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Evaluation of likelihood functions for cosmological large scale structure data sets (including CMB,
galaxy redshift surveys, etc.) naturally involves marginalization, i.e., integration, over an unknown
underlying random signal field. Recently, I showed how a renormalization group method can be used to
carry out this integration efficiently by first integrating out the smallest scale structure, i.e., localized
structure on the scale of differences between nearby data cells, then combining adjacent cells in a coarse
graining step, then repeating this process over and over until all scales have been integrated. Here I extend
the formulation in several ways in order to reduce the prefactor on the method’s linear scaling with data set
size. The key improvement is showing how to integrate out the difference between specific adjacent cells
before summing them in the coarse graining step, compared to the original formulation in which small-
scale fluctuations were integrated more generally. I suggest some other improvements in details of the
scheme, including showing how to perform the integration around a maximum likelihood estimate for the
underlying random field. In the end, an accurate likelihood computation for a million-cell Gaussian test
data set runs in two minutes on my laptop, with room for further optimization and straightforward
parallelization.
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I. INTRODUCTION

Reference [1] presented a new method to evaluate large
scale structure likelihood functions, inspired by renormal-
ization group (RG) ideas from quantum field theory,
e.g. [2,3]. This paper is a follow-up to that one, so some
of the pedagogical discussion and derivations there will not
be repeated here. To recap the basics: the fact that structure
in the Universe starts as an almost perfectly Gaussian
random field and evolves in a computable way on the
largest scales (e.g. [4–6]) suggests a statistically rigorous
first-principles likelihood analysis can be used to extract
information on cosmological models from observational
data sets, e.g. [7–11]. Generally, we have a data vector o,
some relatively small number of global cosmological
parameters we want to measure, θ, and a random field
we would like to marginalize over, ϕ. (ϕ could be a variety
of different things, depending on the data set and theoretical
setup, e.g., the underlying true temperature field for CMB,
the linear regime density and/or potential fields for a
galaxy redshift survey modeled by traditional perturbation
theory, the evolving displacement field in the functional
integral formulation of [6], etc.) Starting with Bayes’ rule
Lðθ;ϕjoÞLðoÞ ¼ Lðojθ;ϕÞLðϕ;θÞ ¼Lðojθ;ϕÞLðϕjθÞLðθÞ
we obtain

LðθjoÞ ¼
Z

dϕLðθ;ϕjoÞ ¼
Z

dϕLðojθ;ϕÞLðϕjθÞ; ð1Þ

where I have dropped LðoÞ which has no parameter
dependence and the prior LðθÞ which plays no role in this
discussion because it can be pulled out of the integral. I
have highlighted the usual cosmological form where some
of the cosmological parameters determine a prior on the
signal field, LðϕjθÞ, and then there is some likelihood for
the observable given θ and ϕ, Lðojθ;ϕÞ. It is this ϕ integral
that we need to carry out. Generally, we can take at least
part of LðϕjθÞ, LGðϕjθÞ, to be Gaussian, defined by its
covariance, PðθÞ. In this case we have

LðθjoÞ¼
Z

dϕe−
1
2
ϕtP−1ϕ−1

2
Trlnð2πPÞþlnLNGðϕjθÞþlnLðojθ;ϕÞ; ð2Þ

where I have used ln detðPÞ ¼ Tr lnðPÞ and defined
lnLNGðϕjθÞ≡ lnLðϕjθÞ − lnLGðϕjθÞ. (Even for what
we call non-Gaussian initial conditions, e.g. [12–17], the
observable can often if not always be written as a function
of an underlying Gaussian random field, i.e., no LNG
needed, and in other scenarios like [6] where the natural
ϕ is not Gaussian, there is still a natural Gaussian piece.)
Less generally but still often usefully (e.g., for primary
CMB and large scale galaxy clustering ignoring primordial
non-Gaussianity) we can take lnLNG ¼ 0 and Lðojθ;ϕÞ to
be Gaussian by assuming o is linearly related to ϕ, i.e.,*PVMcDonald@lbl.gov
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o ¼ μþRϕþ ϵ where μ is the mean vector, R is a linear
response matrix, and ϵ is Gaussian observational noise with
covariance matrix N. Then we have

