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We devise a test of nonlinear departures from general relativity (GR) using time delays in strong
gravitational lenses. We use a phenomenological model of gravitational screening as a step discontinuity in
the measure of curvature per unit mass at a radius Λ. The resulting slip between two scalar gravitational
potentials leads to shifts in the apparent positions and time delays of lensed sources, relative to the GR
predictions, of size γPN − 1. As a proof of principle, we use measurements of two lenses, RXJ1121 − 1231

and B1608þ 656, to constrain deviations from GR to be below jγPN − 1j ≤ 0.2 × ðΛ=100 kpcÞ. These
constraints are complementary to other current probes and are the tightest in the range Λ ¼ 10–200 kpc,
showing that future measurements of strong-lensing time delays have great promise to seek departures from
general relativity on kpc-Mpc scales.
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I. INTRODUCTION

One of the most perplexing problems of cosmology is to
determine the physics of the accelerated cosmic expansion
[1,2]. While a cosmological constant is widely regarded as
the default hypothesis, both dynamical dark energy and
new gravitational physics have been put forward as
possible explanations [3–6]. To evaluate the consequences
of the myriad such scenarios requires forward modeling the
detailed behavior of new fields and interactions. A more
nimble comparison of theory with observations could be
made if a phenomenological description was available. In
the case of dark energy, the commonly used equation of
state carries the equivalent information of a quintessence
scalar field. In the case of new gravitational physics,
efforts have focused on building a cosmological version
of the post-Newtonian parametrization (see, for instance,
Refs. [7–9] for recent reviews). However, there is no one-
size-fits-all description of cosmological gravitation beyond
general relativity (GR).
Yet, there are two key, distinguishing features of most

theories of new gravitational physics: gravitational slip
(meaning different Newtonian potentials for the temporal
and spatial metric components [10]) that grows with the
accelerated cosmic expansion, and screening, sometimes
referred to as Vainshtein screening [11,12], that maintains
GR within the confines of a galaxy, but enables new, light
gravitational degrees of freedom (d.o.f.) to activate on
cluster scales and beyond. These features are common to

fðRÞ gravity [13], chameleon fields [14], beyond-
Horndeski gravitation [15,16], and more broadly to theories
of massive gravity [17]. Each of these cases require detailed
and model-specific calculations to evaluate the predictions
for cosmology. We are therefore motivated to posit a
phenomenological model (akin to Ref. [18]), in which
the departures from GR take the form of a gravitational slip
on distances above some cutoff scale Λ, which is expected
to match the general behavior of these complete theories.
The cosmological effects of gravitational slip and screening
have been studied in a wide range of contexts: cosmic
microwave background (CMB) temperature and polariza-
tion anisotropies [19–23], weak gravitational lensing
[24,25], the growth and clustering of large scale structure
[19,26,27], strong gravitational lensing [28–31], and in
stars and galaxies [32,33].
In this paper, we propose strong-lensing time delays as a

probe of gravitational slip. In usual time-delay cosmogra-
phy, one uses the positions and fluxes of a multiply imaged
quasar to constrain the lens-mass model. In these cases, the
strong-lens galaxy (usually a massive elliptical) is in the
line of sight between a quasar and us, resulting in multiple
images for the quasar. This leaves the time delay between
images as an additional d.o.f., which can be used to
measure the cosmic expansion rate (see, for example,
Ref. [34] for a recent review). Using this technique,
the H0LiCOW (H0 lenses in cosmograil Wellspring)
Collaboration has recently reported a measurement of
the Hubble constant ofH0¼72.5þ2.1

−2.3 kms−1Mpc−1 [35,36],
using four strongly lensed systems, showcasing the strength
of time-delay measurements. Here, instead, we propose*Robert.R.Caldwell@dartmouth.edu
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fixingH0 to its CMB- or supernova-inferred value [37] and
using the time-delay measurements as a test of deviations
from GR. Our procedure is relatively straightforward and
fits within the standard framework used to model strong-
lensing time delays, which would allow for departures from
GR to be constrained by future analyses.
We make two simplifying assumptions in this work.

