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In dark energy models where a scalar field ϕ is coupled to the Ricci scalar R of the form e−2Qðϕ−ϕ0Þ=MplR,
whereQ is a coupling constant, ϕ0 is today’s value of ϕ, andMpl is the reduced Planck mass, we study how
the recent Lunar Laser Ranging (LLR) experiment places constraints on the nonminimal coupling from the
time variation of gravitational coupling. Besides a potential of the light scalar responsible for cosmic
acceleration, we take a cubic Galileon term into account to suppress fifth forces in overdensity regions of
the Universe. Even if the scalar-matter interaction is screened by the Vainshtein mechanism, the time
variation of gravitational coupling induced by the cosmological background field ϕ survives in the solar
system. For a small Galileon coupling constant β3, there exists a kinetically driven ϕ-matter-dominated-
epoch (ϕMDE) prior to cosmic acceleration. In this case, we obtain the stringent upper limit Q ≤
3.4 × 10−3 from the LLR constraint. For a large β3 without the ϕMDE, the coupling Q is not particularly
bounded from above, but the cosmological Vainshtein screening strongly suppresses the time variation of ϕ
such that the dark energy equation of state wDE reaches the value close to −1 at high redshifts. We study the
modified gravitational wave propagation induced by the nonminimal coupling to gravity and show that,
under the LLR bound, the difference between the gravitational wave and luminosity distances does not
exceed the order 10−5 over the redshift range 0 < z < 100. In dark energy models where the Vainshtein
mechanism is at work through scalar derivative self-interactions, it is difficult to probe the signature of
nonminimal couplings from the observations of standard sirens.
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I. INTRODUCTION

Since the first discovery of late-time cosmic acceleration
by supernovae type Ia (SN Ia) in 1998 [1,2], the origin of
this phenomenon has not yet been identified. A scalar field
ϕ is one of the simplest candidates for dark energy, whose
potential energy [3] or nonlinear kinetic energy [4] can
drive the acceleration. If we allow for the coupling between
ϕ and the gravity sector, Horndeski theories [5] are known
as the most general scalar-tensor theories with second-order
equations of motion [6–8].
Dark energy models based on Horndeski theories can be

constrained not only by the observational data of SNIa,
cosmic microwave background (CMB) temperature anisot-
ropies, and baryon acoustic cscillations (BAO) but also by
the measurements of gravitational waves (GWs). The bound
on the speed of GWs from gravitational Cherenkov radiation
[9] was used in Ref. [10] to place constraints on the
Lagrangian of Horndeski theories. After the first discovery
of the GW event GW150914 [11], the possibility for
constraining modified gravity models from the measure-
ments of GWs along with gamma-ray bursts was pointed out
in Ref. [12]. From the Hulse-Taylor pulsar data, the speed of
GWs ct was also constrained to be close to that of light c at
the level of 10−2 [13].

The GW170817 event from a neutron star merger [14]
together with electromagnetic counterparts [15] showed
that the relative difference between ct and c is less than the
order 10−15. If we strictly demand that ct ¼ c on the
isotropic cosmological background, the allowed Horndeski
Lagrangian is of the form L ¼ G2ðϕ; XÞ þ G3ðϕ; XÞ□ϕþ
G4ðϕÞR, where G2 and G3 are functions of ϕ and
X ¼ −∂μϕ∂μϕ=2, while G4 is a function of ϕ alone
[16–20]. This includes the theories such as quintessence
[3], k-essence [4], cubic Galileons [21–24], Brans-Dicke
(BD) theory [25], fðRÞ gravity [26–28], and nonminimally
coupled theories with general functions G4ðϕÞ [29–38].
The original massless BD theory [25] is equivalent to

the Lagrangian L ¼ ð1 − 6Q2ÞFðϕÞX þ ðM2
pl=2ÞFðϕÞR

with FðϕÞ ¼ e−2Qðϕ−ϕ0Þ=Mpl , where the constantQ is related
to the so-called BD parameter ωBD, as 2Q2¼1=ð3þ2ωBDÞ
[38]. General relativity (GR) is recovered in the limit
ωBD → ∞, i.e., Q → 0. If we transform the action of
BD theory to that in the Einstein frame, the constant Q
has a meaning of coupling between the scalar field and
nonrelativistic matter [39].
The parametrized post-Newtonian (PPN) formalism

[40,41] on the weak gravitational background shows that,
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in massless BD theory, one of the PPN parameters is given
by γ ¼ ð1þ ωBDÞ=ð2þ ωBDÞ [42]. The Cassini experi-
ment measuring the time delay of light in the solar system
placed the constraint jγ − 1j ≤ 2.3 × 10−5 [43]. This trans-
lates to the bound ωBD ≥ 4.3 × 104 or, equivalently,
jQj ≤ 2.4 × 10−3. For the coupling jQj > 2.4 × 10−3, one
needs to resort to some mechanism for screening fifth
forces mediated by the BD scalar field.
If the BD scalar has a massive potential in overdensity

regions of the Universe, the propagation of fifth forces can
be suppressed under the chameleon mechanism [44,45].
For example, metric fðRÞ gravity corresponds to BD theory
with Q ¼ −1=

ffiffiffi
6

p
in the presence of a scalar potential of

gravitational origin [39,46]. It is possible to design the form
of fðRÞ such that the scalar degree of freedom (scalaron)
has a heavy mass in overdensity regions, while realizing
cosmic acceleration by a light scalar on Hubble scales
[47–50]. However, this amounts to a fine-tuning of initial
conditions of scalaron perturbations in the early universe
[48,50,51]. Moreover, unless the scalaron is nearly frozen
until recently, the large coupling jQj ≃ 0.4 leads to the
significant enhancement of matter perturbations in the late
universe [47,48,50,52,53]. For the compatibility of fðRÞ
models of late-time cosmic acceleration with observations,
the deviation fromGR is required to be very small, and hence
they are hardly distinguishable from the Λ-cold-dark-matter
(ΛCDM) model [54,55].
There is yet another mechanism for screening fifth

forces in local regions of the Universe based on nonlinear
derivative self-interactions [56]. A representative example
is the cubic Galileon Lagrangian X□ϕ [21–24], with
which the Newtonian behavior is recovered inside the so-
called Vainshtein radius rV [57–65] even with the cou-
pling jQj > 2.4 × 10−3. For uncoupled Galileons (Q ¼ 0)
without the scalar potential, it is known that there exists
a cosmological tracker solution finally approaching a
de Sitter attractor [66,67] (see also Refs. [68,69]).
Unfortunately, this dark energy model is in tension with
the observational data of supernovae type Ia, CMB, BAO,
and redshift-space distortions [70–76]. For the nonmini-
mally coupled light mass or massless Galileon with a
potential, e.g., the linear potential VðϕÞ ¼ m3ϕ, it is
possible to realize the viable cosmic expansion history,
while recovering the Newtonian behavior in the solar
system [77,78].
While the Vainshtein mechanism suppresses the scalar-

matter interaction for the distance r ≪ rV , the gravitational
coupling GN in overdensity regions contains time depend-
ence of the dark energy field ϕ through the nonminimal
coupling FðϕÞ [62,64]. Then,GN varies in time even inside
the solar system. The Lunar Laser Ranging (LLR) experi-
ments of the earth-moon system measure the time variation
_GN=GN, so it can be used to constrain nonminimally
coupled dark energy models.
From the LLR bound of _GN=GN in 2004 [79], the time

variation αM ≡ _F=ðHFÞ (whereH is the Hubble expansion

rate) is in the range jαMðt0Þj ≤ 0.02 today. In 2011,
Babichev et al. [62] used this bound for nonminimally
coupled cubic Galileons without the potential and claimed
that the time variation of the field is tightly constrained
at low redshifts. We note that, besides this fact, the cubic
Galileon without the potential is in tension with the
observational data. On the other hand, the presence of
potentials for nonminimally coupled Galileons allows the
possibility for realizing viable cosmic expansion and
growth histories, even with the LLR bound in 2004; see
Figs. 4 and 5 in Ref. [80].
The recent LLR experiments [81] constrain the time

variation _GN=GN with the upper limit more stringent than
before [79]. In particular, for αM > 0, the upper bound of
_GN=GN translates to αMðt0Þ ≤ 7 × 10−5 today, which is
tighter than the bound αMðt0Þ ≤ 0.02 by more than 2 orders
of magnitude. This LLR bound in 2018 was used to
constrain dark energy models based on nonlocal gravity
[82]. It remains to be seen how nonminimally coupled
Galileons with the potential can be constrained with this
new bound of αMðt0Þ.
In this paper, we exploit the new LLR bound to constrain

nonminimally coupled dark energy models with the cubic
self-interaction β3M−3X□ϕ and the potential VðϕÞ of light
mass Galileons, where β3 is a dimensionless coupling
constant and M is a mass scale defined later in Eq. (2.2).
We stress that our model is different from the nonminimally
coupled cubic Galileon without the potential studied in
Ref. [62], in that the scalar potential is the dominant source
for late-time cosmic acceleration. The Galileon term can
still play an important role for the scalar field dynamics in
the early universe. Moreover, we require that the propa-
gation of fifth forces is suppressed in overdensity regions.
We perform a detailed analysis for the cosmological
dynamics from the radiation era to today and put bounds
on the coupling Q by using the new LLR data.
For jβ3j ≪ 1, there exists a so-called ϕ-matter-

dominated epoch (ϕMDE) [83] in the Jordan frame followed
by the stage of cosmic acceleration. For the exponential
potential VðϕÞ ¼ V0eλϕ=Mpl , we place constraints on the
allowed parameter space in the ðλ; QÞ plane and derive the
stringent limitQ ≤ 3.4 × 10−3 from theLLRconstraint. This
is almost close to the Cassini bound Q ≤ 2.4 × 10−3

obtained for massless BD theories without the Vainshtein
screening. For jβ3j ≫ 1, the coupling Q is not particularly
bounded from above due to the suppression of field kinetic
energy under the cosmological Vainshtein screening. In this
case, we show a new possibility for realizing the dark energy
equation of statewDE close to−1 from high redshifts to today
even for the steep potential satisfying λ >

ffiffiffi
2

p
.

