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Rotation of galactic objects has been seen in the cosmic microwave background (CMB) that could be
ascribed to molecular hydrogen clouds with, or without, dust contamination and contamination from other
sources. We model the clouds using the canonical ensemble for pure molecular hydrogen, a mixture of
hydrogen helium and/or dust, in order to constrain the physical parameters of these clouds. Since the clouds
are cold, we justify the use of the canonical ensemble by explicitly calculating the interaction between the
hydrogen molecules and the CMB photons and determining the time required for thermal equilibrium to be
reached and show that there is enough time for equilibrium to be attained.
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I. INTRODUCTION

The Universe contains 5% baryons, only half of which
are visible [1,2]. The question of the missing baryons is still
unanswered. Different scenarios have been proposed to
answer this question [3–9]. Nearly 25 years ago, it was
proposed that some small fraction of primordial hydrogen
not swept away during star formation would have started to
collapse due to gravitational instability and form clouds
which contribute to the galactic halo dark matter [10].
These clouds would then radiate until they reach the cosmic
microwave background radiation (CMB) temperature, after
which they would not be able to radiate further and become
stable. As such, we call them “virial clouds.” The question
is, how can we see such clouds that would exactly merge
into the (cosmic) background like chameleons?
There were two proposals [3]: (a) look for γ-ray

scintillation due to cosmic rays striking these clouds;
(b) look for Doppler shifts in the CMB as seen through
M31. Though the γ rays were seen, they had too many
possible sources [11–13]. The clouds in the halo of M31
rotating towards us would be blueshifted, and the part
moving away would be redshifted. WMAP data of 2011
showed the effect, at a low but significant level [14]. Later,
Planck data of 2014 confirmed the effect in the M31 halo at
a sufficient accuracy, to provide convincing evidence which
was further used to map the rotation of the M31 galaxy
[15]. The data were then used to map the rotational
dynamics and the effect in various galaxies, including
NGC 5128, M33, M81, and M82 [16–19].

The verification of the prediction based on the proposed
hydrogen clouds does not prove that it is caused by those
clouds. To be able to test the proposal, we need to model
hydrogen clouds and hydrogen-helium clouds and compare
the results with (say) dust clouds, a mixture of hydrogen
and dust, and a mixture of hydrogen, helium, and dust.
Since the proposed clouds are “held up” by the CMB, they
are in a heat bath and so should be modeled by an
isothermal gas sphere. However, this would require that
these cold clouds can interact with the low-temperature
CMB. To check this, we calculate the interaction between
the CMB and the hydrogen molecules to determine the time
it would take to reach thermal equilibrium.
The plan of the paper is as follows: In Sec. II, we will

assume that these clouds contain onlymolecular hydrogen or
only interstellar dust or only helium. Then we try to estimate
the physical parameters of these considered clouds. In
Sec. III, we consider the two-fluid model, use the above
procedure to try to estimate how the cloud’s physical
parameters vary as a function of the ratio between molecular
hydrogen and dust, and go on to model the cloud’s param-
eters with a fixed fraction of hydrogen (75%) and helium
(25%). In Sec. IV, wewill extend our analysis to a three-fluid
model and model the possibility of clouds containing hydro-
gen, helium, and dust with varying fractions. In Sec. V,
we estimate the stability time for the clouds to reach
equilibrium and merge with the CMB. It is shown that there
is adequate time before collapse for stability. At the end, in
Sec. VI, the results and conclusions will be discussed.

II. THE VIRIAL MODEL

As virial clouds are formed due to the Jeans instability,
we need to replicate the Jeans analysis [20] for our purpose.
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He used the Lane-Emden equation for an isothermal gas
sphere and required that at the boundary the density merges
with the interstellar medium (ISM). One needs to then use
some density distribution on an ad hoc basis. We had used
it to model the distribution of these clouds in the halo of
M31 [21] and several other nearby spiral galaxies [22].
Here we will start from scratch, assuming that the clouds
are exactly at the CMB temperature, so they are immersed
in a heat bath which is the CMB and are completely merged
with it. Hence, we need to use the canonical distribution
and not the microcanonical [23]. We require that the density
profile be flat at the center and zero at the boundary. In this
case, the equation remains the same, but we get different
boundary conditions and avoid the “Jeans fiddle.” The
advantage of starting from scratch is that we can incorpo-
rate contamination of the hydrogen cloud by dust, the
hydrogen cloud by helium, and the hydrogen-helium cloud
by dust.