First, we only consider the spherically symmetric images in
each lens, though our method can be generalized to use the
fully nonspherical information and any substructure.
Second, we assume that the screening length Λ is bigger
than the Einstein radius of the lens galaxy and therefore,
significantly larger than its half-light radius. Thus, the
stellar dynamics within the lens are not altered, but
deviations from GR at large radii would affect the photon
time travel. This is to be compared with the results such as
Refs. [28–30,38,39], where the screening is assumed to
take place within the galaxy, and departures from GR are
constrained by comparing the dynamical and lensing
masses. We are able to explore the opposite regime of
supergalactic screening due to the inclusion of the time-
delay datum. Additionally, previous studies have used
strong-lensing time delays as a probe of modified gravity
or dark energy [40–46], focusing on the changes to the
expansion history of the Universe. Our work is different
from those studies in that it seeks changes to the space-time
around the lens rather than to the expansion history of the
Universe.
In this first study, we use data of real quadruply lensed

quasars from the H0LiCOW Collaboration, for which the
amount of information about the lens is maximal [47]. We
show that the data of two lensed systems are already
sufficient to obtain new bounds on departures from GR.
Indeed, with time-delay measurements of RXJ1131 − 1231
and B1608þ 656, we are able to constrain a deviation
to the post-Newtonian slip parameter jγPN − 1j ≤ 0.2×
ðΛ=100 kpcÞ, which sets the most stringent constraints
on new theories of gravity with screening lengths
Λ ¼ 10–200 kpc. This technique opens up a new way to
probe gravitational phenomena on cosmological scales,
where dark-energy effects are expected to become apparent.
We structure this paper as follows. We introduce our

model in Sec. II, which we use to obtain the time delays in
Sec. III. We, then, present our results in Sec. IV and
conclude in Sec. V.

II. THE MODEL

We consider the geodesic motion of photons under a
metric theory of gravity in which our cosmological space-
time is described by the line element,

ds2 ¼ a2ðηÞ½−ð1þ 2ΦÞdη2 þ ð1 − 2ΨÞdx⃗2�: ð1Þ

Here, a is the expansion scale factor, η is conformal time,
and Φ, Ψ are the conformal-Newtonian and longitudinal

potentials, respectively. In the Newtonian limit, valid for
length and time scales shorter than the expansion time, a
nonrelativistic distribution of matter gives rise to a weak
potential jUj ≪ 1, according to the Poisson equation,
∇2U ¼ 4πGa2ρ. In this case, the acceleration of massive

test particles is determined as x⃗00 ¼ −∇⃗Φ with Φ ¼ U.
These potentials are equal, Ψ ¼ Φ, under GR [48,49].
Gravitational slip describes the decoupling ofΦ andΨ as

a consequence of a departure fromGR. In the class ofmodels
considered, new gravitational d.o.f. yieldΨ ¼ γPNΦ, where
γPN quantifies the amount of space-curvature per unit rest
mass and is expected to return to its GR value of γPN ¼ 1 at
small distances due to screening.
Gravitational screening is a nonlinear phenomenon

whereby the same new gravitational d.o.f. are sharply
suppressed within a certain region. The simplest theory
in which this appears is the cubic Galileon [50–52],
wherein the screening radius is determined by a geometric
mean of the Schwarzschild radius of the mass source and
the Compton wavelength of the new d.o.f. This elegant
effect enables these gravitational theories to closely resem-
ble GR within our Galaxy, where classical tests strongly
favor Einstein’s theory, but allows new effects—in par-
ticular, cosmic acceleration—to manifest on larger scales.
To model the effect of screening, we consider the gravi-
tational slip to be stepwise discontinuous at a screening
radius Λ.
Photon geodesics require the sum of the two potentials,

which we define as Σ≡ΦþΨ. For a spherically sym-
metric mass distribution, ρðrÞ, we propose to model a
departure from general relativity as

