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The effective field theory (EFT) of preheating with scalar fields implies three types of derivative
couplings between the inflaton and the reheating field. Two of these couplings lead to scales below which
only one of the two species appear as the low energy modes. In this paper, the variety of low energy regimes
in terms of the species they accommodate are explored by studying the scales introduced by the derivative
couplings and the dispersion relations they lead to. It is noted that the EFT of two scalar fields can give rise
to nontrivial sound speed for both the inflation and reheating sector, even at scales where the modes of both
species propagate freely, suggesting the presence of additional heavy fields. The regimes where one of the
species affects the dispersion relation of the other while not appearing as an effective mode itself are named

as “hidden regimes” during preheating.
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I. INTRODUCTION

In single field inflation, only one type of field, the
inflaton, dominates the overall energy momentum density
of the Universe. At the background level, this field has
some time dependence which leads to a time dependent
cosmological background H(t). This background will not
remain invariant under time diffeomorphisms. However,
the time diffeomorphisms are a symmetry of the action. On
such a time dependent background, there exist modes of a
physical scalar perturbation, which transform nonlinearly
under further time diffeomorphisms, making sure that the
action itself remains invariant. These scalar modes are the
inflationary scalar perturbations, observed as temperature
fluctuations in the cosmic microwave background (CMB).
They lead to formation of protogalaxies in the early
Universe, on an otherwise homogeneous background.
The present day Universe is filled with many other types
of matter, such as the particles of standard model, dark
matter, and dark energy. These correspond to perturbations
of different types of matter fields, not all of which are
scalar. It is an open question to understand how and when
these fields start playing an important role in the Universe
over time. It could be that a number of fields, nontrivial
kinetic terms, or nonminimal couplings are responsible for
the underlying mechanism of inflation itself. While these
cases are being more and more constrained by observations
within a window of time during inflation [1], trying to
understand couplings of the inflaton to other species is what
is at hand for understanding the passage to other matter
sources that are present in today’s Universe. It is likely that
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perturbations of noninflationary species begin to populate
the Universe after the end of inflation rather than during [2].

The period of inflation corresponds to an accelerated
expansion, with a weakly time dependent background
H (1) that resembles the approximate de Sitter spacetime.
Single field inflation ends when the Hubble parameter
drops below the mass of the inflaton field my, H;(ten) <
my. At times of order m,t > 1, the Friedmann equations
give a matter dominated solution with oscillatory correc-
tions whose frequency is set by the mass m. This era is
referred to as preheating, during which the time depend-
ence of the background H ,(t) is strong. This time depend-
ence works into the couplings of the inflaton field with
perturbations of other species and leads to their resonant
growth, leading to a more efficient production of the
reheating modes compared to perturbative decay alone
[3]. At the end of this intermediate stage, the inflaton will
decay into fields lighter than itself, giving rise to a radiation
dominated phase.

In [4,5], general interactions for the perturbations of the
inflaton and a scalar reheating field were studied during
preheating with effective field theory (EFT) methods. It
was noticed that studying these perturbations during
preheating without addressing the dynamics that can give
rise to the background H () in the fashion of the EFT of
quasisingle field inflation [6] gives more insight than an
EFT for the dynamics of the two species, which have been
rather useful in the case of inflation [7,8]. In this EFT
approach, being associated with the species that drives the
time dependence of the background, scalar inflationary
perturbations 5¢” are Goldstone modes that nonlinearly
realize time diffeomorphism invariance while reheating

© 2019 American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.043503&domain=pdf&date_stamp=2019-08-01
https://doi.org/10.1103/PhysRevD.100.043503
https://doi.org/10.1103/PhysRevD.100.043503
https://doi.org/10.1103/PhysRevD.100.043503
https://doi.org/10.1103/PhysRevD.100.043503

GIZEM SENGOR

PHYS. REV. D 100, 043503 (2019)

sector is introduced as an unspecified scalar perturbation y.
This difference in their nature leads to different interactions
for the different species. How the background behavior
H (1) enters the quadratic self couplings of each species
determines the resonant particle production, and the hier-
archy H () < m, between the background scales leads to
hierarchies among the scales important for the dynamics of
the perturbations [4].

In addition to interactions that lead to particle produc-
tion, the EFT of preheating involves three different types of
derivative couplings among the inflationary and reheating
perturbations. The focus of this work are these derivative
interactions. In the first work to address derivative cou-
plings of the inflaton and a scalar reheating field, through
an analysis of instability bands, it was observed that the
derivative coupling of interest does not promise very
efficient production of reheating modes [9]. Among the
three derivative EFT couplings, two of them describe
energy scales. On a complimentary line to the conventional
analyses of instability bands, the main effort of the present
work is to understand which of the two species of
perturbations occur as the effective degree of freedom
(d.o.f.) at what scales, by considering nonrelativistic limits
and using the methods of [10]. The conclusion is that,
with interactions of the type considered in Sec. IVA, the
effective lowest energy modes are the inflaton modes. For
these type of couplings, the reheating perturbations work to
adjust the dispersion relation of the inflaton rather than
being present themselves. This suggests that the role of the
reheating sector here is to assist the inflationary sector
rather than being likely to be produced. The low energy
regime of these couplings are named as the regime of
hidden preheating, in the sense that the presence of the
reheating field is hidden. The original example of derivative
couplings falls into this category. The situation is reversed
with the reheating perturbations being the low energy
modes whose dispersion relation is adjusted by the
inflaton modes in the presence of couplings considered
in Sec. IV C. However, the couplings of Secs. IV B and
IV C give rise to further modifications in the dispersion
relation that exist even at scales where the inflaton and
reheating modes propagate freely. Similar to the polyno-
mial couplings of light fields to heavy ones giving rise to
corrections to the mass of the light fields at low energies,
derivative couplings give rise to corrections for the
dispersion relation of light modes at low scales. This
suggests that these later kind of couplings signal the
presence of more fields that are actually present and interact
with the inflaton and the reheating sectors, but who are
themselves too heavy to appear as propagating d.o.f.

The text is organized as follows. The effective field
theory formalism of cosmological perturbations and how
it captures preheating is reviewed in Sec. II. Section III
together with the Appendix review the general properties of
the preheating background H,(t) and scales associated

with important processes in the EFT. The main conse-
quences of the derivative couplings are explored in
Secs. IV, and V summarizes the main results.

