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We provide a new interpretation for the Bayes factor combination used in the Dark Energy Survey (DES)
first year analysis to quantify the tension between the DES and Planck datasets. The ratio quantifies a
Bayesian confidence in our ability to combine the datasets. This interpretation is prior dependent, with
wider prior widths boosting the confidence. We therefore propose that if there are any reasonable priors
which reduce the confidence to below unity, then we cannot assert that the datasets are compatible.
Computing the evidence ratios for the DES first year analysis and Planck, given that narrower priors drop
the confidence to below unity, we conclude that DES and Planck are, in a Bayesian sense, incompatible
under ΛCDM. Additionally we compute ratios which confirm the consensus that measurements of the
acoustic scale by the Baryon Oscillation Spectroscopic Survey (BOSS) are compatible with Planck, while
direct measurements of the acceleration rate of the Universe by the Supernovae and H0 for the Equation of
State of Dark Energy Collaboration (SH0ES) are not. We propose a modification to the Bayes ratio which
removes the prior dependency using Kullback-Leibler divergences, and using this statistical test we find
Planck in strong tension with SH0ES, in moderate tension with DES, and in no tension with BOSS.
We propose this statistic as the optimal way to compare datasets, ahead of the next DES data releases,
as well as future surveys. Finally, as an element of these calculations, we introduce in a cosmological
setting the Bayesian model dimensionality, which is a parametrization-independent measure of the number
of parameters that a given dataset constrains.
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I. INTRODUCTION

The analysis of the first year of data from the Dark
Energy Survey [1] (henceforth DES Y1) has generated
considerable discussion. DES Y1 analyzed data from
cosmic shear, galaxy clustering, and galaxy-galaxy lensing
(an analysis they refer to as “3x2” since it combines three
two-point functions). This data combination is particularly
suited to constraining the present-day matter density Ωm
and the parameter σ8, defined as the present-day linear
theory root-mean-square amplitude of the power spectrum
of matter fluctuations, averaged in spheres of radius
8 h−1Mpc, where h is the Hubble constant in units of
100 km s−1Mpc−1. Before the publication of DES Y1,
this parameter combination measured by weak lensing had
already generated controversy, with claims of tensions with
respect to the cosmic microwave background (CMB)

values measured by Planck [2] by both the CFHTLenS
and Kilo Degree Survey (KiDS) collaborations [3–5].
While this discrepancy has led to claims of new physics
[6], it has also highlighted unknown problems in weak
lensing analyses that have reduced these tensions to below
significant levels [7–9].
DES Y1 obtained results that appear to be in mild

tension with Planck (see Fig. 10 of DES Y1), but are
reported to be perfectly consistent according to the
evidence ratio statistic1 R used in their analysis to quantify
the degree of discordance between 3 × 2 and CMB data.
While this R statistic was proposed some time ago [10],
and supported since then by many cosmologists [11–15],
it is particularly relevant to consider its precise interpre-
tation in light of present and future tensions arising
with increasingly powerful datasets providing ever more
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1Here R refers to the Bayes factor combination used in DES
Y1 to compare different datasets, not to the Bayes ratio used to
compare models.
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precise parameter constraints. Other measures of tension
between datasets have been proposed in the past [16–26].
A summary of a lot of these methods can be found in [27].
In this paper we argue that R is an appropriate measure of

tension, quantifying the Bayesian degree of confidence in
the ability to combine the data. However, R has some subtle
prior-dependent properties, which has led to its misuse in
previous works. We explain these properties and provide
Bayesian methods to correctly calibrate the scale on which
it sits. We also propose an alternative statistic that preserves
the desired properties of R to compare different datasets,
including its Bayesian nature, but does not suffer from
undesired prior dependences.
The tension between weak galaxy lensing and Planck is

not the only existing tension in cosmology. Measurements
of the expansion rate of the Universe parametrized by the
Hubble constant H0 using type Ia supernovae calibrated by
the period-luminosity relation of Cepheids and local dis-
tance anchors by the SH0ES Collaboration [28,29] are in
tension with the Planck value inferred from the CMB using
a ΛCDM cosmology [2]. We use this case as an example of
clear tension between experiments. Conversely, the mea-
surements of the baryon acoustic oscillation (BAO) scale
and redshift-space distortions (RSD) by BOSS [30] pro-
duce values of the parameters Ωm and σ8 that are in good
agreement with Planck. We use this case as an example of
no tension between experiments.
The paper is structured as follows: In Sec. II we briefly

review the key Bayesian theory and establish notation. In
Sec. III we define the logarithmic Bayes and information
ratios logR and log I and present our new Bayesian
interpretation of logR. In Sec. IV we examine analytic
examples to aid intuition on the properties of the Bayes and
information ratios. In Sec. V we apply our techniques to
cosmological datasets, with our key results reported in
Table II. We conclude in Sec. VI.

II. BACKGROUND

In general we use the following notation for the
quantities in Bayes’s theorem:

PðθjDÞ ¼ PðDjθÞPðθÞ
PðDÞ ⇔ PDðθÞ ¼

LDðθÞπðθÞ
ZD

;

namely, the posterior P, likelihood L, prior π, and evidence
Z. We will retain dataset dependence as a subscript and in
general will suppress explicit dependency on θ except
where its presence increases clarity. Furthermore there is a
suppressed explicit model dependence, which is taken to be
ΛCDM for our cosmological examples.

