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The effective field theory (EFT) of preheating with scalar fields implies three types of derivative
couplings between the inflaton and the reheating field. Two of these couplings lead to scales below which
only one of the two species appear as the low energy modes. In this paper, the variety of low energy regimes
in terms of the species they accommodate are explored by studying the scales introduced by the derivative
couplings and the dispersion relations they lead to. It is noted that the EFTof two scalar fields can give rise
to nontrivial sound speed for both the inflation and reheating sector, even at scales where the modes of both
species propagate freely, suggesting the presence of additional heavy fields. The regimes where one of the
species affects the dispersion relation of the other while not appearing as an effective mode itself are named
as “hidden regimes” during preheating.
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I. INTRODUCTION

In single field inflation, only one type of field, the
inflaton, dominates the overall energy momentum density
of the Universe. At the background level, this field has
some time dependence which leads to a time dependent
cosmological background HðtÞ. This background will not
remain invariant under time diffeomorphisms. However,
the time diffeomorphisms are a symmetry of the action. On
such a time dependent background, there exist modes of a
physical scalar perturbation, which transform nonlinearly
under further time diffeomorphisms, making sure that the
action itself remains invariant. These scalar modes are the
inflationary scalar perturbations, observed as temperature
fluctuations in the cosmic microwave background (CMB).
They lead to formation of protogalaxies in the early
Universe, on an otherwise homogeneous background.
The present day Universe is filled with many other types
of matter, such as the particles of standard model, dark
matter, and dark energy. These correspond to perturbations
of different types of matter fields, not all of which are
scalar. It is an open question to understand how and when
these fields start playing an important role in the Universe
over time. It could be that a number of fields, nontrivial
kinetic terms, or nonminimal couplings are responsible for
the underlying mechanism of inflation itself. While these
cases are being more and more constrained by observations
within a window of time during inflation [1], trying to
understand couplings of the inflaton to other species is what
is at hand for understanding the passage to other matter
sources that are present in today’s Universe. It is likely that

perturbations of noninflationary species begin to populate
the Universe after the end of inflation rather than during [2].
The period of inflation corresponds to an accelerated

expansion, with a weakly time dependent background
HIðtÞ that resembles the approximate de Sitter spacetime.
Single field inflation ends when the Hubble parameter
drops below the mass of the inflaton field mϕ, HIðtendÞ ≤
mϕ. At times of order mϕt ≫ 1, the Friedmann equations
give a matter dominated solution with oscillatory correc-
tions whose frequency is set by the mass mϕ. This era is
referred to as preheating, during which the time depend-
ence of the background HpðtÞ is strong. This time depend-
ence works into the couplings of the inflaton field with
perturbations of other species and leads to their resonant
growth, leading to a more efficient production of the
reheating modes compared to perturbative decay alone
[3]. At the end of this intermediate stage, the inflaton will
decay into fields lighter than itself, giving rise to a radiation
dominated phase.
In [4,5], general interactions for the perturbations of the

inflaton and a scalar reheating field were studied during
preheating with effective field theory (EFT) methods. It
was noticed that studying these perturbations during
preheating without addressing the dynamics that can give
rise to the background HpðtÞ in the fashion of the EFT of
quasisingle field inflation [6] gives more insight than an
EFT for the dynamics of the two species, which have been
rather useful in the case of inflation [7,8]. In this EFT
approach, being associated with the species that drives the
time dependence of the background, scalar inflationary
perturbations δg00 are Goldstone modes that nonlinearly
realize time diffeomorphism invariance while reheating*gizemsengor@gmail.com
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sector is introduced as an unspecified scalar perturbation χ.
This difference in their nature leads to different interactions
for the different species. How the background behavior
HpðtÞ enters the quadratic self couplings of each species
determines the resonant particle production, and the hier-
archy HpðtÞ ≪ mϕ between the background scales leads to
hierarchies among the scales important for the dynamics of
the perturbations [4].
In addition to interactions that lead to particle produc-

tion, the EFT of preheating involves three different types of
derivative couplings among the inflationary and reheating
perturbations. The focus of this work are these derivative
interactions. In the first work to address derivative cou-
plings of the inflaton and a scalar reheating field, through
an analysis of instability bands, it was observed that the
derivative coupling of interest does not promise very
efficient production of reheating modes [9]. Among the
three derivative EFT couplings, two of them describe
energy scales. On a complimentary line to the conventional
analyses of instability bands, the main effort of the present
work is to understand which of the two species of
perturbations occur as the effective degree of freedom
(d.o.f.) at what scales, by considering nonrelativistic limits
and using the methods of [10]. The conclusion is that,
with interactions of the type considered in Sec. IVA, the
effective lowest energy modes are the inflaton modes. For
these type of couplings, the reheating perturbations work to
adjust the dispersion relation of the inflaton rather than
being present themselves. This suggests that the role of the
reheating sector here is to assist the inflationary sector
rather than being likely to be produced. The low energy
regime of these couplings are named as the regime of
hidden preheating, in the sense that the presence of the
reheating field is hidden. The original example of derivative
couplings falls into this category. The situation is reversed
with the reheating perturbations being the low energy
modes whose dispersion relation is adjusted by the
inflaton modes in the presence of couplings considered
in Sec. IV C. However, the couplings of Secs. IV B and
IV C give rise to further modifications in the dispersion
relation that exist even at scales where the inflaton and
reheating modes propagate freely. Similar to the polyno-
mial couplings of light fields to heavy ones giving rise to
corrections to the mass of the light fields at low energies,
derivative couplings give rise to corrections for the
dispersion relation of light modes at low scales. This
suggests that these later kind of couplings signal the
presence of more fields that are actually present and interact
with the inflaton and the reheating sectors, but who are
themselves too heavy to appear as propagating d.o.f.
The text is organized as follows. The effective field

theory formalism of cosmological perturbations and how
it captures preheating is reviewed in Sec. II. Section III
together with the Appendix review the general properties of
the preheating background HpðtÞ and scales associated

with important processes in the EFT. The main conse-
quences of the derivative couplings are explored in
Secs. IV, and V summarizes the main results.

II. REVIEW OF EFT OF COSMOLOGICAL
PERTURBATIONS

Consider cosmological backgrounds as determined by
the behavior of the Hubble parameter, HðtÞ, at each epoch.
From inflation to dark energy domination, each one of the
cosmological backgrounds possesses a time dependence of
a different strength. From the pursuit of particle physics,
some field content that contributes as the energy momen-
tum source will be responsible for this time dependence.
The inflaton, ϕ0ðtÞ, for example, is one such field that
contributes as a homogeneous scalar source during and at
the end of inflation. The Hubble parameter is related to the
field content through the Friedmann equations, which in the
case of a single scalar field read

6m2
plH

2 ¼ _ϕ2
0 þ 2Vðϕ0Þ ð1aÞ

2m2
pl
_H ¼ − _ϕ2

0: ð1bÞ

Due to their time dependence, such backgrounds do not
respect time diffeomorphism invariance. There exists a
scalar d.o.f. δϕðx⃗; tÞ or δg00, associated with such a back-
ground, that keeps track of the difference in the rate of
expansion between two points in space depending on how
the time coordinate is defined in each point [11]. This scalar
d.o.f. transforms nonlinearly under time diffeomorphisms.
As t → t̃ ¼ tþ ξ0, the scalar perturbations transform
according to