II. REVIEW OF EFT OF COSMOLOGICAL
PERTURBATIONS

Consider cosmological backgrounds as determined by
the behavior of the Hubble parameter, H (), at each epoch.
From inflation to dark energy domination, each one of the
cosmological backgrounds possesses a time dependence of
a different strength. From the pursuit of particle physics,
some field content that contributes as the energy momen-
tum source will be responsible for this time dependence.
The inflaton, ¢ (), for example, is one such field that
contributes as a homogeneous scalar source during and at
the end of inflation. The Hubble parameter is related to the
field content through the Friedmann equations, which in the
case of a single scalar field read

6m%H? = ¢ + 2V (¢hy) (1a)
2mH = —. (1b)

Due to their time dependence, such backgrounds do not
respect time diffeomorphism invariance. There exists a
scalar d.o.f. 6¢(X, t) or g°, associated with such a back-
ground, that keeps track of the difference in the rate of
expansion between two points in space depending on how
the time coordinate is defined in each point [11]. This scalar
d.o.f. transforms nonlinearly under time diffeomorphisms.
As t—f=1t+& the scalar perturbations transform
according to

Asp = —E by, (2a)

Adgny = —[290050 + Gool"]. (2b)

Equations (2) imply that the time coordinate can be
chosen such that the scalar perturbation is adjusted to appear
completely in the metric via g% or as a field perturbation 5¢,
but it can never be completely set to zero. This d.o.f. is the
Goldstone boson that transforms under time diffeomor-
phisms in such a way so that the action on the whole
remains invariant; that is, the parameter £° never appears
after a transformation.

Each epoch possesses such a Goldstone mode associated
to the type of field that dominates the energy momentum
density. The first effective field theory to generalize the
interactions of such a Goldstone mode at low energies
was developed to study violations of the null energy
condition [12]. Understanding energy transfer from the
matter source that dominates the background energy
momentum density to another matter species entails two
different scalar fields. In the early stages of preheating, the
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inflaton is the dominant field, and hence, the Goldstone
mode encodes the perturbation to the inflaton field. The
other matter source, which is considered to be another
scalar field y here, can be introduced at the level of the
perturbations alone. This difference works into the inter-
actions that can be written down for the preheating
perturbation and the Goldstone mode. y enters the action
starting from second order in perturbations, and only
inflationary perturbations contribute to ¢” at linear order.

The gauge in which the inflaton perturbation appears as
part of the metric is referred to as the unitary gauge or the {
gauge. Once this gauge is fixed, the remaining symmetries
are spatial diffeomorphisms. Because within this gauge,
time direction is fixed and will not be changed further, the
time related index zero can appear explicitly, for instance,
via ¢%. Such terms with zero indices will transform as
scalars under further spatial diffeomorphisms. By making
this choice, the temporal and spatial indices are separated.
Thus, spatial indices can also appear without accompany-
ing temporal indices, provided the terms they appear in
respect the remaining invariance under spatial diffeomor-
phims. This means perturbations to the extrinsic curvature
0K;;, which transforms as a tensor under spatial diffeo-
morphisms, can contribute starting from second order via
its trace 6K';. With these concerns, in the unitary gauge,
the most general contribution to the action from the
inflationary sector is [13]

— m3,(3H* + H)

/d X\/— [ mPlR—i—mPng

M, (t
* 22(v) (% + 1) ———

M (1)
2
24 M33(‘f)4

(g% + )oK,

(¢°+1)°

M; (1) .
—3TszﬂD5Kﬂ+--}. (3)

In the first line, the coefficients of the linear terms are
determined by demanding that variation of this action with
respect to the metric gives the Friedmann equations at zero
order in perturbations. The coefficients of the rest of the
terms, which are the higher order perturbation terms, are
undetermined. All that can be said of them in general is that
they are time dependent and their characteristics convey the
properties of the background to the level of perturbations.
These terms involve different effects, for instance, M,
introduces a sound speed for the inflaton perturbation, where
as M5 modifies the speed of propagation for the tensor d.o.f.
The action (3) as it appears includes all terms that respect the
symmetries within the unitary gauge. A specific model of
interest will involve only some of these terms.

The preheating field y transforms as a scalar under
the remaining possible spatial diffeomorphisms. It can be
added to the system with the following terms [6]:

/d“xr[ ()aﬂ 10+ 50 1) (0,2

- %T(t)xz + a4(t))(8°)(] : (4)
Here, a, introduces a sound speed in the preheating sector.
Possible effects of a, on sourcing secondary gravitational
waves, and the effects of a3 for y production through
resonance were discussed in [4]. Via 6g,,, the terms above
involve mixing between the inflationary and preheating
sectors. In addition to these, there can also be the following
voluntary contributions [6]:

Sy = / d*x\/=gp1 ()56 x + B (1)59™

+ B3(1)0% = (B3(1) + 3H(1)B3(1) )x]. (5)

Notice that these later contributions involve derivative
couplings between the two sectors. It is these terms that
we will focus on in the following.

A time diffeomorphism t — 7 = t + & performed to this
action requires the introduction of the scalar =, which
transforms as 7 — # = 7 — &, to guarantee that the param-
eter £ does not begin to appear in the action. The unitary
gauge discussed above corresponds to the gauge where z
was set to zero. Via such transformations, = becomes
explicit in the action. Following [6], as

¢ = ¢ + 2g0”8ﬂ71' + g’”’aﬂﬂauﬂ (6)
pi(t) = pi(t + ) (7)
Py = P + ¢ 0,x0,7 (8)

/d4x —g—»/d“x =9, 9)

the action for the inflationary sector becomes

/d4x\/_[ mAR — m2,(3H?(t + 7) + H(t + 7))

+mP1H(t+ﬂ)((l 7)?g% 4+ 2(1 + 7)9;mg"

my(t + x)*

+ ¢70;70;7) + T

(14 7)%g™

+2(1 4 7)9img” + g7 0m0jm + 1) + - - -],

the reheating sector takes the form
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5, - /d4x\/:§ {_ al(tz-i- )
N az(tz—l— )

I x0ux
(0% + ¢ 0,0, n)? (11)

t
- L( 2+ ﬂ)j(z +ay(t+ )y (P + g0, x0,m)|,

(12)

and the action that describes further mixings at second
order becomes

Ser = / dx/=gIpy (1 + m)(8g™ + 207 + O,nd¥ )y

(13)
+ Bao(t + 7) (8g* + 20°x + 0,204 x)(°y + 0,70"y)
(14)

+ (1 + 7) (8% + 0,m0"y) = (Ba(t + 7)
+3H(t + 7)p5(t + 7))y ). (15)

Starting from the unitary gauge, one can move to the
gauge in which inflationary perturbations appear explicitly
as o¢ through the diffeomorphism with the parameter
& = —z. The two variables 8¢ and 7 both denote pertur-
bations to the inflaton and are related to each other via

T/ . T -

/4 T

5¢:”c:

Even though the action is constructed by making a gauge
choice first, the system on the whole always respects
invariance under all of the diffeomorphisms.