Σ ¼ ½2þ ðγPN − 1ÞΘðr − ΛÞ�ΦðrÞ; ð2Þ

where r and Λ are physical distances, and Θ is the
Heaviside step function. This simple expression is our
main innovation, which enables an easy calculation of
lensing deflection and time delay, given a spherical lens
mass model. Our setup is illustrated in Fig. 1. In what
follows, we will assume the screening radius is larger than
the Einstein radius, Λ > RE ¼ DLθE.
We define, as usual, the lensing potential as [53]

ψðθÞ ¼ DLS

DLDS

Z
dzΣðrÞ; ð3Þ

where DL, DS, and DLS are the angular-diameter distances
to the lens, the source, and between the lens and the source,
and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þD2

Lθ
2

p
. We can, then, decompose the

lensing potential in our model [Eq. (2)] as

ψ ¼ ψGR þ ðγPN − 1ÞΔψ ; ð4Þ

where ψGR is the usual lensing potential in GR, and
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ΔψðθÞ ¼ 2

Z
∞

Λ
dr

rΦðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 −D2

Lθ
2

p ð5Þ

is the correction due to screening. We will assume that the
lens has a simple power-law form, as commonly done for
time-delay analyses (although see the caveats in [54–56]),
and additionally, impose spherical symmetry. In that case,
the mass density is ρðrÞ ¼ ρ0ðr=r0Þ−γ0 with an index 1 <
γ0 < 3 (not to be confused with the post-Newtonian
parameter γPN) and where the ρ0 and r0 constants set the
mass scale for the lens. Then, the Newtonian potential is
given by

Φ ¼ 4πρ0r
γ0
0

ðγ0 − 3Þðγ0 − 2Þ r
2−γ0 : ð6Þ

This yields a lensing potential in GR of [57–59]

ψGRðθÞ ¼
θγ

0−1
E;GR

3 − γ0
θ3−γ

0
; ð7Þ

where the r0 and ρ0 parameters have been combined to
obtain the Einstein angle θE;GR, where the subscript GR
indicates that it is the value that would be inferred in GR
and acts as an overall normalization. We can find the
deflection angle simply as

αGRðθÞ ¼ ∂θ ψGRðθÞ ¼ θγ
0−1
E;GRθ

2−γ0 ; ð8Þ

where throughout we assume that γ0 ≠ 2 for simplicity.
We can straightforwardly integrate the potential in

Eq. (5) to find the PN correction to the lensing potential
to be

ΔψðθÞ ¼ c θγ
0−1
E;GR

3 − γ0

�
DL

Λ

�
γ0−3

× 2F1

�
1

2
;
γ0 − 3

2
;
γ0 − 1

2
;

�
DLθ

Λ

�
2
�
; ð9Þ

where 2F1 is the hypergeometric function,

c ¼ 1

2
ffiffiffi
π

p Γðγ0
2
− 1Þ

Γðγ0−1
2
Þ ; ð10Þ

and Γ is the gamma function. From this equation, the PN
correction to the deflection angle can be trivially found
as Δα ¼ ∂θΔψ .

III. TIME DELAYS

Our goal in this work will be to constrain deviations from
GR, parametrized through γPN, for different screening
distances Λ. As discussed in the Introduction, we will
use time-delay measurements of strongly lensed quasars to
do so, as they provide us with an independent measurement
of the gravitational potential at the lens. We assume a
standard flat ΛCDM cosmology, with an expansion rate
today of H0 ¼ 70 km s−1 Mpc−1 and matter abundance of
ΩM ¼ 0.27, to calculate cosmological distances.
Given our lens model, which predicts the potential ψ i

and deflection αi at each image position θi, we can
calculate the time delay between lensed images i and j
as [53]