In our dark energy theory the speed of GWs is equivalent
to that of light, but the existence of nonminimal coupling
FðϕÞ leads to the modified GW propagation through the
existence of a nonvanishing term αM. The possibility of
using the difference between GW and luminosity distances
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to test for the running Planck mass was first pointed out in
Ref. [84]. The first forecasts of such constraints were given
in Ref. [12], which were followed by a sequence of papers
after the direct detection of GWs [85–92].
In Ref. [12], it was anticipated that the LLR bound on

the running Planck mass may be beyond the reach of the
constraint arising from standard sirens. This generally
depends on the models of dark energy. For example, in
nonlocal gravity models studied recently in Ref. [82], the
difference between the GW distance dGW and luminosity
distance dL is typically more than a few percent, which
may be probed in future high-precision measurements. This
reflects the fact that, in nonlocal gravity, the gravitational
coupling deep inside the Hubble radius (wavelength
a=k ≪ H−1) is very close to the Newton gravitational
constant G, as GN=G ¼ 1þOððaH=kÞ2Þ [82,93]. Hence
the nonlocal gravity models can pass the new LLR bound
in 2018, while leaving the sizable difference between
dGW and dL.
The nonminimal coupling G4ðϕÞR gives rise to the

effective gravitational coupling GN different from that in
nonlocal gravity. Hence it deserves to be studied whether
the new LLR data leads to the constraint on the nonminimal
coupling beyond or within the reach of future standard siren
measurements. In this paper, we will compute the relative
ratio between dGW and dL for the aforementioned non-
minimally coupled dark energy model. Under the LLR
bound on the variation of FðϕÞ, we show that the relative
difference dGW=dL − 1 does not exceed the order 10−5 in
the redshift range 0 < z < 100. Thus, unlike nonlocal
gravity, the LLR data allow only tiny deviations of dGW
from dL in nonminimally coupled theories, so it will be
difficult to detect such a difference without very high-
precision distance measurements in the future.
This paper is organized as follows. In Sec. II, we present

our nonminimally coupled dark energy model and revisit
how the cubic Galileon interaction screens the scalar-matter
coupling under the Vainshtein mechanism. We then inter-
pret the recent LLR bound in terms of today’s value of αM.
In Sec. III, we derive the background equations of motion
on the flat Friedmann-Lemaître-Robertson-Walker (FLRW)
background and express them in autonomous forms. In
Sec. IV, we study the cosmological dynamics in the presence
of exponential potential VðϕÞ ¼ V0eλϕ=Mpl for unscreened
(jβ3j ≪ 1) and screened (jβ3j ≫ 1) cases after the radiation
domination. We put constraints on the allowed parameter
space from the recent LLR bound and discuss the evolution
ofwDE and field density parameters. In Sec. V, we investigate
how much difference arises between dGWðzÞ and dLðzÞ for
the two different background cosmologies discussed in
Sec. IV. Section VI is devoted to conclusions.
Unless otherwise stated, we use the natural unit where

the speed of light c, the reduced Planck constant ℏ, and the
Boltzmann constant kB are equivalent to 1.

II. NONMINIMALLY COUPLED THEORIES
AND LLR CONSTRAINTS

We begin with a subclass of Horndeski theories given by
the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
FðϕÞRþ ð1 − 6Q2ÞFðϕÞX

− VðϕÞ þ β3M−3X□ϕ

�
þ Sm; ð2:1Þ

where g is the determinant of metric tensor gμν, X ¼
−∂μϕ∂μϕ=2 is the kinetic energy of a scalar field ϕ, and
FðϕÞ and VðϕÞ are functions of ϕ. The couplings Q and β3
are dimensionless constants, whileM is a constant having a
dimension of mass related to today’s Hubble constantH0 as

M ¼ ðMplH2
0Þ1=3; ð2:2Þ

which is of order 10−22 GeV. The mass scale (2.2), which
translates to the frequency f ∼ 100 Hz, corresponds to the
typical strong coupling scale of theories containing deriva-
tive self-interactions such as X□ϕ [57,58].
We assume that the effective field theory of dark energy

is valid up to the mass scale M ∼ 10−22 GeV. In other
words, we resort to the action (2.1) for studying the physics
on scales larger than ∼106 m. This includes the dynamics
of late-time cosmic acceleration (∼1026 m) and the earth-
moon local system of LLR experiments (∼108 m). Below
the length scale 106 m, some ultraviolet effects may come
into play to approach the general relativistic behavior.
Indeed, the possibility of recovering the GW value ct ¼ 1
above the frequency f ∼ 100 Hz was discussed in Ref. [94].
This critical frequency is of the same order as the GW
frequency observed by LIGO/Virgo [14], so there may be
more general Horndeski theories realizing ct very close to 1
for the frequency f ≥ 100 Hz even if the deviation of ct from
1 is large on cosmological scales. In this paper we do not
pursue such a possibility, but we focus on the theory given by
the action (2.1) in which ct ¼ 1 for any scales of interest.
The nonminimal coupling FðϕÞ is chosen to be of the

form

FðϕÞ ¼ e−2Qðϕ−ϕ0Þ=Mpl ; ð2:3Þ
where ϕ0 is today’s value of ϕ and hence Fðϕ0Þ ¼ 1.
We assume that the matter sector, which is described by the
action Sm with the density ρm, is minimally coupled to
gravity. The scalar field mediates fifth forces with the
matter sector through the direct gravitational interaction
characterized by the coupling Q.
If β3 ¼ 0, then the theories given by the action (2.1) are

equivalent to BD theories [25] with the scalar potential
VðϕÞ. Indeed, by setting χ ¼ FðϕÞ, the Lagrangian in the
action (2.1) reduces to L ¼ χR=2 − ωBD∂μχ∂μχ=ð2χÞ −
VðϕðχÞÞ in the unitMpl ¼ 1, whereωBD is the BDparameter
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related to Q according to 3þ 2ωBD ¼ 1=ð2Q2Þ [38]. In the
original massless BD theories with VðϕÞ ¼ 0, the coupling
strength is constrained to be jQj ≤ 2.4 × 10−3 from the
Cassini experiment [43].
For the coupling jQj > 2.4 × 10−3, we require the

existence of scalar potential VðϕÞ or field derivative
interaction X□ϕ to screen fifth forces in the solar system.
In the former case, the chameleon mechanism [44,45] can
be at work for the potential having a large mass in regions
of high density. One of such examples is fðRÞ gravity, in
which the scalar potential of the gravitational origin arises
with the coupling Q ¼ −1=

ffiffiffi
6

p
[39]. In fðRÞ models of

late-time cosmic acceleration accommodating the chame-
leon mechanism in overdensity regions, the functional form
of fðRÞ needs to be designed such that the scalaron mass
Mϕ grows very rapidly toward the asymptotic past [47–50].
This causes the fine-tuning problem of initial conditions of
perturbations associated with the oscillating mode induced
by the heavy mass [48,50,51].
Instead of resorting to the chameleon mechanism with

a very massive scalar in overdensity regions, we consider
the Galileon self-interaction X□ϕ to suppress fifth forces
under the Vainshtein mechanism [56]. The scalar potential
VðϕÞ of a light scalar is also taken into account as a source
for the cosmic acceleration. Defining the dimensionless
quantity

λ≡Mpl

V
dV
dϕ

; ð2:4Þ

the condition for cosmic acceleration in the absence of
Galileon interactions and matter is given by jλj < ffiffiffi

2
p

[95,96]. The existence of Galileons can modify this
structure, but we focus on the case in which the condition

jλj ≤ Oð1Þ ð2:5Þ

is satisfied during the cosmic expansion history from the
past to today. The coupling strength jQj exceeding the
order 1 leads to the strong enhancement of matter density
perturbations incompatible with observations in large-scale
structures [38], so we consider the coupling

jQj ≤ Oð0.1Þ ð2:6Þ

in the following discussion.
The original Galileon theory [21] has the linear potential

VðϕÞ ¼ m3ϕ with Q ¼ 0, in which case the resulting field
equation of motion respects the Galilean symmetry in
Minkowski spacetime. This potential corresponds to a
massless scalar with λ ¼ Mpl=ϕ, so the condition (2.5)
translates to ϕ ≥ Mpl. For Q ≠ 0, the cosmological dynam-
ics with the linear potential was studied in Ref. [78]. In this
case, today’s cosmic acceleration is followed by the col-
lapsing universe after the field enters the region VðϕÞ < 0.

The constant λ corresponds to the exponential potential
VðϕÞ ¼ V0eλϕ=Mpl . In this case, the scalar mass squared
M2

ϕ ≡ d2V=dϕ2 is given by M2
ϕ ¼ λ2V=M2

pl. Since the
potential energy V is the dominant contribution to today’s
energy density of the Universe, we have V ≲M2

plH
2, where

H is the Hubble expansion rate in the past (redshift z ≥ 0).
Then, under the condition (2.5), it follows that M2

ϕ≲
λ2H2 ≲H2. This property also holds for the potential with
a time-varying λ in the range (2.5). For the light scalar
whose mass Mϕ today is smaller than H0, the effect of Mϕ

on the scalar-field equation can be ignored to study the
Vainshtein mechanism in regions of high density. In other
words, the chameleon mechanism does not come into play
for screening fifth forces.

