in
PIRðkÞ and P̃ðkÞ are identical since the relative difference
ðP̃ðkÞ − PIRðkÞÞ=PnwðkÞ is smooth (thick blue line).
The other way to see that the wiggles in PIRðkÞ and P̃ðkÞ

are the same is to look at the correlation function in real
space and focus on the BAO peak. This comparison is
shown in the right panel of Fig. 22. The correlation
functions calculated using P̃ðkÞ and PIRðkÞ, labeled by
ξ̃ðrÞ and ξIRðrÞ, respectively, are almost identical. They
correctly predict the broadening of the BAO peak, com-
pared to the linear theory prediction ξ11ðrÞ. As expected,
the correlation function that corresponds to the one-loop
power spectrum without the IR resummation ξðrÞ has a
very irregular peak. For reference, we also plot the
prediction based on the Zel’dovich power spectrum,
ξZelðrÞ, which is known to be in good agreement with
simulations.
In conclusion, the dark matter one-loop power spectrum

calculated with shifted operators is indeed, up to two-loop
corrections, identical to the IR-resummed one-loop stan-
dard Eulerian prediction. This remains true for the halo
one-loop power spectrum, as we discuss next.

2. Halos

Let us now turn to the halo density field. Using results
from the previous section, we can rewrite it as

FIG. 21. Different contributions to the one-loop dark matter
power spectrum evaluated using Eq. (110), using the mean linear
theory power spectrum in integrals. The thin blue solid line is the
power spectrum of the shifted linear density field. Different
dotted and dashed lines are different one-loop contributions. The
solid brown thick line is the sum of all one-loop terms.

FIG. 22. Comparison of the IR resummation and shifted fields, for the power spectrum (left) and correlation function (right). All
curves are evaluated using theory expressions involving the mean linear power spectrum without matching simulated realizations.
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δh ¼ b1δ̃þ b2δ̃2 þ
�
bG2

−
2

7
b1

�
G̃2 þ b3δ̃3

þ
�
bG2δ þ

3

14
b1

�
½ ˜G2δ� þ

�
bG3

þ 2

9
b1

�
G̃3

þ
�
bΓ3

−
1

6
b1

�
Γ̃3: ð113Þ

Notice that b1 multiplies the nonlinear shifted density
field. For this reason, the S̃3 operator is absent from the
bias expansion, and some bias parameters are modified.
This expression is very similar to the standard Eulerian bias
expansion. We have already demonstrated that the power
spectrum of δ̃ is indeed close to the IR-resummed standard
Eulerian one-loop power spectrum. The same is true for the
other correlation functions as well.
To see this more explicitly from the definition of shifted

operators, let us take a look at the auto- and cross-spectra of
operators Õ ∈ fδ̃2; G̃2g as an example. We have argued
that, neglecting the two-loop corrections, these spectra can
be calculated at leading order in the following way:

hÕaÕbiðkÞ ¼
Z

d3qe−ik·qhOaðqÞObð0Þi

× Exp

�
−
1

2
kikjhΔψ iΔψjic

�
: ð114Þ

Following the arguments of Ref. [67], we are going to show
that this expression is identical to the IR-resummed
counterpart at the one-loop order. We can first write the
correlation function under the integral as a sum of the
smooth part and a feature at the BAO scale. Then,
the integral of the smooth part is dominated by q ∼ 1=k.
For this separation, the typical size of the exponential factor
can be approximated as

Exp

�
−
1

2
kikjhΔψ iΔψjic

�
∼ Exp

�
−
k3P11ðkÞ

6π2

�
: ð115Þ

This approximation follows from the form of the correla-
tion function of the relative displacement field, which can
be written as

hΔψ iΔψjic ¼
1

π2

Z
∞

0

dp
Z

1

−1
dμ

pipj

p2
P11ðpÞsin2

�
qpμ
2

�
;

ð116Þ

and noting that this integral peaks at p ∼ 1=q for a given q.
The exponential factor therefore can be always neglected as
long as we are in the pertutbative regime in which
k3P11ðkÞ

6π2
≪ 1. In conclusion, the featureless or smooth part

of the power spectrum is identical for the shifted and
ordinary operators at the one-loop level:

hÕaÕbinwðkÞ ¼ hOaObinwðkÞ þ “two-loop corrections:”

ð117Þ

Let us now turn to the feature at the BAO scale. In this
case, the integral in Eq. (114) has support only around
q ∼ lBAO, and the exponent, which is a smooth function of
q, can be approximated at its value at q ∼ lBAO. This leads
to the following expression for the wiggly part of the power
spectrum

hÕaÕbiwðkÞ ¼ e−Σ
2
∞k2hOaObiwðkÞ; ð118Þ

where Σ2
Λ is exactly given by Eq. (112). We can there-

fore see that the IR-resummed power and cross-spectra
of the operators δ2 and G2 are indeed the same as the spectra
of their shifted counterparts.20 In this paper, we are
interested only in δ2 and G2 as these are the only bias
operators that we keep in the expansion when we compare
it to simulations. However, it is important to stress that this
derivation holds more generally, and the same conclusions
apply to any one-loop contribution to the power spectrum
of biased tracers.
One important consequence of these results is that all

correlators in formulas for the transfer functions can be
replaced by the corresponding IR-resummed expressions,
which are easier to calculate. In other words, the standard
Eulerian bias expansion

δhðkÞ ¼ βE
1ðkÞδðkÞ þ βE

2ðkÞδ⊥2 ðkÞ þ βE
G2
ðkÞG⊥

2 ðkÞ ð120Þ

gives the same (up to two-loop error) power spectrum as
our quadratic bias model based on the shifted operators
using the following expressions:

βE
1ðkÞ ¼ b1 þ c2sk2 þ b2

hδδ2i
hδ1δ1i

þ
�
bG2

−
2

7
b1

� hδG2i
hδ1δ1i

þ
�
bΓ3

−
1

6
b1

� hδΓ3i
hδ1δ1i

; ð121Þ

βE
2ðkÞ ¼ b2; ð122Þ

βE
G2
ðkÞ ¼ bG2

−
2

7
b1: ð123Þ

20Notice that the constant low-k contribution to hδ2δ2i is
the same for the power spectrum of the shifted fields. Let us
define Pδ2δ2ð0Þ≡ hδ2ðkÞδ2ð−kÞik→0. The two-point function of
this constant part is proportional to the Dirac delta function
hδ2ðqÞδ2ð0Þi ¼ Pδ2δ2δ

DðqÞ. Then, we can write

hδ̃2δ̃2ik→0 ¼
Z

d3qe−ik·qPδ2δ2δ
DðqÞExp

�
−
1

2
kikjhΔψ iΔψjic

�
¼ Pδ2δ2 : ð119Þ
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In these formulas, all power spectra are calculated in
standard Eulerian perturbation theory with IR resumma-
tion, and all bias parameters are as measured from the
transfer functions using the shifted fields.
Let us finish this section by making a comment about

measuring the bias parameters from the power spectrum.
We have just argued that standard Eulerian perturbation
theory with IR resummation predicts the correct shape for
the nonlinear power spectrum of biased tracers. The
measurement of bias parameters then proceeds in the usual
way, leading to the usual results. On the other hand, we
have also argued that the bias parameters with the lowest
model error are different from those inferred from the
correlation functions. How do we see this difference using
the power spectrum? The answer is that measuring the bias
parameters minimizing the model error and fitting the
power spectrum are two different fitting procedures with
different numbers of fitting parameters. For instance, when
fitting the power spectrum, it is common to combine all
constant k → 0 contributions from the bias operators such
as δ2 with the noise power spectrum. In this way, the bias
parameters are measured only from the k dependence of
different contributions. This is possible because all the
constant terms are exactly degenerate with the Poisson
noise, the amplitude of which is fitted simultaneously with
other parameters. On the other hand, in the minimization
procedure, we only fit for the bias parameters, and the noise
is entirely fixed by their best-fit values. In other words, we
cannot trade the contributions of different bias operators
for the noise. Given that there is one fewer parameter to fit,
the values of biases in the two fitting procedures must be
different. Notice that the noise fitted from the power
spectrum is always higher than that inferred from mini-
mization. This can be of particular relevance when trying to
measure cosmological parameters.