Time diffeomorphims are gauge symmetries. In the
presence of backgrounds with a time dependence, there is
a divergent charge associated with them. This implies that
the global time translation invariance is also not respected
by the background. Given the isotropy and homogeneity
of the background, these diffeomorphisms can be thought of
as approximate gauge or global symmetries. Such back-
grounds, where cosmological backgrounds are included, are
said to spontaneously break time diffeomorphism invari-
ance. The scale at which the charge associated with the
global time translation invariance becomes ill defined sets
the symmetry breaking scale [10,13],

A2, = \/-2m2Hc,, (17)

- M3 . .
where c;2 =1 — o Hence, this EFT where scalar inflaton
pl

perturbations appear as Goldstone modes of nonlinearly
realized time diffeomorphisms is valid below the scale Agy,.

III. BACKGROUND AND SCALES FOR
PREHEATING

If the energy momentum density of the Universe is
dominated by a single scalar matter field, the behavior of
the Hubble parameter at the end of inflation, for times such
that 1 < myt, is

3H?, .
H,=H,(1) —Zm—(/)sm(Zm{/,t), (18)

as summarized in the Appendix. Here, m, denotes the mass
of the inflaton field, who remains to be the dominant matter
source in the early stages of preheating. At the end of
inflation, whatever may be the potential that drives infla-
tion, the inflaton field oscillates at the minimum of its
potential. By then, this potential can be approximated via

the Taylor expansion as V ~3mg¢j. The mass of the

inflaton sets the frequency of these oscillations, which start
at times when the Hubble parameter drops below the mass
of the inflaton H ,(t) < my.

Hence, during preheating, there are two scales asso-
ciated with the background, the mass of the inflaton field
my and the Hubble parameter H,. And these scales
possess the hierarchy H, < m, between each other.
This hierarchy guarantees that (18) does not describe a
background that oscillates, which would be problematic.
Instead, the preheating background resembles matter
domination with oscillatory contributions which are

suppressed by

mgy’

The background (18) fits a symmetry breaking pattern,
H<t) = HFRW(t> + HoscP(wt)’ (19)

where P(wt) can be any periodic function. This resembles
the discrete symmetry breaking pattern described for
inflation [14]. While inflation corresponds to a weak
breaking of time translation invariance and can respect
discrete time translation invariance, the strong time
dependence of H,, implies that during preheating time
translation invariance is completely broken. The
time dependence of coefficients Hppy = H,, and H,,, =

2 o . L
—%Z—Z is not weak, but it is required that this time

dependence is small compared to the scale of oscillations
w= Zm(/),
HH,
oH wH, myH

< 1. (20)

Thus, the hierarchies between scales associated with the
preheating background go as
wH,, > H,. (21)

w>H,~H,, H,>H,,,
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These hierarchies imply the following form for the
derivatives of the Hubble parameterl:
a 2
H,~—H3,

.. )
H Npr,

» H,~w?H3.  (22)

p

While there is expansion at the background, particle
production through energy transfer from the background to
the reheating field should be a local process, which respects
the conservation of total energy density. It is a process that
merely transfers energy from one species to another. This
locality is achieved by focusing on the flat space limita — 1.
This limit implies H — 0 and needs to be accompanied with
the limit mng — finite to guarantee that the combination of
scales that appear in the linear order action with dimensions
of energy density remain finite. During preheating, this limit
also implies m% H* — finite as H — 0.

The a; terms lead to particle production. In theory, all the
terms of similar dimensions in S, S, or S, are expected to
be of equal strength. In practice, some of these terms are
turned off in order to be able to focus on the different effects
one wishes to address. As the linear order action possesses
mng ~m2H?, where the similarity holds during preheat-
ing, it is natural to expect all the EFT parameters
{a;, M;, p;} to be proportional to mgllll. Since m,, is the
leading scale among the scales m, and H, associated with
the background, it can be used to adjust for the dimensions
of the EFT parameters. For example, a3 has a mass
dimension M?, while a; has a mass dimension zero. So
these EFT parameters can be approximated as

1

)7
ap ~ m_jﬁmle’ (23)

while
Lo f 24
asz ~ me]H. ( )

In general, the equation of motion for the reheating
perturbations is of the form,

Xe+oy(t)7. =0, (25)

where the subscript and tilde denote that the field has
been canonically normalized 7. = /a; + ayya’/?.

'"The dominant terms in these derivatives are H p=

(1 + cos(2myt + A))Hz,, H, =3myH} sin(2myt + A),

= 6m3 Hy,cos(2myt+A). H,= —12m4,}H2 sin(2myt). Since
we are focusing on times mgy > 1, the oscillations are frequent
enough for us to approximate H » and H, by their amplitudes.
In the main text, we also neglect the overall numerical factors
in these amplitudes. Our main objective in the next sections
will be to emphasize how the frequency of the oscillations
@ = 2my becomes explicit in the scales of the problem.

Similarly, we also absorb a factor of a® by defining

= a3z, which in return guarantees that the equation
of motion for inflaton perturbations will also be of the form
of a canonically normalized harmonic oscillator. To ease
notation in the calculations that will follow, we also define
w2 =m2— (JH* +3H) and w2 = m2 — (JH? + 3 H). For
canomcal quantization, it will be the canonlcally normal-
ized fields 7., 7. and their conjugate momenta who satisfy
the canonical commutation relations.

The frequency w, () will possess some time dependence
coming from the time dependence of a;(r).> Particle
production occurs at times when the time dependence in
w, (1) becomes nonadiabatic. This is independent from the
adiabaticity of the background H (). This time depend-
ence, and hence, y production, can be sourced purely due
to a time dependent sound speed in the reheating sector

— or it can be sourced by the couplings between

Cc, =

X a +a
the reheating sector and the background. In the later case,
particle production with constant sound speed occurs for

modes in the range [4,15],

2 <i2 [<d3—d4>2/3 S —d4]a
C)( 2 a

_ i o LMt 26
bek & C;r mé , (26)

which lies below the symmetry breaking scale.