A. Pure molecular hydrogen clouds

Let us consider a spherical cloud of pure molecular
hydrogen; each molecule of hydrogen has a mass mH ≈
3.35 × 10−27 kg, and the total mass of that cloud isMH. The
cloud is allowed to collapse due to the gravitational insta-
bility. From the virial theorem 2K þΦ ¼ 0, the Jeans mass
squared is [24]

M2
J ≃

�
81

32πρc

��
3c2s
5G

�
3

; ð1Þ

and the corresponding Jeans length (radius) squared is

R2
J ¼

27c2s
20πρcG

; ð2Þ

where ρc is the central density, G is Newton’s gravitational
constant, and cs is the isothermal speed of sound. This
speed is given in terms of the mass of the molecules, m,
and the temperature of the cloud, T. For our purposes,
T ¼ TCMB ≈ 2.7254 K is directly related to the mass of
the molecules present inside the cloud and the average
speed. So

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γkTCMB

m

r
; ð3Þ

where k is the Boltzmann constant andm ¼ mH. Since even
the vibrational and the rotational modes are not excited at
the CMB temperature, they do not vibrate nor rotate at it.
Hence, γ ¼ 5=3, which is the ideal gas approximation. So
cs ≃ 1.36 × 102 ms−1. The canonical ensemble distribu-
tion is given by the relation (see [25])

fðr; pÞ ¼ 1

h3NN!

1

Z
exp

�
−
Hðr; pÞ
kTCMB

�
; ð4Þ

whereHðr; pÞ is the Hamiltonian of the system and Z is the
partition function, which is defined as

Z ¼ 1

h3NN!

Z
V

Z
V
d3pd3r exp

�
−Hðr; pÞ
kTCMB

�
: ð5Þ

The Hamiltonian is given by

Hðr; pÞ ¼ p2=2mþ GMðrÞm=r; ð6Þ

where p ¼ mcs is the momentum of the molecules. From
Eqs. ([5]) and ([6]), we have the partition function given as

Z ¼ 1

h3NN!

33=2π3=2

21=2
ðkTCMBÞ3
ðGρcÞ3=2

: ð7Þ

Equation (4) will take the form

fðr; pÞ ¼ 21=2

33=2π3=2
ðGρcÞ3=2
ðkTCMBÞ3

× exp

�
−
�

p2

2mkTCMB
þ 3GMðrÞ

5rc2s

��
: ð8Þ

Now,

ρðrÞ ¼
Z

∞

−∞
4πmp2fðr; pÞdp: ð9Þ

So we have the density distribution given by

ρðrÞ ¼ 8m5=2

�
Gρc

3kTCMB

�
3=2

exp

�
−
3GMðrÞ
5rc2s

�
; ð10Þ

whereMðrÞ is the total mass of the cloud interior to r and is
defined as

MðrÞ ¼
Z

r

0

4πρðqÞq2dq: ð11Þ

The boundary conditions are that the central density is ρc
and ðdρðrÞ=drÞjr→0 ¼ 0. Taking the natural logarithm of
Eq. (10) and substituting Eq. (11), we get

Z
r

0

4πq2ρðqÞdr ¼ −
�
rkTCMB

4πmG

�
ln

�
ρðrÞ
ζ

�
; ð12Þ

where ζ ¼ ð8m5=2=33=2ÞðGρc=kTCMBÞ3=2. Taking the
derivative of Eq. (10) with respect to r, and substituting
Eq. (12), the differential equation is given as
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r
dρðrÞ
dr