A. Vainshtein screening

The behavior of scalar and gravitational fields around a
spherically symmetric overdensity on a cosmological back-
ground was already studied in Refs. [62,64], so we briefly
review it in the following. Let us consider the following
perturbed metric in the Newtonian gauge:

ds2 ¼ −ð1þ 2ΨÞdt2 þ ð1þ 2ΦÞa2ðtÞδijdxidxj; ð2:7Þ

where aðtÞ is the time-dependent scale factor, Ψ and Φ
are gravitational potentials depending on t, and the radial

coordinate r ¼ aðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
δijxixj

q
. The scalar field and matter

density on the homogenous cosmological background are
given by ϕ̄ðtÞ and ρ̄mðtÞ, respectively. The existence of a
compact object gives rise to the perturbations χðt; rÞ and
δρmðt; rÞ in ϕ and ρm, such that ϕ ¼ ϕ̄ðtÞ þ χðt; rÞ and
ρm ¼ ρ̄mðtÞ þ δρmðt; rÞ.
We are interested in solutions deep inside today’s Hubble

radius, r ≪ H−1
0 . Hence we neglect time derivatives of

perturbed quantities, while keeping spatial derivatives. The
radial dependence of the derivative ∂χ=∂r changes around
the Vainshtein radius rV , which is estimated as [63,64]

rV ≃
�jβ3QjMplrg

M3

�
1=3

¼ ðjβ3QjrgH−2
0 Þ1=3; ð2:8Þ

where

rg ¼ M−2
pl

Z
r

0

δρmr̃2dr̃ ð2:9Þ

is the Schwarzschild radius of the source. For r ≫ rV the
field derivative has the dependence ∂χ=∂r ∝ r−2, while, for
r ≪ rV , ∂χ=∂r ∝ r−1=2. In the latter regime, the nonlinear
effect arising from the cubic Galileon self-interaction
suppresses the propagation of fifth forces induced by the
couplingQ. Indeed, for r ≪ rV, the gravitational potentials
are given by [63,64]
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Ψ ≃ −
rg
2rF

�
1þOð1ÞQ2

�
r
rV

�
3=2

�
; ð2:10Þ

Φ ≃
rg
2rF

�
1þOð1ÞQ2

�
r
rV

�
3=2

�
: ð2:11Þ

Since the value of F today (cosmic time t0) is equivalent
to 1 in our theory, the Newtonian behavior [−Ψ ¼ Φ ¼
rg=ð2rÞ] is recovered for r ≪ rV. As long as rV is much
larger than the solar-system scale (∼1015 cm), the model
is consistent with solar-system tests of gravity. Since
ðrgH−2

0 Þ1=3 ≃ 3 × 1020 cm for the Sun, this condition
translates to

jβ3Qj ≫ 10−17: ð2:12Þ

When jQj is of order 10−2, for example, the coupling β3
needs to be in the range jβ3j ≫ 10−15.

B. LLR constraints

From Eqs. (2.10) and (2.11) with Eq. (2.9), the leading-
order gravitational potentials deep inside the Vainshtein
radius can be expressed as

−Ψ ≃Φ ≃
GNδM

r
; ð2:13Þ

where δM ¼ 4π
R
r
0 δρmr̃

2dr̃, and GN is the measured
gravitational coupling given by

GN ¼ 1

8πM2
plFðϕðtÞÞ

; ð2:14Þ

where we omitted the bar from the background value of ϕ.
Here the background field ϕðtÞ is a cosmological scalar
driving the late-time cosmic acceleration. Since we are
considering overdensity regions on the cosmological back-
ground, the homogenous value ϕðtÞ survives even in the
local universe. The dark energy scalar field ϕðtÞ changes in
time, so this leads to the time variation of GN. This fact was
first recognized in Ref. [62], and it was proved in Ref. [64]
in full Horndeski theories.
The effective gravitational coupling (2.14) is valid for a

light scalar field operated by the Vainshtein mechanism in
overdensity regions. Here, the light scalar means that the
slope of field potential VðϕÞ satisfies the condition (2.5). For
the potential of a massive scalar violating this condition in
regions of the high density [as in fðRÞ dark energy models],
the chameleon mechanism can be at work to suppress the
gravitational coupling with matter in a way different from
Eqs. (2.10) and (2.11). As we already mentioned, we do not
consider such a massive scalar field in this paper.
For the cubic derivative self-interaction we chose the

Galileon coupling X□ϕ, but this can be generalized to the
derivative coupling Xn

□ϕ with n > 1. In such cases,

the second terms on the right-hand sides of (2.10) and
(2.11) are modified to Oð1ÞQ2ðr=rVÞ2−1=ð2nÞ, which is
much smaller than 1 deep inside the Vainshtein radius.
Then the local gravitational coupling reduces to the form
(2.14), so the property of GN induced by the time-
dependent background scalar field ϕðtÞ is similar to that
of cubic Galileons. For the models in which derivative field
self-interactions are not employed to screen fifth forces in
overdensity regions, e.g., chameleons and nonlocal gravity,
the expression of GN is generally different from that
discussed above.
From the recent LLR experiment, the variation of GN

is constrained to be [81]

_GN

GN
¼ ð7.1� 7.6Þ × 10−14 yr−1; ð2:15Þ

where a dot represents the derivative with respect to t.
This improves the previous bound _GN=GN ¼ ð4� 9Þ ×
10−13 yr−1 [79]. Using the valueH0¼100hkms−1Mpc−1¼
ð9.77775GyrÞ−1h, the bound (2.15) translates to [82]

_GN

H0GN
¼ ð0.99� 1.06Þ × 10−3

�
0.7
h

�
: ð2:16Þ

We define the following quantity:

αM ≡ _F
HF

¼ −
2Q _ϕ

MplH
; ð2:17Þ

which was used in the context of effective field theory
of dark energy [97]. Since αM is related to the variation
of GN, as αM ¼ − _GN=ðHGNÞ, the bound (2.16) can be
expressed as

−2.05 × 10−3
�
0.7
h

�
≤ αMðt0Þ ≤ 0.07 × 10−3

�
0.7
h

�
:

ð2:18Þ

If αM > 0, i.e., for decreasing GN in time, the upper bound
is especially stringent: αMðt0Þ ≤ 7 × 10−5 for h ¼ 0.7.
Even when αM < 0, the upper limit of jαMðt0Þj is of the
order 10−3. They are smaller than the previous bound
jαMðt0Þj ≤ 0.02 [62] by more than 1 order of magnitude.

III. DYNAMICAL SYSTEM

We study the background cosmology for theories given
by the action (2.1) and discuss how the coupling Q is
constrained from the LLR bound (2.18). We consider the
flat FLRW background described by the line element
ds2 ¼ −dt2 þ a2ðtÞδijdxidxj. For the matter action Sm,
we take nonrelativistic matter (density ρm with vanishing
pressure) and radiation (density ρr and pressure Pr ¼ ρr=3)
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into account. Then, the Hamiltonian and momentum
constraints lead to [7,80]

3M2
plH

2 ¼ ρDE þ ρm þ ρr; ð3:1Þ

2M2
pl
_H ¼ −ρDE − PDE − ρm −

4

3
ρr; ð3:2Þ

where H ¼ _a=a and ρDE and PDE are the density and
pressure of dark energy, defined, respectively, by

ρDE ¼ 3M2
plH

2ð1 − FÞ þ F
2
ð1 − 6Q2Þ _ϕ2

þ 6FQHMpl
_ϕþ V − 3β3M−3H _ϕ3; ð3:3Þ

PDE ¼ −M2
plð2 _H þ 3H2Þð1 − FÞ þ F

2
ð1þ 2Q2Þ _ϕ2

− 2FQMplðϕ̈þ 2H _ϕÞ − V þ β3M−3 _ϕ2ϕ̈: ð3:4Þ

Besides the matter continuity equations _ρm þ 3Hρm ¼ 0
and _ρr þ 4Hρr ¼ 0, the dark sector obeys

_ρDE þ 3HðρDE þ PDEÞ ¼ 0: ð3:5Þ

The dark energy equation of state is defined by

wDE ≡ PDE

ρDE
: ð3:6Þ

In nonminimally coupled theories the first terms on the
right-hand sides of Eqs. (3.3) and (3.4) are different from 0
in the past due to the property F ≠ 1.
To study the background cosmological dynamics, we

introduce the following density parameters:

ΩK ≡ _ϕ2

6M2
plH

2
; ΩV ≡ VðϕÞ

3M2
plH

2F
;

ΩG3
≡ −

β3 _ϕ
3

M2
plM

3HF
; Ωr ≡ ρr

3M2
plH

2F
: ð3:7Þ

We consider the case in which ΩG3
is positive in the

expanding universe (H > 0), which amounts to the
condition

β3 _ϕ < 0: ð3:8Þ

We also define the quantity

x≡ _ϕffiffiffi
6

p
MplH

; ð3:9Þ

which is related to ΩK and αM, as

ΩK ¼ x2; αM ¼ −2
ffiffiffi
6

p
Qx: ð3:10Þ

We can express Eq. (3.1) in the form

Ωm ≡ ρm
3M2

plH
2F

¼ 1 −ΩDE −Ωr; ð3:11Þ

where ΩDE is defined by

ΩDE ≡ ð1 − 6Q2ÞΩK − αM þΩV þ ΩG3
: ð3:12Þ

From Eqs. (3.2) and (3.5), it follows that

h≡ _H
H2

¼ −
1

D
½ΩG3

ð6þ 2Ωr − 6ΩV þ 3ΩG3
− αM þ

ffiffiffi
6

p
ΩVλxÞ þ 2ΩKf3þΩr − 3ΩV þ 6ΩG3

þ 6λQΩV

þ 6Q2ð1 −Ωr þ 3ΩV − 2ΩG3
Þg − αMΩKð1 − 6Q2Þð2 − ΩG3

Þ þ 6Ω2
Kð1 − 8Q2 þ 12Q4Þ�; ð3:13Þ

ϵϕ ≡ ϕ̈

H _ϕ
¼ 1

D
½ΩG3

ðΩr − 3 − 3ΩVÞ − αMðΩr − 1 − 3ΩV − 2ΩG3
Þ − 2

ffiffiffi
6

p
ΩVλx

− 3ΩKf4ð1 − 2Q2Þ − ΩG3
ð1þ 2Q2Þg − αMΩKð5 − 6Q2Þ�; ð3:14Þ

where

D ¼ ΩG3
ð4 − 2αM þ ΩG3

Þ þ 4ΩK: ð3:15Þ
The condition for cosmic acceleration to occur is that the
effective equation of state,

weff ≡ −1 −
2

3
h; ð3:16Þ

is smaller than −1=3.