LGaussianðθjoÞ

¼
Z

dϕe−
1
2
ϕtP−1ϕ−1

2
Tr lnð2πPÞ−1

2
ðo−μ−RϕÞtN−1ðo−μ−RϕÞ−1

2
Tr lnð2πNÞ

¼ e−
1
2
ðo−μÞtC−1ðo−μÞ−1

2
Tr lnð2πCÞ; ð3Þ

where in the last line the integration has been carried out
analytically, with C≡ NþRPRt. Even this analytic
integration does not really solve the Gaussian problem,
however, as the time to calculate C−1 and detðCÞ (or its
derivatives) by brute force numerical linear algebra routines
scales like N3, where N is the size of the data set, which
becomes prohibitively slow for large data sets. The RG
approach of [1] addresses the Gaussian scenario by doing
the ϕ integral in a different way that produces the result
directly as a number instead of these matrix expressions,
and can also be applied to non-Gaussian scenarios. Note
that, as discussed in [1], the approach can also be used to
directly compute derivatives of lnLðθjoÞ with respect to θ,
not just the value at one choice of θ, by passing the
derivative inside the ϕ integral to produce a new integral.
Traditional power spectrum estimation can be done by
taking θ to parametrize PðθÞ by amplitudes in k bands.
In spite of the fact that fairly fast methods to evaluate at

least the Gaussian likelihood [Eq. (3)] have existed for a
long time, e.g. [18–22], more often in practice data analysts
compute summary statistics not explicitly based on like-
lihood functions, e.g. [23,24], calibrating their parameter
dependence and covariance by computing the same sta-
tistics on mock data sets. It is not entirely clear why existing
likelihood-based methods are not used more often, and in
[1] I was cautious about advocating immediate implemen-
tation of the RG approach. One question was if the
prefactor on the linear scaling of computation time with
data set size for this method might be so large as to make it
significantly slower than others. This paper demonstrates
that this is not a significant obstacle. At two minutes to
accurately compute the likelihood function for a million-
cell Gaussian test data set, the method is as fast as any that
takes more than a few well-preconditioned conjugate
gradient maximum likelihood solutions for the same data
set (i.e., as fast as any method I know of, barring the
possibility that my JULIA implementation of conjugate
gradient maximum likelihood is unfairly slow). The only
reason not to implement this is if you believe the whole idea
of likelihood-based analysis is a distraction. That would not
necessarily be an entirely unreasonable position. For
example, if you believe that there is a lot of reliable
cosmological constraining power to be gained from the
deeply nonlinear regime, heuristic summary statistics/
“machine learning,” combined with exhaustive mocks/
simulations is probably the only way to extract it.

To me, however, the likelihoodþ RG approach proposed
here seems like an appealing path to large scale analysis,
especially for incorporating weakly nonlinear information
(e.g., without the need to explicitly estimate a bispectrum
and its covariance).
This paper lays out a series of essentially technical

improvements to the basic approach presented in [1]. See
that paper for a derivation of the general RG equation and
some more pedagogical discussion. Some of the basics are
explained in less detail here when they can be read there.

II. REVISED FORMULATION

A. Master RG equation

Consider the general functional integral over some
field ϕ,

I ≡
Z

dϕe−SðϕÞ ≡
Z

dϕe−
1
2
ϕtQ−1ϕ−1

2
Tr ln ð2πQÞ−SIðϕÞ: ð4Þ

The connection to our cosmological likelihood functions,
Eq. (2), is obvious, but not necessary for this subsection.
Suppose that Q → 0, i.e., Q−1 goes to infinity (all its
eigenvalues). In that limit the Q part of I becomes a
representation of the delta function and it is clear that
IðQ → 0Þ → exp½−SIð0Þ�, i.e., the integral can be done
trivially. Generally, however, Q is not sufficiently small so
if we want to do the integral this way we need to change Q
to take it to zero. But we cannot simply change Q because
that will change the value of I, the integral we are trying to
perform. If we want to change Q while preserving I we
need to simultaneously change SI . The renormalization
group equation tells us how to do this. Guided by Ref. [3],
Ref. [1] showed that we can preserve the value of I if the
following differential equation is satisfied:

S0I ¼
1

2

∂SI
∂ϕt Q

0 ∂SI
∂ϕ −

1

2
Tr
�
Q0 ∂2SI

∂ϕ∂ϕt

�
; ð5Þ

where I parametrize the evolution by λ, i.e., Q ¼ QðλÞ,
SI ¼ SIðλÞ, and the prime means derivative with respect to
λ, where Qðλ ¼ 0Þ and SIðλ ¼ 0Þ represent the original
elements of the integral. [Note that, relative to Eq. (7) of [1],
I have moved the normalization constant N into SI , after
extracting Tr lnQ from it to keep the integral unit normal-
ized when SI ¼ 0.] This formula is pure math, i.e., it
assumes essentially nothing about Q, Q0, and SIðϕÞ.
Typically λ will represent a length scale, where structure
in Q has already been erased on smaller scales, and Q0 is
doing the job of erasing it on scale λ, but Eq. (5) applies to
any infinitesimal change in Q.

B. Application to Gaussian cosmological data

As in [1], I will demonstrate the calculation for a purely
Gaussian example, i.e., SIðϕÞ at most quadratic in ϕ.
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This is a special case only—Eq. (5) applies for any SIðϕÞ.
The likelihood function will be Eq. (3), except for sim-
plicity I will set μ ¼ 0, i.e., I take

LðθjoÞ ¼
Z

dϕ
e−

1
2
ϕtP−1ϕ−1

2
ðo−RϕÞtN−1ðo−RϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð2πPÞ detð2πNÞp : ð6Þ

For the RG method to be efficient, the linear response
matrix R and the observational noise N cannot be com-
pletely arbitrary. Ideally R should be fairly short range,
e.g., a CMB telescope beam convolution or redshift space
cells in which we have counted galaxies. Similarly, N
should be short range, e.g., diagonal for uncorrelated noise.
The general approach can be adapted for special kinds of
deviations from short range R or N, but I will assume they
are short range here. I generally assume the problem can be
formulated to make P translation invariant (i.e., diagonal in
Fourier space), although slow evolution in statistics can
easily be accommodated. It is potentially useful to change
integration variables to δ≡ ϕ − ϕ0, where ϕ0 is some
constant field specified by hand. We plan to make ϕ0 the
maximum likelihood field, but do not need to assume that.
Substituting this into Eq. (6) and comparing to Eq. (4),
understanding that ϕ in Eq. (4) is a dummy variable so we
can just as well replace it with δ, we see that the general
integral I in Eq. (4) is equivalent to the Gaussian cosmo-
logical LðθjoÞ if we define

Q−1ð0Þ≡ P−1 þA⋆ ð7Þ

and

SIð0Þ≡ ϕt
0P

−1δþ 1

2
ϕt
0P

−1ϕ0

þ 1

2
ðo −Rϕ0 −RδÞtN−1ðo −Rϕ0 −RδÞ

þ 1

2
Tr ln ð2πNÞ − 1

2
δtA⋆δþ

1

2
Tr ln ðIþA⋆PÞ

¼ 1

2
δtðRtN−1R −A⋆Þδ

− ½ðo −Rϕ0ÞtN−1R − ϕt
0P

−1�δ

þ 1

2
ϕt
0P

−1ϕ0 þ
1

2
ðo −Rϕ0ÞtN−1ðo −Rϕ0Þ

þ 1

2
Tr ln ð2πNÞ þ 1

2
Tr ln ðIþA⋆PÞ: ð8Þ

The reason for subtracting 1
2
δtA⋆δ from SIð0Þ and adding it

to the Q−1 term (adding zero overall, with A⋆ an as yet
unspecified matrix) will become clear below.
As in [1], the evolving Gaussian SIðλÞ is represented

numerically by the evolving coefficients AðλÞ, bðλÞ, and
N ðλÞ of the general form