− r2
�
4πGm
kTCMB

�
ρ2ðrÞ − ρðrÞ ln

�
ρðrÞ
ζ

�
¼ 0: ð13Þ

This is essentially theLane-Emden equation.We now solve it
numerically with a guess value for the central density and see
where the density becomes zero. We then check the value of
the Jeans radius with that central density. We then adjust the
value of the central density so that the density becomes zero
exactly at the Jeans radius. In this way, we get a self-
consistent solution of the differential equation subject to
the given boundary conditions. The result of the calculation,
depicted in Fig. 1, yields ρc ≃ 1.60 × 10−18 kgm−3, the
Jeans radius, RJ ≃ 0.032 pc, and the Jeans mass is
MJ ≃ 1.80 × 10−4 M⊙.

B. Pure interstellar dust clouds

We have estimated physical parameters of virial clouds
with the assumption that they are pure molecular hydrogen
clouds. There is also a possibility that the leftover inter-
stellar dust will form another cloud without the contami-
nation of molecular hydrogen.
Assuming that a single dust grain is CN2O3, then the

mass of a single grain will be md ≈ 1.46 × 10−25 kg, the
total mass of this cloud interior to r. The mass density
profile of these clouds is shown Fig. 2. The central density
for the dust cloud is ρc ≃ 1.46 × 10−17 kgm−3, the Jeans
mass is MJ ¼ 1.50 × 10−7 M⊙, and the corresponding
Jeans radius is RJ ≃ 1.40 × 10−3 pc. It is clear from
Figs. 1 and 2 that the density of the dust cloud is greater
than that of pure molecular hydrogen cloud but the Jeans
radius is smaller.

C. Pure helium clouds

We have now estimated the physical parameters of a pure
molecular hydrogen cloud and a pure dust cloud. It is also

possible that the leftover helium (He) present in the ISM
form clouds that are at the CMB temperature, without the
contamination of dust or molecular hydrogen, so we need
to model this possibility also. The mass of a single helium
molecule is mHe ¼ 6.64 × 10−27 kg. Using the same pro-
cedure as we did for the molecular hydrogen cloud and dust
cloud, we have the density profile for a pure helium cloud is
shown in Fig. 3. The central density for the helium cloud is
estimated to be ρc ≃ 6.98 × 10−18 kgm−3, the Jeans mass
is MJ ¼ 3.90 × 10−5 M⊙, and the corresponding Jeans
radius is RJ ≃ 0.013 pc. It is clear from Figs. 1–3 that
the density of the dust cloud is greater than that of the pure
helium cloud and the pure molecular hydrogen cloud but
the Jeans radius is smaller.

III. THE TWO-FLUID MODEL

In this section, we model virial clouds as a mixture of
two components: hydrogen and interstellar dust; and
hydrogen and helium. We will try to estimate the change

FIG. 1. The curve represents the density of the virial clouds,
assuming that they are composed only of molecular hydrogen. It
is clear from the figure that the central density of the cloud is
ρc ≃ 1.60 × 10−18 kgm−3. The density goes on decreasing and is
exactly zero at RJ ≃ 0.032 pc.

FIG. 2. The curve represents the density of the dust clouds. It is
clear from the figure that the central density of the cloud is
ρc ≃ 1.46 × 10−17 kgm−3. The density goes on decreasing and
is zero at RJ ≃ 1.40 × 10−3 pc.

FIG. 3. The curve represents the density of helium clouds. It is
clear from the figure that the central density of the cloud is
ρc ≃ 6.98 × 10−18 kgm−3. The density goes on decreasing and
is zero at RJ ≃ 0.013 pc.
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in the physical parameters of virial clouds for different
fractions of molecular hydrogen and dust (see Sec. III A),
and then, for the contamination of helium, we will fix
the fraction to 75% hydrogen and 25% of helium (see
Sec. III B) and check what changes might occur in the mass
and radius of the modeled clouds.