The dimensionless variables x, ΩV , ΩG3
, and Ωr obey

the differential equations,

x0 ¼ xðϵϕ − hÞ; ð3:17Þ
Ω0

V ¼ −ΩVðαM −
ffiffiffi
6

p
λxþ 2hÞ; ð3:18Þ

ΩG3

0 ¼ −ΩG3
ðαM − 3ϵϕ þ hÞ; ð3:19Þ

Ω0
r ¼ −ΩrðαM þ 4þ 2hÞ; ð3:20Þ
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respectively, where a prime represents a derivative with respect to N ¼ ln a. The dark energy equation of state (3.6) is
expressed as

wDE ¼ −
3þ 2h − ½3þ 2hþ 3ð1þ 2Q2ÞΩK − 3ΩV þ αMð2þ ϵϕÞ − ϵϕΩG3

�F
3 − 3½1þ ð6Q2 − 1ÞΩK −ΩV þ αM −ΩG3

�F : ð3:21Þ

The dimensionless field y≡ ϕ=Mpl obeys

y0 ¼
ffiffiffi
6

p
x: ð3:22Þ

Once the potential VðϕÞ is specified, the cosmological
dynamics is known by solving Eqs. (3.17)–(3.20) and
(3.22) for the given initial conditions of x, ΩV , ΩG3

, Ωr,
and y.
For the theory (2.1), the propagation speed squared of

GWs is equivalent to 1 [7,98]. The tensor ghost is absent for
FðϕÞ > 0, which is satisfied for the choice (2.3). For scalar
perturbations, the conditions for avoiding ghosts and
Laplacian instabilities are given, respectively, by

qs ≡ΩG3
ð4þ ΩG3

− 2αMÞ þ 4ΩK > 0; ð3:23Þ

c2s ≡ΩG3
½4ð2þ ϵϕÞ −ΩG3

− 2αM� þ 12ΩK

3ΩG3
ð4þ ΩG3

− 2αMÞ þ 12ΩK
> 0: ð3:24Þ

In Sec. IV, we will discuss whether these conditions are
satisfied during the cosmological evolution from the
radiation-dominated epoch to today.

IV. COSMOLOGICAL DYNAMICS

In this section, we study the cosmological dynamics for
constant λ, i.e., the exponential potential,

VðϕÞ ¼ V0eλϕ=Mpl : ð4:1Þ

In this case, the dynamical system given by Eqs. (3.17)–
(3.20) is closed. As long as λ slowly varies in time in the
range (2.5), the cosmological evolution is similar to that
discussed below.
In overdensity regions of the Universe, the operation of

the Vainshtein mechanism means that the cubic Galileon
term X□ϕ dominates over other field Lagrangians. In the
cosmological context, this amounts to the dominance of
ΩG3

over ΩK andΩV in the early epoch. Let us consider the
case in which the conditions

fΩK;ΩVg ≪ ΩG3
≪ 1; jαMj ≪ 1; ð4:2Þ

are satisfied during the radiation-dominated epoch (in
which Ωr is close to 1). From Eqs. (3.13) and (3.14),
we then have h ≃ −2 and

ϵϕ ≃ −
1

2
þ ϵα; ϵα ≡ αM

4ΩG3

ð1 −ΩrÞ: ð4:3Þ

SinceΩr starts to deviate from 1 in the late radiation era, the
term ϵα is not necessarily negligible relative to −1=2 for
jαMj ≫ ΩG3

. On using Eqs. (3.17), (3.19), and (3.20), the
quantity ϵα obeys the differential equation,

ϵ0α ≃ 6Q2
ΩK

ΩG3

þ 2ϵαð1 − ϵαÞ: ð4:4Þ

Under the condition ΩG3
≫ ΩK , the first term on the right-

hand side of Eq. (4.4) is much smaller than 1. Ignoring this
term and solving the differential equation ϵ0α ≃ 2ϵαð1 − ϵαÞ
for ϵα, it follows that

ϵα ¼
�
1þ a2i

a2
1 − ϵðiÞα
ϵðiÞα

�−1
; ð4:5Þ

where ϵðiÞα is the initial value of ϵα at a ¼ ai. In the limit
a → ∞, ϵα asymptotically approaches 1.
If the condition jαMj ≫ ΩG3

is initially satisfied, jϵðiÞα j
can be as large as the order 1. Then, ϵϕ soon approaches the
asymptotic value

ϵϕ →
1

2
; ð4:6Þ

during the radiation era. In this regime, the field density
parameters and jαMj grow as

ΩK ∝ a5; ΩV ∝ a4; ΩG3
∝ a7=2; jαMj ∝ a5=2:

ð4:7Þ

This shows that, even if ΩG3
≫ ΩK initially, it is possible

for ΩK to catch up with ΩG3
. If this catch-up occurs by the

end of the radiation era, we have ΩG3
< ΩK at the onset of

matter dominance.
If jαMj ≪ ΩG3

initially, i.e., jϵðiÞα j ≪ 1, there is the stage
of radiation era in which the quantity ϵϕ is close to −1=2.
On using Eqs. (3.17)–(3.19) in this epoch, the field density
parameters and jαMj evolve as

ΩK ∝ a3; ΩV ∝ a4; ΩG3
∝ a1=2; jαMj ∝ a3=2;

ð4:8Þ
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so that jαMj grows faster than ΩG3
. If jαMj exceeds ΩG3

during the radiation era, the solutions enter the regime
characterized by Eqs. (4.6) and (4.7). Although ΩK grows
faster than ΩG3

in the two regimes explained above, it can
happen that the inequality ΩG3

> ΩK still holds at the
beginning of the matter era for ΩG3

initially much larger
than jαMj and ΩK .
The above discussion shows that there are two qualita-

tively different cases depending on the values of ΩG3
and

ΩK at the onset of matter dominance. The first is the case in
which ΩK dominates over ΩG3

, i.e.,

ðiÞ ΩG3
≪ ΩK ðunscreenedÞ: ð4:9Þ

Under this condition, there exists the ϕMDE in which the
field kinetic energy is not screened by the Galileon term.
The second is the case in which the condition

ðiiÞ ΩG3
≫ ΩK ðscreenedÞ ð4:10Þ

is satisfied after the end of the radiation era. This corre-
sponds to the situation in which the cosmological
Vainshtein screening is sufficiently efficient to suppress
the time variation of ϕ throughout the evolution from the
radiation era to today. In the following, we study these two
different cases in turn.
We note that, under the conditions (4.2), the dark energy

equation of state (3.21) during the radiation dominance can
be estimated as

wDE ≃ weff ≃
1

3
; ð4:11Þ

irrespective of the two asymptotic values of ϵϕð¼ �1=2Þ
explained above.

A. Unscreened late-time cosmology with the ϕMDE

Let us first study the cosmological dynamics for the case
(i), i.e., ΩG3

≪ ΩK after the onset of the matter era. In this
case, the coupling β3 is in the range

jβ3j ≪ 1: ð4:12Þ

To derive fixed points of the dynamical system, we take the
limit ΩG3

→ 0 in the autonomous Eqs. (3.17)–(3.20). For
Q ≠ 0, the standard matter era is replaced by the ϕMDE
characterized by the fixed point

ðaÞ ðx;ΩV;ΩG3
;ΩrÞ¼

�
−

ffiffiffi
6

p
Q

3ð1−2Q2Þ;0;0;0
�
; ð4:13Þ

with

Ωm ¼ 3 − 2Q2

3ð1 − 2Q2Þ2 ; weff ¼
4Q2

3ð1 − 2Q2Þ ;

wDE ¼ 4Q2ð1 − 2Q2Þ
3ð1 − FÞ − 2ð6 − FÞQ2 þ 12Q4

: ð4:14Þ

The ϕMDE was originally found for coupled quintessence
in the Einstein frame [83]. This corresponds to the kineti-
cally driven stage in which ΩK ¼ 2Q2=½3ð1 − 2Q2Þ2�
dominates over ΩG3

. On the fixed point (a), the parameter
αM is given by

αðaÞM ¼ 4Q2

1 − 2Q2
; ð4:15Þ

and hence αðaÞM > 0 for Q2 < 1=2. The positivity of αðaÞM
means that

QxðaÞ < 0; ð4:16Þ
where xðaÞ is the value of x on the ϕMDE.
AfterΩK exceedsΩG3

by the end of the radiation era, the
solutions are naturally followed by the ϕMDE in which the
cosmological Vainshtein screening is no longer effective.
While ΩK is constant during the ϕMDE, the other field
density parameters evolve as

ΩV ∝ a
3−2Qλ−6Q2

1−2Q2 ; ΩG3
∝ a

−3þ2Q2

1−2Q2 : ð4:17Þ
For jQλj ≪ 1 and Q2 ≪ 1, ΩV grows in proportion to a3,
whereas ΩG3

decreases as ∝ a−3. Hence the contribution of
cubic Galileons toΩDE becomes negligibly small in the late
matter era.
The stability of point (a) is known by linearly perturbing

Eqs. (3.17)–(3.20) with homogenous perturbations δx, δΩV ,
δΩG3

, and δΩr [95,96]. The eigenvalues of the Jacobian
matrix associated with these perturbations are given by
−1, −ð3 − 2Q2Þ=ð2 − 4Q2Þ, −ð3þ 2Q2Þ=ð1 − 2Q2Þ, and
ð3 − 2Qλ − 6Q2Þ=ð1 − 2Q2Þ. The first three eigenvalues
are negative for λ and Q in the ranges (2.5) and (2.6), while
the last one is positive. Hence the ϕMDE corresponds to a
saddle point. This shows that, as long asΩK catches up with
ΩG3

by the end of the radiation era, the solutions temporally
approach the ϕMDE with ΩG3

