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The cosmological principle is applied to a five-dimensional vacuum manifold. The general (nontrivial)
solution is explicitly given. The result is a unique metric, parametrized with the sign of the space curvature
(k ¼ 0;�1) and the signature of the fifth coordinate. Friedmann-Robertson-Walker (FRW) metrics can be
obtained from this single “mother” metric (M-metric), by projecting onto different space-homogeneous
four-dimensional hypersurfaces. The expansion factor R is used as a time coordinate in order to get full
control of the equation of state of the resulting projection. The embedding of a generic (equilibrium)
mixture of matter, radiation, and cosmological constant is given, modulo a quadrature, although some
signature-dependent restrictions must be accounted for. In the 4þ 1 case, where the extra coordinate is
spacelike, the condition ensuring that the projected hypersurface is of Lorentzian type is explicitly given.
An example showing a smooth transition from a Euclidian to a Lorentzian 4D metric is provided.
This dynamical signature change can be considered a classical counterpart of the Hartle-Hawking
“no-boundary” proposal. The resulting FRW model shows an initial singularity at a finite value of the
expansion factor R. It can be termed as a “big unfreeze,” as it is produced just by the beginning of time,
without affecting space geometry. The model can be extended in order to fit the present value of the density
parameters.
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I. INTRODUCTION

Since the pioneering work of Kaluza-Klein, adding extra
dimensions to the standard (4D) spacetime has shown to be
a good strategy in the quest for unification. In modern
particle physics, this has led to the brane-world models
[1–3], where the basic physics scenario is a higher-
dimensional “bulk” spacetime, in which gravity acts,
although ordinary matter and fields are supposed to be
confined in four-dimensional “branes” (see Ref. [4] for a
purely classical description). This approach evokes the
Plato’s cavern allegory, because the observed physical
fields are seen just as projections (shadows) on the branes
(the cavern walls), whereas the real objects are out of sight,
living in some higher-dimensional reality (the bulk). The
unifying power comes mainly from the fact that a single
object can project different shadows onto different walls.
That is, different physics in the brane can be obtained just
by considering different projections of a single bulk object.
In our case, this object is the 5D manifold geometry

and the shadows depict the matter-energy content of the 4D
spacetime. This has been termed the spacetime-matter
(STM) approach (see [5] for a review). It has also been
implemented in cosmology, after the pioneering work of
Ponce de Leon [6] (see [7] for a review). In some of these
works, different projections of the same bulk metric

are considered [8,9], so that different FRW metrics are
obtained just by projecting onto different branes. A further
step in that direction has been taken recently [10]: when
embedding spatially flat FRW metrics in a bulk with 3þ 2
signature (timelike extra coordinate), a single bulk metric
was obtained, termed as the “mother metric” or rather
M-metric. The aim of this paper is to generalize this unifying
result to all types of spatial curvature (k ¼ 0;�1) and bulk
signature (either spacelike or timelike extra coordinate).
We will adopt a top-down approach, starting from the

natural generalization of the cosmological principle to
the five-dimensional bulk manifold. We will assume both
isotropy and homogeneity with respect to three space
coordinates (the ones that can be observed on the brane).
Moreover, we will assume that the cosmological scale
factor R is a valid time coordinate. In the 3þ 2 case, this
just amounts to a suitable coordinate choice in the time
plane. In the 4þ 1 case, this amounts to requiring that the
constant R hypersurfaces be spacelike. The cosmological
expansion will affect then all physical (timelike) observers.
With this only hypothesis, we write down in Sec. II the

general form of the 5D line element and the corresponding
field equations in the evolution formalism. The general
solution is obtained in Sec. III; it happens to be a single
metric, which we call the “M-metric” because it is the
generalization of the one previously obtained [10] in the
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3þ 2 case for k ¼ 0. Our result actually applies to all
curvature cases (k ¼ 0;�1) and for both spacelike and
timelike extra dimensions. We show that this metric has a
Killing vector, whose integral lines are orthogonal to the
R coordinate (time) lines. This means that the coordinates
in which we explicitly write down the M-metric have a
clear geometrical and physical meaning.
We study in Sec. IV different brane projections of the