A. Bayesian evidence

Throughout this paper the Bayesian evidence Z,
defined as

ZD ¼
Z

LDπdθ; ð1Þ

will play a key role. Also known as the marginal likelihood
[11], the evidence is a key element of model comparison,
and may be computed analytically in some rare cases, but is
usually evaluated using a Laplace approximation [31],
Savage-Dickey ratio [32], or better still with numerical
evidence calculators such as MCEvidence [33,34] or
nested sampling [35–40].

B. Kullback-Leibler divergence

The Kullback-Leibler divergence [41] is defined as

DD ¼
Z

PDðθÞ log
PDðθÞ
πðθÞ dθ ¼

�
log

PD

π

�
PD

; ð2Þ

which quantifies the information gain/compression between
prior and posterior and has been used by numerous authors
[18,19,42–50]. The angular brackets hfip in the rightmost
expression of Eq. (2) denote the average of f over the
distribution p.

C. Bayesian model dimensionality

We define the Bayesian model dimensionality [51] as

d̃D
2

¼
��

log
PD

π

�
2
�

PD

−
�
log

PD

π

�
2

PD

: ð3Þ

The quantity log½PDðθÞ=πðθÞ� is the Shannon information
[52] provided by the posterior relative to the prior at
parameter θ, measured in natural bits (nats). As can be
seen from Eq. (2), the Kullback-Leibler divergence is the
average amount of information provided by the posterior,
while Eq. (3) shows that the Bayesian model dimension-
ality is proportional to the variance of the information
provided by the posterior.
It should be noted that an earlier preprint of this paper

used an alternative definition of the dimensionality by
Spiegelhalter [53], which has several unattractive theoreti-
cal qualities when applied to significantly non-Gaussian
cases. The fundamental qualitative conclusions remain
unchanged from the initial version of this paper, and the
newer definition of model dimensionality is examined in
greater detail in [51].

D. Combining likelihoods

Independent datasets A and B are combined at the
likelihood level via LAB ¼ LALB so that

PA ¼ LAπ

ZA
; PB ¼ LBπ

ZB
; PAB ¼ LALBπ

ZAB
: ð4Þ
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ZA ¼
Z

LAπdθ; ZB ¼
Z

LBπ dθ;

ZAB ¼
Z

LALBπdθ: ð5Þ

In general, new datasets may introduce additional param-
eters, either because more cosmological parameters are
constrained or because additional nuisance parameters
associated with foregrounds or instrumentation are required
to perform inference. In general θ will be taken to be the
span of the entire parameter space of interest.
An important point, often misunderstood by professional

practitioners, is that the introduction of unconstrained
parameters should not impact proper inference. It is oft
quoted that Bayes factors (or equivalently evidences)
penalize additional parameters, but in fact Bayes factors
only penalize constrained parameters. For example, if one
were to perform a model comparison between the six-
parameter ΛCDM model and an extension to the model
which factored in the age of the cosmologist doing the
calculation, then both models would have the same
evidence value, since a cosmologist’s age is (almost)
completely unconstrained by cosmological likelihoods.
This is not a bug, but a desirable feature of Bayes factors
in their use in consistent inference. The proper Bayesian
way to deal with this apparent problem is to exclude such
trite models at the model prior level.

III. THE R STATISTIC

A. Definition and prior dependence

Given two datasets A and B, the R statistic is defined via
the equivalent expressions:

R ¼ ZAB

ZAZB
¼ PðA;BÞ

PðAÞPðBÞ ¼
PðAjBÞ
PðAÞ ¼ PðBjAÞ

PðBÞ ; ð6Þ

with all probabilities implicitly conditional on an under-
lying model (e.g., ΛCDM). A value of R ≫ 1 is interpreted
as both datasets being consistent, while R ≪ 1 means the
datasets are inconsistent. Note that while we assume that
the datasets A and B are independent, this does not imply
that R ¼ 1. Specifically, dataset independence means that
likelihoods LDðθÞ ¼ PðDjθÞ, which are probabilities con-
ditioned on θ, combine by multiplication, but evidences
ZD ¼ PðDÞ, which are likelihoods marginalized over the
prior πðθÞ ¼ PðθÞ, do not.
In the DES Y1 analysis, R is used to quantify tension,

with the Jeffreys scale used as the arbiter for whether
models are consistent or not. The interpretation on a
Jeffreys scale is somewhat unjustified, as the DES papers
do not explain which probability ratio they are placing on
the scale.
A second, arguably larger concern is that while R

satisfies many of the desiderata that one would hope for

from such a quantity (dimensional consistency, symmetry,
parametrization invariance, use of Bayesian quantities), it is
strongly prior dependent. We can render this dependency
explicit by combining Eqs. (4) to (6) yield

R ¼
Z

PAPB

π
dθ ¼

�
PB

π

�
PA

¼
�
PA

π

�
PB

: ð7Þ

Thus, R can be thought of as the posterior average of the
ratio of the other posterior to the shared prior. More
specifically, R depends on the priors set on constrained
parameters shared between likelihoods, but not on the prior
on additional nuisance or unconstrained parameters.
It should be noted that this variation is in opposition to

the usual evidence prior dependency. Namely, reducing the
widths of the prior in general increases evidence. The same
reduction of prior widths however will reduce the ratio R
and increase tension. This is easily understood, since in the
R ratio there are two evidences on the denominator with
only one in the numerator. In a Bayesian sense this is an
attractive balance—you can only evidence-hack at the
expense of tension.
It is important to note that the prior dependence of R

can only hide existent discordance; i.e., R can indicate
that two datasets are in agreement, even when they are not.
However, if R indicates that two datasets are discordant,
this should be taken seriously, since the prior volume effect
only increases the value of R.