IV. HIDDEN PREHEATING

Up to this point, we have reviewed the background
behavior and general form of interactions during preheat-
ing. Among the EFT parameters, «;(¢) controls resonant y.
production, while H(¢) and m;(z) affect the behavior of
inflationary modes. The coefficients ;(¢) denote additional
couplings between the inflaton fluctuations and y. These
kinds of interactions are unavoidable if the inflaton and
the reheat field are derivatively coupled to each other. In the
unitary gauge, these interactions are

S = [ a0 + o034
B0y = (a0 +3HOBOR, (1)

with the mass dimensions of the parameters being ;] = M>
and [,] = [#5] = M?. In the following, these interactions
will be the focus of our attention, and we will proceed in the z
gauge with

’For the canonically normalized field 7., the couplings with
the background induce the time dependent mass m2(1) =

ay()—ay(t) _ 1d1+d, | 1 (ditan)2 -
@ (DFa(l) 22,,: o 4(ai - az) . The frequency of . modes are
w? = cﬁ(l)% + .
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s — / /G (1 + 7) (8% + 2007 + B, xd¥x)y (28)
+ Ba(t + 7)(8g™ +20°7 + 0,20"7) (0% + 0,70 ) (29)
+ Bs(t + 7) (3% + 0, 70"y) — (B3(t + x) + 3H(t + )5 (1 + =) )z]. (30)

Let us begin by focusing on the renormalizable quadratic couplings,

Sy > / d*xa (B (1) (59™y — 2c7) + o) (=8¢ + 27 7) (31)
— SNBs() — Pa ()i + B3 (1)56% D — o ()i 7 (32)
+ B3(1)0ix 0 — P (t)my — (3f3H + 3B3H)my], (33)

and keeping in mind the connection,

T/ . T -
5¢ =T, = C_ —2m51H = C_ﬂ¢0 (34)

ra

Consider the terms with temporal derivatives. After canonical normalization with a; +a, = 1 and 6¢%° = ‘1-’1’0? ‘%‘,
P P
these give3
S<g)2() > /d4xa3 |:ﬁ16NC)(_C =2 —/C ﬂ— <& T+ 7. — _-ﬂc>)(c (35)
ON.. Cr Cr . H 5 (21
ﬁ )(c +2ﬂ27(_ﬂc+ﬂ ”c))(c +ﬁ3 J al)(c (36)
mp \/ —2mp1H 2H pl
Cy Cp 1H e .
_7'63)&”5 ﬂ372.|:_iﬁﬂc+ﬂc+c_”c:|lc (37)
\ /—2m H A /—Zmle n
Cp Cp
—7%%)& ———Z——(3B3H + 3f3H)m 1. |- (38)
1/—2m H 1/—2m H

Our study of the background taught us that higher derivatives on H are stronger because they involve more powers of 7.

Derivatives of H appear in S() after canonical normalization. Looking at all the terms in S(), the terms that involve the most
number of derivatives will be stronger among the terms of same order in per‘rurbations.4 For each parametrization, the strongest
terms are

3For reference, in the case where m; = f§; = 0, which would mean no derivative coupling, the constraints give SN = —%n. This
.

makes 6N . = mp 6N = VfH e~
*“This does not imply that the next order action will be stronger than the previous. For example, at third order, one has the term

Sg){ D y#yy [6]. This will involve y( "y HZ) \/ﬁ XeXe ™ m " Tl " 7.y%, where y is dimension zero, and this term is highly suppressed

via the symmetry breaking scale, compared to terms in S
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Cr H Cr .
b b——mrx, ad =2 ———=7.x.
A/ —2m§1HH A /—2m§1H
(39)
c, H . Cr ..
Pt —pr——7my, ad 2 ——=ny.
A /—2m§1HH \ /—2m§1H
(40)
. CmBB . ﬂ3czr H .
:B3' - 5 XcTes - - Eﬂc‘){c’
—2mp1H —2mp1H
_ C}Tﬂ3 (41)

Among these terms, there are the derivative couplings,5

Hi . B H . B .
7,”0)(07 7_*%)&’ 7,”0)(0’
. —ZmIZ)]H £/ —me)lHH . —2m§]H

(42)

which are of the form R 7.y, and R3z.y,.. These terms can
compete with the kinetic terms. Notice that R;; has
dimensions of energy, so it sets the energy scale for these
derivative interactions. Below the scale set by R 3, if these
derivative couplings dominate over the kinetic terms 72, y2,
the system will effectively have a single d.o.f. This is the
same situation that is addressed in [10], during inflation.
Following the same line of thought, let us consider the
consequences during preheating. For the moment, the sound
speeds c,, ¢, can be set to unity, since how they can amplify
or reduce the strength of these interactions is not the main
concern. This amounts to setting m, =0, a; = 1.

To see how the number of effective d.o.f. goes down to
being single, let us consider the quadratic Lagrangian for the
canonically normalized perturbations in the presence of
these interactions one by one. The scales involved will be
considered within the limit a — 1, keeping mng finite,
which was also meaningful for particle production purposes.

A. Hidden preheating by f,(¢)

In the presence of f; the Lagrangian becomes

L@ —/d3xa3£

1
- 272 (5i”c)2

1. 1. 1
= /d3xa3 [2)(% + 5”% - 2712(61%)2

1 1 . H
_Em)%)(g_imzzrﬂ%_ZRIFCXC_RIEﬂc)(c ) (43)

>The terms coming from metric perturbations via N can be
ignored as they are Planck suppressed at this order.

where R| = % In terms of the canonically normal-
o,

ized fields, this Lagrangian is

17. 1 .
L= /d3x§ {ﬁ% — it - ;(8,»7?6)2 + 7o — W72

1 . H
- ?(8020)2 _4Rlﬁ'c)?c + 6HRlﬁc)Zc - 2Rl ﬁﬁcic] .
(44)

The equations of motion for modes of each species are as
follows:

~ k2 ~2 ~ ~ H ~
Kok + ;‘i‘mx(f) Tek = Ry | =27 + 3H_ﬁ Rek |

(45)

~ k2 ~2 ~
ﬂck+ ;—’_mﬂ(t) Tk

) R, H
=R, |27. 2— H—-——\7.1. 4
1[)hk+< R, +3 H))(ck] (46)

From the right-hand sides of Eqs. (45) and (46), one can see
the source terms introduced for each species because of
the f; coupling. We are interested in analyzing how these
terms modify the dispersion relation in general. In a
different direction, if one is interested in considering
particle production in the later stages of preheating, then
these terms become important for capturing backreaction
effects between the two sectors.

While WKB-like solutions ﬁckfve_if w(t/)dt/, Hek ™~

e Jotw)dr hold, the kinetic terms go by w?, and the kinetic
coupling goes as R;w. In the range R; > w, the kinetic
coupling dominates over the kinetic terms, the kinetic terms
are negligible and the theory can be approximated by

1 1
N2 (80?6)2 52 (aiﬁc)2

L~ | &x|-2R %7, —
/ x|: 1TeX e 24 2612

| RSP R .. H_
_5 )%)(%_Emlzrﬂg+3HR17T0)(C_ER1”CIC . (47)

At first sight, it looks like the kinetic term here has a wrong
sign, but this depends on the sign of R, which is not
necessarily positive, as will be demonstrated below with a
specific example.