SIðλÞ≡ 1

2
δtAðλÞδ − btðλÞδþN ðλÞ: ð9Þ

Comparison to Eq. (8) for SIð0Þ sets the initial conditions
for A, b, and N :

Að0Þ≡RtN−1R −A⋆ ð10Þ

bð0Þ≡RtN−1ðo −Rϕ0Þ − P−1ϕ0 ð11Þ

and

N ð0Þ≡ 1

2
ϕt
0P

−1ϕ0 þ
1

2
ðo −Rϕ0ÞtN−1ðo −Rϕ0Þ

þ 1

2
Tr ln ð2πNÞ þ 1

2
Tr ln ðIþA⋆PÞ: ð12Þ

Plugging Eq. (9) into Eq. (5) we find the flow equations for
A, b, and N :

A0 ¼ AQ0A ð13Þ

b0 ¼ AQ0b ð14Þ

N 0 ¼ 1

2
btQ0b −

1

2
Tr½AQ0�: ð15Þ

Note that if ϕ0 is the maximum likelihood field (for
given values of P, R, etc.), b ¼ bð0Þ ¼ 0. If the problem
happened to be statistically homogeneous (translation invari-
ant), we could set A⋆ ¼ RtN−1R to make A ¼ Að0Þ ¼ 0.
In that case there would be no evolution—N ð0Þ would
simply be the answer. This is the point of A⋆, i.e., if we
choose it to be as close as possible to RtN−1R, we can
reduce the RG evolution to be a minimal correction due to
statistical inhomogeneities. The limitation, i.e., why A⋆
generally can only approximate RtN−1R, is that A⋆ must
maintain the symmetries necessary to allow us to efficiently
evaluate Tr ln ðIþA⋆PÞ in Eq. (12), e.g., in Fourier space,
to set the initial value of N .
In terms of these definitions, the result of formal analytic

integration is

LðθjoÞ ¼ e
1
2
btðQ−1þAÞ−1b−N−1

2
Tr ln ðIþAQÞ: ð16Þ

We can use this formula once the components have been
coarse grained sufficiently to allow brute force linear
algebra. To be clear: if we plug Að0Þ, bð0Þ, N ð0Þ, and
Qð0Þ into this equation, it becomes precisely the analytic
integration result in Eq. (3) (with μ ¼ 0). The difference is
that as these quantities evolve and are coarse grained their
dimensions become smaller, with the result of the small-
scale integration that has been performed stored in the
simple number N . See [1] for more discussion.
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C. Integrating out the difference between
adjacent cells

In [1] I used

Q−1ðλÞ ¼ Q−1ð0Þ þKðλÞ; ð17Þ
where Kðλ → ∞Þ → ∞ to suppress fluctuations. I men-
tioned the potentially cleaner possibility

QðλÞ ¼ Qð0ÞWðλÞ; ð18Þ

where Wðλ → ∞Þ → 0, e.g., Wðk; λÞ≡ e−k
2λ2 . Either of

these was envisioned to suppress fluctuations in a smooth,
homogeneous way (i.e., with no explicit connection to the
data cell structure), starting from small scales to large. Once
fluctuations were sufficiently suppressed on the scale of
data cells, adjacent cells were combined, i.e., adjacent
elements in b and the corresponding 2 × 2 block in A were
summed. This worked well enough, but the number of
elements that I needed to store in A, which determines the
speed of computation, seemed surprisingly large.
Here I introduce a new possibility, to more explicitly

integrate out the fluctuations between pairs of cells that we
are going to combine (see the Appendix for an alternative
version of this idea). Given covariance matrix Q1 for some
vector, we know that the covariance for a new vector where
each adjacent pair of elements is replaced by one element
with its average, Q2c, is simply given by the average of the
appropriate 2 × 2 blocks of Q1, e.g., Q2c