Δδϕ ¼ −ξ0 _ϕ0; ð2aÞ

Δδg00 ¼ −½2ḡ00 _ξ0 þ _̄g00ξ0�: ð2bÞ

Equations (2) imply that the time coordinate can be
chosen such that the scalar perturbation is adjusted to appear
completely in the metric via g00 or as a field perturbation δϕ,
but it can never be completely set to zero. This d.o.f. is the
Goldstone boson that transforms under time diffeomor-
phisms in such a way so that the action on the whole
remains invariant; that is, the parameter ξ0 never appears
after a transformation.
Each epoch possesses such a Goldstone mode associated

to the type of field that dominates the energy momentum
density. The first effective field theory to generalize the
interactions of such a Goldstone mode at low energies
was developed to study violations of the null energy
condition [12]. Understanding energy transfer from the
matter source that dominates the background energy
momentum density to another matter species entails two
different scalar fields. In the early stages of preheating, the
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inflaton is the dominant field, and hence, the Goldstone
mode encodes the perturbation to the inflaton field. The
other matter source, which is considered to be another
scalar field χ here, can be introduced at the level of the
perturbations alone. This difference works into the inter-
actions that can be written down for the preheating
perturbation and the Goldstone mode. χ enters the action
starting from second order in perturbations, and only
inflationary perturbations contribute to g00 at linear order.
The gauge in which the inflaton perturbation appears as

part of the metric is referred to as the unitary gauge or the ζ
gauge. Once this gauge is fixed, the remaining symmetries
are spatial diffeomorphisms. Because within this gauge,
time direction is fixed and will not be changed further, the
time related index zero can appear explicitly, for instance,
via g00. Such terms with zero indices will transform as
scalars under further spatial diffeomorphisms. By making
this choice, the temporal and spatial indices are separated.
Thus, spatial indices can also appear without accompany-
ing temporal indices, provided the terms they appear in
respect the remaining invariance under spatial diffeomor-
phims. This means perturbations to the extrinsic curvature
δKij, which transforms as a tensor under spatial diffeo-
morphisms, can contribute starting from second order via
its trace δKi

i. With these concerns, in the unitary gauge,
the most general contribution to the action from the
inflationary sector is [13]

Sg ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
m2

PlRþm2
Pl
_Hg00 −m2

Plð3H2 þ _HÞ

þM2ðtÞ4
2!

ðg00 þ 1Þ2 − M̄1ðtÞ3
2

ðg00 þ 1ÞδKμ
μ

−
M̄2ðtÞ2

2
ðδKμ

μÞ2 þ
M3ðtÞ4
3!

ðg00 þ 1Þ3

−
M̄3ðtÞ2

2
δKμ

νδKν
μ þ � � �

�
: ð3Þ

In the first line, the coefficients of the linear terms are
determined by demanding that variation of this action with
respect to the metric gives the Friedmann equations at zero
order in perturbations. The coefficients of the rest of the
terms, which are the higher order perturbation terms, are
undetermined. All that can be said of them in general is that
they are time dependent and their characteristics convey the
properties of the background to the level of perturbations.
These terms involve different effects, for instance, M2

introduces a sound speed for the inflaton perturbation, where
as M̄3 modifies the speed of propagation for the tensor d.o.f.
The action (3) as it appears includes all terms that respect the
symmetries within the unitary gauge. A specific model of
interest will involve only some of these terms.
The preheating field χ transforms as a scalar under

the remaining possible spatial diffeomorphisms. It can be
added to the system with the following terms [6]:

Sχ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
α1ðtÞ
2

∂μχ∂μχ þ
α2ðtÞ
2

ð∂0χÞ2

−
α3ðtÞ
2

χ2 þ α4ðtÞχ∂0χ

�
: ð4Þ

Here, α2 introduces a sound speed in the preheating sector.
Possible effects of α2 on sourcing secondary gravitational
waves, and the effects of α3 for χ production through
resonance were discussed in [4]. Via δgμν, the terms above
involve mixing between the inflationary and preheating
sectors. In addition to these, there can also be the following
voluntary contributions [6]:

Sgχ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½β1ðtÞδg00χ þ β2ðtÞδg00∂0χ

þ β3ðtÞ∂0χ − ð_β3ðtÞ þ 3HðtÞβ3ðtÞÞχ�: ð5Þ

Notice that these later contributions involve derivative
couplings between the two sectors. It is these terms that
we will focus on in the following.
A time diffeomorphism t → t̃ ¼ tþ ξ0 performed to this

action requires the introduction of the scalar π, which
transforms as π → π̃ ¼ π − ξ0, to guarantee that the param-
eter ξ0 does not begin to appear in the action. The unitary
gauge discussed above corresponds to the gauge where π
was set to zero. Via such transformations, π becomes
explicit in the action. Following [6], as

g00 → g00 þ 2g0μ∂μπ þ gμν∂μπ∂νπ ð6Þ

βiðtÞ → βiðtþ πÞ ð7Þ

∂0χ → ∂0χ þ gμν∂μχ∂νπ ð8Þ
Z

d4x
ffiffiffiffiffiffi
−g

p
→

Z
d4x

ffiffiffiffiffiffi
−g

p
; ð9Þ

the action for the inflationary sector becomes

Sg ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
m2

PlR −m2
Plð3H2ðtþ πÞ þ _Hðtþ πÞÞ

þm2
Pl
_Hðtþ πÞðð1þ _πÞ2g00 þ 2ð1þ _πÞ∂iπg0i

þ gij∂iπ∂jπÞ þ
m2ðtþ πÞ4

2!
ðð1þ _πÞ2g00

þ 2ð1þ _πÞ∂iπg0i þ gij∂iπ∂jπ þ 1Þ2 þ � � �
�
;

ð10Þ

the reheating sector takes the form
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Sχ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
α1ðtþ πÞ

2
∂μχ∂μχ

þ α2ðtþ πÞ
2

ð∂0χ þ gμν∂μχ∂νπÞ2 ð11Þ

−
α3ðtþ πÞ

2
χ2 þ α4ðtþ πÞχð∂0χ þ gμν∂μχ∂νπÞ

�
;

ð12Þ

and the action that describes further mixings at second
order becomes

Sð2Þgχ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½β1ðtþ πÞðδg00 þ 2∂0π þ ∂μπ∂μπÞχ

ð13Þ

þ β2ðtþ πÞðδg00 þ 2∂0π þ ∂μπ∂μπÞð∂0χ þ ∂νπ∂νχÞ
ð14Þ

þ β3ðtþ πÞð∂0χ þ ∂μπ∂μχÞ − ð _β3ðtþ πÞ
þ 3Hðtþ πÞβ3ðtþ πÞÞχ�: ð15Þ

Starting from the unitary gauge, one can move to the
gauge in which inflationary perturbations appear explicitly
as δϕ through the diffeomorphism with the parameter
ξ0 ¼ −π. The two variables δϕ and π both denote pertur-
bations to the inflaton and are related to each other via

δϕ ¼ πc ¼
π

cπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2

pl
_H

q
¼ π

cπ
_ϕ0: ð16Þ

Even though the action is constructed by making a gauge
choice first, the system on the whole always respects
invariance under all of the diffeomorphisms.
Time diffeomorphims are gauge symmetries. In the

presence of backgrounds with a time dependence, there is
a divergent charge associated with them. This implies that
the global time translation invariance is also not respected
by the background. Given the isotropy and homogeneity
of the background, these diffeomorphisms can be thought of
as approximate gauge or global symmetries. Such back-
grounds, where cosmological backgrounds are included, are
said to spontaneously break time diffeomorphism invari-
ance. The scale at which the charge associated with the
global time translation invariance becomes ill defined sets
the symmetry breaking scale [10,13],

Λ2
sb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2

pl
_Hcπ

q
; ð17Þ

where c−2π ¼ 1 − M4
2

m2
pl
_H
. Hence, this EFTwhere scalar inflaton

perturbations appear as Goldstone modes of nonlinearly
realized time diffeomorphisms is valid below the scale Λsb.

III. BACKGROUND AND SCALES FOR
PREHEATING

If the energy momentum density of the Universe is
dominated by a single scalar matter field, the behavior of
the Hubble parameter at the end of inflation, for times such
that 1 ≪ mϕt, is

Hp ¼ HmðtÞ −
3

4

H2
m

mϕ
sinð2mϕtÞ; ð18Þ

as summarized in the Appendix. Here,mϕ denotes the mass
of the inflaton field, who remains to be the dominant matter
source in the early stages of preheating. At the end of
inflation, whatever may be the potential that drives infla-
tion, the inflaton field oscillates at the minimum of its
potential. By then, this potential can be approximated via
the Taylor expansion as V ∼ 1

2
m2

ϕϕ
2
0. The mass of the

inflaton sets the frequency of these oscillations, which start
at times when the Hubble parameter drops below the mass
of the inflaton HpðtÞ < mϕ.
Hence, during preheating, there are two scales asso-

ciated with the background, the mass of the inflaton field
mϕ and the Hubble parameter Hp. And these scales
possess the hierarchy Hp < mϕ between each other.
This hierarchy guarantees that (18) does not describe a
background that oscillates, which would be problematic.
Instead, the preheating background resembles matter
domination with oscillatory contributions which are
suppressed by Hm

mϕ
.