In this range, 7. is no longer a dynamical field, since it
does not have any kinetic terms and its corresponding
conjugate momentum is constrained to vanish. Instead, it
plays the role of canonical momenta for 7.,
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oL oL
=—=-2R ~c’ =—=0. 48
Pr iy ¥4 Py %% (48)

The original motivation for introducing the reheating
field was to populate the Universe with its perturbations.
One would have liked to see more and more of 7, modes
being the effective d.o.f. during preheating; yet, it turns out
that in the presence of f3; interactions, for scales R; > w, it
is only the inflaton perturbations who propagate as the
effective d.o.f. This is not to say that the presence of the
reheat perturbations go completely unnoticed. They affect
the system by determining the canonical momenta of 7.
So in a sense, this is a type of reheating, where there is a
range of energies in which the reheating field determines
the dynamics of the inflaton perturbations, while it itself
stays hidden. For this reason, let us refer to this regime as
the regime of “hidden preheating.”

Having noticed this hidden preheating regime, now is a
good point to analyze the dispersion relation in this regime.
To make matters more simple for this purpose, let us leave
aside the resonant particle production effects by dropping
the last two terms in (47) and assume Ry, ri,, 7, do not
have a strong time dependence. These assumptions can be
interpreted to mean that we are considering scales such that
Ry > @ > my > H, and neglecting the time dependence
of the EFT parameters «;(¢) and f, (), which for practical
purposes amounts to taking a — 1.

Vanishing of p, among the canonical momenta is a
primary constraint of the system. It means that not all of the
canonical variables, {7..p,.%..p,}, are physical d.o.f.
Some of them are redundant variables that can be set to
zero. For the consistency of the system, this constraint must
be preserved with time, that is the condition,

py=0 (49)
should be satisfied. With the above assumptions the
Hamiltonian corresponding to (47) is

H = / &x[pait. + pi] — L

—1/d3 (07 +— (Op? + 22 + 5 2
) X ite 4R2 iPr m 4R2p7[ ’

(50)

where Egs. (48) have been employed in the last line. By the
Hamilton equations of motion,

OH
e

Py =- =0, (51)
and thus, the consistency condition (49) is satisfied.

Once the fields are decomposed into Fourier modes, the
equations of motion for the remaining variables are

. OH
)?C = = 07 52
= 5rs (52)
: OH 1~
pot === WAL (5
) S
Tek = apﬂk 4R2 [k +m }pﬂk‘ (54)

Equations (54) and (53) make up a coupled system of
differential equations. By differentiating (53) and employ-
ing (54), one obtains

Fop = —— [k* + (72 + w2 k> + a7y, (55)
4R]
This has solutions of the form % ~ ™" with
1
T \/ K+ (w7 4+ my)k* + mzm;  (56)
1

at scales Ry > w > my, > H,.

In summary, in the hidden preheating regime of S,
coupling, the effective d.o.f. that propagate are the 7.
modes with the dispersion relation (56). In this regime,
the 7. sector has been integrated out. However, the present
constraints on the 7. must be treated with care during
quantization in this regime. Similar to the situation dis-
cussed in [10] during inflation, the hidden presence of the
reheating perturbations leads to a sound speed and further
modifications in the dispersion relation of the inflaton
perturbations. For modes in the range R, > k > i, i,
this modification at leading order is

k2
W~ —.

" (57)

And for the longest wavelength modes in the range
Ry > i, m, > k, the modification becomes

P =2 %)
n,m, my +my )

w~ 1+—*k
2R1 l/f’llzZ 5
P =2 =2 12
Mh, 1y + 1y k

~ + g+ (58)

2R1 m,zz )2( 4 1

Outside of the hidden preheating regime, with the ansatz
Fox ~Ae™ ™ 7 ~ Be ™ and our previous assumptions
on neglecting the time dependence of the background and
EFT coefficients, Eqgs. (45) and (46) lead to the following
dispersion relation:
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ity + 1ty :
+ \/4R%k2 + <% - 2R%> — 2w, (59)

From here, it is seen that in the range k? > 4R}, m, mz,

modes of both the inflationary and reheating fields propa-
gate independently with @ ~ k.
For scales where k and R, are comparable, by defining

. i + 1y S
A = (’(T + 2R%> — Mg, (60)

we see that the modification gives rise to a sound speed and
nonlinearities as follows:

~ ~ 2R? 2R?
w22k2+44:|:|:./4+ ~1k2—le4+:| 61
* A A (61)

One of the solutions,
2 i 2R% 2 i 212

describes very heavy modes that at leading order do not
propagate and whose dispersion relation involves a sound
speed ¢2 in the next order contribution.® The w_ solution
describes the light modes that obtain a sound speed starting
from the leading order,

2R? 2R} 2R}
w? = <1 —71> k* + /131 k=2 k2 +731k4. (63)

. 13
For scales in the range ¢2 2% < k* < 4R3, the second term
1

in (63) will dominate over the first, and at leading order the
dispersion relation will be

2R? 13
w? ~ A; K+ for 2 % < k* <4R3. (64)
1

The range R; > k > 1, 11, considered in the previous
analysis of the dispersion relation during the hidden

®Note the sign difference in the definition of the sound speeds,

2 2
2=1+ 22‘ and ¢ =1- 2;'. For causality, the speed of

propagation should not exceed the speed of propagation for
light. In the units we are working with, this reads c2i < 1. From

Eq. (60), A can have two different signs A= i[(m’% ;mﬁ +2R%)2—

mZm2]'/2. To satisfy the causality condition, the positive solution
for LA must contribute to ¢ and the negative solution to ¢%. The
notation for sound speeds in Egs. (62) and (63) aim to emphasize
this point.

preheating regime falls within the range ciz““—l;lt <k <

4R? where Eq. (64) holds. This range implies A* ~ 4R,
which guarantees that expression (64) matches with
expression (57), and ci ~ (0. Thus, we know that the
modes described by (64) are the 7., modes in the hidden
preheating regime, while Eqgs. (62) and (63) describe both
Xer and 7., modes.

Let us try to make an estimate on the likeliness of such a
range occurring, by making assumptions on the form of the
EFT coefficients. As noted earlier, the mass dimensions of
pi are [B] = M>, [B,] = [B3] = M?. Since the quadratic
terms that were determined by the background are at order
m%lH , i 1s expected to have a similar form. Unless more is
known about the background, m,, which is the highest
scale in the background evolution which can be used to
make the dimensions fit,

27

mle
pr=b ; (65)
my
-
m
pr=br—to. (66)
¢
(1) = b, 01 (67)
3(f) = b3 .
mg
As such,
H A2
Ri=— :O(m"‘ ):O( ”) (68)
,/—2m§1H gy my

So while in the range Ay, > @, , > Ry, there are 2 effective
d.of. 7. and y., where as in the range R, > w,,, the
inflaton perturbations 7. are the only effective degree.