11 ¼ 1
4
ðQ1

11þ
Q1

12 þQ1
21 þQ1

22Þ, Q2c
12 ¼ 1

4
ðQ1

13 þQ1
14 þQ1

23 þQ1
24Þ,

etc. This makes clear that if we define Q0 ∝ Q2 −Q1,
where Q2 is the matrix of equivalent dimension to Q1 but
with the 2 × 2 blocks that will be compressed to Q2c

replaced by their average (e.g., Q2
11 ¼ Q2

12 ¼ Q2
21 ¼

Q2
22 ¼ Q2c

11), we can straightforwardly evolve Eq. (5) from
a starting Q1 to ending Q2, followed by a coarse graining
combination of cells, and repeat. Formally, for each
iteration what we are doing is defining QðλÞ ¼
Q1 þ λðQ2 −Q1Þ so that Q0 ≡ dQ=dλ ¼ Q2 −Q1, and
solving the differential equation (5) for λ running from 0
[where Qðλ ¼ 0Þ ¼ Q1] to 1 [where Qðλ ¼ 1Þ ¼ Q2].
The obvious problem here is that generally Q2 −Q1 is a

dense matrix, which we cannot have if the method is to be
fast. The key to the RG approach working is that elements
ofQ2 −Q1 will generally be small very far off-diagonal, i.e.,
physically we do not expect the correlation at wide separa-
tions to change much when the separation is changed by a
small fractional amount. To put it another way, we do not
expect to need to use small cells whenmeasuring correlations
at wide separations. This allows us to drop most elements of
Q2 −Q1, keeping it, and A as influenced by it, sparse. The
closest thing to an exception to this “no fine structure at large
separations” rule that comes to mind is the baryonic acoustic
oscillation feature—a relatively narrow bump at wide sep-
aration. Considering such a thing, we observe that it is only

necessary forQ0 to remain sparse, not strictly near-diagonal,
i.e., we can if necessary include a strip of elements some-
where off-diagonal inQ0, propagate this intoA, etc., as long
as there are not too many of these elements.
Operationally, this program is surprisingly straightfor-

ward. I start by computing one full row of Qð0Þ ¼
ðP−1 þA⋆Þ−1. This is basically just a standard computation
of a correlation function given a power spectrum, i.e., this
matrix obeys translation invariance by construction, so its
elements are a function only of separation, inverses can be
done in Fourier space, and one row is all that is necessary to
capture the full matrix. This Qð0Þ becomes Q1 described
above and I compute the first two rows of Q2 (the 2 × 2
block-averaged matrix) directly from it. From this I
compute the full sparse Q0 including only elements above
some threshold. I define the threshold to be some fraction
of the maximum absolute value ofQ0, called ϵQ0 , i.e., I keep
elements with jQ0

ijj > ϵQ0 max jQ0j. Note that this makes no
assumption about the structure of Q0, e.g., an off-diagonal
stripe due to something like baryonic acoustic oscillations
will be propagated if it passes the threshold.
After evolvingA, b, andN through Eqs. (13)–(15), they,

along with Q as represented by a single row, are coarse
grained by factors of 2 (i.e., elements summed in the case of
b and A and averaged in the case of Q) and the next
iteration proceeds exactly as before. All of the problem-
specific details go into the construction of Qð0Þ, Að0Þ,
bð0Þ, and N ð0Þ—after that the algorithm proceeds essen-
tially identically for any problem. After enough iterations
the effective data set becomes small enough to finish the
calculation by brute force using the analytic integral
formula, Eq. (16).
Note that, while my test problems will be one dimen-

sional, where factors of 2 coarse graining by combining
adjacent pixels is the obvious thing to do, there is no
obvious reason not to do this as well in higher dimensions.
On a Cartesian grid we can combine adjacent cells in one
direction at a time. On a sphere, a hierarchical block of four
HEALPixels [25] can be combined in two steps of pair
combinations. However, it should also be possible to
generalize the method to combine more than two cells at
a time. Q2 as discussed above just needs to represent the
appropriately averaged covariance.