The background (18) fits a symmetry breaking pattern,

HðtÞ ¼ HFRWðtÞ þHoscPðωtÞ; ð19Þ

where PðωtÞ can be any periodic function. This resembles
the discrete symmetry breaking pattern described for
inflation [14]. While inflation corresponds to a weak
breaking of time translation invariance and can respect
discrete time translation invariance, the strong time
dependence of Hm implies that during preheating time
translation invariance is completely broken. The

time dependence of coefficients HFRW ¼ Hm and Hosc ¼
− 3

4
H2

m
mϕ

is not weak, but it is required that this time

dependence is small compared to the scale of oscillations
ω ¼ 2mϕ,

_H
ωH

∼
_Hm

ωHm
∼

_Hosc

mϕHosc
≪ 1: ð20Þ

Thus, the hierarchies between scales associated with the
preheating background go as

ω ≫ Hp ∼Hm; Hm ≫ Hosc; ωHm ≫ _Hm: ð21Þ
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These hierarchies imply the following form for the
derivatives of the Hubble parameter1:

_Hp ∼ −H2
p; Ḧp ∼ ωH2

p; ⃛Hp ∼ ω2H2
p: ð22Þ

While there is expansion at the background, particle
production through energy transfer from the background to
the reheating field should be a local process, which respects
the conservation of total energy density. It is a process that
merely transfers energy from one species to another. This
locality is achieved by focusing on the flat space limit a → 1.
This limit implies _H → 0 and needs to be accompanied with
the limitm2

pl
_H → finite to guarantee that the combination of

scales that appear in the linear order action with dimensions
of energy density remain finite. During preheating, this limit
also implies m2

plH
2 → finite as H → 0.

The αi terms lead to particle production. In theory, all the
terms of similar dimensions in Sg, Sχ , or Sgχ are expected to
be of equal strength. In practice, some of these terms are
turned off in order to be able to focus on the different effects
one wishes to address. As the linear order action possesses
m2

pl
_H ∼m2

plH
2, where the similarity holds during preheat-

ing, it is natural to expect all the EFT parameters
fαi;Mi; βig to be proportional to m2

pl
_H. Since mϕ is the

leading scale among the scales mϕ and Hp associated with
the background, it can be used to adjust for the dimensions
of the EFT parameters. For example, α3 has a mass
dimension M2, while α1 has a mass dimension zero. So
these EFT parameters can be approximated as

α1 ∼
1

m4
ϕ

m2
pl
_H; ð23Þ

while

α3 ∼
1

m2
ϕ

m2
pl
_H: ð24Þ

In general, the equation of motion for the reheating
perturbations is of the form,

̈χ̃c þ ω2
χðtÞχ̃c ¼ 0; ð25Þ

where the subscript and tilde denote that the field has
been canonically normalized χ̃c ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α1 þ α2
p

χa3=2.

Similarly, we also absorb a factor of a3 by defining
π̃c ≡ a3=2πc, which in return guarantees that the equation
of motion for inflaton perturbations will also be of the form
of a canonically normalized harmonic oscillator. To ease
notation in the calculations that will follow, we also define
m̃2

χ ≡m2
χ − ð9

4
H2 þ 3

2
_HÞ and m̃2

π ≡m2
π − ð9

4
H2 þ 3

2
_HÞ. For

canonical quantization, it will be the canonically normal-
ized fields π̃c, χ̃c and their conjugate momenta who satisfy
the canonical commutation relations.
The frequency ωχðtÞ will possess some time dependence

coming from the time dependence of αiðtÞ.2 Particle
production occurs at times when the time dependence in
ωχðtÞ becomes nonadiabatic. This is independent from the
adiabaticity of the background HpðtÞ. This time depend-
ence, and hence, χ production, can be sourced purely due
to a time dependent sound speed in the reheating sector
c2χ ¼ α1

α1þα2
, or it can be sourced by the couplings between

the reheating sector and the background. In the later case,
particle production with constant sound speed occurs for
modes in the range [4,15],

k2 <
1

c2χ

��
_α3 − α̈4

2

�
2=3

−
α3 − _α4

α1

�
a

≡ K2
bck ∝ O

�
1

c2χ

m2
plH

2

m2
ϕ

�
; ð26Þ

which lies below the symmetry breaking scale.

IV. HIDDEN PREHEATING

Up to this point, we have reviewed the background
behavior and general form of interactions during preheat-
ing. Among the EFT parameters, αiðtÞ controls resonant χc
production, while HðtÞ and miðtÞ affect the behavior of
inflationary modes. The coefficients βiðtÞ denote additional
couplings between the inflaton fluctuations and χ. These
kinds of interactions are unavoidable if the inflaton and
the reheat field are derivatively coupled to each other. In the
unitary gauge, these interactions are

Scgχ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½β1ðtÞδg00χ þ β2ðtÞδg00∂0χ

þ β3ðtÞ∂0χ − ð _β3ðtÞ þ 3HðtÞβ3ðtÞÞχ�; ð27Þ

with the mass dimensions of the parameters being ½β1� ¼ M3

and ½β2� ¼ ½β3� ¼ M2. In the following, these interactions
will be the focus of our attention, andwewill proceed in the π
gauge with

1The dominant terms in these derivatives are _Hp ¼
− 3

2
ð1þ cosð2mϕtþ ΔÞÞH2

m, Ḧp ¼ 3mϕH2
m sinð2mϕtþ ΔÞ,

⃛Hp¼6m2
ϕH

2
m cosð2mϕtþΔÞ. H⃜p¼−12m3

ϕH
2
m sinð2mϕtÞ. Since

we are focusing on times mϕt ≫ 1, the oscillations are frequent
enough for us to approximate Ḧp and ⃛Hp by their amplitudes.
In the main text, we also neglect the overall numerical factors
in these amplitudes. Our main objective in the next sections
will be to emphasize how the frequency of the oscillations
ω ¼ 2mϕ becomes explicit in the scales of the problem.

2For the canonically normalized field χ̃c, the couplings with
the background induce the time dependent mass m2

χðtÞ ¼
α3ðtÞ− _α4ðtÞ
α1ðtÞþα2ðtÞ −

1
2
α̈1þα̈2
α1þα2

þ 1
4
ð _α1þ _α2
α1þα2

Þ2. The frequency of χ̃c modes are

ω2
k ¼ c2χðtÞ k2

a2 þ m̃2
χ .
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Sð2Þgχ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½β1ðtþ πÞðδg00 þ 2∂0π þ ∂μπ∂μπÞχ ð28Þ

þ β2ðtþ πÞðδg00 þ 2∂0π þ ∂μπ∂μπÞð∂0χ þ ∂νπ∂νχÞ ð29Þ

þ β3ðtþ πÞð∂0χ þ ∂μπ∂μχÞ − ð_β3ðtþ πÞ þ 3Hðtþ πÞβ3ðtþ πÞÞχ�: ð30Þ

Let us begin by focusing on the renormalizable quadratic couplings,

Sð2Þgχ ⊃
Z

d4xa3½β1ðtÞðδg00χ − 2_πχÞ þ β2ðtÞð−δg00 _χ þ 2_π _χÞ ð31Þ

− δNβ3ðtÞ_χ − _β3ðtÞπ _χ þ β3ðtÞδg0μ∂μχ − β3ðtÞ_χ _π ð32Þ

þ β3ðtÞ∂iχ∂iπ − β̈3ðtÞπχ − ð3_β3H þ 3β3 _HÞπχ�; ð33Þ

and keeping in mind the connection,

δϕ ¼ πc ¼
π

cπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2

pl
_H

q
¼ π

cπ
_ϕ0: ð34Þ

Consider the terms with temporal derivatives. After canonical normalization with α1 þ α2 ¼ 1 and δg00 ¼ δg00c
mpl