VIII. EXTENSION: HALO MASS WEIGHTING

So far, we have only studied the halo number density and
the error or stochastic noise when modeling this with a bias
expansion. But it is well known that the stochastic noise can
be smaller for the halo mass density, in which each halo is
weighted by its mass [20–22,24,107–110]. More generally,
any weighting of the halos that makes their overdensity
more similar to the dark matter overdensity should reduce
the stochastic noise relative to the dark matter–based bias
expansion. In particular, if we could weight each halo by
the exact value of the dark matter density in the surrounding
region, there would be no difference at all between the
weighted halo density and the dark matter density; i.e., the
model error would vanish. A related motivation is that
the dark matter density satisfies momentum conservation,
so the power spectrum of stochastic effects scales as k4

on large scales [109,111–114] and cannot generate a white
noise contribution to the large-scale linear dark matter
power spectrum; weighting halos by their mass also

imposes approximate momentum conservation, therefore
suppressing the k0 white noise of the halo number density
on large scales [20].
In practice, the efficiency of this mass-weighting method

is, of course, limited by how well halo mass, or the local
value of the dark matter density, can be estimated from
observables such as galaxy luminosities, which is limited,
e.g., by scatter in the observable-to–halo mass relation and
the fact that halo mass is only a proxy for the local dark
matter density. Moreover, on small scales, the error of any
analytical model for the weighted halo density will never
vanish because terms that are not included in the model
(e.g., two-loop contributions to the nonlinear dark matter
density) would ultimately appear in the measured model
error. We defer a more complete analysis of halo mass
weighting and nonlinear bias expansions to future work and
discuss only some simple simulation results to get a sense
for how it can impact the stochastic model error.
It has been shown that weighting halos with wðMÞ ¼

αh þ αMM, where M is the halo mass and αh and αM are
constants, is a good approximation to the optimal halo mass
weighting and can significantly reduce the stochasticity of
a linear bias expansion [21,22]. This motivates us to work
with a similar mass-weighting scheme, but we generalize
it by promoting the constants αh and αM to k-dependent
transfer functions. In the rest of the section, we will
describe this mass-weighting method in more detail and
then present results from simulations.
We will use the following notation in this section. δtruthh is

the true halo number density of a simulation or galaxy
survey data; δM is the true halo mass density of a simulation
or galaxy survey data, obtained by weighting each halo by
its mass; δ⊥M is the component of δM that is orthogonal to
δtruthh ; the weighted or mass-weighted density δobsh is a linear
combination of simulated (observable) halo number and
mass density—this combined field is what we regard as the
observable; finally, δmodel

h is the bias model that describes
δobsh . The power spectra of δtruthh , δ⊥M, and δobsh are called
Ptruth, P⊥

MM, and Pobs, respectively.

A. Mass-weighting method

We will choose the mass weights such that the mean-
square error between the weighted halo density (the
observable) and the bias expansion (the model) is mini-
mized in every k bin. To achieve this, we first rewrite the
weighted halo density δobsh , in which each halo is weighted
by wðMÞ ¼ αh þ αMM, as a linear combination of the
measured halo number density δtruthh and the measured halo
mass density δM. Orthogonalizing the latter with respect
to the former, so that hδtruthh δ⊥Mi ¼ 0, and allowing for
k-dependent weights, we have

δobsh ðkÞ ¼ αhðkÞδtruthh ðkÞ þ αMðkÞδ⊥MðkÞ≡
X
μ

αμδμ: ð124Þ
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Then, we minimize the mean-square model error

PerrðkÞ ¼ hjδobsh ðkÞ − δmodel
h ðkÞj2i

¼
�����X

μ

αμδμ −
X
i

βiÕi

����2
	

ð125Þ

simultaneously with respect to the mass weights αμðkÞ and
the bias parameters βiðkÞ in every k bin.21 A trivial but
pathological solution is to set all αμ ¼ 0 and βi ¼ 0, which
would give Perr ¼ 0, but at the same time, it would set the
observable density δobsh to zero. To avoid this, we minimize
under the constraint that at least one of the mass-weighting
parameters has to be nonzero, say, αh ≠ 0. Then,

PerrðkÞ ¼ α2h

�����δtruthh þ αM
αh

δ⊥M −
X
i

βi
αh

Õi

����2
	
: ð126Þ

For any αh ≠ 0, the optimal αM and βi are then found using
linear regression analogously to Eq. (40). Afterward, αh can
be changed to any nonzero value, which changes the overall
normalization of all coefficients. We choose αh such that
the power spectrum of the weighted halo density, PobsðkÞ, is
equal to the power spectrum of the halo number density in
the absence of mass weighting; i.e., we impose

PobsðkÞ≡ α2hðkÞPtruthðkÞ þ α2MðkÞP⊥
MMðkÞ ¼ PtruthðkÞ:

ð127Þ
We therefore add information about the halo mass at the
field level in such a way that the observable power
spectrum remains unchanged. We are going to apply this
mass-weighting procedure to the simulated halos in the
next section.
Note that changing the normalization condition would

change the power spectra, but it would not affect the ratio
Perr=Pobs or the cross-correlation coefficient between δobsh
and the model. Also note that by adding the orthogonalized
mass density δ⊥M as opposed to the mass density δM we
ensure that adding this field cannot cancel the number
density to set δobsh to zero (the coefficient αM is only turned
on when a part of the mass density that is uncorrelated with
the number density helps to reduce the model error).
To get a better understanding for how the mass weighting

operates, consider a toy model in which the true halo
number and mass density are

δtruthh ¼
X
i

βiÕi þ ϵh; ð128Þ

δM ¼
X
i

γiÕi þ ϵM: ð129Þ

Then,

δobs ¼ αh

�X
i

ðβi þ sγiÞÕi þ ϵh þ sϵM

�
; ð130Þ

where s≡ αn:o:M =αh and αn:o:M . is the weight that would
appear when not orthogonalizing, i.e., writing δobsh ¼
αhδ

truth
h þ αn:o:M δM ¼ αhðδtruthh þ sδMÞ. The mass-weighting

procedure then amounts to choosing αh and s such that the
power spectrumof ϵh þ sϵM is small, while keeping the total
power spectrum of δobsh unchanged. If the fractional size of
the stochastic error is different between the two fields,22 this
is most efficient when ϵh and ϵM are correlated; in that case,
we can generally pick sðkÞ such that the stochastic fields ϵh
and ϵM cancel each other mode by mode, without entirely
canceling the signal part involving the Õi operators. The
effectiveness of this is controlled by the correlation coef-
ficient between ϵh and ϵM and by the fractional size of the
stochastic noise relative to the signal.Wewill get back to this
in more detail in Sec. VIII D below, but first we describe
simulation results with mass weighting.