B. Bayesian interpretation of R

An interpretation that is often posited is that R represents a
ratio of probabilities that the shared model parameters come
from different universes in comparison with the probability
that they come from the same universe. Given that evidences
are traditionally used in the context of model comparison,
this seems a natural interpretation. However, in order to
convert evidences to model probabilities, one requires model
priors and for probabilities to be conditioned on the same
dataset, which in this case is not true. Raw evidences are
probabilities of data, not of models.
A correct interpretation can be found by examining the

two rightmost expressions in Eq. (6). These expressions
show that R represents the relative confidence that we have
in dataset A in light of knowing dataset B, compared to the
confidence in A alone (and vice versa). If R > 1, then B has
strengthened our confidence in A by a factor R. If R ≪ 1,
then as Bayesians we should be concerned that there is
either a problem with the underlying model or a problem
with either or both of the datasets, and therefore avoid
combining the two.
Given this interpretation, it is important to understand the

prior dependency of R, namely, that decreasing the prior
widths on shared parameters reduces our confidence in the
ability to combine datasets.
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If a Bayesian specifies extremely wide and uniform
priors, they are saying that they a priori believe the
parameter constraints derived from a datasetD could reside
anywhere within that region. It is therefore reassuring when
two independent datasets result in constraints that are close.
We should be proportionally more reassured if our initial
prior is wider, as it is proportionally less likely a priori that
the constraints would give such good agreement.
Some practitioners might consider this prior dependency

pathological, rather than the correct behavior of such a
probability. In our experience, the primary difference
between full Bayesians and other statisticians is that a
Bayesian considers this kind of prior-dependent behavior
of the analysis a feature rather than a bug.
Given this prior dependency and its sensible interpreta-

tion, the approach we advocate is as follows:
Proposition 1. If there are any physically reasonable

priors which render R significantly less than 1, then as
Bayesians we should consider these datasets in tension.
Given that narrowing the priors decreases the value

of R, the physically reasonable priors that render the lowest
possible value of R are the narrowest priors that do not
significantly alter the shape of the posteriors. While such an
extreme strategy would provide a definitive lower bound on
R, many Bayesians would disagree with such a procedure,
as it uses a prior that depends on the posterior. In reality, the
most pragmatic approach is to choose reasonable initial
priors and then to examine the sensitivity of the conclusions
to reasonable alterations to them.

C. Information and suspiciousness

The logarithmic version of Eq. (6) for the Bayes ratio in
between two datasets A and B is defined as

logR ¼ logZAB − logZA − logZB: ð8Þ

As discussed in the previous section, the Bayesian con-
fidence R has two primary contributions, one from the
unlikeliness of two datasets ever matching (proportional to
prior) and another in their mismatch. We may quantify the
first of these via the information ratio I defined using
Kullback-Leibler divergences as

log I ¼ DA þDB −DAB: ð9Þ

The remaining part of the Bayesian confidence quantifies
the mismatch, which we term the suspiciousness S:

log S ¼ logR − log I: ð10Þ

Suspiciousness is unaffected by changing the prior widths
as long as this change does not significantly alter the
posterior, since the information ratio I and Bayes ratio R
transform similarly under prior volume alterations.

It is important to recognize that while logS is indeed
prior independent, in constructing this quantity we have
lost the probabilistic interpretation found in logR. More
care must be taken to calibrate the scale on which logS sits,
which will be considered at the end of the next section.

IV. ANALYTICAL EXAMPLES

In all of the below, for a graphical understanding, one
may substitute A ↔ Planck, B ↔ SH0ES, DES, or BOSS
and consult Figs. 1–3, respectively.
For simplicity, we consider A and B to have the same

parameters θ, although the case is easily extended to the
case where the likelihoods only share some parameters, in
which case our results depend only on those parameters that
are shared between likelihoods.

A. Top-hat example

As a simple choice, we consider a top-hat posterior over
a multidimensional region RX, enclosing a volume VX:

FIG. 1. Tension between the SH0ES and Planck datasets as
exhibited by examining the posterior parameter constraints on the
Hubble constant.