D. Sparsification

While the Q0 cut discussed above limits the range in A
somewhat, in practice I find that the evolution of A
produces many small elements that do not need to be fully
propagated for accuracy and slow down the calculation
significantly. In [1] I maintained the sparsity of A by
computing elements only out to some maximum separa-
tion, taken to be a multiple of the RG distance scale λ. Here
I suggest a potentially more generally adaptive method,
along the lines of the element size cut discussed above
involving ϵQ0 . The key equation numerically is Eq. (13),
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because the matrix products there dominate the computation
time. To control this, I introduce two more numerical
parameters. When evaluating AQ0A, I first trim A using
another threshold parameter, ϵA, again basing the cut on the
absolute value of elements relative to the maximum absolute
value. To be clear, I am not permanently dropping part of the
stored, evolving A, only the matrix used to compute AQ0A.
I apply another similar cut defined by ϵA0 to A0 ¼ AQ0A,
before using it to update A in each λ step. In practice, for
simplicity, I only use one of these two cuts at a time, finding
the ϵA cut to be slightly more efficient in my test problems.

E. Numerical demonstration

For numerical tests I use one-dimensional scenarios
similar to [1]. I use signal power spectrum PðkÞ ¼
Aðk=kpÞγ expð−k2Þ with γ ¼ 0 or −0.5, where k is mea-
sured in units of the data cell size. I add unit variance noise
to each cell. I generate mock data with A0 ¼ 1 and calculate
likelihoods as a function of A. I use pivot kp ¼ 0.1 so that
the γ ¼ −0.5 case has both signal and noise dominated
ranges of scales. To be sure the test covers both fine
structure and edges, I create statistically inhomogeneous
data sets where the rms noise level in every fourth cell is
multiplied by a factor of 10, and the noise in the last quarter
of the data vector is similarly multiplied.
It is more difficult to make a nontrivial test with the

innovations in this paper, because if I assume periodic data
with homogeneous noise so that I can compute the exact

likelihood to compare to using FFTs, the obvious choice of
A⋆ setsA≡ 0 so the RG evolution is almost trivial. If I also
find the maximum likelihood field to use for ϕ0, so that
b≡ 0, it is completely trivial. For this reason I only do tests
with inhomogeneous data in this paper, first on data sets
small enough to compute the exact likelihood by brute
force linear algebra, demonstrating that the RG method
works precisely in the appropriate limit of the numerical
parameters, then with large data sets where the truth is
determined by using much better than necessary values for
numerical parameters.
After some experimentation, my standard numerical

parameter settings are as follows: A⋆ is set to 0.47N−1
0 I

where I is the identity matrix and N0 is the noise power in
the good part of the data—this sets the accumulated
Tr½AQ0� term in Eq. (15) to approximately zero (the results
are insensitive to the exact value of A⋆, as long as it is
reasonable). I specify the number of midpoint method λ
steps per factor of 2 coarse graining by a numerical
parameter NdQ0. My standard setting is NdQ0 ¼ 8 (in an
advanced version of the method, one could try to apply all
the usual tricks for solving differential equations numeri-
cally). I set ϵQ0 ¼ 0.02, and ϵA ¼ 0.0005.

1. Small problems

I first do some tests with N ¼ 16384, where we can still
pretty quickly compute the exact likelihood by brute force
linear algebra, shown in Fig. 1. The results are good, by

FIG. 1. N ¼ 16384 test. The exact likelihood is computed by brute force linear algebra at five representative values of A. To guide
the eye, I fit a quadratic polynomial to the points, using this to define the maximum. I use the RGmethod to compute the likelihood at the
same five points, and similarly plot a quadratic fit representation—the results are essentially indistinguishable in this example. For the
case with no maximum likelihood field, i.e., ϕ0 ¼ 0, and the case with A⋆ ¼ 0, I plot only the fitted quadratic, to reduce clutter.
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construction of course. Both using a maximum likelihood
ϕ0 and using A⋆ to remove the mean effect of A from the
evolution improve the accuracy at fixed parameter settings,
although for these settings (which were driven by larger
data sets) the difference is not critical. This example has
γ ¼ −0.5, which is generally a little more difficult for the
algorithm than γ ¼ 0.