B. Simulation results

Light grey curves in Fig. 23 show the mean-square error
Perr of the best cubic bias model to describe the mass-
weighted halo density δobsh computed using exact FOF halo
masses. For all but the most massive halo bin, this mean-
square model error is less than 10% of the Poisson
prediction 1=n̄ on large scales; for the most massive halo
bin, M ≥ 1013.8 h−1M⊙, it is about 25% of the Poisson
prediction.23 Relative to no mass weighting (dark grey in
Fig. 23), mass weighting therefore reduces the large-scale
mean-square model error by a factor of 17 for the two
densest halo populations, M ≥ 1010.8 h−1M⊙ and
M ≥ 1011.8 h−1M⊙; by a factor of 7 for the heavier and
rarerM ≥ 1012.8 h−1 M⊙ halos; and by a factor of 2 for the
very massive M ≥ 1013.8 h−1M⊙ halos.
To be more realistic, green curves in Fig. 23 include a

log-normal scatter added to the FOF halo masses.24 We find
that for a 0.4 dex (i.e., factor 2.5) mass scatter mass
weighting is not effective and the model error is only
marginally reduced compared to using just the halo number
density. For 0.2 dex (i.e., 60%) mass scatter, however, the
large-scale Perr is reduced relative to no mass weighting by

21We will only consider models of the form δmodel
h ¼Pi βiÕi

whenever we apply mass weighting.

22That is, if hjϵhj2i=hj
P

iβiÕij2i≠hjϵMj2i=hj
P

iγiÕij2i, which
makes sure that δtruthh and δM do not just differ by a normalization
factor.

23The mass bins are similar to the last sections, using the same
minimum halo masses for the four bins, but we do not impose any
maximum halo mass cut for any of the bins (very massive halos
are easy to observe, and halo mass weighting should appropri-
ately up- or down-weight those halos).

24That is, for each halo, we replace lnM → lnM þ ε−
σ2ε=2, where ε is drawn from a normal distribution with zero
mean and variance σ2ε ; we subtract σ2ε=2 to ensure that the scatter
does not change the average mass hMi of the halo population
(note heεi ¼ eσ

2
ε=2).
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a factor of 1.5–2 for the three low–and intermediate–halo
mass bins and by a factor of 1.3 for the most massive halos.
For 0.1 dex (i.e., 26%) mass scatter, the large-scale Perr is
reduced by a factor of 3–5 for the low- and intermediate-
mass halos and by a factor of 1.6 for the most massive
halos. So, if we can determine halo masses with a scatter of
approximately 60% or less, this could reduce Perr by factors
of a few for halo samples like ours.
What is the scale dependence of the model error after

mass weighting? Fig. 23 shows essentially no scale
dependence for k≲ 0.1 hMpc−1, but there is a clear scale
dependence at higher k, and this tends to be stronger than
the scale dependence of PerrðkÞ without mass weighting.
This could be caused by two-loop terms that are missing in
the model and therefore contribute to the measured PerrðkÞ;
after mass weighting, the stochastic noise contribution Pϵ0ϵ0
to Perr might be so small that the missing two-loop terms
could be the dominant contribution to Perr at high k,
especially when using a high number density of halos
and assuming perfectly known halo mass. Alternatively, the
k2 corrections to Perr might be larger after mass weighting.
Resolving this question is beyond the scope of this paper.

Note that, in order to make use of the reduced model
error on small scales, one would have to model this
increased scale dependence of the model error or modify
the bias model or mass-weighting scheme to obtain a
flatter Perr.
Figure 24 shows the cross-correlation coefficient rccðkÞ

between the mass-weighted halo field δobsh and the best-fit
cubic bias model and shows the fractional mean-square
model error 1 − r2cc. Using exact FOF halo masses with no
scatter, the correlation coefficient at k ≃ 0.02 hMpc−1 is
between 99.995% and 99.9% (1 − r2cc between 0.01% and
0.2%) for all but the most massive halo bin. This is a
substantial improvement over no mass weighting in which
the correlation coefficient at k ≃ 0.02 hMpc−1 is between
99.9% to 99.2% (1 − r2cc between 0.2% and 1.5%). The
correlation decreases on smaller scales and when adding
scatter to the halo mass. Similarly as before, a scatter of
0.4 dex is too large for mass weighting to be effective, but
with a scatter of 0.2 dex or 0.1 dex, the mass weighting can
substantially improve the cross-correlation coefficient,
exceeding 99.5% (1 − r2cc ¼ 1%) on large scales for all
but the most massive halo mass bin.

FIG. 23. Impact of mass weighting on the mean-square model error divided by the Poisson expectation, hjδobsh ðkÞ − δmodel
h ðkÞj2i=

ð1=n̄Þ. Here, δobsh is a weighted sum of halo number and mass density, δobsh ðkÞ ¼ αhðkÞδtruthh ðkÞ þ αMðkÞδ⊥MðkÞ, extracted from
simulations. The model is the cubic bias model as before but without δZ, i.e., δmodel

h ¼Pi∈f1;2;G2;3g βiðkÞδ̃⊥i ðkÞ. The light grey curve
assumes that the halo mass is known perfectly (as measured by the FOF halo finder), the green curves include a random scatter σM in the
halo masses, and the dark grey curve assumes no mass weighting, corresponding to the no-mass-weighting result presented previously in
the paper. Transfer functions αμðkÞ and βiðkÞ are optimized as free functions of k, with αμ satisfying the normalization condition (127).
At low k, the width of the curves represents the uncertainty of Perr estimated from the scatter between the five independent simulations;
at high k, the estimated uncertainty is smaller.
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C. Contributions and mass weights

To see in more detail how the mass weighting operates,
Fig. 25 shows power spectra of the halo number density
δtruthh and the halo mass density δM. They have a similar k
dependence, but the mass density has a larger linear bias
because heavy halos are up-weighted relative to the number
density (and we use the same minimum halo mass cutoff
for both densities). In contrast, the power spectrum of
the orthogonalized mass density, δ⊥M ¼ δM − hδtruthh δMi=
hjδtruthh j2i × δtruthh , is rather independent of scale. To under-
stand this, note that if δM were equal to the halo number
density plus an additional white noise field, δM ¼ δtruthh þ ϵ,
then δ⊥M ¼ ϵ and its power spectrum would consequently be
flat. We will argue in the next section that we can indeed
expect δ⊥M to be a combination of the stochastic noise fields
of the halo number and mass density, the power spectrum of
which is again expected to be flat on large scales.