Δtij ¼
1

2
ð1þ zLÞ

DLDS

DLS
½ðα2i − α2jÞ − ðψ i − ψ jÞ�: ð11Þ

We will assume that all the parameters are well known
from the positions and fluxes of the images, and simply use
the observed time delays Δtobsij to measure γPN. There are,

FIG. 1. The relative positions of observer (O), lens (L), and source (S). The observer records two images, displaced by angles θ; θ0
relative to the lens. We assume that the screening radius Λ, measured from the center of the lens L, is larger than the impact parameter of
both light rays. In our toy model, the post-Newtonian parameter γPN is unity insideΛ, and a free parameter outside; see Eq. (2). Note that
α̂ and α̂0 are deflection angles, and α and α0 are reduced deflection angles. They are related as follows: α ¼ ðDLS=DSÞα̂ [53].
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however, two subtleties that we have to address before
being able to do so.

A. Shifts in parameters

The correctionΔψ to the lensing potential, from Eq. (10),
affects not only the time delay but also the image positions
for finite values of Λ (always larger than RE ¼ DLθE,
though). In this case, we cannot keep all the lens parameters
fixed as we vary γPN, as their best-fit values will change
accordingly. A complete way to include this effect would be
through a Markov-Chain Monte Carlo (MCMC) search in
parameter space, including γPN along the rest of parameters
(θE, γ0, etc.). This is a costly procedure, so in this first study,
we will instead account for the parameter shifts by keeping
the observed θE;obs constant, by changing the (unobservable)
GREinstein angle θE;GR as a function of γPN.We achieve this
by numerically solving for the Einstein angle from the
expression,

θE;obs ¼ αGRðθE;obsÞ þ ΔαðθE;obsÞ: ð12Þ

We have found that using the approximation that

2F1

�
1

2
;
γ0 − 3

2
;
γ0 − 1

2
; x2

�
≈ 1 −

1

2
ð3 − γ0Þx2; ð13Þ

valid for x ≪ 1, the solution can be analytically found to be

θE;GR ¼
�
θ1−γ

0
E;obs − cðγPN − 1Þ

�
Λ
DL

�
1−γ0

×

�
1þ 1

2
ð3 − γ0Þ

�
DLθE;obs

Λ

�
2
�� 1

1−γ0 ð14Þ

to a great accuracy, where c is as in Eq. (10). This illustrates
the shift to the input θE;GR that has to be performed to obtain
the observed θE;obs. However, we will use the exact numeri-
cal solution above, since the results differ marginally for
very small screening distances Λ ∼ RE.

B. The mass-sheet degeneracy

One of the main obstacles in using time-delay measure-
ments from strong lenses is the so-called mass-sheet
degeneracy (MSD), whereby a coordinate transformation
in the unobservable impact parameter,

β → ð1 − κextÞβ; ð15Þ

accompanied by a shift in the lensing potential of

ψðθÞ → ð1 − κextÞψðθÞ þ
κext
2

θ2 ð16Þ

results in the same image positions and fluxes, while
shifting the time delays by a factor of ð1 − κextÞ [60,61].

This additional term in the lensing potential corresponds to a
constant external convergence κext, which naturally appears
due to mass along the line of sight to the source [62,63].
There are two avenues to breaking the MSD, and both

can be combined to improve the accuracy of H0 measure-
ments from strong-lensing time delays. The first is using
simulations to obtain a probability density function (PDF)
for κext, using both galaxy counts and shear information
from the lens field of view [34,64–66]. The second is
dynamical measurements of the lens, where the velocity
dispersion σ2� of stars is directly related to the enclosed total
(visible and dark-matter) mass [67]. We note that σ2� is
typically measured through spectroscopy at a small radius
Reff ∼ kpc, where by construction, our modifications to GR
are screened to not alter galactic dynamics. Even when
including dynamical and simulation information, the MSD
dominates the uncertainty in strong-lensing measurements
of H0, as the observed time delays Δtobsij are usually well
measured (see, however, Ref. [68]).
We will account for the MSD by shifting the value of the

observed time delay by the expected κext of each system,
which in Refs. [69,70] are obtained by combining simu-
lations with the observed external shear in each system, to
obtain the component due to the lens as