≪ ΩK ≃ const.
There are other kinetically driven fixed points charac-

terized by ðx;ΩV;ΩG3
;ΩrÞ¼ð1=ð ffiffiffi

6
p

Q�1Þ;0;0;0Þ. Since
Ωm ¼ 0, this point cannot be responsible for the matter
era. The scaling fixed point ðx;ΩV;ΩG3

;ΩrÞ¼ð− ffiffiffi
6

p
=ð2λÞ;

ð3−2Qλ−6Q2Þ=ð2λ2Þ;0;0Þ is also present, butΩDE ¼ ð3 −
7Qλ − 12Q2Þ=λ2 is larger than the order 1 under the
conditions (2.5) and (2.6). Hence this scaling solution is
irrelevant to the matter-dominated epoch. This is also the
case for the radiation scaling solution ðx;ΩV;ΩG3

;ΩrÞ ¼
ð−2 ffiffiffi

6
p

=ð3λÞ;4=ð3λ2Þ;0;1− 4ð1− 2Qλ− 4Q2Þ=λ2Þ, where
ΩDE ¼ 4ð1 − 2Qλ − 4Q2Þ=λ2 exceeds the order 1.
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The fixed point relevant to the dark energy domination is
given by

ðbÞ ðx;ΩV;ΩG3
;ΩrÞ

¼
�

−
ffiffiffi
6

p ðλþ 4QÞ
6ð1 −Qλ − 4Q2Þ ;

6 − λ2 − 8Qðλþ 2QÞ
6ð1 −Qλ − 4Q2Þ2 ; 0; 0

�
;

ð4:18Þ

with

Ωm ¼ 0; weff ¼ wDE ¼ −1þ λ2 þ 6Qλþ 8Q2

3ð1 −Qλ − 4Q2Þ ;

ð4:19Þ

and ΩDE ¼ 1. On this fixed point, the quantity αM yields

αðbÞM ¼ 2Qðλþ 4QÞ
1 −Qλ − 4Q2

: ð4:20Þ

The point (b) can drive the cosmic acceleration for
weff < −1=3, which translates to

λ2 < 2ð1 − 4Qλ − 8Q2Þ: ð4:21Þ

Under this bound, the four eigenvalues of the Jacobian
matrix of homogenous perturbations around point (b) are
all negative. Then, after the ϕMDE, the solutions finally
approach the stable point (b) with cosmic acceleration. On
using the values of x and ΩV in Eq. (4.18), Eq. (3.19)
reduces to

Ω0
G3

¼ −pΩG3
; p ¼ ðλþ 4QÞ2

1 −Qλ − 4Q2
: ð4:22Þ

The Galileon density parameter decreases as ΩG3
∝ a−p

around point (b).
In the following, we focus on the couplings satisfying

λ > 0; Q > 0: ð4:23Þ

During the ϕMDE, we showed that αM > 0 for Q2 < 1=2.
Provided x does not change the sign during the cosmo-
logical evolution from the radiation era to fixed point (b),
the parameter αM is in the range

αM ¼ −2
ffiffiffi
6

p
Qx > 0; ð4:24Þ

and hence x < 0. The negative value of x is consistent with
the fact that _ϕ < 0 when the scalar field rolls down the
potentialwith λ > 0. Alternatively,we can consider negative
values of λ andQ, in which case x > 0. Under the condition
(4.24), we have Q _ϕ < 0 for H > 0 and hence the quantity
Qϕ decreases in time. Thismeans that the fieldϕ satisfies the
inequality Qðϕ − ϕ0Þ > 0 in the past. Then, irrespective of

the sign ofQ, the quantityF ¼ e−2Qðϕ−ϕ0Þ=Mpl is smaller than
1 during the past cosmic expansion history.
In Fig. 1, we exemplify the evolution of ΩK , ΩV , ΩG3

,
Ωr, Ωm, and αM versus zþ 1ð¼ aðt0Þ=aðtÞÞ for Q ¼ 5.0 ×
10−4 and λ ¼ 0.1. In this case, the initial value of ϵα in

Eq. (4.3) is ϵðiÞα ¼ 1.22, so ϵϕ starts from the value around
0.72. As estimated from Eq. (4.6), ϵϕ soon approaches the
value 1=2 during the radiation era. In Fig. 1, we can confirm
that the evolution of ΩK , ΩV , ΩG3

, and αM around the
redshift 104 ≲ z≲ 108 is approximately given by Eq. (4.7).
In Fig. 2, we plot the evolution of wDE and weff for the same
model parameters and initial conditions as those used in
Fig. 1. As the analytic estimation (4.11) shows, both
wDE and weff are close to 1=3 during the deep radiation-
dominated epoch.
In the numerical simulation of Fig. 1, ΩK catches up with

ΩG3
around the redshift z ¼ 4.6 × 103. Then, the solutions

approach the ϕMDE with the constant kinetic density
parameter ΩK¼2Q2=½3ð1−2Q2Þ2�≃1.7×10−7 with αM ¼
6ð1 − 2Q2ÞΩK ≃ 1.0 × 10−6. As we estimated in Eq. (4.17),
ΩV increases during the ϕMDE, while ΩG3

decreases. In
Fig. 1, we observe that ΩV exceeds αM around the redshift
z ¼ 130. After this moment, ΩV becomes the dominant
contribution to ΩDE. As long as ΩV ≪ 1, the terms contain-
ing ΩV in Eqs. (3.13) and (3.14) hardly modify the values
of h and ϵϕ during the ϕMDE. In Fig. 1, we find that the
ϕMDE with nearly constant ΩK continues up to the redshift
z ≈ 10.

FIG. 1. Evolution ofΩK ,ΩV ,ΩG3
,Ωm,Ωr, and αM versus zþ 1

for Q ¼ 5.0 × 10−4 and λ ¼ 0.1 with the initial conditions
x ¼ −1.0 × 10−15, ΩV ¼ 1.0 × 10−29, ΩG3

¼ 1.0 × 10−23, Ωr ¼
0.99998, and y ¼ 1.0 at the redshift z ¼ 1.62 × 108. The present
epoch (z ¼ 0) is identified by the condition ΩDE ¼ 0.68.
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The dark energy equation of state is more sensitive to the
dominance ofΩV over other field density parameters. In the
regime where the condition ΩV ≫ fαM;ΩK;ΩG3

g is sat-
isfied, Eq. (3.21) approximately reduces to

wDE ≃ −1 −
2h
3

1 − F
1 − F þ ΩVF

: ð4:25Þ

Provided the inequality ΩVF ≪ 1 − F holds during the
early stage of the matter era, it follows that wDE≃
weff ¼ −1 − 2h=3 ≃ 4Q2=½3ð1 − 2Q2Þ�. After ΩVF grows
to be larger than 1 − F, wDE starts to approach−1. In Fig. 2,
we can confirm that wDE deviates from weff around the
same moment at which ΩV becomes the dominant con-
tribution to ΩDE and that wDE temporally approaches the
value close to −1.
After the Universe enters the stage of cosmic acceler-

ation, the solutions finally reach the fixed point (b).
For Q ¼ 5.0 × 10−4 and λ ¼ 0.1, the analytic estimation
(4.18) gives the values x ¼ −0.04164, ΩV ¼ 0.9984, and
wDE ¼ weff ¼ −0.9966, which are in good agreement
with the numerical results of Figs. 1 and 2. In this case,
the future asymptotic value of αM is 1.02 × 10−4, while its
value today is αMðt0Þ ¼ 5.61 × 10−5. Taking h ¼ 0.7 in
Eq. (2.18), this case is within the LLR bound of αMðt0Þ.
From Eqs. (4.13) and (4.18) we find that the inequality

0 > xðaÞ > xðbÞ holds, where xðaÞ and xðbÞ are the values of
x on points (a) and (b), respectively. Then, the quantity αM
on point (b) is larger than that on point (a), such that

αðbÞM > αðaÞM > 0. Since αM increases from αðaÞM during the

ϕMDE to the asymptotic value αðbÞM in the future, the
necessary condition for satisfying the LLR bound (2.18) for

h ¼ 0.7 is αðaÞM ≤ 7 × 10−5, i.e.,

Q ≤ 4.2 × 10−3: ð4:26Þ

Since today’s value αMðt0Þ is between αðbÞM and αðaÞM , the
condition (4.26) is not sufficient for the compatibility with
the bound (2.18).
In Fig. 3, we plot the parameter space in the ðλ; QÞ plane

constrained from the bound αMðt0Þ ≤ 7 × 10−5, whose
border is denoted as the line (i). We also depict the region
in which the condition (4.21) for cosmic acceleration of
point (b) is satisfied, whose border is shown as the line (ii).
This condition gives the upper limit λ <

ffiffiffi
2

p
. The coupling

Q is constrained to be

Q ≤ 3.4 × 10−3; ð4:27Þ

which is tighter than (4.26). This significantly improves the
upper limit Q ≤ 2.6 × 10−2 following from the LLR bound
jαMðt0Þj ≤ 0.02 in 2004 [62]. We note that the bound (4.27)
corresponds to the limit λ → 0. For increasing λ from 0,
the constraint on Q is more stringent than (4.27), e.g.,
Q ≤ 6.2 × 10−4 for λ ¼ 0.1 and Q ≤ 6.3 × 10−5 for λ ¼ 1.
If λ > 0.013, then the recent LLR data give the upper
limit of Q tighter than the Cassini bound Q ≤ 2.4 × 10−3

derived for the massless scalar field without the Vainshtein
screening.

FIG. 2. Evolution of wDE, weff , and c2s versus zþ 1 for the same
model parameters and initial conditions as those given in the
caption of Fig. 1.