The optimal mass weights αh and αM are shown
in Fig. 26 as a function of k for the four halo mass bins.
Both weights are rather smooth functions of k. The
halo number density weight αh is one on large and small
scales but decreases by 10% to 20% on intermediate scales,
0.1 hMpc−1 ≲ k≲ 0.6 hMpc−1. The weight αM of the
halo mass density is typically a few times smaller and is
constant at low k but suppressed at intermediate and small
scales, k≳ 0.2 hMpc−1. When increasing the mass scatter,
αM becomes smaller as expected because the information in
the halo mass density is less useful.
Figure 27 shows how much power the halo number

density δtruthh and the mass density δ⊥M contribute to the
combined field. The halo number density δtruthh always
dominates. The contribution from the orthogonalized mass
density δ⊥M typically reaches several tens of percent of the
number density power around k ≃ 0.3–0.4 hMpc−1 and is

FIG. 24. Top panels: Impact of mass weighting on the mean-square model error hjδobsh ðkÞ − δmodel
h ðkÞj2i divided by the true mass-

weighted halo density constructed from simulations, δobsh ¼ αhδ
truth
h þ αMδ

⊥
M as described in the text, with normalization such that

hjδobsh ðkÞj2i ¼ PtruthðkÞ, where Ptruth is the measured halo number density power spectrum. Lower panels: Cross-correlation coefficient
between best-fit cubic bias model and mass-weighted halo density from simulations. This shows that halo mass weighting can reduce the
model error by more than an order of magnitude on large scales.
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approximately constant at k≲ 0.2 hMpc−1 and drops at
higher k. This again suggests that δ⊥M contains mostly
stochastic noise, which partially cancels the stochastic
noise of δtruthh , reducing the stochastic noise of the com-
bined field.

D. Toy model

To better understand the partial cancellation of the
stochastic noise in the halo number and mass density, we
consider a simple toy model (similarly as Refs. [21,107]), in
which the true halo number and mass density are given by

δtruthh ¼ bhδ1 þ ϵh; ð131Þ
δM ¼ bMδ1 þ ϵM: ð132Þ

ϵX are stochastic noise terms that are uncorrelated with the
model, hϵXδ1i ¼ 0. In that case,

δ⊥M ≈ ϵM −
bM
bh

ϵh: ð133Þ

Here and in what follows, we ignore terms of which the
power spectrum is suppressed by a factor of Pϵϵ=ðb2P11Þ,
which is small at low k. Equation (133) shows that the
orthogonal component of the halo mass density is indeed a

combination of the stochastic noise fields ϵh and ϵM of the
halo number and mass densities. We therefore expect its
power spectrum to be flat, which is what we saw in
Fig. 25 above.
Forming a linear combination of δtruthh and δ⊥M can then

cancel part of the stochastic noise ϵh and reduce the model
error of the combined field to the low levels found in
Fig. 23 above. For the toy model in Eqs. (131) and (132),
we can see this explicitly as follows. The weighted
combined field is

δobsh ≡ αhδ
truth
h þ αMδ

⊥
M ≈ αh

�
bhδ1 þ

�
1− t

bM
bh

�
ϵh þ tϵM

�
;

ð134Þ

wherewe defined t≡ α⊥M=αh. Themodel error of this field is

ϵobs ≡ δobsh − αhbhδ1 ≈ αh

��
1 − t

bM
bh

�
ϵh þ tϵM

�
: ð135Þ

The mass weighting then varies the parameter t to obtain the
linear combination of ϵh and ϵM in this equation such that its
power spectrum is minimized, noting that αh is fixed by the
normalization. Completing the square, we find for the error
power spectrum at the optimal weight t

FIG. 25. Power spectra relevant for halo mass weighting. The power spectrum of the halo mass density (solid blue) has a shape similar
to that of the halo number density (solid black), but it is more biased relative to the linear density (solid grey) because heavy halos are up-
weighted. Orthogonalizing the halo mass density with respect to the halo number density leads to a flat power spectrum (dashed blue);
this corresponds approximately to a combination of the stochastic noise terms of the halo number density and mass density, so adding or
subtracting it from δh can cancel part of its stochastic noise. No scatter is added to halo masses (doing so increases the constant,
stochastic part).
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PϵobsðkÞ
PobsðkÞ

≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ehh

P11

EMM

P11

s
ð1 − r2hMÞ
2ðI − rhMÞ

: ð136Þ

Here, we again ignored terms suppressed by a factor of
Pϵϵ=ðb2P11Þ; we defined the stochastic error power spectra

EXYðkÞ≡
�
ϵXðkÞ
bX

ϵ�YðkÞ
bY

	
ð137Þ

for X; Y ∈ fh;Mg and the cross-correlation coefficient
rhMðkÞ ¼ EhM=ðEhhEMMÞ1=2 between ϵh and ϵM; and
we also defined25

IðkÞ≡ 1

2

 ffiffiffiffiffiffiffiffiffiffi
Ehh

EMM

s
þ

ffiffiffiffiffiffiffiffiffiffi
EMM

Ehh

s !
≥ 1: ð138Þ

Equation (136) shows that the noise power of the
weighted combination of halo number and mass density
is determined by the geometric mean of the noise power
spectra Ehh=P11 and EMM=P11 of the individual fields and

by the correlation coefficient rhM between the noise fields
ϵh and ϵM of the halo number and mass density.
If EMM ≠ Ehh, Eq. (136) scales as 1 − r2hM in the limit

rhM → 1. Therefore, the stochastic noise of the combined
field δobsh becomes small if the stochastic noise of halo
number and mass density are very correlated, while their
fractional contributions to the total halo number and mass
density differ in amplitude (so that EMM ≠ Ehh and I > 1).
This makes sense intuitively: if two fields have a very
correlated signal and very correlated noise, while their
signal-to-noise ratios are different, we can combine the two
fields such that the noise cancels identically while the
signal remains nonzero. For example, if δM ¼ 2δ1 þ ϵ and
δtruthh ¼ δ1 þ ϵ, then δM − δtruthh ¼ δ1.
The result (136) simplifies further if one error is much

larger than the other, say, EMM ≪ Ehh (i.e., hjϵMj2i=b2M ≪
hjϵhj2i=b2h). Then,

PϵobsðkÞ
PobsðkÞ

≈
EMM

P11

ð1 − r2hMÞ: ð139Þ

The fractional noise of the combined field is therefore
given by the fractional noise of the low-noise field, times

FIG. 26. Weights used for halo mass weighting. The weight αM of the orthogonalized halo mass density δ⊥M (dashed) is constant on
large scales and drops on small scales k ≳ 0.2 hMpc−1. It decreases with increasing halo mass scatter (colors are the same as in Figs. 23
and 24, with no scatter in bright gray and 0.4 dex scatter in dark green). The weight αh of the halo number density δtruthh (solid) is fixed by
αM through the normalization constraint (127) of the weighted power spectrum; it is close to 1 on large and small scales and around 0.8
to 0.9 on intermediate scales, to compensate for the significant contribution of αMδ⊥M to the total power spectrum on these scales (see the
next figure).

25Since I ≥ 1 the denominator in Eq. (136) is always non-
negative.
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ð1 − r2hMÞ, which is small when the two noise fields ϵh and
ϵM are very correlated.26

These arguments are related to the idea of canceling
cosmic variance using two correlated tracers with different
biases [115], which was one of the original motivations to
study halo mass weighting [20]. In that case, the argument
is usually formulated as improving the Fisher information
when regarding the relative bias bh=bM between the two
tracers as the signal of interest, whereas we computed the
reduction of the stochastic noise term when combining the
two tracer fields and modeling that combination with a bias
expansion. The final result, especially the 1 − r2hM scaling
as rhM → 1, is similar.