¼ δNc
mpl

,

these give3

Sð2Þgχ ⊃
Z

d4xa3
�
β1δNc

χc
mpl

− 2β1
cπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2m2
pl
_H

q �
_cπ
cπ

πc þ _πc −
Ḧ

2 _H
πc

�
χc ð35Þ

−β2
δNc

mpl
_χc þ 2β2

cπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2

pl
_H

q �
_cπ
cπ

πc þ _πc −
Ḧ

2 _H
πc

�
_χc þ β3

δg0ic
mpl

∂iχc ð36Þ

−
cπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2m2
pl
_H

q _β3 _χcπc − β3
cπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2m2
pl
_H

q �
−
1

2

Ḧ
_H
πc þ _πc þ

_cπ
cπ

πc

�
_χc ð37Þ

−
cπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2m2
pl
_H

q β̈3πcχc −
cπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2m2
pl
_H

q ð3_β3H þ 3β3 _HÞπcχc
�
: ð38Þ

Our study of the background taught us that higher derivatives on H are stronger because they involve more powers of mϕ.
Derivatives ofH appear in Sð2Þ after canonical normalization. Looking at all the terms in Sð2Þ, the terms that involve the most
number of derivatives will be stronger among the terms of same order in perturbations.4 For each parametrization, the strongest
terms are

3For reference, in the case where mi ¼ βi ¼ 0, which would mean no derivative coupling, the constraints give δN ¼ − _H
H π. This

makes δNc ¼ mplδN ¼
ffiffiffiffiffi
− _H

pffiffi
2

p
H
πc ∼

πcffiffi
2

p .
4This does not imply that the next order action will be stronger than the previous. For example, at third order, one has the term

Sð3Þgχ ⊃ γπ̈χ _χ [6]. This will involve γð− ⃛H
_H
þ Ḧ2

_H2Þ _πcffiffiffiffiffiffiffiffiffiffiffiffi
−2m2

pl
_H

p χc _χc ∼ γ
m2

ϕωk

mplH
πcχ

2
c, where γ is dimension zero, and this term is highly suppressed

via the symmetry breaking scale, compared to terms in Sð2Þ.
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β1∶ β1
cπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2m2
pl
_H

q Ḧ
_H
πcχc and − 2β1

cπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2

pl
_H

q _πcχc

ð39Þ

β2∶ − β2
cπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2m2
pl
_H

q Ḧ
_H
πc _χc and 2β2

cπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2

pl
_H

q _πc _χc

ð40Þ

β3∶ −
cπ _β3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2

pl
_H

q _χcπc; −
β3cπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2mpl

_H
q Ḧ

_H
πc _χc;

−
cπβ̈3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2

pl
_H

q πcχc: ð41Þ

Among these terms, there are the derivative couplings,5

β1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2

pl
_H

q _πcχc;
β2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2m2
pl
_H

q Ḧ
_H
πc _χc;

β3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2

pl
_H

q πc _χc;

ð42Þ

which are of the form R1 _πcχc and R3πc _χc. These terms can
compete with the kinetic terms. Notice that R1;3 has
dimensions of energy, so it sets the energy scale for these
derivative interactions. Below the scale set by R1;3, if these
derivative couplings dominate over the kinetic terms _π2c, _χ2c,
the system will effectively have a single d.o.f. This is the
same situation that is addressed in [10], during inflation.
Following the same line of thought, let us consider the
consequences during preheating. For the moment, the sound
speeds cχ , cπ can be set to unity, since how they can amplify
or reduce the strength of these interactions is not the main
concern. This amounts to setting m2 ¼ 0, α1 ¼ 1.
To see how the number of effective d.o.f. goes down to

being single, let us consider the quadratic Lagrangian for the
canonically normalized perturbations in the presence of
these interactions one by one. The scales involved will be
considered within the limit a → 1, keeping m2

pl
_H finite,

which was also meaningful for particle production purposes.

A. Hidden preheating by β1ðtÞ
In the presence of β1 the Lagrangian becomes

Lð2Þ ¼
Z

d3xa3L

¼
Z

d3xa3
�
1

2
_χ2c þ

1

2
_π2c −

1

2a2
ð∂iχcÞ2 −

1

2a2
ð∂iπcÞ2

−
1

2
m2

χχ
2
c −

1

2
m2

ππ
2
c − 2R1 _πcχc − R1

Ḧ
_H
πcχc

�
; ð43Þ

where R1 ≡ β1ðtÞffiffiffiffiffiffiffiffiffiffiffiffi
−2m2

pl
_H

p . In terms of the canonically normal-

ized fields, this Lagrangian is

L ¼
Z

d3x
1

2

�
_̃π2c − m̃2

ππ̃
2
c −

1

a2
ð∂iπ̃cÞ2 þ _̃χ2c − m̃2

χ χ̃
2
c

−
1

a2
ð∂iχ̃cÞ2 − 4R1

_̃πcχ̃c þ 6HR1π̃cχ̃c − 2R1

Ḧ
_H
π̃cχ̃c

�
:

ð44Þ

The equations of motion for modes of each species are as
follows:

̈χ̃ck þ
�
k2

a2
þ m̃2

χðtÞ
�
χ̃ck ¼ R1

�
−2 _̃πkc þ

�
3H −

Ḧ
_H

�
π̃ck

�
;

ð45Þ

̈π̃ck þ
�
k2

a2
þ m̃2

πðtÞ
�
π̃ck

¼ R1

�
2_̃χck þ

�
2
_R1

R1

þ 3H −
Ḧ
_H

�
χ̃ck

�
: ð46Þ

From the right-hand sides of Eqs. (45) and (46), one can see
the source terms introduced for each species because of
the β1 coupling. We are interested in analyzing how these
terms modify the dispersion relation in general. In a
different direction, if one is interested in considering
particle production in the later stages of preheating, then
these terms become important for capturing backreaction
effects between the two sectors.

While WKB-like solutions π̃ck ∼ e−i
R

ωðt0Þdt0 , χ̃ck ∼

e−i
R

ωðt0Þdt0 hold, the kinetic terms go by ω2, and the kinetic
coupling goes as R1ω. In the range R1 ≫ ω, the kinetic
coupling dominates over the kinetic terms, the kinetic terms
are negligible and the theory can be approximated by

L ≃
Z

d3x

�
−2R1

_̃πcχ̃c −
1

2a2
ð∂iχ̃cÞ2 −

1

2a2
ð∂iπ̃cÞ2

−
1

2
m̃2

χ χ̃
2
c −

1

2
m̃2

ππ̃
2
c þ 3HR1π̃cχ̃c −

Ḧ
_H
R1π̃cχ̃c

�
: ð47Þ

At first sight, it looks like the kinetic term here has a wrong
sign, but this depends on the sign of R1, which is not
necessarily positive, as will be demonstrated below with a
specific example.
In this range, χ̃c is no longer a dynamical field, since it

does not have any kinetic terms and its corresponding
conjugate momentum is constrained to vanish. Instead, it
plays the role of canonical momenta for π̃c,

5The terms coming from metric perturbations via δNc can be
ignored as they are Planck suppressed at this order.
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pπ ≡ ∂L
∂ _̃πc ¼ −2R1χ̃c; pχ ≡ ∂L

∂ _̃χc ¼ 0: ð48Þ

The original motivation for introducing the reheating
field was to populate the Universe with its perturbations.
One would have liked to see more and more of χ̃c modes
being the effective d.o.f. during preheating; yet, it turns out
that in the presence of β1 interactions, for scales R1 ≫ ω, it
is only the inflaton perturbations who propagate as the
effective d.o.f. This is not to say that the presence of the
reheat perturbations go completely unnoticed. They affect
the system by determining the canonical momenta of π̃c.
So in a sense, this is a type of reheating, where there is a
range of energies in which the reheating field determines
the dynamics of the inflaton perturbations, while it itself
stays hidden. For this reason, let us refer to this regime as
the regime of “hidden preheating.”
Having noticed this hidden preheating regime, now is a

good point to analyze the dispersion relation in this regime.
To make matters more simple for this purpose, let us leave
aside the resonant particle production effects by dropping
the last two terms in (47) and assume R1, m̃π , m̃χ do not
have a strong time dependence. These assumptions can be
interpreted to mean that we are considering scales such that
R1 ≫ ω ≫ mϕ ≫ Hp and neglecting the time dependence
of the EFT parameters αiðtÞ and β1ðtÞ, which for practical
purposes amounts to taking a → 1.
Vanishing of pχ among the canonical momenta is a

primary constraint of the system. It means that not all of the
canonical variables, fπ̃c; pπ; χ̃c; pχg, are physical d.o.f.
Some of them are redundant variables that can be set to
zero. For the consistency of the system, this constraint must
be preserved with time, that is the condition,