A. Hydrogen-dust clouds

As explained earlier, we need to extend our analysis to a
mixture of two fluids, hydrogen and dust. The total mass of
the cloud will be MclðrÞ ¼ αMHðrÞ þ βMdðrÞ, where
MHðrÞ is the total mass of the molecules of hydrogen
and MdðrÞ is the total mass of the dust grains interior to r,
where α and β are the fractions of hydrogen and dust,
respectively, so that αþ β ¼ 1. Let the mass density of the
whole cloud be ρcl. We have two fluids whose molecules
are distinguishable and nonreactive. The partition function
of the system will be Z ¼ ZH:Zd, where ZH is for hydrogen
molecules and Zd for dust molecules. Similarly, the
canonical ensemble distribution will become

fðr; pÞ ¼ 1

hð3NHþ3NdÞNH!Nd!

1

Z

× exp

�
−
�
HHðr; pHÞ
kTCMB

þHdðr; pdÞ
kTCMB

��
; ð14Þ

where NH and Nd are the total number of molecules of
hydrogen and dust, respectively, and HHðr; pHÞ and
Hdðr; pdÞ are the Hamiltonian for molecular hydrogen
and dust grain clouds, respectively. The mass density
distribution of the two-fluid model is given by

ρclðrÞ¼
ffiffiffiffiffi
64

27

r ðGρcHρcdÞ3=2
ðkTCMBÞ9=2

ðmHmdÞ5=2

×exp

�
−
1

2

�
αGMHðrÞmH

rkTCMB
þβGMdðrÞmd

rkTCMB

��
; ð15Þ

where ρcH and ρcd are the central density of the molecular
hydrogen and dust cloud, respectively. AlsoZ

r

0

ðαmHρHðqÞ þ βmdρdðqÞÞq2dq

¼ −
�
2rkTCMB

4πG

�
ln

�
ρclðrÞ
η

�
; ð16Þ

and η ¼ ð64=27Þ1=2½ðGρcHρcdÞ3=2=ðkTCMBÞ9=2�½mHmd�5=2.
The differential equation for the two-fluid model is

r
dρclðrÞ
dr

− r2
�

2πG
kTCMB

�
½ρclðrÞðαρcHmH

þ βρcdmdÞ� − ρclðrÞ ln
�
ρclðrÞ
η

�
¼ 0: ð17Þ

The density distribution, with different fractions of hydro-
gen and dust, is shown in Fig. 4. It is seen that, with the
increase in contamination of dust, the density of the virial
cloud increases but the Jeans radius is decreased, and so is
the corresponding Jeans mass.

B. Hydrogen-helium clouds

Since primordially the ISM not only contains hydrogen
but there was approximately 75% of hydrogen and 25% of
helium, it is possible that the clouds are not pure molecular
hydrogen clouds but there is 25% contamination of helium
in them. Now the total mass of the cloud for this case will
be MclðrÞ ¼ 0.75MHðrÞ þ 0.25MHeðrÞ, where MHeðrÞ is
the total mass of the helium interior to r. Equations (15)–
(17) can be rewritten as

ρclðrÞ¼
ffiffiffiffiffi
64

27

r ðGρcHρcHeÞ3=2
ðkTCMBÞ9=2

ðmHmHeÞ5=2

×exp

�
−
1

2

�
0.75GMHðrÞmH

rkTCMB
þ0.25GMdðrÞmHe

rkTCMB

��
;

ð18Þ

where ρcH and ρcHe are the central density of the
molecular hydrogen and helium cloud, respectively.
Also,

FIG. 4. The curves in this figure represent the density profile
for different values of α and β. The bold black curve represents
the density profile when α ¼ 1 and β ¼ 0, the dotted curve
represents the density profile when α ¼ 0.75 and β ¼ 0.25, the
dashed curve represents the density profile when α ¼ 0.5 and
β ¼ 0.5, the dotted-dashed curve represents the density profile
when α ¼ 0.25 and β ¼ 0.75, and the dot-dot-dashed curve
represents the density profile when α ¼ 0 and β ¼ 1. It is
clearly seen that the central density ρc is different for different
concentrations of molecular hydrogen and interstellar dust. The
density of the virial cloud increases with the increase in the
concentration of interstellar dust in the cloud, and the size of
the cloud is decreased.
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Z
r