Of course, the analytical arguments above assumed a
simple toy model without nonlinear bias and ignored cor-
rections to Eq. (133) that can be important at intermediate and
high k. The simulation results, however, include the nonlinear
bias terms of the cubic model and show that mass weighting
works very efficiently in that case up to rather high k.
In conclusion, we confirm that halo mass weighting is a

promising method to suppress the stochastic model error or
shot noise, which could yield more powerful cosmological
constraints if achievable in practice, but more work is
required to characterize the most suitable bias model and its
error when mass weighting is applied.27

IX. SUMMARY

Using a modified basis of operators in Eulerian space, we
have constructed a model of biased tracers at the density field

FIG. 27. Contribution α2hhjδtruthh j2i from the halo number density (solid) and α2Mhjδ⊥Mj2i from the orthogonalized halo mass density
(dashed) to the power spectrum of the weighted density δobsh ¼ αhδ

truth
h þ αMδ

⊥
M. Colors are the same as in the previous figures.

26Another interesting limit is I ¼ 1. This happens if and only if
EMM ¼ Ehh, i.e., when the fractional size of the stochastic noise
fields is the same, hjϵMj2i=b2M ¼ hjϵhj2i=b2h. In that case,
Eq. (136) becomes Pϵobs=Pobs ¼ Ehh=P11 × ð1þ rhMÞ=2. If the
noise fields are perfectly correlated, rhM ¼ 1, this gives Ehh=P11.
We therefore do not gain anything by combining the fields, which
is not surprising because this case corresponds to δtruthh and δM
being identical up to an overall normalization factor, so combin-
ing δh and δM cannot reduce the fractional stochastic noise. In
contrast, if ϵh and ϵM were perfectly anticorrelated, rhM ¼ −1, the
combined noise would vanish, which again makes sense because
the noise cancels identically when adding the two fields, while
the signal does not. In practice, we expect the halo number and
mass density and their fractional stochastic noise to be different,
i.e., EMM ≠ Ehh, so that I > 1.

27In addition to improving the bias model or modeling the scale
dependence ofPerr, onemight alsowant to employ amore realistic
halo mass scatter, noting that mass estimates from the luminosity
ofmassive halos (M ≳ 1012 h−1 M⊙) can suffer from the flattening
of the stellar-to-halomass relation at highmass, while determining
the halo mass of very faint (possibly satellite) galaxies is also
challenging. A potential systematic offset in the assumed mean
stellar-to–halo mass relation can also have an impact, likely
leading to suboptimal weights. Still, it would be interesting to
study clustering for different cuts in luminosity or other galaxy and
cluster properties (e.g., Refs. [116–119]) to suppress stochasticity.
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level that accounts for bulk flows (large IR displacements)
without a perturbative expansion in the displacement.We find
that this model is able to describe the halo density obtained
from N-body simulations accurately over a wide range in
scale and halo mass. Our main findings are as follows:

(i) To obtain coherent positions of particles in the
model and simulations, it is important to use the
bias expansion in terms of shifted operators which
keep large IR displacements resummed. In contrast,
standard Eulerian bias applied to the dark matter
density from standard Eulerian perturbation theory
treats displacements perturbatively, leading to a
decorrelation between model and simulations at
wave numbers k≳ 0.2 hMpc−1. The standard Eule-
rian bias expansion based on the fully nonlinear dark
matter density (including full displacements) instead
suffers from a large constant contribution to the
power spectrum of δ2m, which generally leads to a
large model error even on very large scales. For these
reasons, the bias expansion in terms of shifted
operators is more suitable for modeling biased
tracers at the field level. Its power spectrum agrees
with that of the usual IR-resummed standard Eule-
rian power spectrum.

(ii) Nonlinear bias operators are important to obtain a
model error power spectrum PerrðkÞ≡ hjδtruthh ðkÞ −
δmodel
h ðkÞj2i that is comparable to the Poisson pre-
diction, PerrðkÞ ¼ 1=n̄. For the quadratic and cubic
bias models, the amplitude of Perr is a few tens of
percent higher than the Poisson prediction for M ≲
1013 h−1M⊙ halos and about a factor of 2 smaller
than the Poisson prediction for heavier halos. With-
out the nonlinear bias terms, the model error power
spectrum is approximately five times larger forM ≲
1013 h−1M⊙ halos and 30% for heavier halos, even
on very large scales, k < 0.05 hMpc−1 (see Fig. 6).

(iii) The cross-correlation coefficient rcc between the
modeled and simulated halo density is roughly
consistent with the Poisson shot noise prediction
for low and intermediate mass halos, reaching up
to rcc ¼ 99.9% on large scales. For heavy, M≳
1013 h−1M⊙, halos, the correlation is better than
expected from the Poisson prediction, remaining
above 50% up to k ≃ 1 hMpc−1 (see Fig. 7).

(iv) For the simulated halo samples at z ¼ 0.6 that we
analyzed, it would be safe to assume a scale-
independent model error or shot noise up to kmax≃
0.13–0.3 hMpc−1, depending on halo mass, when
analyzing a 10 h−3 Gpc3 volume, or up to kmax ≃
0.18–0.37 hMpc−1 when analyzing a 0.5 h−3 Gpc3

volume. Without nonlinear bias terms, these kmax
values are smaller by a factor of 2 to 3 because the
measured model error is much more scale dependent
(see Table IV and Fig. 11).

(v) On small scales, k≳ 0.3 hMpc−1, the model error
depends strongly on scale. This could be due to
expected ðk=kMÞ2 corrections to the noise on scales
comparable to the typical size of a halo, although the
uncertainty of our measurements of the model error
is too large to test this conclusively. Alternatively,
this could be caused by additional higher-order bias
terms that we did not include in the bias expansion.

(vi) The local quadratic bias term contributes typically
10% in power at k ≃ 0.1 hMpc−1 (see Fig. 12).
Modeling the halo power spectrum to 1% at k ¼
0.1 hMpc−1 therefore typically requires the quad-
ratic bias parameter β2 to be known or constrained to
better than 10%. For M ¼ 1012.8–1013.8 h−1M⊙
halos, this contribution is smaller because β2 is
much smaller than the linear bias, but for these halos,
the contribution from the cubic local bias term is 5%
in power at k ¼ 0.1 hMpc−1, so β3 should be known
within 20%.

(vii) The bias transfer functions βiðkÞ that we use in the
bias model can be easily described with a five- or
six-parameter fit based on theoretical predictions of
the expected shape of these transfer functions (see
Sec. VI). The number of free parameters of our
model is therefore the same as in usual nonlinear
bias expansions (i.e., one parameter bi for each
included bias term, and the sound speed cs).

(viii) We confirm that the mean-square model error can be
suppressed by an order of magnitude when weighting
halos by theirmass. This is similar to previous findings
[20–22], although our definitions differ somewhat
because we include nonlinear bias terms as part of
themodel and not the stochasticity.With amass scatter
of 0.2 dex (i.e., 60%) or less, the stochastic mean-
square model error can typically be suppressed by a
factor of 2 or more, even for relatively low number
density of n̄ ≃ 5 × 10−4 h3 Mpc−3 (see Figures 23
and 24).