_pχ ¼ 0 ð49Þ

should be satisfied. With the above assumptions the
Hamiltonian corresponding to (47) is

H ¼
Z

d3x½pπ
_̃πc þ pχ

_̃χc� − L

¼ 1

2

Z
d3x

�
ð∂iπ̃cÞ2 þ

1

4R2
1

ð∂ipπÞ2 þ m̃2
ππ̃

2
c þ

m̃2
χ

4R2
1

p2
π

�
;

ð50Þ

where Eqs. (48) have been employed in the last line. By the
Hamilton equations of motion,

_pχ ¼ −
∂H
∂χ̃c ¼ 0; ð51Þ

and thus, the consistency condition (49) is satisfied.
Once the fields are decomposed into Fourier modes, the
equations of motion for the remaining variables are

_̃χck ¼
∂H
∂pχk

¼ 0; ð52Þ

_pπk ¼ −
∂H
∂π̃ck ¼ −½k2 þ m̃2

π�π̃ck; ð53Þ

_̃πck ¼
∂H
∂pπk

¼ 1

4R2
1

½k2 þ m̃2
χ �pπk: ð54Þ

Equations (54) and (53) make up a coupled system of
differential equations. By differentiating (53) and employ-
ing (54), one obtains

̈π̃ck ¼ −
1

4R2
1

½k4 þ ðm̃2
π þ m̃2

χÞk2 þ m̃2
πm̃2

χ �π̃ck: ð55Þ

This has solutions of the form π̃ck ∼ e−iωt with

ω ¼ 1

2R1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4 þ ðm̃2

π þ m̃2
χÞk2 þ m̃2

πm̃2
χ

q
ð56Þ

at scales R1 ≫ ω ≫ mϕ > Hp.
In summary, in the hidden preheating regime of β1

coupling, the effective d.o.f. that propagate are the π̃ck
modes with the dispersion relation (56). In this regime,
the χ̃c sector has been integrated out. However, the present
constraints on the χ̃c must be treated with care during
quantization in this regime. Similar to the situation dis-
cussed in [10] during inflation, the hidden presence of the
reheating perturbations leads to a sound speed and further
modifications in the dispersion relation of the inflaton
perturbations. For modes in the range R1 ≫ k > m̃π; m̃χ ,
this modification at leading order is

ω ≃
k2

2R1

: ð57Þ

And for the longest wavelength modes in the range
R1 ≫ m̃π; m̃χ > k, the modification becomes

ω ≃
m̃χm̃π

2R1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m̃2

π þ m̃2
χ

m̃2
πm̃2

χ
k2

s

≃
m̃πm̃χ

2R1

þ m̃2
π þ m̃2

χ

m̃2
πm̃2

χ

k2

4R1

þ � � � ð58Þ

Outside of the hidden preheating regime, with the ansatz
χ̃ck ∼ Ae−iωt, π̃ck ∼ Be−iωt, and our previous assumptions
on neglecting the time dependence of the background and
EFT coefficients, Eqs. (45) and (46) lead to the following
dispersion relation:
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ω2
� ¼ k2 þ m̃2

χ þ m̃2
π

2
þ 2R2

1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2

1k
2 þ

�
m̃2

χ þ m̃2
π

2
þ 2R2

1

�
2

− m̃2
πm̃2

χ

s
: ð59Þ

From here, it is seen that in the range k2 ≫ 4R2
1; m

2
χ ; m2

π ,
modes of both the inflationary and reheating fields propa-
gate independently with ω ∼ k.
For scales where k and R1 are comparable, by defining

Ã2 ≡
�
m̃2

χ þ m̃2
π

2
þ 2R2

1

�
2

− m̃2
πm̃2

χ ; ð60Þ

we see that the modification gives rise to a sound speed and
nonlinearities as follows:

ω2
� ≃ k2 þ Ã�

�
Ãþ 2R2

1

Ã
k2 −

2R4
1

Ã3
k4 þ � � �

�
: ð61Þ

One of the solutions,

ω2þ ≃ 2Ãþ
�
1þ 2R2

1

Ã

�
k2 ≡ 2Ãþ c2−k2; ð62Þ

describes very heavy modes that at leading order do not
propagate and whose dispersion relation involves a sound
speed c2− in the next order contribution.6 The ω− solution
describes the light modes that obtain a sound speed starting
from the leading order,

ω2
− ¼

�
1 −

2R2
1

Ã

�
k2 þ 2R4

1

Ã3
k4 ≡ c2þk2 þ

2R4
1

Ã3
k4: ð63Þ

For scales in the range c2þ Ã3

2R4
1

< k2 < 4R2
1, the second term

in (63) will dominate over the first, and at leading order the
dispersion relation will be

ω2
− ≃

2R2
1

Ã3
k4 for c2þ

Ã3

2R4
1

< k2 < 4R2
1: ð64Þ

The range R1 ≫ k > m̃χ ; m̃π considered in the previous
analysis of the dispersion relation during the hidden

preheating regime falls within the range c2þ Ã3

2R4
1

< k2 <

4R2
1 where Eq. (64) holds. This range implies Ã2 ≃ 4R4

1,
which guarantees that expression (64) matches with
expression (57), and c2þ ∼ 0. Thus, we know that the
modes described by (64) are the π̃ck modes in the hidden
preheating regime, while Eqs. (62) and (63) describe both
χ̃ck and π̃ck modes.
Let us try to make an estimate on the likeliness of such a

range occurring, by making assumptions on the form of the
EFT coefficients. As noted earlier, the mass dimensions of
βi are ½β1� ¼ M3, ½β2� ¼ ½β3� ¼ M2. Since the quadratic
terms that were determined by the background are at order
m2

pl
_H, βi is expected to have a similar form. Unless more is

known about the background, mϕ, which is the highest
scale in the background evolution which can be used to
make the dimensions fit,

β1 ¼ b1
m2

pl
_H

mϕ
; ð65Þ

β2 ¼ b2
m2

pl
_H

m2
ϕ

; ð66Þ

β3ðtÞ ¼ b3
m2

pl
_H

m2
ϕ

: ð67Þ

As such,

R1 ≡ β1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2

pl
_H

q ¼ O
�
mplH

mϕ

�
¼ O

�
Λ2
sb

mϕ

�
: ð68Þ

So while in the range Λsb > ωπ;χ > R1, there are 2 effective
d.o.f. πc and χc, where as in the range R1 > ωπ;χ , the
inflaton perturbations πc are the only effective degree.
Now we need to be a bit careful, does this leave any

range for χc production? We found that the χc particles can
be produced up to the scale,

K2
bck ¼

1

c2χ

��
_α3 − α̈4

2

�
2=3

− α3 þ _α4

�
∼O

��
m2

plH
2

mϕ

�2=3�

¼ m2=3
ϕ R4=3

1 : ð69Þ

Considering (68), this suggests that the scale of particle
production lies above the scale R1, and so in the range
R1 < E < Kbck, both πc and χc modes are effective d.o.f.
We summarize this distribution of effective modes with
respect to scale in Fig. 1.
These β1 interactions are present in models where the

inflaton is derivatively coupled to the reheating sector. In
the context of preheating, derivative couplings have first
been studied in [9], with

6Note the sign difference in the definition of the sound speeds,

c2− ¼ 1þ 2R2
1

Ã
and c2þ ¼ 1 − 2R2

1

Ã
. For causality, the speed of

propagation should not exceed the speed of propagation for
light. In the units we are working with, this reads c2� ≤ 1. From

Eq. (60), Ã can have two different signs Ã¼�½ðm̃2
χþm̃2

π

2
þ2R2

1Þ
2−

m̃2
πm̃2

χ �1=2. To satisfy the causality condition, the positive solution
for Ã must contribute to c2þ and the negative solution to c2−. The
notation for sound speeds in Eqs. (62) and (63) aim to emphasize
this point.