Δtlensij ¼ Δtobsij

1 − κext
: ð17Þ

Additionally, given the small uncertainties in the observed
time delays, we will assume that the time-delay error
budget is dominated by the MSD, and hence, the dominant
parameter is the uncertainty in dynamical measurements of
the lens mass. (In general, there are uncertainties related to
the anisotropy in orbits that can hamper the conversion
from velocity dispersion to the lens mass, which we
ignore.) In that case, the uncertainty in the time delay
caused by the lens is

σðΔtijÞ ¼ 2Δtobsij
Δσ�
σ�

; ð18Þ

where Δσ� is the error in the velocity dispersion. We note
that from this simple estimate we would infer a relative
uncertainty in H0 of ∼10%, whereas Refs. [69,70] found
∼7% error bars per system, showing that a full analysis
contains more information than our simple estimates.
We will, therefore, also show optimistic results where
we assume the only source of error is the observational
uncertainty in Δtij.

IV. RESULTS

We use two systems with well-measured time delays:
RXJ1131 − 1231 and B1608þ 656. Before outlining the
characteristics of these two systems, we note that there are
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two additional strong-lens time-delay systems employed by
the H0LiCOW Collaboration to measure H0, HE0435−
1223 and SDSS 1206þ 4332, which we do not analyze.
For HE0435 − 1223, we would have to include a nearby
perturber that cannot be accounted for as an external
convergence [71], which explicitly breaks spherical sym-
metry. Similarly, the SDSS 1206þ 4332 system cannot be
well approximated through a spherical lens, as the two
images (A and B) are not coaxial with the lens center [35].
We leave for future work improving upon our spherically
symmetric lens model to be able to employ these (and
other) complicated systems in our analysis. Let us briefly
describe the two systems that we study.

A. RXJ1131 − 1231

This system, first discovered in Ref. [72], consists of a
source QSO at zs ¼ 0.658, strongly lensed by a galaxy at
zL ¼ 0.295. RXJ1131 has been carefully studied and used
to measure the Hubble expansion rate to better than 10%
precision [70]. In addition, RXJ1131 has been used to set
lower bounds on the mass of a putative warm-dark matter
candidate through substructure constraints [73].
As we are assuming spherical symmetry, we can only use

the two QSO images that are coaxial with the lens, which
for this system are images A and D, following the
nomenclature in Ref. [70]. We take the image positions
from Ref. [74], where we find their angular distances
to the lens center to be θ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðθA − θLÞ2
p

¼ 2.11 arcsec,
where θL is the centroid of the lens. Similarly,
θ0 ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðθD − θLÞ2
p

¼ 1.12 arcsec. The observed time delay
between A and D is Tij ¼ −91� 2.1 days [75], and this
system has a relative error in the velocity dispersion of
Δσ�=σ� ¼ 6% [74]. Finally, the main lens has an observed
Einstein angle of θE;obs ¼ 1.64 arcsec, a power-law index
of γ0 ¼ 1.95 and an expected median value of external
convergence of κext ¼ 0.09 [70].
In addition to the main lens, there is a small satellite (S),

with an Einstein angle of θSE ¼ 0.2 arcsec. As its existence
breaks spherical symmetry, we do not include it in our
analysis, but we have checked that simply adding θSE to the
observed Einstein angle does not produce a departure from
GR within our error bars.