2. Large problems

If we are convinced that the algorithm works in the
sense of producing accurate results in the appropriate limit
of numerical parameters, we can do nontrivial large-scale
tests by simply looking for convergence as the numerical
parameters are changed, i.e., we assume that if there is
convergence it is to the correct result. Figure 2 shows an
N ¼ 524288 test, for γ ¼ −0.5 again. The results are again
excellent. One might guess based on these figures that my
numerical parameter settings are too conservative, i.e., that
I could loosen them to achieve better speed. This is not
actually true—there seems to be some cancellation of errors
that makes the results in these particular examples so
perfect, and they go bad very quickly if the parameters are
loosened.
I stop at N ¼ 219 for these examples because careful

testing on my laptop becomes tedious beyond this, espe-
cially running with extremely conservative parameter set-
tings to be certain of the exact result. I have run up to two
million cells with good looking results. A one million cell
example runs in two minutes. At four million I start to
exhaust the memory on my laptop in my current JULIA

implementation, although it would be possible to go
somewhat further with more optimization. In any case, it
is clear that billion cell data sets could be done comfortably
on a supercomputer.
I tried evolving using Qðλ; kÞ ¼ Qð0; kÞe−k2λ2 , more like

in [1], but with a maximum likelihood ϕ0,A⋆, and element
size cuts as introduced in this paper, but was unable to come
within a factor of 10 of the performance of the pairwise
suppression approach of this paper.

III. DISCUSSION

To summarize, I have suggested the following improve-
ments to the basic RG approach of [1]:

(i) integrating out the difference between cells that are
to be combined, rather than small-scale structure
more generally, by defining Q0 directly to be
proportional to the difference between the current
and target covariance;

(ii) shifting integration variables to integrate around a
maximum likelihood signal field, if available, as ϕ0;

(iii) subtracting a statistically homogeneous approxima-
tion out of the numerically evolving matrix A,
through the definition of A⋆;

(iv) cuts on matrix element size, specified by ϵQ0, ϵA,
etc., instead of a simple range cut.

The first of these is by far the most important. In the end it
is clear that the algorithm is fast and straightforward
enough for convenient practical data analysis.
It was surprising to me that the pair-oriented definition

of Q0 made such a large (factor ≳10) difference in

FIG. 2. N ¼ 524288 test similar to Fig. 1. The “exact” likelihood is not strictly exact, but computed for NdQ ¼ 25, ϵQ0 ¼ 0.0005, and
ϵA ¼ 0.0002, which is perfectly converged at the level of differences in this figure.
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speed. While the principle that if we know which cells we
will combine we should focus on integrating out the
difference between them seems good enough to expect
some improvement, I would have been happy with a factor
of 2. It may be that I do not have the best possible
implementation of the smooth cutoff option. In any case
though, it seems like the pair-oriented approach is the way
to go.
Of course it is only useful to integrate around a

maximum likelihood field if that field can be found
more quickly than the RG analysis could be done without
it. This was the case in my tests, where finding the
maximum likelihood field by conjugate gradient (CG)
takes about 5% of the time in each likelihood compu-
tation. This might not always be the ratio, as my CG
solution was massively accelerated by being able to
multiply by things like P in Fourier space, including
for preconditioning (e.g., without preconditioning finding
a maximum likelihood field takes longer than the RG
integration without it). If, e.g., the CG had to be done
using less efficient spherical harmonic transforms, it
might be faster not to use it. An interesting possibility
is to use the RG method itself to find the maximum
likelihood field. Reference [1] showed how to find the
data-constrained mean of any function of ϕ, with hϕi
itself being the simplest possible version of this. For a
Gaussian problem hϕi is the maximum likelihood field,
while for a non-Gaussian problem it is not but would
probably be a better starting point than the maximum
likelihood field in that case anyway. Finding hϕi can be
piggybacked on a standard likelihood computation with
minimal extra cost, but to get a speedup in likelihood
calculations you would need to feed the result back into a
recalculation. This would only be effective if a useful
estimate of hϕi could be found with looser numerical
settings than would be required to do the calculation with
ϕ0 ¼ 0, which seems quite possible. When, e.g., comput-
ing derivatives with respect to parameters, we would
probably achieve most of the benefit by computing hϕi
only for the central model (remember that accurate results
can be achieved for any ϕ0, it is just a question of how
tight numerical settings need to be to do it).
Note that it may not always be beneficial to use A⋆ ≠ 0.