By demonstrating that dark matter halos in N-body
simulations can be modeled accurately at the level of the
density field realization, we have provided a stringent test
of the validity of the bias expansion. This can be useful for
several practical applications, including forward-model
inferences that rely on a density-level forward model in
the likelihood, cosmological analyses of power spectra
measured from galaxy survey data in which the model error
enters as a noise contribution, and the design of initial
condition and BAO reconstruction algorithms from biased
tracers. We leave these and other possible applications for
future work.
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APPENDIX A: ZEL’DOVICH DENSITY δZ IN
TERMS OF SHIFTED OPERATORS

In this Appendix, we derive the expression for the
Zel’dovich density field in terms of shifted operators.
We start from the real-space expression

δZðxÞ ¼ J−1ðqÞ − 1; ðA1Þ

where

J−1ðqÞ≡
���� ∂x∂q
����−1 ¼ jδji þ ∂iψ

j
1ðqÞj−1: ðA2Þ

The determinant can be expanded up to third order in
(perturbation theory):

J−1ðqÞ¼1−∇ ·ψ1ðqÞþ
1

2
ð∇ ·ψ1ðqÞÞ2−

1

6
ð∇ ·ψ1ðqÞÞ3

þ1

2
∂aψ

b
1ðqÞ∂bψ

a
1ðqÞ−

1

2
∇ ·ψ1ðqÞ∂aψ

b
1ðqÞ∂bψ

a
1ðqÞ

−
1

3
∂aψ

b
1ðqÞ∂bψ

c
1ðqÞ∂cψ

a
1ðqÞ: ðA3Þ

Notice that all the fields are evaluated in q, which solves the
equation x ¼ qþ ψ1ðqÞ. This means that we never expand
fields in linear displacement but only in derivatives of the
linear displacement. This is consistent with the way the
shifted operators are defined. The inverse Jacobian can be
rewritten as

J−1ðqÞ ¼ 1þ δ1ðqÞ þ δ2ðqÞ þ
1

2
G2ðqÞ þ δ3ðqÞ

þ δðqÞG2ðqÞ −
1

3
G3ðqÞ: ðA4Þ

Therefore,

δZðxÞ ¼ δ1ðqÞ þ δ2ðqÞ þ
1

2
G2ðqÞ þ δ3ðqÞ

þ δðqÞG2ðqÞ −
1

3
G3ðqÞ: ðA5Þ

On the other hand, the shifted operators can be expressed
in the same way. Keeping only the terms up to third order in
PT, we get

δ̃1ðxÞ ¼ J−1ðqÞδ1ðqÞ

¼ δ1ðqÞ þ δ2ðqÞ þ δ3ðqÞ þ
1

2
δðqÞG2ðqÞ; ðA6Þ

δ̃2ðxÞ ¼ J−1ðqÞδ2ðqÞ ¼ δ2ðqÞ þ δ3ðqÞ; ðA7Þ

G̃2ðxÞ ¼ J−1ðqÞG2ðqÞ ¼ G2ðqÞ þ δðqÞG2ðqÞ: ðA8Þ

Combining these expressions, we finally get

δZðkÞ ¼ δ̃1ðkÞ þ
1

2
G̃2ðkÞ −

1

3
G̃3ðkÞ: ðA9Þ

Notice that the quadratic and cubic operators δ̃2 and δ̃3
cancel, and they do not contribute to the final expression.
This is expected since the Zel’dovich density field cannot
have shot noise.

APPENDIX B: RELATION BETWEEN MODEL
ERROR POWER SPECTRUM AND CROSS-

CORRELATION COEFFICIENT

One statistic that we used in the main text to quantify the
agreement between bias expansion and simulations is the
power spectrum of the model error PerrðkÞ as defined in
Eq. (6). This measures, in a mean-square sense, what part of
the simulated halo number density cannot be captured by
the bias expansion. Another statistic that we used is the
cross-correlation coefficient rccðkÞ between Fourier modes
of the model and true simulated halo density as defined in
Eq. (41). This also describes how well the model describes
phases of individual Fourier modes. It is therefore not
surprising that these two performance measures are closely
related to each other as follows.
Since all the halo bias models that we use are linear in

bias parameters, the minimization of Perr with respect to
these bias parameters implies

∂hjδtruthh ðkÞ − δmodel
h ðkÞj2i

∂βiðkÞ
¼ 0 ⇒ hðδtruthh ðkÞ − δmodel

h ðkÞÞ½δmodel
h ðkÞ��i ¼ 0: ðB1Þ

The model error of the best-fit model is therefore uncorre-
lated with the model, which is optimal in the sense that the
modeling error is entirely due to stochastic or higher-order
contributions to the true simulated density that cannot be
captured by the model. Equation (B1) implies that for the
best-fit model we have PMM ¼ PMT , where M≡
δmodel;best-fit
h and T ≡ δtruthh , and thus

rcc ¼
PMTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PMMPT T
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
PMM

PT T

s
; ðB2Þ
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and

Perr ¼ hjT −Mj2i ¼ PT T − PMM ¼ PT T ð1 − r2ccÞ;
ðB3Þ

where k arguments are suppressed. This shows that the
cross-correlation coefficient rcc between the best-fit model
and the truth is identical to the square root of the model
power spectrum divided by the truth power spectrum, and
the minimum mean-square model error Perr is proportional
to one minus the squared correlation coefficient between
the best-fit model and the truth. This shows that Perr and rcc
are closely related to each other.
It is important to stress that this is valid only for the best-

fit model with the best-fit transfer functions. If we use five-
or six-parameter fits to the transfer function, the relation
between the model error and the cross-correlation coef-
ficient is not so simple anymore. Let us call M0 the model
that uses β0i ¼ βi þ δβi, where βi are the best-fit transfer
functions and β0i are their approximation using the pertur-
bation theory fits. In this case, a part of the error is
correlated with the model, and therefore PM0M0 ≠ PM0T
(also see Sec. VI E).

APPENDIX C: GRAM-SCHMIDT
ORTHOGONALIZATION OF BIAS OPERATORS

In this Appendix, we describe the procedure to orthogon-
alize the operators that enter the model for the halo density;
for example, OiðkÞ ¼ ðδ̃1ðkÞ; δ̃2ðkÞ; G̃2ðkÞÞ for the quad-
ratic bias model. We will assume that all model operators
Oi are statistically isotropic and homogeneous fields so that
different k bins are independent from each other and we can
apply the orthogonalization for each k bin separately.
We start by computing the covariance matrix O between

the original nonorthogonal fields OiðkÞ, i ¼ 1;…; n, in
every k bin,

OijðkÞ ¼ hOiðkÞO�
jðkÞi: ðC1Þ

In shorter notation, suppressing k and k arguments, we
write O ¼ hOO†i, where O is a column vector with n
rows, and O† ¼ ðO�ÞT is the conjugate transpose. The
corresponding correlation matrix is C≡DOD, where
Dij ≡ δKijðOiiÞ−1=2. Performing its Cholesky decomposition
gives a lower-triangular real n × n matrix L such that

C ¼ LLT: ðC2Þ

If we define rotated fields

O⊥ ¼ WL−1DO ðC3Þ

with a real diagonal n × n normalization matrix W to be
determined later, we find

hO⊥ðO⊥Þ†i ¼ WL−1DODðL−1ÞTWT ¼ WWT; ðC4Þ

which is a diagonal matrix, i.e., hO⊥
i ðO⊥

j Þ�i ¼ 0 for i ≠ j
as desired. Fixing the normalization W such that
ðWL−1DÞii ¼ 1 (no sum) gives Wij ¼ δKij=ðL−1DÞii (no
sum). The rotation from original fields O to orthogonal
fields O⊥ is therefore