Now we need to be a bit careful, does this leave any
range for y. production? We found that the y,. particles can
be produced up to the scale,

1 [ (a5 —ay\?? . myH*|*?
K2 = — = —_ ~ O 1%
bek 2 [( 2 > az; +ay —m¢

— mRY (69)

Considering (68), this suggests that the scale of particle
production lies above the scale R, and so in the range
R, < E < Ky, both 7. and y,. modes are effective d.o.f.
We summarize this distribution of effective modes with
respect to scale in Fig. 1.

These f; interactions are present in models where the
inflaton is derivatively coupled to the reheating sector. In
the context of preheating, derivative couplings have first
been studied in [9], with
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w
Agp 41—
d¢ modes
ngn
6¢ and y. modes
Ry
8¢ modes
with a modified dispersion relation
FIG. 1. Here it is shown up to which scales the inflaton modes

6¢p = r, and reheating modes y,. appear as effective d.o.f., in the
presence of f; type couplings.

1 1
£ - —Ea”qﬁaﬂgb—ia"XaﬂX— V(¢) - U(X)

L D400, (70)

where F' is the cutoff for this effective field theory. In the
original work, the authors consider chaotic inflation, in
particular, to govern the inflaton sector in this low energy
theory, in which case, F ~ m,,. Another example is the case
of geometric destabilization of inflation [16].

The Friedmann equations at the background level are

—2m3H =(1+2"°>¢o RE ()

2
syt =1 (1428) 34 vign) + Uto). - (7)

where y, is set to be constant. In general, such effective

Lagrangians can also involve — %,99'¢ /a ¢ -~ y terms, which would

lead to y,(#) and give rise to an unstable growth in the
reheating sector.

In a unitary gauge, the fields are expanded in terms of
linear perturbations as ¢ = (1), X = yo + x(X, 1), and,
¢ =g (1) + 8¢ (X, 1). With V"' (¢hy) = mg and U" (yo) =
mﬁ the Lagrangian up to second order in perturbations is

L = —m2 (3H(1) + H(1)) + myHg™  (73)

1 1 ¢0 X0
) Oy — 2 <m§ - ﬁ))( 2ﬁ¢25900)(, (74)
where the background equations of motion have been taken
into account. This matches the EFT Lagrangian as a model
with

4m? H
a =1, a =0, ay = my _2@ my + ;21 ,
ay :07 m; =0. (75)

Comparing the last line with (27), we can also read off that

ﬁl()_—2—¢o 2H (76)

F2R2

This sets the scale for hidden preheating to be

P X0 ]
R = =220 o A A2 (77)
T FZRZ pl F2R2 sb*
\ /—2m§IH

Also note that in the range R; > w, the canonical momen-
tum of the effective d.o.f. 7, is

X .
Pr=—2Riy. = 4F2° 5/ —2m3Hy.. (78)

The y,. production scale here is

2m2 H\ /3 m>
_ pl pl y
Kiy = ( P2 ) - m)2( - 4FH (79)
A4 2/3 A4
Ko ~ <m¢ qub> 7 FXZb (80)

Corrections to ¢ dynamics here come with coefficients of

4, which makes them perturbative corrections as long
as yo < F. This in return implies that £5 = —40,— ~

(l+2—)
and the particle production scale will lie above the

coupling R} ~ %% /;’

The derivative couplings preserve the shift symmetry of
the inflaton. Hence, they provide a very likely candidate for
couplings of the inflaton with other fields. This also makes
them more likely to be present in the later stages than
nonderivative couplings, such as the original ¢*¢*X>
interaction considered for preheating. However, previous
analysis of the instability regimes they lead to suggested
that they are not very efficient for preheating. The line of
inquiry here is showing that these types of derivative
couplings lead to the presence of only inflationary pertur-
bations with modified dispersion relations as the lightest

043503-10



HIDDEN REGIMES DURING PREHEATING

PHYS. REV. D 100, 043503 (2019)

modes present. This suggests a reason as to why they are
inefficient for setting resonance in the reheating sector.

B. Hidden preheating with f,(t)

The quadratic Lagrangian in the presence of f3, is

1., 1. 1 1 1
LR = e+ 5= o (Oure)* = 27 (Oime)? =5 maxe
1 . H .
—Em%ﬂ% + 2007 H e — P2 Eﬂc‘){cv (81)
where p, = ﬁ In the previous case, the coupling

pl

strength R; had a mass dimension one, and hence, it
defined a scale, but p, here is dimensionless. Moreover,
different than the case with f3;, here y. appears with time
derivatives, and there are two derivative couplings.
|

Neglecting the background expansion and considering
solutions of the form y.~ Ae™®, g Be™™' the strength
of the kinetic terms will be of the order,

2

2 w?A?, #2 ~ ?B2.

ij(cj[c ~ p2a)2AB’ )'(c ~ (82)

Being dimensionless p, does not define a scale, and it will
at most be order one. But if at times the amplitude of one of
the species dominates over the other, the coupling with p,
can dominate over the kinetic term for the species with the
smaller amplitude and hence, give it a sound speed. A
similar interaction is also present in the next case with j3;.

C. Hidden preheating by f;(¢)

The quadratic Lagrangian in this case is

1. 1.
10 = [ x|+ 502

ﬁ3j(c”c _H ﬂ3”cj(c

This time there are three different couplings,

With these new definitions, the quadratic Lagrangian in terms of 7. and 7. becomes

1 o (07:)?
L® _—/d3x{;z§+ﬁ§—( ‘X;)
2 a

Oy )? (Om,)r mi(t 2(¢
( J(cz) _( t”;) _m}(( ))(% _mﬂ( )71'3 (83)
2a 2a 2 2
. - - ﬁ37.rc).(c - ﬁ3ﬂc)(c : :| ) (84)
V-2 B —omd i \/—2mg,H \/ ~2m%H
P3EL.’ szL.’ R3EL.- (85)
\/—2moH \/—2moyH \/—2moH
81'7?6 2 ~ ~ ~ ~
SOR iz - e (86)
* o~ H ~ o~ ~ X ~ o~ ~ ~
_2R3)(cﬂc - 25:037[0}(0 - 2p3ﬂc)(c + 3Hp3(7[c)(c +Zc”c) (87)
(88)

H 9 s .
3H <R3 —=pP3 _H2p3>”c)(c - 2R2ﬂc)(c:| .