There is no cost if all cells in a formal data vector have
measurements, i.e., there are no zeros on the diagonal of
RtN−1R, but if a substantial number of cells represent large
holes in the data set or zero padding, so that these elements
ofAð0Þ can be dropped from sparse storage, settingA⋆ ≠ 0
will remove this possibility. This must be considered on a
problem-by-problem basis.
While my prototype code is already quite fast, at two

minutes per likelihood evaluation per million cells, there is
clearly more room for optimization. Most obviously, I am
not taking advantage of the fact that A and Q0 are
symmetric matrices at all, for no better reason than not

knowing canned operations in JULIA that will do this. Other
simple improvements could be tuning of things like the cuts
I have parametrized by ϵQ0, etc. I kept these cuts constant
for all iterations but this could be wasteful if the required
cut value is set by coarser levels of the calculation that do
not take much total time. A less obvious but I think
promising optimization idea is the following: The effect
of evolving Eq. (13) is nonlinear in the Q0 matrix as initial
changes in A are multiplied back together to find the next
step, i.e., we get products of Q0 with itself. The required
number of steps is surely set by the products of the largest
elements of Q0—the products of small elements are
perturbatively much smaller. This suggests that Q0 could
be split into two or more pieces based on element size. The
piece(s) with larger elements, which would be very short
range (i.e., few elements, i.e., fast to multiply), could be
evolved first, then the longer range pieces with smaller
elements evolved with fewer steps, possibly even one,
because their self-products are negligible. As long as our
set of Q0 steps integrates to Q2 −Q1, we are free to choose
the details.
The next step is to implement this for realistic cosmo-

logical scenarios.
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APPENDIX: ALTERNATIVE APPROACH
TO INTEGRATING OUT DIFFERENCES

BETWEEN CELLS

Before realizing I could defineQ0 by simply differencing
the current and target Qs, I worked out a method for
integrating out the difference between cells closer to the
original approach in [1]. I include it here to promote
broader understanding of the possibilities.
The RG integration will be controlled by a parameter α

which starts at zero and is taken to ∞. Q and SI become
functions of this parameter, i.e.,

Q−1ðαÞ≡ P−1 þ αK; ðA1Þ

with K a fixed matrix to be specified. Obviously we can
suppress fluctuations between cells 1 and 2 by adding a
term to SðϕÞ proportional to ðϕ1 − ϕ2Þ2. Repeating this
over and over [e.g., ðϕ3 − ϕ4Þ2, etc.] is equivalent to
making K the following block diagonal matrix:

K ¼

2
64

k 0 � � �
0 k � � �
� � � � � � � � �

3
75; ðA2Þ
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where

k ¼
�

1 −1
−1 1

�
: ðA3Þ

That is, by dialing α from 0 to ∞ in Q−1 ¼ P−1 þ αK, we
will have effectively integrated out the differences between
adjacent pairs of cells. We now have

Q0 ¼ −QKQ ¼ −ðP−1 þ αKÞ−1KðP−1 þ αKÞ−1: ðA4Þ

Unlike in [1], K is not exactly translation invariant, so we
cannot simply compute ðP−1 þ αKÞ−1 in Fourier space.
The structure of Q0 is the same everywhere, however, up to
a distinction between odd and even cells, and it is limited to
short range, so we can compute it by brute force inversion
for a limited representative stretch of cells and then trans-
late it everywhere.
This approach worked in preliminary tests, but not as

efficiently as the one in the paper.
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