B. B1608 + 656

This system, first discovered in Ref. [76], consists of a
QSO at zs ¼ 1.394 and a lens at zL ¼ 0.6304. Again we
only use the two coaxial imageswith the lens,C andD,where
we read the image and lens-centroid positions from Fig. 7
of [58], to obtain θ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðθC − θLÞ2
p

¼ 1.18 arcsec, and
θ0 ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðθD − θLÞ2
p

¼ 0.87 arcsec. The observed time delay
between these two images is Tij ¼ −41þ2.5

−1.8 days [77].
The main lens has an Einstein angle of θE;obs ¼

0.924 arcsec [78] and a power-law index of γ0 ¼ 2.08.

We will also ignore the small satellite, G2, for this lens,
which has an Einstein angle of θG2E ¼ 0.28 arcsec. The
median value of the external convergence for this system is
κext ¼ 0.08, and the uncertainty in the velocity dispersion is
Δσ�=σ� ¼ 6% [74].

C. Constraints on γPN
We use the data for the two strong lenses described above

to constrain the PN parameter γPN from Eq. (4). We show,
in Fig. 2, the maximum and minimum values for γPN
allowed by each of our strong-lensing systems at 68% C.L.,
as a function of the physical cutoff scale Λ. We have
assumed that the modeling uncertainties are dominated by
the stellar dynamics, which induces relative errors of ∼10%
in the time delay due to the lens itself, although we also
show the result if the only uncertainty were measurement
errors in Δtobsij (of a few percent). As is clear from Fig. 2,
strong-lensing time delays constrain departures from GR
for all screen radii Λ that we study, with our constraints
scaling as jγPN − 1j≲ 0.2 × ðΛ=100 kpcÞ, for Λ ≥ RE≈
10 kpc. We note, in passing, that the screening radii
in different theories of massive gravity are typically
determined by a generalized geometric mean of the
Schwarzschild radius of the mass source and the
Compton wavelength of the massive graviton [12]. For a
galaxy with a mass 1012 M⊙ and a Hubble-radius graviton,
the direct geometric mean yields a screening radius of
∼20 kpc, in the range that we probe.

D. Discussion

Interestingly, for small values of Λ (but still satisfying
Λ ≥ RE), the behavior of the constraints is more

FIG. 2. The shaded areas are ruled out by time-delay measure-
ments of the two systems we consider, RXJ1131 − 1231 and
B1608þ 656. The dashed lines show the constraint that could be
achieved without the MSD (i.e., if the error bars in the time delay
were the limiting factor in the analysis). The black dashed line at
γPN ¼ 1 represents the prediction from GR, and the slight
asymmetry around this value is due to a nonunity best-fit value
in our analysis.

COSMIC TIME SLIP: TESTING GRAVITY ON SUPERGALACTIC … PHYS. REV. D 100, 043031 (2019)

043031-5



complicated. In this regime, strong-lensing time delays can
constrain deviations from GR at the percent level, given the
large expected change in the image positions and time
delays. We note, however, that our approximation that all
lens parameters are fixed might not hold for small values of
Λ, so a full MCMC analysis is required to fully establish
these constraints. Nonetheless, for Λ≳ 15 kpc, we have
tested the sensitivity of our results to changes in param-
eters. We have varied the cosmological parameters ΩM and
H0 within the range suggested by Planck as well as local
measures of the expansion rate. We have also considered a
range of values of the power-law lens profile, γ0, as
indicated by the noncoaxial images. We find that our
results are broadly insensitive to these changes, with the
best-fit γPN shifting less than a sigma and its error only
changing at the 10% level.
We note that previous work has searched for modifica-

tions from GR using strongly lensed systems without
observed time delays [28,29,79], constraining γPN to within
10% of unity using galaxies [30], or within 30% using
clusters [31]. These analyses, however, only search for a
distance-independent deviation from GR by comparing the
dynamical mass (obtained from velocity dispersions) in