FIG. 3. Parameter space in the ðλ; QÞ plane (colored region)
consistent with the bound (i) αMðt0Þ ≤ 7 × 10−5, and (ii) the
condition for the cosmic acceleration of point (b). We also show

the bound Q ≤ 4.2 × 10−3 arising from the condition αðaÞM ≤
7 × 10−5 on the ϕMDE.
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Cosmologically, today’s value of ΩG3
is related to the

dimensionless coupling β3, as

ΩG3
ðt0Þ ¼ −6

ffiffiffi
6

p
β3xðt0Þ3: ð4:28Þ

The numerical simulation of Fig. 1 corresponds to
ΩG3

ðt0Þ ¼ 1.76 × 10−12, xðt0Þ ¼ −2.29 × 10−2, and β3 ¼
9.97 × 10−9, with Q ¼ 5.0 × 10−4. These couplings satisfy
the condition (2.12), so the Vainshtein mechanism is at
work in the solar system. The existence of ϕMDE generally
requires that β3 ≪ 1, but still the fifth force can be screened
around local sources for the product β3Q in the range
(2.12).
In Fig. 4, we show the evolution of wDE for four different

combinations of Q and λ. In all these cases, αMðt0Þ is close
to the LLR upper limit 7 × 10−5, with β3 of order 10−8.
As we estimated in Eq. (4.25), wDE temporally approaches
the value close to −1 after ΩV dominates over other field
density parameters in the matter era. In all the cases plotted
in Fig. 4, the minimum values of wDE are close to −1. Even
for case (D), i.e., λ ¼ 1, wDE reaches the minimum value
−0.9952 at z ¼ 4.5. The solutions finally approach the
fixed point (b), with wDE given by Eq. (4.19). For larger λ
closer to the border line (ii) in Fig. 3, the deviation of wDE
from −1 at low redshifts is more significant. This property
can be used to distinguish between the models with
different values of λ from observations.
Since ΩG3

and ΩK are positive with 0 < αM ≪ 1 from
the radiation era to the accelerated point (b), the no-ghost

condition (3.23) of scalar perturbations is always satisfied.
Provided that 1 ≫ ΩG3

≫ ΩK in the deep radiation era,
the scalar propagation speed squared (3.24) reduces to
c2s ≃ ð2þ ϵϕÞ=3. In the numerical simulation of Fig. 2, the
quantity ϵϕ approaches the value 1=2 around the redshift
z ≈ 107, and hence c2s ≃ 5=6 for 105 ≲ z≲ 107. During the
late radiation era (3000≲ z≲ 105) in which Ωr starts to
deviate from 1, c2s temporally decreases due to the decrease
of ϵϕ. For ΩK ≫ ΩG3

we have c2s ≃ 1 from Eq. (3.24).
Indeed, the approach to this value can be confirmed in
Fig. 2 after the onset of the matter era. Since c2s remains
positive from the radiation era to the asymptotic future,
the Laplacian instability of scalar perturbations is absent.
We note that the property c2s > 0 also holds for the four
cases shown in Fig. 4.

B. Screened cosmology

We proceed to the case (ii) in which the cubic coupling
β3 is in the range

jβ3j ≫ 1; ð4:29Þ

with positive values of λ and Q. As we will see below, the
field kinetic energy can be suppressed even in the late
epoch through the cosmological Vainshtein mechanism.
During the radiation dominance the condition (4.2)

holds, so the quantity ϵϕ can be estimated as Eq. (4.3).
The difference from the case discussed in Sec. IVA is that
ϵα is much smaller than 1 due to the largeness of ΩG3

relative to αM. Since ϵϕ ≃ −1=2 during most stages of the
radiation era, the field density parameters and αM evolve
according to Eq. (4.8). Indeed, we can confirm this
behavior in Fig. 5, where the cubic coupling is β3 ¼
1.0 × 107. AlthoughΩK grows faster thanΩG3

, the inequal-
ity ΩG3

≫ ΩK holds even after the end of the radiation era.
Hence the solutions do not reach the ϕMDE charactrized
by constant ΩK larger than ΩG3

. In Fig. 6, we observe that
both wDE and weff are close to 1=3 during the radiation
dominance.
During the matter-dominated epoch, we study the

cosmological evolution under the conditions

ΩK ≪ ΩG3
≪ 1; αM ≪ 1; ΩV ≪ 1;

Ωr ≪ 1; ðλ=QÞΩV ≪ 1: ð4:30Þ

Then, the quantities defined in Eqs. (3.13) and (3.14)
reduce to h ≃ −3=2 and ϵϕ ≃ −3=4þ αM=ð4ΩG3

Þ, respec-
tively. From Eqs. (3.17)–(3.19), we obtain the differential
equations for αM, ΩV , and ΩG3

, as

α0M ≃
αM
4

�
3þ αM

ΩG3

�
; ð4:31Þ

FIG. 4. Evolution of wDE versus zþ 1 for (A) Q ¼
6.20 × 10−4, λ ¼ 0.1; (B) Q ¼ 2.57 × 10−4, λ ¼ 0.25;
(C) Q ¼ 1.27 × 10−4, λ ¼ 0.5; and (D) Q ¼ 6.32 × 10−5,
λ ¼ 1. The initial conditions of x, ΩV , ΩG3

, Ωr, and y are the
same as those used in Fig. 1.
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Ω0
V ≃ 3ΩV; ð4:32Þ

ΩG3

0 ≃ −
3

4
ðΩG3

− αMÞ: ð4:33Þ

This means that, provided x < 0, αM increases during the
matter era. The density parameter associated with the field

potential also grows as ΩV ∝ a3. On the other hand,
ΩG3

decreases for ΩG3
> αM, whereas it increases for

ΩG3
< αM. In the numerical simulation of Fig. 5, ΩG3

is
larger than αM at the onset of the matter era and hence ΩG3

decreases by the moment at which αM catches up with ΩG3
.

After this catch-up, ΩG3
starts to grow. The field kinetic

density parameter increases as ΩK ∝ α2M, but still ΩK is
smaller than ΩG3

around the end of matter era.
In Fig. 5, we find that ΩV dominates over ΩG3

, ΩK , and
αM for the redshift z≲ 200. Then, the dark energy equation
of state after the dominance of ΩV is given by Eq. (4.25).
The numerical simulation of Fig. 6 shows that wDE starts to
deviate from weff ≃ 0 around z ¼ 200 and then wDE
approaches the value close to −1 for z≲ 10. From the
radiation dominance to the deep matter era, we have ϵϕ ≃
½Ωr − 3þ ð1 − ΩrÞðαM=ΩG3

Þ�=4 under the condition
(4.30). Then, the sound speed squared c2s ≃ ð2þ ϵϕÞ=3
can be estimated as

c2s ≃
1

12

�
5þ Ωr þ

αM
ΩG3

ð1 −ΩrÞ
�
; ð4:34Þ

which is valid for z ≫ 10. As Ωr starts to deviate from 1 in
the late radiation era, c2s decreases from the initial value
close to 1=2. Since the ratio αM=ΩG3

grows in the deep
matter era, the term ðαM=ΩG3

Þð1 −ΩrÞ in Eq. (4.34) starts
to increase the value of c2s . Indeed, in the numerical
simulation of Fig. 6, c2s reaches the minimum value
0.430 around z ¼ 365.
In Fig. 5, we observe that ΩV , ΩG3

, and ΩK asymptoti-
cally approach constants with ΩV ¼ Oð1Þ ≫ ΩG3

≫ ΩK .
In the regime where ΩV dominates over ΩG3

, ΩK , and Ωr,
Eq. (3.17) approximately reduces to

x0 ≃
x
4

�
3ð1 − 3ΩVÞ −

2
ffiffiffi
6

p
x

ΩG3

fQþ ð3Qþ λÞΩVg
�
: ð4:35Þ

Then, the solutions approaching a nonvanishing constant x
are given by

x ≃ −
ffiffiffi
6

p ð3ΩV − 1Þ
4½Qþ ð3Qþ λÞΩV �

ΩG3
: ð4:36Þ

Substituting this relation into Eqs. (3.18) and (3.19), it
follows that

Ω0
V ≃ 3ΩVð1 −ΩVÞ; ð4:37Þ

ΩG3

0 ≃ 3ðΩV − 1ÞΩG3
; ð4:38Þ

which can be integrated to give

ΩV ≃ ð1þ c1a−3Þ−1; ð4:39Þ

FIG. 5. Evolution ofΩK ,ΩV ,ΩG3
,Ωm,Ωr, and αM versus zþ 1

for Q ¼ 0.1 and λ ¼ 1 with the initial conditions x ¼
−1.0 × 10−15, ΩV ¼ 1.0 × 10−29, ΩG3

¼ 1.0 × 10−8, Ωr ¼
0.99998, and y ¼ 1.0 at the redshift z ¼ 1.62 × 108.

FIG. 6. Evolution of wDE, weff , and c2s versus zþ 1 for the same
model parameters and initial conditions as those used in Fig. 5.
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ΩG3
≃ c2ð1þ c1a−3Þ; ð4:40Þ

where c1 and c2 are constants. These solutions are valid
only at the very late cosmological epoch in which x starts to
approach a constant. From Eqs. (4.39) and (4.40), ΩV and
ΩG3

approach the values 1 and c2, respectively. Taking the
limit ΩV → 1 in Eq. (4.36), we can estimate the asymptotic
values of αM and the ratio ΩK=ΩG3

, as

αM ¼ 6Q
4Qþ λ

ΩG3
; ð4:41Þ

ΩK

ΩG3

¼ 3

2ð4Qþ λÞ2ΩG3
: ð4:42Þ

They are in good agreement with the numerical values in
Fig. 5, i.e., αM ¼ 5.24 × 10−5 and ΩK=ΩG3