FIG. 2. No tension between BOSS and Planck datasets as
exhibited by examining the joint posterior parameter constraints
on the matter fraction and σ8.
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PXðθÞ ¼
�
V−1
X ∶ θ ∈ RX

0 ∶ otherwise
; VX ¼

Z
θ∈RX

dθ: ð11Þ

If we have a top-hat prior with volume Vπ enclosing two
top-hat posteriors PA and PB, along with their combined
posterior PAB, then

logR ¼ log I ¼ log
VABVπ

VAVB
: ð12Þ

We can see the explicit prior dependency of R with the
presence of the Vπ term. Furthermore, we see that R and I
are equal in the top-hat posterior, so that the entire
contribution to R is in information, and none in suspicion:

S ¼
�
1 ∶ RA ∩ RB ≠ ∅
0 ∶ otherwise:

ð13Þ

Thus for the uniform case there is no suspiciousness,
provided that the posteriors have any overlap region and
are thus plausibly consistent.

B. Gaussian example

We now consider a less trivial multivariate Gaussian
example [54,55]. A d-dimensional Gaussian likelihood
with peak Lmax, center μ, and parameter covariance Σ,
along with a top-hat enclosing prior over volume Vπ , has
likelihood, posterior, evidence, and Kullback-Leibler diver-
gence given by the following:

logLðθÞ ¼ logLmax −
1

2
ðθ − μÞΣ−1ðθ − μÞ; ð14Þ

logPðθÞ ¼ −
1

2
log j2πΣj − 1

2
ðθ − μÞΣ−1ðθ − μÞ; ð15Þ

logZ ¼ logLmax þ 1

2
log j2πΣj − logVπ; ð16Þ

D ¼ logVπ −
1

2
ðdþ log j2πΣjÞ: ð17Þ

Note that in the above we have removed explicit dimen-
sionality dependency from the normalization of a Gaussian
by exploiting the matrix determinant property j2πΣj ¼
ð2πÞdjΣj.
Two likelihoods A and B combine using the relations

logLmax
AB ¼ −

1

2
ðμA − μBÞðΣA þ ΣBÞ−1ðμA − μBÞ

þ logLmax
A þ logLmax

B ; ð18Þ

Σ−1
AB ¼ Σ−1

A þ Σ−1
B ; ð19Þ

μAB ¼ ΣAB½Σ−1
A μA þ Σ−1

B μB�: ð20Þ

It should also be noted that

ðΣA þ ΣBÞ−1 ¼ Σ−1
A ΣABΣ−1

B ¼ Σ−1
B ΣABΣ−1

A : ð21Þ

We therefore find

logR ¼ −
1

2
ðμA − μBÞðΣA þ ΣBÞ−1ðμA − μBÞ

−
1

2
log j2πðΣA þ ΣBÞj þ logVπ; ð22Þ

and

log I ¼ −
d
2
−
1

2
log j2πðΣA þ ΣBÞj þ logVπ: ð23Þ

We thus find that the information content can be used to
remove all of the residual prior dependence from logR,
giving a suspiciousness

logS ¼ d
2
−
1

2
ðμA − μBÞðΣA þ ΣBÞ−1ðμA − μBÞ: ð24Þ

The numerical value of the suspiciousness is determined by
the means and covariances of the posterior distributions A
and B. Under a Bayesian interpretation of the posterior, if
the “true” value of the measured parameter is θ0, then both
means are drawn from a normal distribution centered on
this value with covariance equal to their posterior covari-
ance μA ∼N ðθ0;ΣAÞ, μB ∼N ðθ0;ΣBÞ, and their difference
is drawn from a distribution centered on zero with covari-
ance equal to the sum of the underlying covariances
μA − μB ∼N ð0;ΣA þ ΣBÞ. One can see that d − 2 log S
has a χ2d distribution and that log S is typically 0� ffiffiffiffiffiffiffiffi

d=2
p

.
An overly negative value of log S indicates discordance,
and an overly positive value suspicious concordance.
More quantitatively, one can use the inverse cumulative
χ2d distribution to turn logS into the tension probability of
two datasets being this discordant by chance:

FIG. 3. Possible tension between DES and Planck datasets as
exhibited by examining the joint posterior parameter constraints
on the matter fraction and the parameter combination S8 ¼
σ8ðΩm=0.3Þ0.5.
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p ¼
Z

∞

d−2 log S
χ2dðxÞdx ¼

Z
∞

d−2 log S

xd=2−1e−x=2

2d=2Γðd=2Þ dx: ð25Þ

While this procedure is only exact for the Gaussian case,
a reasonable proposition for general posteriors would be to
compute log S numerically and then determine tension via a
χ2-like test, in analogy with the Gaussian case:
Proposition 2. If p≲ 0.05, where p is the tension

probability computed from Eq. (25); logS is computed
using numerical evidences and Kullback-Leibler divergen-
ces; and d ¼ d̃A þ d̃B − d̃AB is the Bayesian model dimen-
sionality of the shared constrained parameters computed
using Eq. (3), then the datasets should be considered in
moderate tension. If p≲ 0.003, they should be considered
in strong tension.2

For the case when the posteriors are exactly (or
extremely close to) Gaussian, the tension probability p
may be interpreted as a probability that one would observe
such a discrepancy by chance alone. In the non-Gaussian
case, p is only a rough calibration so only extremely small
values of p should be regarded with suspicion. The
suspiciousness S can be used to determine discordance if

S ≪ −
ffiffiffiffiffiffiffiffi
d̃=2

p
, and the tension probability p provides a

mechanism for putting a number on the concept of≪ in this
case. The R statistic, however, is always interpretable as a
Bayesian confidence in our ability to combine the data,
irrespective of Gaussianity.
It should be noted that many posteriors may be