M-metric, leading to different FRWmodels. Apart from the
more conventional models (open Universes starting from a
big bang), we can generate in this way some other (more
exotic) cases. In the 3þ 2 case, we can get regular Universe
models, where the big bang lies in the infinite past, or
even emergent models, starting from a quasistationary
state [11,12]. In the 4þ 1 case, we can generate smooth
signature transitions from Euclidean to Lorentzian metrics
in the brane [13,14], which can be considered as the
classical counterpart of the Hartel-Hawking “no boundary”
proposal [15]. A simple example model is presented, in the
spatially flat case, in order to visualize all the details in an
explicit way.
Finally, in Sec. V, we point out that using the expansion

factor as a time coordinate provides a direct control of the
matter-energy content in the brane, allowing us to impose
suitable equations of state. We study the case of an
equilibrium combination of matter, radiation, and cosmo-
logical constant. The explicit expression of the bulk metric
embedding is provided, modulo a quadrature. In the process,
we identify some signature restrictions: in the 3þ 2 case,
one can get this generic mixture only in the closed Universe
case (k ¼ þ1). This confirms some previous results [10], in
the sense that Campbell’s theorem [16] depends on some
assumptions that cannot be overlooked.

II. 5D COSMOLOGICAL FRAMEWORK:
EVOLUTION FORMALISM

We will consider here five-dimensional (5D) vacuum
metrics, where the extra coordinate is labeled by ψ. In our
case, where we assume homogeneity and isotropy of the
physical 3-space, this “bulk” metric would read

ds2 ¼ ϵA2ðψ ; tÞdψ2 − N2ðψ ; tÞdt2 þ R2ðtÞγijdxidxj; ð1Þ

where the three-dimensional metric γij is of constant
curvature, that is,

ð3ÞRij ¼ 2kγij ðk ¼ 0;�1Þ; ð2Þ

and ϵ ¼ �1, so that the ψ coordinate can be either spacelike
(4þ 1 case, ϵ ¼ 1) or timelike (3þ 2 case, ϵ ¼ −1).
Note that we have chosen the t-coordinate lines orthogo-

nal to the constant R hypersurfaces. This can always be
done in the 3þ 2 case, where it would be just a coordinate
choice in the ðψ ; tÞ time plane. But the 4þ 1 case requires
assuming that the resulting coordinate lines are actually

timelike. This amounts to discarding the possibility of
having a system of physical observers moving along
constant R hypersurfaces.
We will consider a slicing of the 5D manifold by the

family of constant ψ hypersurfaces (evolution formalism).
On every slice we will recover a FRW line element, namely,

−N2ðψ ; tÞdt2 þ R2ðtÞγijdxidxj ≡ gabdxadxb; ð3Þ

where a, b ¼ 1, 2, 3, 4. The corresponding extrinsic
curvature Kab can be easily calculated in our case:

Kab ≡ −
1

2A
∂ψgab ¼ −

N0

AN
uaub; ð4Þ

where the primes stand for ψ derivatives and ua is the
future-pointing time unit vector (the FRW metric four-
velocity)

ua ¼ 1

N
δaðtÞ; ð5Þ

which of course verifies

∇aub ¼
_R

NR
ðgab þ uaubÞ; ð6Þ

where the dots stand for t derivatives and ∇ is the covariant
derivative operator in the constant ψ slices. The energy
density ρ can be obtained directly from the Friedmann
equation:

�
_R

NR

�2

¼ ρ

3
−

k
R2

: ð7Þ

In the evolution formalism, the vacuum field equations
can be written as [17]

(i) The scalar constraint:

Ka
bKb

a − ðtrKÞ2 ¼ ð4ÞR: ð8Þ

(ii) The vector constraint:

∇b½Ka
b − trKδab� ¼ 0: ð9Þ

(iii) The evolution equations:

∂ψKa
b ¼ ϵ∇a∂bAþ A½−ϵð4ÞRa

b þ trKKa
b�; ð10Þ

where ð4ÞRab is the Ricci tensor of the FRW metric.
Allowing for the degenerate algebraic structure of the

extrinsic curvature (4), the scalar constraint amounts to

ð4ÞR ¼ ρ − 3p ¼ 0; ð11Þ
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which implies that the FRW metric obtained in every
constant ψ slice is a pure radiation metric.