¼ 9.37 × 10−5

with ΩG3
¼ 1.22 × 10−4, so the condition ΩG3

≫ ΩK is
satisfied. We note that, for the other solution x ¼ 0 in
Eq. (4.35), ΩG3

approaches 0, so this does not lead to the
solution with ΩG3

≫ ΩK > 0.
In the numerical simulation of Fig. 5, today’s value of αM

is 3.38 × 10−5, and hence this case is within the LLR bound
(2.18). On using Eq. (4.41), the criterion for consistency
with the LLR experiment is that the asymptotic value of
ΩG3

is in the range

6Q
4Qþ λ

ΩG3
≤ 7 × 10−5: ð4:43Þ

This is a sufficient condition, so the actual upper bound on
ΩG3

is slightly tighter. Unlike the case discussed in
Sec. IVA, the coupling Q is not particularly bounded
from above. Indeed, the numerical simulation of Fig. 5
corresponds to Q ¼ 0.1, but the LLR bound is satisfied.
This property comes from the fact that the cubic Galileon
term suppresses the field kinetic energy through the
cosmological Vainshtein screening, so that the variable
x in αM ¼ −2

ffiffiffi
6

p
Qx is restricted to be small. We note that,

even though ΩK ≪ ΩG3
, ΩG3

is much smaller than ΩV ,
so the cubic Galileon is subdominant as the dark energy
density.
The asymptotic value of ϵϕ in the future is close to hð≃0Þ

to realize x0 ¼ 0 with x ≠ 0 in Eq. (3.17). Then, the scalar
propagation speed squared should approach the value
c2s ≃ ð2þ ϵϕÞ=3 ≃ 2=3, which is indeed the case for the
numerical simulation in Fig. 6. Since the condition c2s > 0
is satisfied from the radiation dominance to the future, there
is no Laplacian instability of scalar perturbations.
The numerical simulation of Fig. 6 corresponds to λ ¼ 1,

but wDE is very close to −1 even in the asymptotic future.
This behavior is different from case (D) in Fig. 4 where the
solutions finally reach the fixed point (b) with the large
deviation of wDE from −1. In the screened cosmology

discussed in this section, the future asymptotic solution is
characterized by Eqs. (4.41) and (4.42) with the strongly
suppressed kinetic energy (ΩK ≪ ΩG3

≪ ΩV ≃ 1). In this
case, the dark energy equation of state is given by
Eq. (4.25) with h ≃ 0 in the asymptotic future and hence
wDE ≃ −1.
Since the cosmological Vainshtein screening for the field

kinetic energy efficiently works for β3 ≫ 1, it is possible to
realize wDE close to −1 at low redshifts even for λ >

ffiffiffi
2

p
.

In Fig. 7, we plot the evolution of wDE for λ ¼ 2 with three
different values of Q, all of which correspond to β3 ≃ 1.0×
107. Even with λ larger than

ffiffiffi
2

p
, wDE is very close to −1

from the redshift z ≈Oð10Þ toward the asymptotic future.
For decreasing Q, the deviation of F ¼ e−2Qðϕ−ϕ0Þ=Mpl from
1 tends to be smaller in the past, and hence the solutions
enter the regime ΩVF > 1 − F at an earlier time. Then,
from Eq. (4.25), the approach of wDE to −1 occurs at higher
redshifts. In case (A) of Fig. 7 we have αMðt0Þ ¼
6.98 × 10−5, so this is close to the LLR upper limit
(2.18). For decreasing Q with given values of β3 and λ,
αMðt0Þ gets smaller, e.g., αMðt0Þ¼3.87×10−6 and αMðt0Þ¼
3.82×10−7 in cases (B) and (C) of Fig. 7, respectively. For
smaller αMðt0Þ, the models mimic the ΛCDM behavior
(wDE ¼ −1) from earlier cosmological epochs to today.

V. MODIFIED GRAVITATIONAL WAVE
PROPAGATION

In this section, we study the modified GW propagation
induced by the nonminimal coupling FðϕÞR and compute
the difference between GWand luminosity distances for the

FIG. 7. Evolution of wDE versus zþ 1 for λ ¼ 2 for the same
initial conditions of x, ΩV , ΩG3

, Ωr, and y as those used in Fig. 5.
Each case corresponds to (A) Q ¼ 0.153, (B) Q ¼ 0.010,
and (C) Q ¼ 0.001.
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dark energy cosmology discussed in Sec. IV. The perturbed
line element containing tensor perturbations hij on the flat
FLRW background is given by

ds2 ¼ −dt2 þ a2ðtÞðδij þ hijÞdxidxj: ð5:1Þ

To satisfy the transverse and traceless conditions ∂jhij ¼ 0

and hii ¼ 0, we choose the nonvanishing components of
hij, as h11 ¼ h1ðt; zÞ, h22 ¼ −h1ðt; zÞ, and h12 ¼
h21 ¼ h2ðt; zÞ. Expanding the action (2.1) up to quadratic
order in hij and integrating it by parts, the resulting second-
order action of tensor perturbations yields [7,80,98]

Sð2Þ
t ¼

Z
dtd3x

X2
i¼1

M2
pl

4
FðϕÞa3

�
_h2i −

1

a2
ð∂hiÞ2

�
: ð5:2Þ

In general, the speed ct of tensor perturbations appears as
the spatial derivative term −ðc2t =a2Þð∂hiÞ2 in the square
bracket of Eq. (5.2). In our theory c2t is equivalent to 1, so it
automatically satisfies the observational bound of GW
propagation speed [14].
In Fourier space with the coming wave number k, the two

polarization modes hi (where i ¼ 1, 2) obey the wave
equation,

ḧi þHð3þ αMÞ _hi þ
k2

a2
hi ¼ 0: ð5:3Þ

By defining

ĥi ≡ aGWhi; aGW ≡ ffiffiffiffi
F

p
a; ð5:4Þ

Eq. (5.3) can be expressed in the form

d2ĥi
dη2

þ
�
k2 −

1

aGW

d2aGW
dη2

�
ĥi ¼ 0; ð5:5Þ

where η ¼ R
a−1dt is the conformal time.

For the physical wavelength much smaller than the
Hubble radius (k=a ≫ H), the second term in the paren-
thesis of Eq. (5.5) can be ignored relative to k2. Then, the
solution to Eq. (5.5) is simply given by a plane wave with a
constant amplitude (ĥi ≃ e�ikη). The amplitude of hi ¼
ĥi=aGW decreases in proportion to 1=aGW. The GW
produced by a binary inspiral (point particles with two
massesm1 andm2) at redshift zwith the comoving distance
r from an observer has the amplitude [99]

hAðzÞ ¼
4

aðtsÞr
�
GNðtsÞMc

c2

�
5=3

�
πfs
c

�
2=3

; ð5:6Þ

where ts is the time at emission, GNðtsÞ ¼ G=FðtsÞ is the
screened gravitational coupling at t ¼ ts with G ¼ 1=
ð8πM2

plÞ, Mc¼ðm1m2Þ3=5=ðm1þm2Þ1=5 is the chirp mass,

and fs is the frequency measured by the clock of source.
We note that the speed of light c is explicitly written in
Eq. (5.6). Today’s GWamplitude hAð0Þ observed at time t0
is related to hAðzÞ, as hAð0Þ ¼ ½aGWðtsÞ=aGWðt0Þ�hAðzÞ.
On using the property aGWðt0Þ ¼ aðt0Þ, it follows that

hAð0Þ ¼
aGWðtsÞ
aðtsÞ

1

FðtsÞ5=3
hA;GRð0Þ; ð5:7Þ

where

hA;GRð0Þ ¼
4

aðt0Þr
�
GMc

c2

�
5=3

�
πfs
c

�
2=3

ð5:8Þ

is the observed GW amplitude in GR. On the flat FLRW
background, the luminosity distance from the observer to
the source is given by dLðzÞ ¼ ð1þ zÞaðt0Þr. By using
dLðzÞ and the observed GW frequency fobs ¼ fs=ð1þ zÞ,
one can write Eq. (5.8) in the form

hA;GRð0Þ ¼
4

dLðzÞ
�
GMc

c2

�
5=3

�
πfobs
c

�
2=3

; ð5:9Þ

where Mc ≡ ð1þ zÞMc. Substituting Eq. (5.9) into
Eq. (5.7), the observed GW amplitude is expressed as

hAð0Þ ¼
4

dGWðzÞ
�
GNðtsÞMc

c2

�
5=3

�
πfobs
c

�
2=3

; ð5:10Þ

where

dGWðzÞ ¼ dLðzÞ
aðtsÞ

aGWðtsÞ
¼ dLðzÞffiffiffiffiffiffiffiffiffiffiffi

FðtsÞ
p : ð5:11Þ

On using Eq. (2.17), the quantity F at redshift z is generally
expressed as

FðzÞ ¼ exp

�
−
Z

z

0

αMðz̃Þ
1þ z̃

dz̃

�
: ð5:12Þ

Then, the relative ratio between dGWðzÞ and dLðzÞ yields
dGWðzÞ
dLðzÞ

¼ exp
�Z

z

0

αMðz̃Þ
2ð1þ z̃Þ dz̃

�
: ð5:13Þ

If αMðzÞ > 0, then dGWðzÞ > dLðzÞ for z > 0. For positive
αMðzÞ, which is the case for our nonminimally coupled dark
energy scenario, there is the LLR bound αMð0Þ ≤ αmax,
where αmax ¼ 7 × 10−5. Provided that the past value of
αMðzÞ is smaller than αMð0Þ, the ratio (5.13) is in the range

dGWðzÞ
dLðzÞ

≤ ð1þ zÞαmax=2: ð5:14Þ

Expanding the term ð1þ zÞαmax=2 around αmax ¼ 0, it follows
that
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μdðzÞ≡ dGWðzÞ
dLðzÞ

− 1≲ αmax

2
ln ð1þ zÞ; ð5:15Þ

where we ignored the terms higher than the order αmax.
Substituting αmax ¼ 7 × 10−5 into the right-hand side of
Eq. (5.15), we have ðαmax=2Þ ln ð1þ zÞ ¼ 1.6 × 10−4 at
z ¼ 100. Then, the quantity μdðzÞ is constrained to be

μdðzÞ ≲ 10−4 ðfor 0 < z < 100Þ: ð5:16Þ
This is the maximum allowed difference between dGWðzÞ
and dLðzÞ constrained from the LLR data.
For concreteness, let us consider the nonminimally

coupled dark energy scenario given by the action (2.1).
From Eq. (5.11), we have

dGWðzÞ
dLðzÞ

¼ eQ½ϕðzÞ−ϕ0�=Mpl : ð5:17Þ

The change of ϕ from the redshift z to today leads to the
difference between dGWðzÞ and dLðzÞ. As we studied in
Sec. IV, there are two qualitative different cases:
(i) jβ3j ≪ 1 with the ϕMDE, and (ii) jβ3j ≫ 1 without the
ϕMDE.
In case (i), the LLR data place the tight upper limit (4.27)

on the coupling constant Q. In Fig. 8, we plot μdðzÞ ¼
dGWðzÞ=dLðzÞ − 1 in the redshift range 0 < z < 100 for
four different combinations of Q and λ. Each plot corre-
sponds to cases (A), (B), (C), and (D) shown in Fig. 4. In all
these cases, the LLR bound is marginally satisfied, i.e.,
αMð0Þ ≃ 7 × 10−5. For the redshift z < 1, the values of
μdðzÞ are similar to each other among the four cases, with
μd ≃ 1.5 × 10−5 at z ¼ 1. The difference starts to appear for
z > 1, but the orders of μdðzÞ at z ¼ 100 are still 10−5.