Gaussianized using techniques like Box-Cox transforma-
tions [56]. These transformations are nonlinear mappings
that can transform complex posteriors into approximately
Gaussian ones by changing the parametrization, and they
have already been used in the context of cosmology
[57,58]. It can be easily proven that these transformations
preserve the value of the suspiciousness, although care
must be taken to also transform the underlying common
prior distribution appropriately (Fig. 4), and that the prior is

not significantly distorted by the Box-Cox transformation
in the region of the posterior bulk.
Our two propositions for tension quantification are in fact

related: one can think of log I as being the volume of the
narrowest prior that does not significantly impinge upon
the posterior bulk, and Proposition 2 is one method for
quantifying the qualitative statement “any reasonable prior”
in Proposition 1. Finally, the interpretation of the Bayesian
model dimensionality d̃D as the effective number of param-
eters is made clear in the Gaussian case, since d̃D ¼ d.

V. NUMERICAL EXAMPLES

We now apply our techniques to the cosmological dataset
pairings of CMB data with baryon acoustic oscillations
plus redshift-space distortions (BAOþ RSD), galaxy clus-
tering and weak lensing (3 × 2), and supernovae (SNe),
respectively. This necessitates the numerical computation of
evidences and Kullback-Leibler divergences via nested
sampling. We find that BAOþ RSD observations are fully
consistent with CMB, 3 × 2 is in moderate tension, and SNe
are in strong tension. Our results are summarized in Table II.

A. Nested sampling computation

To compute the log-evidence logZ and the Kullback-
Leibler divergence D, we use the outputs of a nested
sampling run produced by CosmoChord [59], a modi-
fied version of CosmoMC [60] using PolyChord
[37,38] as a nested sampler. For a reliable computation
of evidences and Kullback-Leibler divergences, we found
it essential to use PolyChord rather than MultiNest
[36], due to the high dimensionality of the space of
cosmological and nuisance parameters.3 Furthermore,

FIG. 4. Many non-Gaussian posteriors (left) may be “Gaussianized” (right) by using Box-Cox transformations.

2The values p ¼ 0.05 and 0.003 correspond to 2- and 3-σ
Gaussian standard deviations.

3A little-known test of the reliability of the evidence estimates
reported by MultiNest is to check whether two estimates of the
evidence (the traditional and importance nested sampling esti-
mation) agree to within the larger error bar. If they do not, then
this indicates that the ellipsoidal approximation for generating
new live points via rejection sampling is no longer valid. This
may be fixed by decreasing the value of the efficiency parameter,
with a consequent increase in run time.
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PolyChord is able to dramatically speed up nested
sampling in the context of cosmology by utilizing the
fast-slow hierarchy between nuisance and cosmological
parameters [61]. As a historical note, PolyChord was
invented as an alternative to MultiNest in the context
of the Planck Collaboration [62,63] to resolve precisely
the issues described above.
The log-evidences and KL divergences are computed

using the likelihood contours Li of the discarded points
from the trapezoidal rule,

Z ≈
XN
i¼1

Li ×
1

2
ðXi−1 − Xiþ1Þ;

D ≈
XN
i¼1

Li

Z
log

Li

Z
×
1

2
ðXi−1 − Xiþ1Þ;

d̃
2
≈
XN
i¼1

Li

Z

�
log

Li

Z
−D

�
2

×
1

2
ðXi−1 − Xiþ1Þ;

Xi ¼ tiXi−1; X0 ¼ 1; XNþ1 ¼ 0; ð26Þ

where Xi are the prior volumes of theN likelihood contours
and the ti are real random variables with probability
distribution function

PðtiÞ ¼ nit
ni−1
i ½0 < ti < 1�: ð27Þ

Here ni are the (usually constant) number of active live
points enclosed by each likelihood contour Li. To account
for the entire correlation between the random variables D
and logZ, we simulate a set of weights ftig using Eq. (27)
and compute Z, D, and d̃ from Eq. (26) using the same
weights. This process is repeated 1000 times to build up a
set of samples from the PðZ;D; d̃Þ distribution. Examples
of such distributions can be seen graphically in Fig. 5. The
log-sum-exp trick must be carefully utilized to avoid
overflow errors throughout these computations. For more
detail, consult Skilling’s original nested sampling paper
[35]. Code to compute these quantities is now publicly
available as part of the anesthetic pip-installable
PYTHON package [64].
For our final runs, we used the CosmoChord settings

nlive ¼ 1000, nprior ¼ 10000, with all other settings left
at their defaults for version 1.15. It is worth remarking
that run-time is linear in the number of live points, and
that PolyChord (in contrast to MultiNest) can
function with extremely low numbers of live points.
For low-resolution testing purposes, nlive can be set as
low as 10, which proves invaluable in the initial explor-
atory stages of a project when publication-quality runs
are not essential.