H 2

The coupling strength f; has a mass dimension two.
This makes p; dimensionless, just like p,. R, and Rj
are the dimension full parameters that can set the scales
here. The R, term only contributes to the overall
energy. R; has dimensions of mass and works similar
to Ry. In the limit a — 1 while the combination m2H
stays finite, let us assume that R,, R;, and p; stay finite
and are constant while the terms involving 3H and g

can be dropped. With these assumptions, we are

|
focusing on scales R3; > @ > my > H and the Lagran-
gian equations of motion take the form,

)?ck + (k2 + m)z((t)))?ck = R37.?ck - RZﬁck + p3ﬁCk’ (89)

Fex + (K2 + m2) 7 = —Rafer — Roffer + pager-  (90)

This exhibits modes with frequencies of
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1 B 1 3
W — 24 + 4p3Kk* + 4(p3 (M2 + 12) + 2p3Ry + RIK> + B —4(1 = p2)M*,  (91)
L= I Ry VR R S 3
|
h ! !
where L(z)g/d3x|:—R3)(Lﬂ'c > (3,)(5) F(aiﬁc)z
a
B = ~§—|— R5 +2p3R,, (92) 1 RS 1 2 )
— S 07 =5 (1) (97)
M = i — R (93)

have been defined for ease of notation. Inflaton and
reheating modes in the range k%> B(R5, i1, 1it,, R;),
M2 (i, i, R,), propagate freely with w ~ c,k, where
they can acquire a sound speed of the order of
2 _ 1393

Cp =T, The main difference of this case from the
3

case with f#; is the possibility that a sound speed exists
even at this relatively high range of energies. This
suggests that these type of couplings arise from the
presence of at least three fields, where one of the fields
is much heavier than both the inflationary and reheating
sectors, leading to a nontrivial sound speed, c%, even at
the ranges where the two sectors of interest appear
weakly coupled to each other.

In the range R3 > p3k* > m2, 12, Ry, B? ~ R} and the
mode frequency is approximately

K2 R?
1=p3) " 2(1-p2
(L-p3) (1-p3)

R3 p3
+—3 14 < D344 —k2>. 94
(1 —p§>\/ R RN Y

Expanding the square root, this range accommodates
modes with the dispersion relation,

2~
w3 ~

S, (95)

At leading order, these are very heavy modes that do not
propagate since there is no k dependence in the first term.
The lighter modes in this range have the following
dispersion relation:

k4
2~
- Rz.

(96)
Note that this expression is very similar to the dispersion
relation (57) that we found for modes in the hidden
preheating regime with f; type couplings, which in that
case were purely inflaton modes.

For p; <1, in the regime R3 > w > my, R, > H,,, the
Lagrangian,

rise to the example where the 7. modes are the lightest
d.o.f., and 7. plays the role of their canonical momenta,

oL . oL
Py =—— = —Rs7,, p=——=0.

98
e Oz %)

And again there is a constraint which now demands that the
momentum of inflaton modes vanish.

Taking the limit a — 1 with mng remaining finite and

demanding Eqgs. (98) be satisfied, the Hamiltonian corre-
sponding to (97) is

H = / Cx[peite + pyiel — L
1 3 N #2572 4 g
:E d°x (ai)(c) +R_%(8ip)() +m)()(c R% Pyl-
(99)
Decomposing the fields into their Fourier modes, the
Hamilton equations of motion read

OH
by = ——— =0, 100
pﬂk aﬁCk ( )
OH
7 =0 101
Tek = apnk ’ ( )
. OH 21~
Pyk = _a)? N = _[kz + m)%])(cka (102)
. OH
Yok = k? 21 103
Xck 8]9){]( R2 [ + mﬂ']p)(k ( )

The first of these guarantee that the constraint is satisfied
at all times. With our previous assumptions and neglecting
the time dependence in R;, 1, and 71, this system exhibits
modes 7., ~ e~ with the dispersion relation,

1
w=—\/k*+

= + (g + g )k + Mz
R;

(104)
for scales in the range R3; >k > my, R, > H,, and

p3 < 1. In fact, at leading order in this regime, Eq. (96)
is recovered
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kZ
W= —=0w_.
R;

(105)
Thus, we can identify w_ modes to be purely reheating
modes. This is similar to the case of hidden preheating with
f1; only this time the roles of the two fields are switched
around. Since the reheating perturbations are the light
modes here, this type of kinetic couplings could be more
likely to give rise to efficient preheating. Unlike the case
with S, (1), there does not seem to appear previously studied
examples to this case in neither the inflationary nor the
preheating literature. This may be due to the fact that in
generalizing couplings usually the main attention is given
to modifying the kinetic terms of the inflaton.

The scale that the R; defines, the scale up to which y,. is
the single effective species, is around (’)(%) order of
magnitude wise. Considering /m, H as a unit scale, the
relationship between the magnitude of this scale to the
y-production scale is Ky = (mle)l/*%Ré/3 ~Ré/3. In
conclusion, at frequencies below the R; scale, @ < Rj3,
the effective modes are the reheating modes alone where as
at scales R; < w < Ky, modes of both 7. and y. are
present, and above Ky there is only the inflaton pertur-
bations due to the lack of resonant y,. production. These
scales and the corresponding species are summarized
in Fig. 2.

w
Ay L
8¢ modes
ngn
8¢ and y. modes
R3
Xc modes

FIG. 2. Here the regions where the inflaton modes d¢ = x..
and reheating modes y . appear as effective d.o.f. in the presence
of ff; interactions, where a sound speed is probable at all levels,
are shown.

V. CONCLUSIONS

Low energy effective field theories (EFT), especially the
ones that are developed at the level of perturbations, such
as the EFT considered here, aim to capture the variety of
interactions in the most general way. This generality is
achieved by considering all of the interactions allowed by
the symmetries that are present below a specified scale.
This scale in the EFT setup considered here was the scale of
spontaneous breaking of time translation invariance, due to
the time dependent nature of the background H (7). Among
the possible interactions for the inflaton and reheating field
perturbations, the present work has focused on the extra
derivative couplings that appear under three different
classes, specified by the EFT parameters {f;, [, 3}
The scales these derivative couplings introduce, the nature
of the effective d.o.f. at energies below the introduced
scales (whether they are inflaton perturbations or the scalar
reheating perturbations), and the corrections to the
dispersion relation for the effective modes at low energies
have been explored in this work. The properties of the
background as determined by the preheating era, that is
the presence of two scales my and H,, with the hierarchy
my > H,, ~ H, between them, have been used to deter-
mine the hierarchy between the scales of the interactions,
such as the particle production scale and the scale asso-
ciated to derivative couplings. All this has led to the main
conclusion that, although the aim of preheating is to capture
energy transfer between two different species, here the
inflaton and the scalar reheating sector y, in the presence of
such derivative couplings, only one of the species prop-
agates as an effective d.o.f. at very low energies, while the
other stays hidden and modifies the dispersion relation of
the propagating species. Instead of an analysis of instability
bands to determine the efficiency of y production, the main
pursuit here has been the identification of the relevant
species for low energies and exploring how the dispersion
relation of this species gets modified. It is left for the future
to discuss the efficiency in the production of the identified
low energy modes through studying the details of the
resonance in comparison to perturbative decay rates.