III. GENERAL SOLUTION: THE M-METRIC

Let us now consider the vector constraint (9). Allowing
for (4) and (6), one gets

_RN0 ¼ 0: ð12Þ

We will not consider here the trivial case (R ¼ const), for
which every projection of the bulk metric would lead to
Minkowsky space on the brane. We will rather conclude
that N ¼ NðtÞ so that the extrinsic curvature (4) actually
vanishes, namely,

Kab ¼ 0: ð13Þ

The factor NðtÞ can be eliminated by a suitable redefinition
of the t parameter in the 5D metric (1). We get then

ds2 ¼ ϵA2ðψ ; tÞdψ2 − dt2 þ R2ðtÞγijdxidxj: ð14Þ

The evolution equation (10) reads now

1

A
∇a∂bA ¼ ð4ÞRa

b; ð15Þ

where the A derivatives are computed on the constant ψ
slices, that is,

∂aA ¼ − _Aua: ð16Þ

Allowing for (11), the Ricci tensor in the FRW slice
corresponds to the pure radiation case:

ð4ÞRa
b ¼ C

R4
ðδab þ 4uaubÞ; ð17Þ

where C is an arbitrary constant. According to the
Friedmann equation (7), the expansion factor verifies

_R2 ¼ C
R2

− k: ð18Þ

The space components of (15) can now be written in a
simple form,

_A
A
_R ¼ −

C
R3

¼ R̈; ð19Þ

which can be explicitly solved:

Aðψ ; tÞ ¼ λðψÞ _R: ð20Þ

The integration factor λ can be easily removed by a suitable
definition of the variable ψ . The remaining components

in (15) provide no additional restriction. As a result, the
general vacuum solution for the cosmological case (1) can
be written, in explicit form, as

ds2 ¼ ϵ

�
C
R2

− k

�
dψ2 −

�
C
R2

− k

�
−1
dR2 þ R2γijdxidxj:

ð21Þ

We have chosen here the ðψ ; RÞ coordinate pair, because in
this way all metric coefficients are fully specified. This
shows that the general solution (21) is actually a single
vacuum metric, which we will call the M-metric in what
follows. A single mother metric in the bulk for the full set
of embedded FRW metrics can be recovered by projecting
(21) onto different, infinitely many, 4D hypersurfaces
(branes). The particular solution for the ϵ ¼ −1, k ¼ 0
parameter choice has been recently published [10].
Let us note that the M-metric (21) has a Killing vector,

ξ≡ ∂ψ : ð22Þ

This implies that the ψ-coordinate lines have an intrinsic
geometrical meaning. On the other hand, from the physical
point of view, the time coordinate is precisely the cosmo-
logical expansion factor R. This intrinsic meaning, both
from the geometrical and the physical point of view, allows
a straightforward comparison with other forms of the same
metric, like the ones proposed in the pioneering work of
Ponce de Leon [6].

IV. NONTRIVIAL PROJECTIONS: REGULAR,
EMERGENT, AND SIGNATURE-CHANGING

UNIVERSES

We have seen that the trivial projection on ψ ¼ const
hypersurfaces leads to a pure radiation FRW Universe.
Another option is to select instead a nontrivial hypersurface
in order to get completely different FRW models. In order
to visualize the behavior of the resulting 4D projections, we
will switch to a new time coordinate, namely,

u ¼
Z

R

0

L2dL
C − kL2

; ð23Þ

so that the ðψ ; uÞ sector in theM-metric (21) gets an explicit
conformally flat form:

ds2 ¼
�
C
R2

− k

�
ðϵdψ2 − du2Þ þ R2ðuÞγijdxidxj: ð24Þ

We can consider now projections defined by different
choices of

ϕðψ ; uÞ ¼ constant; ð25Þ
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which can be visualized as curves in the ðu;ψÞ plane (see
Fig. 1). Note that in the 4þ 1 case, we must fulfill the
additional causality condition

jdu=dψ j > 1 ðϵ ¼ þ1Þ: ð26Þ

Otherwise, the projected (brane) metric would be of the
Euclidean type, instead of the Lorentzian one.
We show in Fig. 1 some qualitatively different projec-

tions. The green line in the right-hand side corresponds to a
quite standard model, defined by