B. Cosmological likelihoods

For CMB observations we use the publicly available
Planck 2015 TTþ lowlþ lowTEB likelihoods4 [67]. For
BAOþ RSD observations we use the 6DFþMGS BOSS
DR12 final consensus data [30,68,69]. For 3 × 2 data, we
use the 1 year final DES dataset [1]. Finally, for SNe data
we use a Gaussian likelihood on the Hubble parameter with
mean and width indicated by the latest SH0ES con-
straints [29].
We follow the notation and parametrization detailed in

the respective likelihood papers, and we direct readers to
those for further information on the meaning and notation
of parameters.

C. Priors

To demonstrate the prior dependencies of logR and
logS, we choose three priors. The first is the default prior
provided by CosmoMC. Note that this prior is not a trivial
top-hat box prior, since CosmoMC places a model-depen-
dent prior on the parameter space by eliminating regions
that are unphysical. This nontrivial shape is shown in
Fig. 6. We compare the default with two alternative prior
choices; a “narrow” box centered on the posterior mean
of Planck, with widths extending to 5σ of the Planck
posterior, and a “medium” box designed to encompass the
DES posterior while being a little narrower than the default.
The narrow prior is arguably rather tight, but is chosen as
the other extreme end of prior choice from the default prior
to emphasize the prior dependency of the R statistic. It is
worth noting that there is nothing particularly special about
the choice of prior provided by the CosmoMC default,
which could easily be narrowed or widened without a great
deal of consensus objection.

D. Posteriors

The posterior on the Hubble parameter for SH0ES and
Planck produced by PolyChord is shown in Fig. 1. By
eye it is clear from the individual posteriors that the
inferences on the value of H0 are incompatible and that
the combined posterior cannot be trusted.
For BOSS and Planck, we show the marginalized

posterior on the two parameters σ8 and Ωm in Fig. 2.
Here there is significant overlap between the two-dimen-
sional marginalized posteriors, and the combined posterior is
valid. Note that they do not lie precisely on top on each other,

4At the time of writing this article, the Planck 2018 likelihoods
[2] were not publicly available. The main difference between
the Planck 2015 and 2018 parameters values is the constraints in
the optical depth to reionization τ, that change from τ ¼ 0.078�
0.019 [65] to τ ¼ 0.055� 0.009 [66]. Because this paper is
focused on the tension reported in [1], which uses the Planck
2015 likelihood, including their value of τ, we do not impose
any priors on this parameter and simply use the Planck 2015
likelihood.
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which is in itself reassuring as otherwise the datasets would
be suspiciously in agreement (and would usually indicate an
overestimate of the errors or biases in the analysis).
For DES and Planck, we show the marginalized pos-

terior for two parameters similar to those used in the BOSS
case. In this case the situation is less clear, with a large

proportion of the marginalized posterior bulk in disagree-
ment, but with a small degree of overlap. If one looks at
other parameter combinations, the tension becomes better
or worse, and indeed it is possible to consider situations
where there appears to be excellent overlap in every pair of
parameters. However, it should be noted that since tension

FIG. 5. Log-evidence logZ and Kullback-Leibler divergence D calculations for all datasets and priors considered in this paper. The
figures show the numerical values for the log-evidence and Kullback-Leibler divergence for the likelihoods described in Sec. V B under
the default and narrow priors summarized in Fig. 6, with red representing results for the default priors, orange medium priors, and blue
narrow priors. One can see that narrowing the prior increases the log-evidence and reduces the Kullback-Leibler divergence, but that
logZ þD remains constant to within error. It should also be noted that the errors in estimating logZ and D are strongly correlated.
These errors arise from the uncertainty inherent in nested sampling’s estimate of the volume compression of each likelihood contour and
influence both quantities in the same manner. It should be noted that the parameter combination that we are most interested in estimating
(logZ þD) has the lowest error in its estimation.

WILL HANDLEY and PABLO LEMOS PHYS. REV. D 100, 043504 (2019)

043504-8



is a parameter invariant notion, if one can resolve a
significant tension in any parameter combination, then this
indicates significant discordance that cannot be removed.
A toy example of such a posterior is shown in Fig. 7.
The advantage of building a general dimensional para-
metrization-independent prescription to quantify tension is
that one can detect discrepancies even if none of the
traditional parameters shows obvious tension in its mar-
ginalized plot.

E. Evidences and Kullback-Leibler divergences

The numerical evidences and Kullback-Leibler diver-
gences computed from runs produced by PolyChord
using the technique described in Sec. VA are reported
in Fig. 5.

The first thing to note is that nested sampling does not
produce an exact value for the evidence and KL divergence,
but instead produces a correlated probability distribution.
The correlation is negative, since the dominant error in the
evidence estimate is associated with the cumulative Poisson
noise in estimating the prior volume contraction at each
iteration, and this error contributes equally to both the
evidence and KL estimates. Note however that this is
advantageous when we wish to compute the logS ratio,
since the error is minimal for the parameters’ contribution
logZ þD, as these prior volume errors cancel out to a large
extent.
The second observation that should be made is that as we

adjust the priors, the log-evidences increase as the normali-
zation of the prior changes, the Kullback-Leibler divergences
decrease since there is less compression between prior and

FIG. 6. The three priors used throughout Sec. V. The priors provided to CosmoMC are shown in the upper right table. These construct
an approximate box-prior on the six cosmological parameters. Two of the cosmological parameters are shown in the triangle plot, and
indeed a box prior can be seen on the ns parameter. The Ωbh2 prior is not a simple top-hat prior on account of the fact that CosmoMC
discards unphysical parameter combinations at the prior level. The remaining parameters are “derived parameters” and in general will
not have box-priors, as can be seen in the ðH0;Ωbh2Þ plot.
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posterior, but the combination logZ þD remains approx-
imately constant.