HIDDEN REGIMES DURING PREHEATING PHYS. REV. D 100, 043503 (2019)

043503-9



L ¼ −
1

2
∂μϕ∂μϕ −

1

2
∂μX∂μX − VðϕÞ −UðXÞ

−
1

F2
ð∂μϕ∂μϕÞX2; ð70Þ

where F is the cutoff for this effective field theory. In the
original work, the authors consider chaotic inflation, in
particular, to govern the inflaton sector in this low energy
theory, in which case, F ≃mpl. Another example is the case
of geometric destabilization of inflation [16].
The Friedmann equations at the background level are

−2m2
pl
_H ¼

�
1þ 2

χ20
F2

�
_ϕ2
0 ≡ R2 _ϕ2

0 ð71Þ

3m2
plH

2 ¼ 1

2

�
1þ 2

χ20
F2

�
_ϕ2
0 þ Vðϕ0Þ þ Uðχ0Þ; ð72Þ

where χ0 is set to be constant. In general, such effective

Lagrangians can also involve− ∂μϕ∂μϕ
F χ terms, which would

lead to χ0ðtÞ and give rise to an unstable growth in the
reheating sector.
In a unitary gauge, the fields are expanded in terms of

linear perturbations as ϕ ¼ ϕ0ðtÞ, X ¼ χ0 þ χðx⃗; tÞ, and,
gμν ¼ ḡμνðtÞ þ δgμνðx⃗; tÞ. With V 00ðϕ0Þ¼m2

ϕ andU
00ðχ0Þ ¼

m2
χ , the Lagrangian up to second order in perturbations is

Lð2Þ ¼ −m2
plð3H2ðtÞ þ _HðtÞÞ þm2

pl
_Hg00 ð73Þ

−
1

2
∂μχ∂μχ −

1

2

�
m2

χ − 2
_ϕ2
0

F2

�
χ2 − 2

χ0
F2

_ϕ2δg00χ; ð74Þ

where the background equations of motion have been taken
into account. This matches the EFT Lagrangian as a model
with

α1 ¼ 1; α2 ¼ 0; α3 ¼ m2
χ − 2

_ϕ0

F2
¼ m2

χ þ
4m2

pl
_H

F2
;

α4 ¼ 0; mi ¼ 0: ð75Þ

Comparing the last line with (27), we can also read off that

β1ðtÞ ¼ −2
χ0
F2

_ϕ2
0 ¼ 4

χ0
F2R2

m2
pl
_H: ð76Þ

This sets the scale for hidden preheating to be

R1¼
β1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2m2
pl
_H

q ¼−2
χ0

F2R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2

pl
_H

q
∼

χ0
F2R2

Λ2
sb: ð77Þ

Also note that in the range R1 > ω, the canonical momen-
tum of the effective d.o.f. πc is

pπ ¼ −2R1χc ¼ 4
χ0

F2R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2

pl
_H

q
χc: ð78Þ

The χc production scale here is

K2
bck ¼

�
2m2

plḦ

F2

�2=3

−m2
χ − 4

m2
pl

F2
_H ð79Þ

K2
bck ∼

�
mϕ

Λ4
sb

F2

�
2=3

−m2
χ − 4

Λ4
sb

F2
: ð80Þ

Corrections to ϕ dynamics here come with coefficients of
χ0
F , which makes them perturbative corrections as long
as χ0 ≪ F. This in return implies that χ0

R2 ¼ χ0

ð1þ2
χ2
0

F2
Þ2
∼ χ0,

and the particle production scale will lie above the

coupling R2
1 ∼

χ2
0

F2

Λ4
sb

F2 .
The derivative couplings preserve the shift symmetry of

the inflaton. Hence, they provide a very likely candidate for
couplings of the inflaton with other fields. This also makes
them more likely to be present in the later stages than
nonderivative couplings, such as the original g2ϕ2X2

interaction considered for preheating. However, previous
analysis of the instability regimes they lead to suggested
that they are not very efficient for preheating. The line of
inquiry here is showing that these types of derivative
couplings lead to the presence of only inflationary pertur-
bations with modified dispersion relations as the lightest

FIG. 1. Here it is shown up to which scales the inflaton modes
δϕ ¼ πc and reheating modes χc appear as effective d.o.f., in the
presence of β1 type couplings.
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modes present. This suggests a reason as to why they are
inefficient for setting resonance in the reheating sector.

B. Hidden preheating with β2ðtÞ
The quadratic Lagrangian in the presence of β2 is

Lð2Þ ¼ 1

2
_χ2c þ

1

2
_π2c −

1

2a2
ð∂iχcÞ2 −

1

2a2
ð∂iπcÞ2 −

1

2
m2

χχ
2
c

−
1

2
m2

ππ
2
c þ 2ρ2 _πc _χc − ρ2

Ḧ
_H
πc _χc; ð81Þ

where ρ2 ≡ β2ffiffiffiffiffiffiffiffiffiffiffiffi
−2m2

pl
_H

p . In the previous case, the coupling

strength R1 had a mass dimension one, and hence, it
defined a scale, but ρ2 here is dimensionless. Moreover,
different than the case with β1, here χc appears with time
derivatives, and there are two derivative couplings.

Neglecting the background expansion and considering
solutions of the form χc ∼ Ae−iωt, πcBe−iωt the strength
of the kinetic terms will be of the order,

ρ2 _χc _πc ∼ ρ2ω
2AB; _χ2c ∼ ω2A2; _π2c ∼ ω2B2: ð82Þ

Being dimensionless ρ2 does not define a scale, and it will
at most be order one. But if at times the amplitude of one of
the species dominates over the other, the coupling with ρ2
can dominate over the kinetic term for the species with the
smaller amplitude and hence, give it a sound speed. A
similar interaction is also present in the next case with β3.

C. Hidden preheating by β3ðtÞ
The quadratic Lagrangian in this case is

Lð2Þ ¼
Z

d3xa3
�
1

2
_χ2c þ

1

2
_π2c −

ð∂iχcÞ2
2a2

−
ð∂iπcÞ2
2a2

−
m2

χðtÞ
2

χ2c −
m2

πðtÞ
2

π2c ð83Þ

−
_β3 _χcπcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2

pl
_H

q −
Ḧ
_H

β3πc _χcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2

pl
_H

q −
β3 _πc _χcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2

pl
_H

q −
β̈3πcχcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2

pl
_H

q �
: ð84Þ

This time there are three different couplings,

ρ3 ≡ β3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2

pl
_H

q ; R2 ≡ β̈3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2

pl
_H

q ; R3 ≡
_β3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2m2
pl
_H

q : ð85Þ

With these new definitions, the quadratic Lagrangian in terms of χ̃c and π̃c becomes

Lð2Þ ¼ 1

2

Z
d3x

�
_̃χ2c þ _̃π2c −

ð∂iχ̃cÞ2
a2

−
ð∂iπ̃cÞ2

a2
− m̃2

χðtÞχ̃2c − m̃2
πðtÞπ̃2c ð86Þ

−2R3
_̃χcπ̃c − 2

Ḧ
_H
ρ3π̃c _̃χc − 2ρ3 _̃πc _̃χc þ 3Hρ3ðπ̃c _̃χc þ χ̃c _̃πcÞ ð87Þ

3H

�
R3 −

Ḧ
_H
ρ3 −

9

2
H2ρ3

�
π̃cχ̃c − 2R2π̃cχ̃c

�
: ð88Þ

The coupling strength β3 has a mass dimension two.
This makes ρ3 dimensionless, just like ρ2. R2 and R3

are the dimension full parameters that can set the scales
here. The R2 term only contributes to the overall
energy. R3 has dimensions of mass and works similar
to R1. In the limit a → 1 while the combination m2

pl
_H

stays finite, let us assume that R2, R3, and ρ3 stay finite
and are constant while the terms involving 3H and Ḧ

_H
can be dropped. With these assumptions, we are

focusing on scales R3 ≫ ω ≫ mϕ > H and the Lagran-
gian equations of motion take the form,