O⊥ ¼ MO; ðC5Þ

where the rotation matrix M ¼ WL−1D. Explicitly,

Mij ¼
ðL−1ÞijðOjjÞ−1=2
ðL−1ÞiiðOiiÞ−1=2

ðno sumÞ: ðC6Þ

To compute O⊥
i ðkÞ ¼

P
j MijðkÞOjðkÞ for a given

Fourier vector k on a 3D grid, we evaluate the rotation
matrix MijðkÞ at the same k bin as that to which k
contributes when we compute power spectra, without
any interpolation. For Oij, we use the measured cross-
spectra of the shifted fields generated on the 3D grid as
described in Sec. III A. Validating our implementation,
we find that the cross-correlation jhO⊥

i ðkÞO⊥
j ð−kÞij=

½hjO⊥
i ðkÞj2ihjO⊥

j ðkÞj2i�1=2 ≤ 10−5 for i ≠ j for all k and
all fields used in this paper.

APPENDIX D: CUBIC OPERATORS

In this Appendix, we provide the explicit expressions for
all cubic operators in the following model for the halo
density field:

δhðkÞ ¼
Z

d3q½1þ δLh þ ∂bψa
1∂aψ2b

− ð1þ δLhÞ∇ · ψ2 −∇ · ψ3

− ð1þ bL
1Þψ2 ·∇δ1�e−ik·ðqþψ1Þ: ðD1Þ

To simplify formulas, throughout this section, we will use
the definition

OðkÞ ¼
Z
p1;p2;p3

ð2πÞ3δDðk − p1 − p2 − p3ÞFs
O

× ðp1; p2; p3Þδ1ðp1Þδ1ðp2Þδ1ðp3Þ; ðD2Þ

where Fs
O is a symmetrized kernel. The usual bias operators

at third order have the following kernels:

Fδ3ðp1; p2; p3Þ ¼ 1; ðD3Þ

FG2δðp1; p2; p3Þ ¼
�ðp1 · p2Þ2

p2
1p

2
2

− 1

�
; ðD4Þ
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FG3
ðp1; p2; p3Þ ¼ −

1

2

�
1 − 3

ðp1 · p2Þ2
p2
1p

2
2

þ 2
ðp1 · p2Þðp1 · p3Þðp2 · p3Þ

p2
1p

2
2p

2
3

�
; ðD5Þ

FΓ3
ðp1; p2; p3Þ ¼ −

4

7

�ðp1 · p2Þ2
p2
1p

2
2

− 1

�

×
�ððp1 þ p2Þ · p3Þ2

jp1 þ p2j2p2
3

− 1

�
: ðD6Þ

Let us begin with the third-order displacement field.
Neglecting the transverse part of the displacement, which
does not contribute to the one-loop power spectrum, we
have

ψ3ðkÞ ¼
ik
k2

Z
p1;p2;p3

ð2πÞ3δDðk − p1 − p2 − p3ÞLs
3

× ðp1; p2; p3Þδ1ðp1Þδ1ðp2Þδ1ðp3Þ; ðD7Þ

where

L3ðp1; p2; p3Þ ¼
5

42

�
1 −

ðp1 · p2Þ2
p2
1p

2
2

��
1 −

ððp1 þ p2Þ · p3Þ2
jp1 þ p2j2p2

3

�

−
1

18

�
1 − 3

ðp1 · p2Þ2
p2
1p

2
2

þ 2
ðp1 · p2Þðp1 · p3Þðp2 · p3Þ

p2
1p

2
2p

2
3

�
: ðD8Þ

It immediately follows that

F∇·ψ3
ðp1; p2; p3Þ ¼ −

1

9
FG3

ðp1; p2; p3Þ þ
5

24
FΓ3

ðp1; p2; p3Þ:
ðD9Þ

We consider the operator ∂aψ
b
2∂bψ

a
1 next. From the

definition of ψ2, it follows that

F∂aψb
2
∂bψa

1
ðp1; p2; p3Þ ¼ L2ðp1; p2Þ

ððp1 þ p2Þ · p3Þ2
jp1 þ p2j2p2

3

; ðD10Þ

where

L2ðp1; p2Þ ¼
3

14

�
1 −

ðp1 · p2Þ2
p2
1p

2
2

�
: ðD11Þ

We can rewrite this kernel in the following way:

F∂aψb
2
∂bψa

1
ðp1; p2; p3Þ

¼ −
3

14
FG2δðp1; p2; p3Þ þ

3

8
FΓ3

ðp1; p2; p3Þ: ðD12Þ

The last term in the bias model has the following kernel:

Fψb
2
∂bδ1 ¼ −

ðp1 þ p2Þ · p3
jp1 þ p2j2

L2ðp1; p2Þ: ðD13Þ

This term is a shift of the linear density field by ψ2.
As expected, this shift contribution cannot be written in
terms of cubic bias operators.
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[87] O. Doré, J. Bock, M. Ashby, P. Capak, A. Cooray, R. de
Putter, T. Eifler, N. Flagey, Y. Gong, S. Habib et al., arXiv:
1412.4872.

[88] http://spherex.caltech.edu/ (2017).
[89] http://www.sdss.org/ (2017).
[90] Desi final design report part i: Science,targeting, and

survey design, http://desi.lbl.gov/wp-content/uploads/2014/
04/fdr-science-biblatex.pdf.

[91] http://desi.lbl.gov (2017).
[92] R. Laureijs, J. Amiaux, S. Arduini, J. Auguères, J.

Brinchmann, R. Cole, M. Cropper, C. Dabin, L. Duvet,
A. Ealet et al., arXiv:1110.3193.

[93] http://www.euclid-ec.org/ (2017).
[94] http://sci.esa.int/euclid/ (2017).
[95] A. Taruya, T. Nishimichi, and D. Jeong, Phys. Rev. D 98,

103532 (2018).
[96] M. McQuinn and A. D’Aloisio, J. Cosmol. Astropart.

Phys. 10 (2018) 016.
[97] T. Baldauf, S. Codis, V. Desjacques, and C. Pichon, Mon.

Not. R. Astron. Soc. 456, 3985 (2016).
[98] F. Beutler, S. Saito, H.-J. Seo, J. Brinkmann, K. S.

Dawson, D. J. Eisenstein, A. Font-Ribera, S. Ho, C. K.
McBride, F. Montesano, W. J. Percival et al., Mon. Not. R.
Astron. Soc. 443, 1065 (2014).

[99] H. Gil-Marín, J. Noreña, L. Verde, W. J. Percival, C.
Wagner, M. Manera, and D. P. Schneider, Mon. Not. R.
Astron. Soc. 451, 539 (2015).

[100] F. Beutler, H.-J. Seo, S. Saito, C.-H. Chuang, A. J. Cuesta,
D. J. Eisenstein, H. Gil-Marín, J. N. Grieb, N. Hand, F.-S.
Kitaura et al., Mon. Not. R. Astron. Soc. 466, 2242 (2017).