F. Bayesian model dimensionalities

The Bayesian model dimensionality for ΛCDM is
detailed for each dataset and prior in Table I. As this is
the first time such quantities have been utilized in a
cosmological setting, they are worthy of some discussion.
First, the model dimensionality of the Planck dataset

remains stable at d̃Planck ≈ 15 for all priors. While the
Planck 2015 temperature likelihoods nominally have 21
parameters (6 cosmological and 15 nuisance), only a subset
of the nuisance parameters are constrained by the data,
as can be seen in Fig. 8. The fact that this dimensionality
remains constant for all prior choices is due to the fact that
the priors enclose the Planck posterior bulk in all
three cases.
Second, in analogy with Planck, the DES Y1 data have a

dimensionality of d̃DES ≈ 11. As can be seen in Fig. 9, most
of the 20 nuisance parameters and some of the 6 cosmo-
logical parameters are unconstrained. Quantifying the

dimensionality in this case is made yet harder by the fact
that unlike Planck, the DES Y1 survey best constrains a
nontrivial combination of the sampled parameters (e.g., σ8).
It is for this reason that it is essential to have a para-
metrization-independent measure of the dimensionality of
the constrained parameter space, such as that provided by
the Bayesian model dimensionality. Additionally, unlike
Planck, for DES there is a slight prior dependence of the
dimensionality for the narrow priors. This can be under-
stood by the fact that the narrow priors cut a little into the
DES posterior, effectively rendering some parameters less
constrained relative to the wider prior.
This prior dependency is also mirrored in the SH0ES and

BOSS datasets, although less trivially. For default and
medium priors, the dimensionality d̃SH0ES ¼ 1 reproduces
the correct dimensionality given that the likelihood is only
a Gaussian on the Hubble parameter. The fact that this rises
to d̃SH0ES ¼ 2 for the narrow prior is as a result of a
nontrivial degeneracy that emerges for narrow priors in the
combination of (H0;Ωch2), meaning that the tension
constraint of SH0ES generates an artificial constraint on
Ωch2. The dimensionality of BOSS is yet more complicated,

TABLE I. Bayesian model dimensionality of ΛCDM for all datasets and priors considered in this paper, calculated using Eq. (3).

Prior SH0ES BOSS DES Planck SH0ESþ Planck BOSSþ Planck DESþ Planck

Default 0.93� 0.03 2.95� 0.07 14.01� 0.32 15.84� 0.38 15.98� 0.37 15.89� 0.36 25.89� 0.63
Medium 0.98� 0.03 3.79� 0.09 13.35� 0.31 15.89� 0.38 15.09� 0.35 16.38� 0.37 26.10� 0.65
Narrow 1.68� 0.03 1.40� 0.02 10.89� 0.24 15.96� 0.37 15.72� 0.37 15.69� 0.37 25.69� 0.62

FIG. 7. Hidden tension in a multivariate Gaussian. By eye, the three-dimensional posterior on the left seems to be in reasonable
agreement. The one- and two-dimensional marginalized posteriors are clearly consistent. However, upon making the linear
transformation indicated on the right, it is clear that the posteriors are in fact disjoint. Such issues become harder in higher-
dimensional posteriors and demonstrate the importance of parametrization-independent measures of tension such as those that we
demonstrate here.
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but consistent with the degeneracies between its likelihood
and our prior choice.
Finally, the combined dimensionalities d̃ ¼ d̃A þ d̃B −

d̃AB are detailed in the penultimate column of Table II.
These show the number of constrained parameters that the

datasets have in common, and we can see that DES and
Planck share between 1 and 2.5 constrained parameters
depending on the prior chosen.
In conclusion, there is a rich structure in Bayesian model

dimensionalities, and it is our hope that Bayesian model

FIG. 8. One-dimensional marginalized default prior (black) and Planck posterior (red). The Bayesian model dimensionality of
d̃Planck ≈ 16 is reflected by the fact that only a subset of the nuisance parameters is constrained by the data.

FIG. 9. One-dimensional marginalized default prior (black) and DES Y1 posterior (red). The Bayesian model dimensionality of
d̃DES ≈ 14 is reflected by the fact that only a combination of the cosmological parameters and a subset of the nuisance parameters are
constrained by the data.
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dimensionality becomes more widely used in cosmological
inference.