̈χ̃ck þ ðk2 þ m̃2
χðtÞÞχ̃ck ¼ R3

_̃πck − R2π̃ck þ ρ3 ̈π̃ck; ð89Þ

̈π̃ck þ ðk2 þ m̃2
πÞπ̃ck ¼ −R3

_̃χck − R2χ̃ck þ ρ3 ̈χ̃ck: ð90Þ

This exhibits modes with frequencies of

HIDDEN REGIMES DURING PREHEATING PHYS. REV. D 100, 043503 (2019)

043503-11



ω2
� ¼ 1

ð1 − ρ23Þ
k2 þ B̃2

2ð1 − ρ23Þ
� 1

2ð1 − ρ23Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρ23k

4 þ 4ðρ23ðm̃2
χ þ m̃2

πÞ þ 2ρ3R2 þ R2
3Þk2 þ B̃4 − 4ð1 − ρ23ÞM4

q
; ð91Þ

where

B̃2 ≡ m̃2
χ þ m̃2

π þ R2
3 þ 2ρ3R2; ð92Þ

M4 ≡ m̃2
χm̃2

π − R2
2 ð93Þ

have been defined for ease of notation. Inflaton and
reheating modes in the range k2 ≫ B̃ðR3; m̃χ ; m̃π; R2Þ,
M2ðm̃χ ; m̃π; R2Þ, propagate freely with ω ∼ cρk, where
they can acquire a sound speed of the order of

c2ρ ¼ 1�ρ2
3

1−ρ2
3

. The main difference of this case from the

case with β1 is the possibility that a sound speed exists
even at this relatively high range of energies. This
suggests that these type of couplings arise from the
presence of at least three fields, where one of the fields
is much heavier than both the inflationary and reheating
sectors, leading to a nontrivial sound speed, c2ρ, even at
the ranges where the two sectors of interest appear
weakly coupled to each other.
In the range R2

3 ≫ ρ3k2 > m̃2
χ ; m̃2

π; R2, B̃
2 ≃ R2

3 and the
mode frequency is approximately

ω2
� ≃

k2

ð1 − ρ23Þ
þ R2

3

2ð1 − ρ23Þ

� R2
3

2ð1 − ρ23Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
4
ρ23
R4
3

k4 þ 4

R2
3

k2
�s
: ð94Þ

Expanding the square root, this range accommodates
modes with the dispersion relation,

ω2þ ≃
R2
3

1 − ρ23
þ 2

1 − ρ23
k2: ð95Þ

At leading order, these are very heavy modes that do not
propagate since there is no k dependence in the first term.
The lighter modes in this range have the following
dispersion relation:

ω2
− ≃

k4

R2
3

: ð96Þ

Note that this expression is very similar to the dispersion
relation (57) that we found for modes in the hidden
preheating regime with β1 type couplings, which in that
case were purely inflaton modes.
For ρ3 ≪ 1, in the regime R3 ≫ ω > mϕ; R2 > Hm, the

Lagrangian,

Lð2Þ ≃
Z

d3x

�
−R3

_̃χcπ̃c −
1

2a2
ð∂iχ̃cÞ2 −

1

2a2
ð∂iπ̃cÞ2

−
1

2
m̃2

χðtÞχ̃2c −
1

2
m̃2

πðtÞπ̃2c
�

ð97Þ

rise to the example where the χ̃c modes are the lightest
d.o.f., and π̃c plays the role of their canonical momenta,

pχ ≡ ∂L
∂ _̃χc ¼ −R3π̃c; pπ ≡ ∂L

∂ _̃πc ¼ 0: ð98Þ

And again there is a constraint which now demands that the
momentum of inflaton modes vanish.
Taking the limit a → 1 with m2

pl
_H remaining finite and

demanding Eqs. (98) be satisfied, the Hamiltonian corre-
sponding to (97) is

H ¼
Z

d3x½pπ
_̃πc þ pχ

_̃χc� − L

¼ 1

2

Z
d3x

�
ð∂iχ̃cÞ2 þ

1

R2
3

ð∂ipχÞ2 þ m̃2
χ χ̃

2
c þ

m̃2
π

R2
3

p2
χ

�
:

ð99Þ

Decomposing the fields into their Fourier modes, the
Hamilton equations of motion read

_pπk ¼ −
∂H
∂π̃ck ¼ 0; ð100Þ

_̃πck ¼
∂H
∂pπk

¼ 0; ð101Þ

_pχk ¼ −
∂H
∂χ̃ck ¼ −½k2 þ m̃2

χ �χ̃ck; ð102Þ

_̃χck ¼
∂H
∂pχk

¼ 1

R2
3

½k2 þ m̃2
π�pχk: ð103Þ

The first of these guarantee that the constraint is satisfied
at all times. With our previous assumptions and neglecting
the time dependence in R3, m̃χ , and m̃π, this system exhibits
modes χ̃ck ∼ e−iωt with the dispersion relation,

ω ¼ 1

R3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4 þ ðm̃2

χ þ m̃2
πÞk2 þ m̃2

χm̃2
π

q
ð104Þ

for scales in the range R3 ≫ k > mϕ, R2 > Hm, and
ρ3 ≪ 1. In fact, at leading order in this regime, Eq. (96)
is recovered
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ω ≃
k2

R3

¼ ω−: ð105Þ

Thus, we can identify ω− modes to be purely reheating
modes. This is similar to the case of hidden preheating with
β1; only this time the roles of the two fields are switched
around. Since the reheating perturbations are the light
modes here, this type of kinetic couplings could be more
likely to give rise to efficient preheating. Unlike the case
with β1ðtÞ, there does not seem to appear previously studied
examples to this case in neither the inflationary nor the
preheating literature. This may be due to the fact that in
generalizing couplings usually the main attention is given
to modifying the kinetic terms of the inflaton.
The scale that the R3 defines, the scale up to which χc is

the single effective species, is around OðmplH
mϕ

Þ order of

magnitude wise. Considering
ffiffiffiffiffiffiffiffiffiffiffi
mplH

p
as a unit scale, the

relationship between the magnitude of this scale to the
χ-production scale is Kbck ¼ ðmplHÞ1=3R1=3

3 ∼ R1=3
3 . In

conclusion, at frequencies below the R3 scale, ω < R3,
the effective modes are the reheating modes alone where as
at scales R3 < ω < Kbck modes of both πc and χc are
present, and above Kbck there is only the inflaton pertur-
bations due to the lack of resonant χc production. These
scales and the corresponding species are summarized
in Fig. 2.

V. CONCLUSIONS

Low energy effective field theories (EFT), especially the
ones that are developed at the level of perturbations, such
as the EFT considered here, aim to capture the variety of
interactions in the most general way. This generality is
achieved by considering all of the interactions allowed by
the symmetries that are present below a specified scale.
This scale in the EFT setup considered here was the scale of
spontaneous breaking of time translation invariance, due to
the time dependent nature of the background HðtÞ. Among
the possible interactions for the inflaton and reheating field
perturbations, the present work has focused on the extra
derivative couplings that appear under three different
classes, specified by the EFT parameters fβ1; β2; β3g.
The scales these derivative couplings introduce, the nature
of the effective d.o.f. at energies below the introduced
scales (whether they are inflaton perturbations or the scalar
reheating perturbations), and the corrections to the
dispersion relation for the effective modes at low energies
have been explored in this work. The properties of the
background as determined by the preheating era, that is
the presence of two scales mϕ and Hm with the hierarchy
mϕ ≫ Hm ≃Hp between them, have been used to deter-
mine the hierarchy between the scales of the interactions,
such as the particle production scale and the scale asso-
ciated to derivative couplings. All this has led to the main
conclusion that, although the aim of preheating is to capture
energy transfer between two different species, here the
inflaton and the scalar reheating sector χ, in the presence of
such derivative couplings, only one of the species prop-
agates as an effective d.o.f. at very low energies, while the
other stays hidden and modifies the dispersion relation of
the propagating species. Instead of an analysis of instability
bands to determine the efficiency of χ production, the main
pursuit here has been the identification of the relevant
species for low energies and exploring how the dispersion
relation of this species gets modified. It is left for the future
to discuss the efficiency in the production of the identified
low energy modes through studying the details of the
resonance in comparison to perturbative decay rates.
While this EFT method allows one to study the proper-

ties of perturbations right away, the disadvantage can be
that it is not always clear what kind of interactions at the
background level would give rise to these interactions at
the level of perturbations. For example, an interaction of
type ð1Λ ∂μϕ∂μϕÞX, where ϕ is the inflaton which is to be
expanded as ϕðx⃗; tÞ ¼ ϕ0ðtÞ þ δϕðx⃗; tÞ, X, with Xðx⃗; tÞ ¼
X0ðtÞ þ χðx⃗; tÞ, is the reheating field and Λ is some mass
scale, is an example that gives rise to β1 type couplings.
And indeed these type of interactions are common in
inflationary literature in many studies that wish to respect
the shift symmetry for the inflaton. On the other hand,
1
Λ ð∂μX∂μXÞϕ would be an example to β3 type couplings,
which however would not be an interaction to consider if