0

ð0.75mHρHðqÞ þ 0.25mHeρHeðqÞÞq2dq

¼ −
�
2rkTCMB

4πG

�
ln

�
ρclðrÞ
τ

�
; ð19Þ

and τ¼ð64=27Þ1=2½ðGρcHρcHeÞ3=2=ðkTCMBÞ9=2�½mHmHe�5=2.
The differential equation for the two-fluid hydrogen-helium
model will be

r
dρclðrÞ
dr

− r2
�

2πG
kTCMB

�
½ρclðrÞð0.75ρcHmH

þ 0.25ρcHemHeÞ� − ρclðrÞ ln
�
ρclðrÞ
τ

�
¼ 0: ð20Þ

The density distribution of the hydrogen-helium cloud is
shown in Fig. 5. The obtained central density for this case
is ρc¼4.87×10−18kgm−3, the corresponding Jeans mass is
MJ¼1.64×10−4M⊙, and the Jeans radius is RJ¼0.025pc.

IV. THREE-FLUID MODEL

In this section, we will model pure molecular hydrogen
clouds with the contamination of helium and interstellar
dust in them, with the aim to estimate the variation in the
physical parameters of the clouds. The total mass of the
cloud will be MclðrÞ ¼ αMHðrÞ þ βMdðrÞ þ γMHeðrÞ,
where MHðrÞ is the total mass of the molecules of hydro-
gen, MdðrÞ is the total mass of the dust grains, and MHeðrÞ
is the total mass of helium within r, where α, β, and γ are
the fractions of hydrogen, dust, and helium, respectively, so
that αþ β þ γ ¼ 1. Let the mass density of the whole cloud
be ρcl. We have three fluids whose molecules are distin-
guishable and nonreactive. The partition function of the
system will be Z ¼ ZH:Zd:ZHe, where ZH is for hydrogen
molecules, Zd for dust molecules, and ZHe for helium.
Similarly, the canonical ensemble distribution will become

fðr;pÞ¼ 1

hð3NHþ3Ndþ3NHeÞNH!Nd!NHe!

1

Z

×exp

�
−
�
HHðr;pHÞ
kTCMB

þHdðr;pdÞ
kTCMB

þHHeðr;pHeÞ
kTCMB

��
;

ð21Þ

where NH, Nd, and NHe are total number of molecules of
hydrogen, dust, and helium, respectively, and HHðr; pHÞ,
Hdðr; pdÞ, and HHeðr; pHeÞ are the Hamiltonian for
molecular hydrogen, dust grain, and helium clouds, respec-
tively. The partition function will become

Z ¼ 1

hð3NHþ3Ndþ3NHeÞNH!Nd!NHe!

�
21=233=2

π1=2

�

×

�ðkTCMBÞ9
G9=2

��
1

ρcHρcdρcHe

�
3=2

; ð22Þ

where ρcH , ρcd , and ρcHe are the central densities of pure
molecular hydrogen, dust, and helium clouds, respectively.
Substituting Eq. (22) in Eq. (21), we have the distribution as

fðr;pÞ¼
�

π1=2

21=233=2

��
G9=2

ðkTCMBÞ9
�
ðρcHρcdρcHeÞ3=2

×exp

�
−
�
HHðr;pHÞ
kTCMB

þHdðr;pdÞ
kTCMB

þHHeðr;pHeÞ
kTCMB

��
:

ð23Þ

Similarly, the density distribution can be found out by

ðρclðrÞÞ3 ¼ ð16π2Þ3
Z

∞

0

p2
HmHfðr; pHÞdpH

×
Z

∞

0

p2
dmdfðr; pdÞdpd

×
Z

∞

0

p2
HemHefðr; pHeÞdpHe: ð24Þ

Solving Eq. (24), we have the density distribution as

ρclðrÞ ¼
�
512π9=2

39=2

��
G

kTCMB

�
9=2

× ðρcHρcdρcHeÞ3=2ðmHmdmHeÞ5=2

× exp

�
−
1

3

�
αGMHðrÞmH

rkTCMB
þ βGMdðrÞmd

rkTCMB

þ γGMHeðrÞmHe

rkTCMB

��
: ð25Þ

Similarly,

FIG. 5. The curve in this figure represents the density profile for
the hydrogen-helium two-fluid model. It is clearly seen that the
central density is ρc ¼ 4.87 × 10−18 kgm−3, and it goes exactly
to zero at r ¼ RJ ¼ 0.025 pc.
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Z
r

0

ðαmHρHðqÞ þ βmdρdðqÞ þ γmHeρHeðqÞÞq2dq

¼ −
�
3rkTCMB

4πG

�
ln

�
ρclðrÞ
λ

�
; ð26Þ

and λ ¼ ð512π9=2=39=2Þ½G=ðkTCMBÞ�9=2ðρcHρcdρcHeÞ3=2 ×
½mHmdmHe�5=2. The differential equation for the two-fluid
model is

r
dρclðrÞ
dr

− r2
�

2πG
kTCMB

�
½ρclðrÞðαρcHmH

þ βρcdmd þ γρcHemHeÞ�− ρclðrÞ ln
�
ρclðrÞ
λ

�
¼ 0: ð27Þ

The density distribution, with different fractions of hydro-
gen, dust, and helium, by fixing 75% concentration of
molecular hydrogen and 25% of helium, is shown in Fig. 6.

V. STABILITY OF THE VIRIAL CLOUD

One of the problems associated with the existence of
these clouds in the galactic halos is to explain the
dynamical stability. The aim of this section is to estimate
the scattering cross section and then using it to find the
probability of interaction to estimate the stability time of
the modeled virial clouds. We estimated it only for a pure

H2 cloud; the other cases would not be substantially
different. Though helium is monatomic, since there is no
rotational or vibrational mode excited, the result will not be
changed, except because of the size and density of the
cloud. For dust, it could be that some higher mode would be
excited, but that would only make the probability of
interaction with the CMB greater. We first treat the
interaction as hard sphere collisions and will next give
the quantum scattering. The CMB number density is
np ¼ 4.50 m−3, and the estimated number of CMB
photons that are interacting with the cloud is Np ¼
1.79 × 1057. The probability of interaction will be given
by the relation

P ¼ NσH
dA

; ð28Þ

where N is the total number of H2 molecules inside the
cloud and σH is the cross-section area of each molecule. If
Np is the total number of photons interacting with the
cloud, then Eq. (28) yields

PðrÞ ¼
Z

RJ

0

ncσH exp ð−ncσHÞdr; ð29Þ

where nc ¼ 4.78 × 108 m−3 is the number density of
the pure H2 cloud, RJ is the Jeans radius for a pure H2

cloud which is 0.032 pc, and σH is the cross section of a
single molecule of hydrogen. Since σH ¼ πr2H and rH ¼
1.06 × 10−9 m, the radius of a single molecule of hydro-
gen, the cross section will be ≈3.53 × 10−20 m2. Solving
Eq. (29), we get the probability of interaction equal
to ≈1 photon=s.
For the quantum calculation, since (i) the energy of the

CMB photon is 1.06 × 10−22 J, and the estimated rest mass
energy of the H2 molecule is ≈3.10 × 10−10 J, (ii) the
wavelength of the CMB photon is λCMB ¼ 0.001 m, and
the estimated Compton wavelength for the H2 molecule is
λH ¼ h

mHc
≃ 6.59 × 10−16 m. The energy of the CMB pho-

ton is much smaller than the mass energy of a molecule;
and the wavelength of a CMB photon is much larger that
the Compton wavelength of the H2 molecule, so our system
satisfies the condition for “Thompson scattering.” We can
calculate the Thompson cross section by the relation