[101] A. G. Sánchez, R. Scoccimarro, M. Crocce, J. N. Grieb,
S. Salazar-Albornoz, C. Dalla Vecchia, M. Lippich, F.
Beutler, J. R. Brownstein, C.-H. Chuang et al., Mon. Not.
R. Astron. Soc. 464, 1640 (2017).

[102] S. Alam, M. Ata, S. Bailey, F. Beutler, D. Bizyaev, J. A.
Blazek, A. S. Bolton, J. R. Brownstein, A. Burden, C.-H.
Chuang et al., Mon. Not. R. Astron. Soc. 470, 2617 (2017).

[103] T. Baldauf, M. Mirbabayi, M. Simonović, and M.
Zaldarriaga, arXiv:1602.00674.

[104] F. Bernardeau, S. Colombi, E. Gaztanaga, and R.
Scoccimarro, Phys. Rep. 367, 1 (2002).

[105] J. Hamann, S. Hannestad, J. Lesgourgues, C. Rampf, and
Y. Y. Y. Wong, J. Cosmol. Astropart. Phys. 07 (2010) 022.

[106] D. Baumann, D. Green, and B. Wallisch, J. Cosmol.
Astropart. Phys. 08 (2018) 029.

[107] N. Hamaus, U. Seljak, and V. Desjacques, Phys. Rev. D 84,
083509 (2011).

[108] N. Hamaus, U. Seljak, and V. Desjacques, Phys. Rev. D 86,
103513 (2012).

[109] F. Schmidt, Phys. Rev. D 93, 063512 (2016).
[110] H. Wang, H. J. Mo, Y. P. Jing, Y. Guo, F. C. van den Bosch,

and X. Yang, Mon. Not. R. Astron. Soc. 394, 398 (2009).
[111] Y. Zeldovich, Survey of Modern Cosmology, Advances in

Astronomy and Astrophysics Vol. 3 (Elsevier, New York,
1965), Chap. V.D, pp. 241–379, https://doi.org/10.1016/
B978-1-4831-9921-4.50011-9.

[112] P. J. E. Peebles, The Large-Scale Structure of the Universe
(Princeton University Press, Princeton, NJ, 1980).

[113] M. H. Goroff, B. Grinstein, S. Rey, and M. B. Wise,
Astrophys. J. 311, 6 (1986).

[114] M. Crocce and R. Scoccimarro, Phys. Rev. D 77, 023533
(2008).

[115] U. Seljak, Phys. Rev. Lett. 102, 021302 (2009).
[116] P. Norberg, C. M. Baugh, E. Hawkins, S. Maddox,

J. A. Peacock, S. Cole, C. S. Frenk, J. Bland-Hawthorn,
T. Bridges, R. Cannon et al., Mon. Not. R. Astron. Soc.
328, 64 (2001).

[117] M. Tegmark, M. R. Blanton, M. A. Strauss, F. Hoyle, D.
Schlegel, R. Scoccimarro, M. S. Vogeley, D. H. Weinberg,
I. Zehavi, A. Berlind et al., Astrophys. J. 606, 702 (2004).

[118] I. Zehavi, Z. Zheng, D. H. Weinberg, J. A. Frieman,
A. A. Berlind, M. R. Blanton, R. Scoccimarro, R. K. Sheth,
M. A. Strauss, I. Kayo, Y. Suto et al., Astrophys. J. 630, 1
(2005).

[119] H. Guo, I. Zehavi, Z. Zheng, D. H. Weinberg, A. A.
Berlind, M. Blanton, Y. Chen, D. J. Eisenstein, S. Ho,
E. Kazin et al., Astrophys. J. 767, 122 (2013).

MODELING BIASED TRACERS AT THE FIELD LEVEL PHYS. REV. D 100, 043514 (2019)

043514-53

http://arXiv.org/abs/1604.07626
http://arXiv.org/abs/1604.07626
http://arXiv.org/abs/1412.4872
http://arXiv.org/abs/1412.4872
http://spherex.caltech.edu/
http://spherex.caltech.edu/
http://spherex.caltech.edu/
http://www.sdss.org/
http://www.sdss.org/
http://www.sdss.org/
http://desi.lbl.gov/wp-content/uploads/2014/04/fdr-science-biblatex.pdf
http://desi.lbl.gov/wp-content/uploads/2014/04/fdr-science-biblatex.pdf
http://desi.lbl.gov/wp-content/uploads/2014/04/fdr-science-biblatex.pdf
http://desi.lbl.gov/wp-content/uploads/2014/04/fdr-science-biblatex.pdf
http://desi.lbl.gov/wp-content/uploads/2014/04/fdr-science-biblatex.pdf
http://desi.lbl.gov
http://desi.lbl.gov
http://desi.lbl.gov
http://arXiv.org/abs/1110.3193
http://www.euclid-ec.org/
http://www.euclid-ec.org/
http://www.euclid-ec.org/
http://sci.esa.int/euclid/
http://sci.esa.int/euclid/
http://sci.esa.int/euclid/
https://doi.org/10.1103/PhysRevD.98.103532
https://doi.org/10.1103/PhysRevD.98.103532
https://doi.org/10.1088/1475-7516/2018/10/016
https://doi.org/10.1088/1475-7516/2018/10/016
https://doi.org/10.1093/mnras/stv2973
https://doi.org/10.1093/mnras/stv2973
https://doi.org/10.1093/mnras/stu1051
https://doi.org/10.1093/mnras/stu1051
https://doi.org/10.1093/mnras/stv961
https://doi.org/10.1093/mnras/stv961
https://doi.org/10.1093/mnras/stw3298
https://doi.org/10.1093/mnras/stw2443
https://doi.org/10.1093/mnras/stw2443
https://doi.org/10.1093/mnras/stx721
http://arXiv.org/abs/1602.00674
https://doi.org/10.1016/S0370-1573(02)00135-7
https://doi.org/10.1088/1475-7516/2010/07/022
https://doi.org/10.1088/1475-7516/2018/08/029
https://doi.org/10.1088/1475-7516/2018/08/029
https://doi.org/10.1103/PhysRevD.84.083509
https://doi.org/10.1103/PhysRevD.84.083509
https://doi.org/10.1103/PhysRevD.86.103513
https://doi.org/10.1103/PhysRevD.86.103513
https://doi.org/10.1103/PhysRevD.93.063512
https://doi.org/10.1111/j.1365-2966.2008.14301.x
https://doi.org/10.1016/B978-1-4831-9921-4.50011-9
https://doi.org/10.1016/B978-1-4831-9921-4.50011-9
https://doi.org/10.1016/B978-1-4831-9921-4.50011-9
https://doi.org/10.1016/B978-1-4831-9921-4.50011-9
https://doi.org/10.1016/B978-1-4831-9921-4.50011-9
https://doi.org/10.1086/164749
https://doi.org/10.1103/PhysRevD.77.023533
https://doi.org/10.1103/PhysRevD.77.023533
https://doi.org/10.1103/PhysRevLett.102.021302
https://doi.org/10.1046/j.1365-8711.2001.04839.x
https://doi.org/10.1046/j.1365-8711.2001.04839.x
https://doi.org/10.1086/382125
https://doi.org/10.1086/431891
https://doi.org/10.1086/431891
https://doi.org/10.1088/0004-637X/767/2/122