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψ2 − ϕ2

q
ð27Þ

on the constant ϕ hypersurfaces. The resulting FRW
Universe shows a big bang singularity (u ¼ 0) and verifies
everywhere the causality condition (26): it will work for
both choices of the signature parameter.
A very different model is obtained by taking instead

u ¼ ϕþ 2 tanhψ ; ϕ > 2 ð28Þ

(blue line in the center). Note that this choice violates the
causality condition everywhere, so it can only work for the
ϵ ¼ −1 signature choice. This case corresponds to a regular
Universe, with no big bang singularity. It can be thought as
an approximation to some “emergent Universe,” as defined
by Ellis and Maartens [11,12]. The Universe expansion

starts here from a quasistationary state and makes a smooth
transition to another quasistationary state with a higher
value of the expansion factor.
Finally, the red line in the left-hand side, given by

u ¼ −ϕ2=ψ ; ð29Þ
corresponds also to a regular Universe, but it verifies the
causality condition only in the upper part of the plot (u > ϕ).
This is not a problem in the ϵ ¼ −1 case (ψ timelike): there
is no beginning, as the big bang singularity is just in the
infinite past limit. Although the singularity is not actually
reached, the physical conditions near there can be very close
to those just after the big bang in standard models.
In the ϵ ¼ þ1 case (ψ spacelike), however, we get a

completely different description. There is a dynamical
signature change: a smooth transition from a Euclidian
to a Lorentzian 4D metric in the brane. This change of
signature can be considered [13,14] a classical counterpart
of the Hartle-Hawking “no-boundary” proposal [15], with-
out resorting to the “imaginary time” idea. The resulting
Lorentzian (FRW) model will then show an initial singu-
larity (both density and the Hubble factor blow up) at a
finite value of the expansion parameter (u ¼ ϕ).

V. MATTER-ENERGY CONTENT ON THE BRANE:
REALISTIC EQUATIONS OF STATE

Let us consider now the general FRW line element.
Using the scale factor R as the time coordinate, and
allowing for the general Friedmann equation (7), we get

ds2 ¼ −
�
ρ

3
R2 − k

�
−1
dR2 þ R2γijdxidxj; ð30Þ

where ρðRÞ is the density, and the pressure p is given by

dρ
dR

þ 3
ρþ p
R

¼ 0: ð31Þ

We can see that the explicit form of the FRW metric is
provided just by specifying the total density on the brane
in terms of the scale factor. Allowing for (31), this can be
done by imposing any suitable equation of state. In the
barotropic case ðp ¼ wρÞ we get then

ρ ∝ R−3ð1þwÞ; ð32Þ

where w is the barotropic index.
We can compare this form of FRW metric with the

projection of the bulk metric (21) onto an arbitrary (brane)
hypersurface, given by (25). We get

ds2 ¼
�
ϵ

�
C
R2

− k

��
dψ
dR

�
2

−
�
C
R2

− k

�
−1
�
dR2

þ R2γijdxidxj: ð33Þ

FIG. 1. Timelines in the ðψ ; uÞ plane of the bulk M-metric, each
one leading to a different FRW brane projection. The big bang
singularity is here the u ¼ 0 line. The dotted line marks the unit
slope, as required from the causality condition arising in the ϵ ¼ þ1
case. The green line on the right corresponds to a standard, open big
bang model. The blue line in the center corresponds to an emergent
Universe (ϵ ¼ −1 case). The red line on the left corresponds either
to a regular FRW model, without a big bang (ϵ ¼ −1), or to a 4D
metric showing a smooth transition, at the point marked with a dot,
from Euclidean to Lorentzian signature (ϵ ¼ þ1).
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A simple calculation shows that the two metrics, (30)
and (33), match if and only if dψ=dR verifies

ϵ

��
C
R2

− k

��
dψ
dR

��
2

¼ ρR4 − 3C
ρR4 − 3kR2

: ð34Þ

At first sight, it seems that (34) guarantees that any FRW
metric can be embedded in the cosmological 5D bulk (21).
But one must pay attention to the signature restrictions
contained in (34), namely,

ϵ ¼ sgnðρR4 − 3CÞ: ð35Þ

The consequences of this restriction for a generic
mixture of adiabatic fluid components with adiabatic
indexes in the range ωmin ≤ ω ≤ ωmax are displayed in
Table I. In the 4þ 1 case (ϵ ¼ −1), there is no problem for
a generic equilibrium combination of matter, radiation, and
cosmological constant terms (with positive density values),
namely,