σT ¼ 2

3π
ðλHαÞ2; ð30Þ

where α is a constant and α ¼ ð e
ϵ0cmHℏ

Þ2. Here, e ¼
1.69 × 10−19 C is the charge on an electron, ϵ0 ¼ 8.85 ×
10−11 F=m is the permittivity in free space, c ¼
3 × 108 m=s is the speed of light, and mH is the mass of
a single molecule of hydrogen. Replacing all the values
in Eq. (30), we get the value of the scattering cross section:
σT ¼ 4.91 × 10−36 m2. Now substituting σT ¼ σH in
Eq. (29), we will get the estimated value of the probability

FIG. 6. The curves in this figure represent the density profile for
different values of α, β, and γ. The bold black curve represents the
density profile when α ¼ 0.75, β ¼ 0, and γ ¼ 0.25, the dotted
curve represents the density profile when α ¼ 0.56, β ¼ 0.25,
and γ ¼ 0.18, the dashed curve represents the density profile
when α ¼ 0.37, β ¼ 0.50, and γ ¼ 0.12, the dot-dashed curve
represents the density profile when α ¼ 0.18, β ¼ 0.75, and
γ ¼ 0.06, and the dot-dot-dashed curve represents the density
profile when α ¼ 0, β ¼ 1, and γ ¼ 0. It is clearly seen that the
central density ρc is different for different concentrations of
molecular hydrogen, interstellar dust, and helium. The density
of the virial cloud increases with an increase in the concentration
of interstellar dust and helium in the cloud, and the size of the
cloud is decreased. The results are not very different from those
obtained for the two-fluid hydrogen and dust model.
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of interaction per second, P ¼ 2.11 × 10−11 s−1. The esti-
mated time required for the cloud to be in equilibrium with
the CMB is t ¼ 15 900 yr.
Now we need to check the time required for the clouds to

collapse. Since the Jeans time for collapse is given by the
relation

tff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3π

32Gρc

s
; ð31Þ

where ρc ¼ 1.60 × 10−18 kgm−3 is the central density of a
pure H2 cloud. Substituting the values, we have the collapse
time of the cloud: tff ¼ 1.6 Myr. Thus, the cloud will
achieve thermal equilibrium long before it can collapse.

VI. CONCLUSION

We see that virial clouds are completely constrained by
physical requirements and so precisely determinable. They
provide a satisfactory explanation of the observed asym-
metry of the CMB Doppler shift in galactic halos. We have
not only considered pure molecular hydrogen clouds, but
also the possibility of these molecular hydrogen clouds, or
pure interstellar dust clouds contaminated with more or less
interstellar dust. We have seen that with the contamination
of heavier molecules in the clouds the density of the cloud
increases (see Figs. 4 and 6), and the mass and the size of
the cloud decrease, since the more massive particles “pull
in” the other molecules more (see Tables I and II). The
cloud mass obtained from the canonical ensemble distri-
bution appears to be quite different from the one we
obtained by using the Lane-Emden equation [21]. In the
virial model, the clouds have a definite boundary.
According to some of the observations, isothermal gas

spheres in the galactic halos are not stable and have no fixed
boundaries with respect to the gravothermal catastrophe on
timescales of a few crossing times. In general, the outcome
of the gravitational collapse of a gas cloud is the formation
of a dense central core [26]. Since, at the beginning, the
evolution was almost isothermal because of the very low
optical depth of the gas clouds, when the opacity exceeded
unity, the central temperature and pressure rapidly

increased, which leads to star formation. It is possible that
some clouds might succeed in avoiding this collapse and
may form solid or liquid H2 at less than 14 K, which leads
to the formation of these dense virial clouds. In fact, the
evidence of the presence of liquid and solid molecules
in the cold dense regions of galactic halos is present (see
[27–29]), so this physical interpretation could help in
explaining the stability of these clouds. So we need to
estimate the average optical depth of the virial clouds, τ̄,
over a detector frequency range, ν1 − ν2, mathematically,
which is given as τ̄ ¼ 1