each lens with their Einstein radius (which provides a
measure of the lens mass). This can be regarded as the
opposite scenarioΛ ≪ RE of our parametrization in Eq. (4).
In that case, the dynamics of the lens (givenbyΦ) and its light
deflection (givenbyΦþΨ) are different at all relevant scales
of the problem [28]. Our work studies the complementary
range Λ≳ RE, using time delays as an additional datum to
measure γPN, in a similar manner to H0 measurements. We
compare our constraints from RXJ1131-1231 with those of
previous work in Fig. 3, along with that obtained from CMB
and large-scale structure data [22]. Clearly, strong-lensing
time delays are the most sensitive probe to departures from
GR in the range Λ ¼ 10–200 kpc.
We find large differences in constraining power from one

system to another, as RXJ 1131 can place constraints on
γPN twice as stringent as B1608. Nonetheless, we can
forecast what our constraints would be given a numberN of
strong lenses with well-measured time delays (and mass
models), by averaging the errors for the two systems
that we have and dividing by

ffiffiffiffi
N

p
, as different systems

are uncorrelated. Doing so, we estimate a forecasted
constraint of

σðγPNÞ ≈ 0.07 × ðΛ=100 kpcÞ × ðN=30Þ−1=2; ð19Þ

reaching precision below 10%. This is a conservative
estimate, as our analysis only employs the two coaxial
strongly lensed images.
For completeness, we note that it is possible that the

potential Φ departs from the Newtonian form beyond the
screening radius in different ways. For instance, in some
theories, the effective Newton’s constant is a function of
redshift [80,81]. Given that the functional form of the
departure varies from one theory to another, we only
present results for our pure Newtonian model (Eq. (6).
This model can represent a wide class of massive-gravity
theories in the general framework of bimetric gravity [18],
where the correction term to the Newtonian form can be
neglected for the graviton masses that we can probe.

V. CONCLUSIONS

In this work, we have studied the effects of a cosmic time
slip in strong-lensing time-delay measurements. We devel-
oped a phenomenological model of gravitational screening
where the Newtonian potential equals the one in GR for
small radii, and transitions to a value that is γPN times that at
large distances. For computational convenience, we used an
abrupt transition at a screening length Λ and calculated its
effects on the lensing potential ψ , which we used to derive
the modified Einstein angle θE and time delays Δt for
spherically symmetric lenses.
Using the formalism outlined above, and the data

from the two strong-lens systems, B1608þ 656 and
RXJ1131 − 1231, we were able to constrain deviations
from GR with screening lengths Λ ¼ 10–200 kpc at the

FIG. 3. 1-σ errors on the post-Newtonian time-slip parameter
γPN as a function of the screening length Λ. In black we show the
results of Ref. [30]. Their scale-independent post-Newtonian
parameter is equivalent to γPN in our model Eq. (2) for Λ ≤ RE,
where RE is the Einstein radius of the ESO 325-G004 lens, as
shown. In solid purple we show similar analysis from Ref. [31] on
a cluster from CLASH and VLT observations, where the cutoff
scale has to be below 2 Mpc. In solid green we show the results
from cosmological observations from Ref. [22], using CMB data
plus large-scale structure, which is valid for cutoffs Λ < 1=kmax,
where we take the maximum wavenumber in the analyses to be
the nonlinear scale kmax ¼ 0.2 Mpc−1. In solid red we show our
result from strong-lensing time delays using RXJ1131 − 1231,
which clearly places the strongest constraints on γPN for screen-
ing lengths between RE ¼ 10 kpc (which we show as a vertical
dotted red line) and 200 kpc. Long dashed lines are included to
guide the eye.
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10% level. These are the first constraints on modified
gravity with screening in this range and the first to make
use of time delays. In this analysis, we employed a simple
spherical-symmetric model and kept the observed proper-
ties of the lens fixed, only using the time delay as a datum
to constrain γPN − 1. In future work, we will use MCMCs to
measure all lens parameters and γPN simultaneously, which
will allow more robust and precise constraints, as well as to
include the results from systems more complicated than the
ones that we studied. Nonetheless, this first study imposes
the strongest constraints to departures from GR in theories

with screening scales between 10 and 200 kpc, showing the
promise of this method.
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