As we estimated in Eq. (4.15), the value of αM during the

ϕMDE is of order 4Q2, and hence αðaÞM ≤ 4.6 × 10−5 under

the bound (4.27). Since αðaÞM is smaller than today’s value
αMð0Þ, the main contribution to the ratio (5.13) comes from
αMðzÞ at low redshifts. Since αMðzÞ at z ≤ 1 is not much
different from today’s value αMð0Þ ≃ 7 × 10−5 in the
numerical simulation of Fig. 8, the maximum value of
μd for z ≫ 1 can be estimated by substituting z ¼ 1 into
Eq. (5.15), i.e., μd ≲Oð10−5Þ. Indeed, this crude estimation
is consistent with the numerical values of μd at z ≫ 1 in
Fig. 8. If αMð0Þ is smaller than 7 × 10−5, the resulting
values of μd at high redshifts are less than the order 10−5.
In case (ii), the upper limit of Q is not particularly

constrained from the LLR experiment, but the cosmologi-
cal Vainshtein screening leads to the strong suppression of
_ϕ. The case (A) in Fig. 9, which corresponds to Q ¼ 0.153
and λ ¼ 2, is marginally within the LLR bound. In this
case, the value of αM for z ≫ 1 is of order 10−5. As we see
in Fig. 5, αM rapidly decreases toward the asymptotic past,
and hence the main contribution to μdðzÞ again comes from
αMðzÞ at z ≤ Oð1Þ. In cases (B) and (C) of Fig. 9, which
correspond to the couplings Q ¼ 0.01 and Q ¼ 0.001,
today’s values of αM are smaller than that in case (A) by 1
and 2 orders of magnitude, respectively. In cases (B) and
(C), the numerical values of μdðzÞ at z ¼ 100 are 1.1 ×
10−6 and 1.1 × 10−7, respectively, so the order difference of
αMð0Þ directly affects μd at high redshifts.
From the above discussion, we have μdðzÞ ≤ Oð10−5Þ

for 0 < z < 100 in both unscreened and screened cosmo-
logical backgrounds. This property is mostly attributed to
the fact that the value of αM at low redshifts is tightly
limited by the LLR bound. Unless the ratio dGWðzÞ=dLðzÞ

FIG. 8. The relative difference dGWðzÞ=dLðzÞ − 1 versus z
corresponding to the cases (A), (B), (C), and (D) shown in Fig. 4.

FIG. 9. The relative difference dGWðzÞ=dLðzÞ − 1 versus z
corresponding to the cases (A), (B), and (C) shown in Fig. 7.
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is measured in high accuracy, it is challenging to obser-
vationally distinguish nonminimally coupled theories from
minimally coupled theories.

VI. CONCLUSIONS

We studied how the recent LLR measurement constrains
nonminimally coupled dark energy models given by the
action (2.1). The existence of nonminimal coupling of the
form FðϕÞR, where FðϕÞ ¼ e−2Qðϕ−ϕ0Þ=Mpl , gives rise to
the propagation of fifth forces characterized by the coupling
constant Q with nonrelativistic matter. For a massless scalar
field without derivative interactions, the coupling is con-
strained to be in the range jQj ≤ 2.4 × 10−3 from the Cassini
experiment. The cubic Galileon coupling β3M−3X□ϕ
allows one to recover the Newtonian behavior in overdensity
regions even for jQj > 2.4 × 10−3. Since the late-time
dominance of Galileons as the dark energy density generally
leads to the incompatibility with observations, we considered
the potential VðϕÞ of a light scalar field.
In local regions of the Universe, the Galileon self-

interaction screens fifth forces within the Vainshtein radius
(2.8). The Vainshtein mechanism is at work within the solar
system for the cubic coupling in the range jβ3Qj ≫ 10−17.
In spite of the screened scalar-matter interaction, the time
variation of ϕ associated with the dynamics of dark energy
survives in the expression of gravitational coupling GN in
overdensity regions, with the form GN ¼ 1=½8πM2

plFðϕÞ�.
The recent LLR data placed the tight constraint (2.15) on
the time variation of GN, which translates to the bound
(2.18) on today’s value of αM ¼ _F=ðHFÞ.
To investigate the evolution of αM as well as field density

parameters ΩK , ΩV , and ΩG3
, we expressed dynamical

equations of motion on the flat FLRW background in the
autonomous form given by (3.17)–(3.20). In addition to
the dark energy equation of state wDE, we also considered
the quantities qs and c2s to ensure the absence of ghosts
and Laplacian instabilities. Together with Eq. (3.22), the
dynamical background equations of motion can be applied
to any scalar potential VðϕÞ.
In Sec. IV, we studied the cosmological dynamics in

details for the exponential potential (4.1). For the cubic
coupling satisfying the condition (2.12), ΩG3

can dominate
overΩK in the radiation-dominated epoch. We showed that,
under the conditions jαMj ≫ ΩG3

and jαMj ≪ ΩG3
, the field

density parameters and jαMj evolve as Eqs. (4.7) and (4.8),
respectively, during the radiation era. After the onset of
matter dominance, there are two qualitatively different cases:
(i) unscreened cosmology with jβ3j ≪ 1, and (ii) screened
cosmology with jβ3j ≫ 1.
In case (i), there is the kinetically driven ϕMDE in

which αM is given by αðaÞM ¼ 4Q2=ð1 − 2Q2Þ. The solu-
tions finally approach the fixed point (b) with cosmic

acceleration at which αM is equivalent to αðbÞM ¼ 2Qðλþ
4QÞ=ð1 −Qλ − 4Q2Þ. For positive λ and Q the inequality

αðbÞM > αðaÞM > 0 holds, so the necessary condition for
consistency with the LLR bound (2.18) corresponds to

αðaÞM ≤ 7 × 10−5, i.e., Q ≤ 4.2 × 10−3. Applying today’s
bound αMðt0Þ ≤ 7 × 10−5 to case (i), the coupling is
constrained to be Q ≤ 3.4 × 10−3 in the limit λ → 0. As
we see in Fig. 3, for increasing λ, the upper bound on Q is
tighter than the bound Q ≤ 3.4 × 10−3. We also showed
that wDE temporally approaches the value close to −1
during the matter era after the dominance of the term ΩVF
over 1 − F. For larger λ, the deviation of wDE from −1 on
the attractor point (b) tends to be larger; see Fig. 4.
In case (ii), the cosmological Vainshtein screening of field

kinetic energy is at work, so the condition ΩK ≪ ΩG3
is

satisfied even after the end of radiation dominance.
As we observe in Fig. 5, αM grows during the matter era
and finally approaches a constant related to ΩG3

, as αM ¼
6QΩG3

=ð4Qþ λÞ. Provided that this asymptotic value of αM
is smaller than the order 10−4, the case (ii) can be consistent
with today’s LLR bound (2.18). Since ΩG3

is much smaller
than ΩV today, the coupling Q is not particularly bounded
from above. The field kinetic energy is strongly suppressed
by the cosmological Vainshtein screening, i.e., ΩK ≪
ΩG3

≪ ΩV , so it is possible to realize wDE very close to

−1 at low redshifts even for λ >
ffiffiffi
2

p
; see Fig. 7. This behavior

is different from that in case (i) where wDE deviates from −1
in the asymptotic future for increasing λ in the range λ <

ffiffiffi
2

p
.

In Sec. V, we derived the relation between the GW and
luminosity distances in the form (5.11). In terms of the
parameter αM, the ratio between dGWðzÞ and dLðzÞ is given
by Eq. (5.13). Provided that αMðzÞ in the past is smaller
than today’s value αMð0Þ, the LLR experiment gives the
upper limit on the relative difference μdðzÞ ¼ dGWðzÞ=
dLðzÞ − 1 as Eq. (5.15). We computed the quantity μdðzÞ
for the nonminimally coupled dark energy scenario dis-
cussed in Sec. IV and showed that μdðzÞ for z ≥ Oð1Þ is
mostly determined by today’s value of αM. For αMð0Þ close
to the LLR upper limit 7 × 10−5, μdðzÞ is of order 10−5 in
the redshift range 1 < z < 100. This property is indepen-
dent of the unscreened and screened cosmological back-
grounds, so the LLR constraint gives a tight restriction
on the deviation of dGWðzÞ from dLðzÞ in nonminimally
coupled theories.
In this paper we did not study the evolution of scalar

cosmological perturbations relevant to the observations of
large-scale structures and weak lensing, but it is straight-
forward to do so by using the linear perturbation equations
of motion derived in Refs. [7,80,100]. In the unscreened
cosmological background the upper limit of Q is tightly
constrained from the LLR experiment, so the effective
gravitational couplings felt by matter and light are close to
GN [80]. In the screened background not only ΩK but also
ΩG3

is generally much smaller than 1 at low redshifts, so it
is expected that the gravitational interaction is not sub-
stantially modified from that in GR. At the background
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level, the dark energy equations of state in the unscreened
and screened cases exhibit some difference especially in the
late cosmological epoch. It will be of interest to place
further constraints on the allowed parameter space of our
theory by exploiting the observational data of cosmic
expansion and growth histories.
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