G. Ratios

We present our key numerical results for the Bayes ratio
R and tension probabilities p in Table II.
First, we find that logR > 0 for all priors considered for

the BOSSþ Planck combination, indicating that BAOþ
RSD datasets are consistent with CMB. More precisely,
knowledge of the BOSS dataset boosts our probabilistic
confidence in the CMB data by a factor∼500 for the default
priors, or ∼16 for the narrow priors. We find that log S is
positive and around zero, with a corresponding tension
probability p ≫ 5%. One should note that logS and p are
not quite prior independent since the narrowed priors
impinge somewhat on the posterior bulk of the BOSS
dataset.
Second, for SH0ESþ Planck, we find that logR < 0 for

all priors, with our confidence in CMB data dropping in
light of knowing the SNe data for all choices of prior,
indicating inconsistency. This is also reflected in the
tension probabilities, which indicate p ∼ 0.3% probability
of getting such inconsistency by chance.
Finally, for DES data, the default priors show R ∼ 20,

while the narrow priors give R ∼ 0.1. Under Proposition 1,
given that there are some priors which indicate a reduction
in confidence in CMB data in light of 3 × 2 data, we should
therefore not regard the datasets as being consistent.
Considering the tension statistic, there is a roughly 2%
probability of getting such an inconsistency by chance
alone. We would therefore consider DES data to be in
moderate tension with Planck.

H. Comparison with the DES analysis

It should be noted that our conclusion of moderate
tension between DES and Planck is in contradiction to that
presented in DES Y1. In DES Y1, they compute R ¼ 2.8

and therefore conclude that there is no tension with CMB
data. Hence the datasets are safe to use in conjunction with
one another. Aside from a consideration of the precise
meaning of R, which is the focus of the first three sections
of this paper, there are several issues with their analysis.
First, they do not report the errors arising from computing
this quantity via nested sampling. Given that they in general
use similar settings to ours, it is conceivable that their value
of 2.8 is close to being consistent with R ¼ 1. Second, they
use MultiNest to compute this statistic, which renders
the value of R that they compute unreliable. Third, they
give no consideration to the prior dependency of the R
statistic or to the fact that a small adjustment to their priors
would have generated R < 1. While this dependency is
undesirable for some analysts, it should be noted that
consistent datasets (e.g., BOSS and Planck) in general
should have R ≫ 1, independent of prior choice.

VI. CONCLUSION

In this paper, we examined the Bayes ratio statistic used
by DES to quantify the tension between potentially
discordant datasets. We provided a novel interpretation
of this statistic as a Bayesian quantification of our con-
fidence in our ability to combine the datasets. It represents
the factor by which our degree of belief in a dataset is
strengthened in light of having incorporated the informa-
tion provided by another dataset. We explain why this
number is prior dependent, and under Proposition 1 say that
if there is any reasonable prior choice which brings the
factor to less than unity, then the datasets should be
considered discordant.
For those who mislike the prior dependency of the Bayes

ratio, we provide a method of calibrating the statistic using
Kullback-Leibler divergences. Inspired by the Gaussian
case, Proposition 2 provides a Bayesian tension probability,
akin to the frequentist p-value statistic. As discussed in the
Introduction, there are several alternative methods for

TABLE II. Comparison statistics. The values of logR and log I are computed via Eqs. (8) and (9), using the evidences and Kullback-
Leibler divergences reported in Fig. 5. The suspiciousness statistic is simply log S ¼ logR − log I. d̃ is the Bayesian combined model
dimensionality from Eq. (3), detailing the number of shared constrained parameters between the datasets, and p is the tension probability
computed from Eq. (25). One can see explicitly the prior dependency of logR and log I, and how this is removed/reduced in log S and p.
In both the Bayes ratio logR via Proposition 1 and the tension probability p via Proposition 2, we find that the data show no tension
between BOSS-Planck, moderate discordance between DES-Planck, and strong discordance between SH0ES-Planck.

Dataset Prior logR log I log S d̃ pð%Þ
BOSS-Planck Default 6.30� 0.29 6.18� 0.29 0.11� 0.11 2.91� 0.51 42.66� 4.28

Medium 4.51� 0.28 4.06� 0.28 0.46� 0.12 3.30� 0.55 55.12� 4.47
Narrow 1.30� 0.23 0.69� 0.22 0.61� 0.12 1.67� 0.54 77.12� 14.10

DES-Planck Default 2.88� 0.35 6.15� 0.34 −3.28� 0.16 3.97� 0.82 3.23� 1.00
Medium 0.51� 0.34 4.00� 0.34 −3.49� 0.16 3.13� 0.81 2.04� 0.79
Narrow −1.88� 0.29 0.90� 0.29 −2.78� 0.16 1.15� 0.77 1.44� 0.91

SH0ES-Planck Default −2.03� 0.29 1.96� 0.28 −3.99� 0.12 0.78� 0.52 0.25� 0.17
Medium −2.50� 0.28 1.56� 0.28 −4.06� 0.11 1.77� 0.51 0.56� 0.24
Narrow −2.00� 0.23 1.43� 0.23 −3.43� 0.12 1.92� 0.52 1.17� 0.45
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quantifying tensions in the literature, but we claim that this
is the only method that preserves all the desiderata of the
Bayes ratio, while remaining insensitive to prior volume
effects.
We applied these new techniques and interpretations to

CMB data from Planck combined with the 3 × 2 data from
DES, the BAOþ RSD data from BOSS, or the SNe data
from SH0ES. Our technique confirms the consensus view
that in comparison with the CMB, there is strong tension
with SNe, moderate tension with 3 × 2, and no tension
with BAOþ RSD.
We believe that the R statistic is a valuable one for the

community to use to compute tension between datasets, but
that care must be taken with its interpretation. We hope that
these considerations will be taken into account in future
DES releases.
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