ν1−ν2

R
ν2
ν1
τνdν, to see if they are

optically thick or thin [30]. Instead of checking the optical
depth, we estimated the probability of interaction of CMB
photons to check the stability time required for the virial
cloud. It was seen that for pure H2 clouds the interaction
probability with the CMB photons (i) when they were
treated as solid spheres is ∼1 s−1, and the stability time was
∼1 s; (ii) when the photons were treated quantum mechan-
ically, the probability P ¼ 2.11 × 10−11 s−1 and the stabil-
ity time t ¼ 1.5 kyr. It is seen that the virial clouds interact
with the CMB photons and come in equilibrium in almost
1.5 kyr, and the estimated time required for the cloud to
collapse is 1.6 Myr. However, the clouds are in a gravity-
dominated regime, so they will not collapse completely and
become stable before reaching the collapse state. One can
check the interaction probability for dust and the mixture of
H2 and dust to see how the probability and stability time
could vary with varying the components of the clouds. It
might be possible that the stability time could increase,
since these clouds are there for billions of years, so this
could not affect much, but it needs to be checked.
Since the masses, sizes, and densities of the clouds are

different, there must be some observational aspects. One
could try to estimate it and see how it could vary. As virial
clouds are at the CMB temperature, all we would see is the
CMBDoppler shift. For theM31 disk and halo, it was found
that up to about 20° (260 kpc) around the M31 center, in the
two opposite regions of the M31 disk, there was a temper-
ature difference ΔT of about 130 μK, and it was also seen
that a similar effect was seen towards the M31 halo up to
120 kpc from the M31 center with a peak value of about

TABLE I. Physical parameters for the considered two-fluid
hydrogen and dust model. We give the central density ρc
(column 3), for different fractions of molecular hydrogen and
interstellar dust, and the corresponding Jeans mass (column 4)
and Jeans radius (column 5) of the virial clouds.

α β
Central density
ρcðkgm−3Þ

Jeans
mass M⊙

Jeans
radius pc

1 0 1.60 × 10−18 1.80 × 10−4 0.032
0.75 0.25 5.00 × 10−18 1.54 × 10−4 0.021
0.5 0.5 6.58 × 10−18 9.81 × 10−5 0.015
0.25 0.75 1.00 × 10−17 1.86 × 10−5 0.008
0 1 1.46 × 10−17 1.50 × 10−7 0.0014

TABLE II. Physical parameters for the considered three-fluid
hydrogen, dust, and helium model. We give the central density ρc
(column 3), for different fractions of molecular hydrogen,
interstellar dust, and helium, and the corresponding Jeans mass
(column 4) and Jeans radius (column 5) of the virial clouds.

α β γ
Central density
ρcð10−18 kgm−3Þ

Jeans
mass M⊙

Jeans
radius pc

0.75 0 0.25 4.87 1.64 × 10−4 0.025
0.5625 0.25 0.1875 5.60 1.24 × 10−4 0.018
0.375 0.50 0.125 7.60 4.09 × 10−5 0.011
0.1875 0.75 0.0625 14.4 4.82 × 10−6 0.005
0 1 0 14.6 1.50 × 10−7 0.0014
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40 μK [15]. We have seen that a single virial cloud has a
radiusmuch less than1 pc. So, at thepresent level of accuracy
of thePlanck satellite, it is impossible to see a single cloud in
the patch of the sky associated with it. All we should see is a
patch of the sky with a certain number of clouds. If these
clouds rotate with the halo just like a rigid body, then the
patch of the sky with these clouds will be Doppler shifted
with the halo. So, if the halo is moving towards us, the patch
would be redshifted, and if the halo is moving away from us,
the patch will be blueshifted. This will be studied later.
It is hoped that with good models we will be able to study

the dynamics of galactic halos better. We may also be able to
locate some of the missing baryonic matter more precisely.
However, we have not yet modeled the effect of contami-
nation of the radiation field by higher-energy radiation that
would be present in the environs of the clouds.
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