While this EFT method allows one to study the proper-
ties of perturbations right away, the disadvantage can be
that it is not always clear what kind of interactions at the
background level would give rise to these interactions at
the level of perturbations. For example, an interaction of
type (x 0¢9,¢)X, where ¢ is the inflaton which is to be
expanded as ¢(X, 1) = ¢o(t) + 6¢(X, 1), X, with X(X, 1) =
Xo(7) + x(X, 1), is the reheating field and A is some mass
scale, is an example that gives rise to f; type couplings.
And indeed these type of interactions are common in
inflationary literature in many studies that wish to respect
the shift symmetry for the inflaton. On the other hand,
1(0"X0,X)¢ would be an example to f; type couplings,
which however would not be an interaction to consider if
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one is concerned with a shift symmetric inflaton. Looking
at the preheating literature, the interactions considered are
more of a polynomial type; for instance, g>¢*X? is the first
case that has been considered. Derivative couplings during
preheating have not been studied at the level they have been
during inflation. So far, derivative couplings in preheating
literature involve examples of only the class of f; cou-
plings, among the three classes that the EFT methods
suggest. Moreover, the examples to the 3, case that have
been studied are noted to be not very efficient for the
resonant production of low energy reheating modes, 7.
Looking at the dispersion relations, here it is noted that at
scales below the scale of the derivative coupling R, the
reheating modes appear to affect the canonical momenta of
the inflaton perturbations, leaving them as the low energy
species with a modified dispersion relation derived in
Eqgs. (57) and (64). On the other hand, f; interactions
accommodate the reheating modes as the light d.o.f. with a
modified dispersion relation of (105). Hence, these later
type of interactions may be more promising for the resonant
production of y through derivative couplings.

Moreover, some of the derivative couplings, in the
presence of 5, and f5, imply a sound speed and modified
dispersion relations for both of the species even at energies
where modes of both propagate freely. This suggests that
these EFT coefficients may address models that involve
additional heavy d.o.f.

The reheating sector y as considered here is quite
general. Being a primordial scalar field, y is most likely
to contribute to structure formation and resemble fields
associated to dark matter. In principal, any of these
couplings can arise in models of multifield inflation.
Since the effective field theory method at the level of
perturbations followed here considers all possible terms
that respect the symmetries at the scales of interest, one of
the expected benefits of this approach is to come across
new types of interactions that may not have been thought of
yet. The appearance of the less explored case of f35(¢) type
couplings are an example to this. They would arise from
attempts of generalizing interactions of the reheating field,
as sketched in the previous paragraphs. It is left for the
future to explore for this later case, the phenomenological
implications and the detailed structure of resonance in
comparison with rate of perturbative decays. With regards
to perturbative decay rates, the EFT interactions would give
the possible Feynman diagrams to be computed; however,
the strength of the amplitude from these diagrams will
depend on the coupling parameter which in turn depends on
the background physics. The background information is
determined by how H,(t) and m, work into ¢(t) and
Xo(1). The same holds for the efficiency of the resonant
particle production. One can make estimates on the scale
of particle production from the general behavior of the
background as it has been done here, but to study the actual
efficiency one again has to first study the details of how the

background parameters work into the Mathieu variables.
Once solid examples that give rise to 5 type interactions at
the level of perturbations are constructed, then how the
coupling parameters depend on my,, H, and m,, through the
background behavior of ¢ and X will become more clear,
and the perturbative decay rates and efficiency of resonance
can be studied more concretely.
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APPENDIX: BEHAVIOR OF THE BACKGROUND
IN THE EARLY STAGES OF PREHEATING

As noted in the Introduction, our starting point is that
at the background level, the energy momentum density is
dominated by a single scalar field, ¢,. This scalar field is
the same as the one that dominated the energy momentum
density during inflation, the inflaton, and it only exhibits a
time dependence (). During inflation, its time depend-
ence is weak. If this background scalar is minimally
coupled to gravity,

1 1
s= [ atny= {5 MR~ 3 0, o0t — V() |
(A1)

what will be the behavior of the overall background H ,(7),
at the end of inflation when the slow roll conditions no
longer hold?

Assuming that ¢,(f) minimizes its potential, the
leading term in its potential will be the mass term
V(o) ~ mid)g. On an Friedmann-Lemaitre-Robertson-
Walker background, the scalar field evolves according to

o + 3Hdo + V' (o) = 0. (A2)
The time derivative of the scalar field can be considered to
be ¢y ~ myepy. If the friction term Hep, is neglected, the
scalar field evolution would be ¢ () ~ ®sin(myt). The

effect of the Hubble friction gives further time dependence
to the amplitude ®.
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The evolution of the Hubble parameter is governed by

Omy H? = i + m 3, (A3a)

2mAH = —¢j. (A3b)

Following [17], let us switch from the variable ¢, to 6
defined as

H

b0 = V6mp — sin 0, (Ada)
mg,

$o = VompH cos 6. (A4b)

This definition automatically satisfies (A3a) and gives

H = —3Hcos26. (A5)
As an internal consistency, the derivative of (A4a) should
give (A4b). This condition leads to
. 3 .
0=my+ EHsm(Zé’). (A6)
For the era under consideration, H, < mg, and hence,
0 ~myt + A. Using this approximation in (A3b) gives

H(t) dH !
_ = 3/ cos?(myt’ + A)dr', (A7)
chd lcnd

which is to be solved for H. The end of inflation occurs
when

_H nd
=1 (A8)

end

€(tend) =

From Egs. (A3a) and (A3b) with ¢hg(tenq) ~ mpy, this means
Hepg >~ % The solution for H(t) reads as

2 sin(2myt + 2A)] -1
Hp:§|:]+w:|

2m,/,t
3H
~H, [1 - 4—”;” sin(2myt + 24)

9 Hm 2 22
+ 6 (m_¢> sin®(2my1) + }, (A9)

sin(2m14-2A)

2myt
one can consider a series expansion around a = 0. So the
end of inflation represents a matter dominated era with
oscillatory corrections.” Equation (A4a) then gives the
following behavior for the inflaton:

where a = is small at times 1 << mt and hence,

H,| .
Po(t) =~ \/Emplm— sin(m,t)
¢

3H
+ =—"(cos 3myt —cosmyt) +...|.  (A10)

8m¢,

The behavior of the inflaton perturbations on this back-
ground and the duration of this oscillatory era have been
studied to understand the end of single field inflation with a
canonical kinetic term and minimal coupling to gravity
[18,19]. The original example of preheating [3] considers
only the zeroth order terms in this background,

Hpc =H,, (Alla)

H
(1) = Vomp —"sin(myt +A)  (Allb)
My

and involves a second field y to which the inflaton transfers
its energy via the coupling g>¢’y>.

"The presence of these oscillatory corrections is what makes an
era dominated by oscillating scalar field different than an era of
dust which behaves exactly as H g, = H,, with zero pressure.
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