ρ ¼ ρmatter þ ρrad þ Λ: ð36Þ

But note that the restriction on ωmax implies that the
presence of a radiation component (or something stiffer)
is actually required. For the mixture (36) this means

3C < ρradR4: ð37Þ

The specific expression for ψðRÞ can be obtained then
from (34), modulo a quadrature.
In the ϵ ¼ −1 signature case (3þ 2 bulk manifold), we

find just the opposite situation, as the restrictions coming
from the two asymptotic regimes are incompatible (except
in the pure radiation case). Reasonable physical models
(with something more than radiation components) will
require then a closed Universe (k ¼ þ1). In this case the
only restriction will be ωmax ≤ 1

3
, which would forbid

components stiffer than radiation in the big bang regime.
These limitations go against the common belief that the

Campbell theorem [16] (see Ref. [18] for its extension to
the pseudo-Riemannian case) ensures the embedding of
any four-dimensional metric into a five-dimensional Ricci-
flat manifold, where the extra dimension can be either
spacelike or timelike. Let us stress here that what the
theorem really says is that any 4D metric can be embedded
in a 5D Ricci-flat manifold provided that the embedding

equations (8)–(10) hold at least on a single 4D hypersur-
face. Our results show that this assumption is actually not
fulfilled for the density choice (36) with the signature
combination ϵ ¼ −1, k ¼ 0;−1.

A. A big unfreeze simple model

We will here provide a simple example of a FRW model
showing a dynamical signature change. It can be obtained
from the projected metric (33), although we will consider
here for simplicity just the spatially flat (k ¼ 0) case,
namely,

ds2 ¼ −C
�
R4

C2
−
�
dψ
dR

�
2
�
dR2

R2
þ R2γijdxidxj; ð38Þ

where the energy density can be obtained by direct
comparison with the standard FRWexpression (30), that is,

3

ρ
¼ C

�
R4

C2
−
�
dψ
dR

�
2
�
: ð39Þ

The trivial ψ ¼ constant choice leads to a standard pure-
radiation model, that is,

ρ ¼ 3C
R4

: ð40Þ

A related big unfreeze model could be, for instance,

ρ ¼ 3C
R4 − R4

0

; ð41Þ

which can be obtained from the simple linear relation

dψ
dR

¼ �R2
0

C
: ð42Þ

It is clear here that a signature change will occur when
R ¼ R0. At this point, the energy density becomes infinite,
but it just marks the transition from the Riemannian to the
pseudo-Riemannian signature in the FRW projected metric
(38): the beginning of time. Of course, more sophisticated
models can be obtained from different generalizations of
the linear prescription (42). For instance, one could get
easily

ρ ¼ 3Cþ ΩRþ ΛR4

R4 − R4
0

: ð43Þ

Note that in this case the asymptotic expansion regime
R ≫ R0 is

ρ ≃
3Cþ ΛR4

0

R4
þ Ω
R3

þ ΛþOðR−7Þ; ð44Þ

so it can fit the present values of the density parameters.

TABLE I. Restrictions on the adiabatic index range from
different asymptotic regimes, for every signature choice.

Signature ϵ ¼ 1 ϵ ¼ −1

R → 0 (big bang) ωmax ≥ 1
3

ωmax ≤ 1
3

R → ∞ (open Universe) ωmin ≤ 1
3

ωmin ≥ 1
3
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VI. CONCLUSIONS AND OUTLOOK

We have found the general solution for metrics verifying
the natural extension of the cosmological principle to a five-
dimensional (bulk)manifold.Apart from the trivial case, there
is a unique solution for every curvature sign (k ¼ 0;�1)
and every signature of the extra coordinate (ϵ ¼ �1): the
M-metric (21). This metric has a Killing vector (22), and we
have used adapted orthogonal coordinates ðψ ; RÞ, where ψ is
the correspondingcyclic coordinate andR is the cosmological
expansion factor. In this way, our coordinates have a sound
geometrical and physical meaning.
We have considered the projections of the M-metric