FIG. 2. Here the regions where the inflaton modes δϕ ¼ πc
and reheating modes χc appear as effective d.o.f. in the presence
of β3 interactions, where a sound speed is probable at all levels,
are shown.
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one is concerned with a shift symmetric inflaton. Looking
at the preheating literature, the interactions considered are
more of a polynomial type; for instance, g2ϕ2X2 is the first
case that has been considered. Derivative couplings during
preheating have not been studied at the level they have been
during inflation. So far, derivative couplings in preheating
literature involve examples of only the class of β1 cou-
plings, among the three classes that the EFT methods
suggest. Moreover, the examples to the β1 case that have
been studied are noted to be not very efficient for the
resonant production of low energy reheating modes, χ̃ck.
Looking at the dispersion relations, here it is noted that at
scales below the scale of the derivative coupling R1, the
reheating modes appear to affect the canonical momenta of
the inflaton perturbations, leaving them as the low energy
species with a modified dispersion relation derived in
Eqs. (57) and (64). On the other hand, β3 interactions
accommodate the reheating modes as the light d.o.f. with a
modified dispersion relation of (105). Hence, these later
type of interactions may be more promising for the resonant
production of χ through derivative couplings.
Moreover, some of the derivative couplings, in the

presence of β2 and β3, imply a sound speed and modified
dispersion relations for both of the species even at energies
where modes of both propagate freely. This suggests that
these EFT coefficients may address models that involve
additional heavy d.o.f.
The reheating sector χ as considered here is quite

general. Being a primordial scalar field, χ is most likely
to contribute to structure formation and resemble fields
associated to dark matter. In principal, any of these
couplings can arise in models of multifield inflation.
Since the effective field theory method at the level of
perturbations followed here considers all possible terms
that respect the symmetries at the scales of interest, one of
the expected benefits of this approach is to come across
new types of interactions that may not have been thought of
yet. The appearance of the less explored case of β3ðtÞ type
couplings are an example to this. They would arise from
attempts of generalizing interactions of the reheating field,
as sketched in the previous paragraphs. It is left for the
future to explore for this later case, the phenomenological
implications and the detailed structure of resonance in
comparison with rate of perturbative decays. With regards
to perturbative decay rates, the EFT interactions would give
the possible Feynman diagrams to be computed; however,
the strength of the amplitude from these diagrams will
depend on the coupling parameter which in turn depends on
the background physics. The background information is
determined by how HpðtÞ and mϕ work into ϕ0ðtÞ and
X0ðtÞ. The same holds for the efficiency of the resonant
particle production. One can make estimates on the scale
of particle production from the general behavior of the
background as it has been done here, but to study the actual
efficiency one again has to first study the details of how the

background parameters work into the Mathieu variables.
Once solid examples that give rise to β3 type interactions at
the level of perturbations are constructed, then how the
coupling parameters depend onmpl,H, andmϕ through the
background behavior of ϕ0 and X0 will become more clear,
and the perturbative decay rates and efficiency of resonance
can be studied more concretely.
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APPENDIX: BEHAVIOR OF THE BACKGROUND
IN THE EARLY STAGES OF PREHEATING

As noted in the Introduction, our starting point is that
at the background level, the energy momentum density is
dominated by a single scalar field, ϕ0. This scalar field is
the same as the one that dominated the energy momentum
density during inflation, the inflaton, and it only exhibits a
time dependence ϕ0ðtÞ. During inflation, its time depend-
ence is weak. If this background scalar is minimally
coupled to gravity,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
m2

plR −
1

2
gμν∂μϕ0∂νϕ0 − Vðϕ0Þ

�
;

ðA1Þ

what will be the behavior of the overall background HpðtÞ,
at the end of inflation when the slow roll conditions no
longer hold?
Assuming that ϕ0ðtÞ minimizes its potential, the

leading term in its potential will be the mass term
Vðϕ0Þ ∼m2

ϕϕ
2
0. On an Friedmann-Lemaître-Robertson-

Walker background, the scalar field evolves according to

ϕ̈0 þ 3H _ϕ0 þ V 0ðϕ0Þ ¼ 0: ðA2Þ

The time derivative of the scalar field can be considered to
be _ϕ0 ∼mϕϕ0. If the friction term H _ϕ0 is neglected, the
scalar field evolution would be ϕ0ðtÞ ∼Φ sinðmϕtÞ. The
effect of the Hubble friction gives further time dependence
to the amplitude Φ.
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The evolution of the Hubble parameter is governed by

6m2
PlH

2 ¼ _ϕ2
0 þm2

ϕϕ
2
0; ðA3aÞ

2m2
Pl
_H ¼ − _ϕ2

0: ðA3bÞ

Following [17], let us switch from the variable ϕ0 to θ
defined as

ϕ0 ¼
ffiffiffi
6

p
mPl

H
mϕ

sin θ; ðA4aÞ

_ϕ0 ¼
ffiffiffi
6

p
mPlH cos θ: ðA4bÞ

This definition automatically satisfies (A3a) and gives

_H ¼ −3H2cos2θ: ðA5Þ

As an internal consistency, the derivative of (A4a) should
give (A4b). This condition leads to

_θ ¼ mϕ þ
3

2
H sinð2θÞ: ðA6Þ

For the era under consideration, Hp ≪ mϕ, and hence,
θ ≃mϕtþ Δ. Using this approximation in (A3b) gives

−
Z

HðtÞ

Hend

dH
H2

¼ 3

Z
t

tend

cos2ðmϕt0 þ ΔÞdt0; ðA7Þ

which is to be solved for H. The end of inflation occurs
when

ϵðtendÞ ¼
− _Hend

H2
end

¼ 1: ðA8Þ

From Eqs. (A3a) and (A3b) with ϕ0ðtendÞ ∼mPl, this means
Hend ≃

mϕ

2
. The solution for H(t) reads as

Hp ¼ 2

3t

�
1þ sinð2mϕtþ 2ΔÞ

2mϕt

�−1

≃Hm

�
1 −

3Hm

4m
sinð2mϕtþ 2ΔÞ

þ 9

16

�
Hm

mϕ

�
2

sin2ð2mϕtÞ þ…:

�
; ðA9Þ

where α≡ sinð2mϕtþ2ΔÞ
2mϕt

is small at times 1 ≪ mϕt and hence,

one can consider a series expansion around α ¼ 0. So the
end of inflation represents a matter dominated era with
oscillatory corrections.7 Equation (A4a) then gives the
following behavior for the inflaton:

ϕ0ðtÞ ≃
ffiffiffi
6

p
mpl

Hm

mϕ

�
sinðmϕtÞ

þ 3

8

Hm

mϕ
ðcos 3mϕt − cosmϕtÞ þ…

�
: ðA10Þ

The behavior of the inflaton perturbations on this back-
ground and the duration of this oscillatory era have been
studied to understand the end of single field inflation with a
canonical kinetic term and minimal coupling to gravity
[18,19]. The original example of preheating [3] considers
only the zeroth order terms in this background,

Hpc ¼ Hm; ðA11aÞ

ϕpc
0 ðtÞ ¼

ffiffiffi
6

p
mPl

Hm

mϕ
sinðmϕtþ ΔÞ ðA11bÞ

and involves a second field χ to which the inflaton transfers
its energy via the coupling g2ϕ2χ2.
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