onto space-homogeneous four-dimensional hypersurfaces
(branes) in order to recover FRW metrics. The use of R as
the time coordinate in the brane allows one to express the
generic FRW metric directly in terms of the matter-energy
density (30). This is crucial for controlling the equation of
state of the resulting projection. We have studied the case
of a generic (equilibrium) mixture of matter, radiation, and
cosmological constant. We have provided, modulo a
quadrature, the transformation ψðRÞ, allowing us to recover
the corresponding metric for both signature combinations
(ϵ ¼ �1) in the closed Universe case (k ¼ þ1). In the open
case (k ¼ 0;−1), we have shown that, apart from the pure
radiation case, the generic combination can be obtained
only when the extra coordinate ψ is spacelike.
The ðψ ; RÞ plane in the bulk happens to be a powerful

tool for devising the evolution properties of the resulting
projected spacetimes: one only has to select a suitable time
curve, which will be kept as the physical time coordinate in
the brane. We have shown how to obtain by this method
some FRW regular solutions, evolving from the infinite
past (no big bang), that could be useful to deal with the
cosmological horizon problem. These are regular FRW
models in standard general relativity: there is no need to
recur to alternative theories in order to get these appealing
cosmological models. We have also seen how to obtain in
this way models that approach some instances of the well-
known emergent Universe inflationary models [11,12].
In the 4þ 1 case, where the extra coordinate is spacelike,

we have identified the causality condition (26) which
ensures that the projected (brane) hypersurface is of
Lorentzian type. When violated, the projection leads to a
Euclidean 4D manifold, with no time dimension. We can
take advantage of this in order to get Universe models
showing a dynamical signature change: a smooth transition
from a Euclidian to a Lorentzian 4D metric. This change of
signature was proposed by Hartle and Hawking in the
quantum cosmology context in order to avoid imposing any
initial boundary condition: the wave function could then
oscillate in the Lorentzian domain and get exponentially
damped in the Euclidean one. In the purely classical
context, it has been suggested that the bulk-brane paradigm
could lead to this signature change in a natural way: a
perfectly smooth solution in the bulk leading to a 4D

signature-changing metric in the brane projection [13,14].
The bulk solution, however, was not clearly identified: a
bottom-up approach was used, assuming the compatibility
of the Euclidean and the Lorentzian parts embedding. We
have rather used a top-down approach, starting from the
bulk M-metric (21), and providing explicit expressions for
the projection process. The resulting FRW model shows an
initial singularity (density blowing up) at a finite value of
the scale factor R. This has been termed as the “big freeze”
singularity type [19] because it has been associated with the
final stage of cosmological evolution, as an alternative to
the “big rip” [20]. This term is misleading in our case,
where we could rather use the term “big unfreeze” for this
singularity, as it is produced just by the beginning of time,
without affecting space geometry. We have shown an
explicit example, in the spatially flat case, arising from a
simple linear prescription for ψðRÞ, which can be easily
altered in order to get more sophisticated models, that can
fit the present values of the density parameters.
As a final remark, let us point out that having the

cosmological bulk metric (21) in a fully explicit form can
open the door to new advances in some related fields. For
instance, a semiclassical Kaluza-Klein approach to cosmol-
ogy would clearly benefit from the uniqueness of the
spacetime background: any result obtained from the vacuum
line element (21)would allowus to drawgeneral conclusions,
valid beyond any particular case. This can be important in
the study of perturbations that can lead to structure formation.
In a 4þ 1 context, the inhomogeneous perturbation could in
principle propagate through the extra space dimension,
affecting the power spectrum, which will depart from the
one derived from the standard 3þ 1 calculations. The usual
recipe to deal with that problem is to consider the extra space
direction to be compact. A simple look at Fig. 1 shows,
however, that the timelines are not periodic, so one cannot
assume that the Ψ coordinate is compact. But note that the
coordinate freedom in the bulk allows one to move from the
ðΨ; RÞ coordinates (R defining the expansion time) to some
other ðΦ; tÞ coordinates, where t will be the coordinate
adapted to the selected physical timeline, defined then by
ΦðΨ; RÞ ¼ constant. The natural choice will be to compac-
tify precisely thisΦ space coordinate, orthogonal in the bulk
to the physical timelines. In this way, the choice of the special
(compact) space coordinate amounts to the choice of the
corresponding (orthogonal) timeline in the bulk, which will
lead to a specific FRWmodel in the brane. For more potential
applications, see, for instance, Ref. [7].
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