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We illustrate how the formation of energy-preserving shocks for polytropic accretion and temperature-
preserving shocks for isothermal accretion are influenced by various geometrical configurations of general
relativistic, axisymmetric, low angular momentum flow in the Kerr metric. Relevant pre- and postshock
states of the accreting fluid, both dynamical and thermodynamic, are studied comprehensively. Self-
gravitational backreaction on the metric is not considered in the present context. An elegant eigenvalue-
based analytical method is introduced to provide qualitative descriptions of the phase orbits corresponding
to stationary transonic accretion solutions without resorting to involved numerical schemes. Effort is made
to understand how the weakly rotating flow behaves in close proximity to the event horizon and how such
“quasiterminal” quantities are influenced by the black hole spin for different matter geometries. Our main
purpose is thus to mathematically demonstrate that, for non-self-gravitating accretion, separate matter
geometries, in addition to the corresponding space-time geometry, control various shock-induced
phenomena observed within black hole accretion disks. We expect to reveal how such phenomena
observed near the horizon depend on the physical environment of the source harboring a supermassive
black hole at its center. We also expect to unfold correspondences between the dependence of accretion-
related parameters on flow geometries and on black hole spin. Temperature-preserving shocks in
isothermal accretion may appear bright, as a substantial amount of rest-mass energy of the infalling
matter gets dissipated at the shock surface, and the prompt removal of such energy to maintain
isothermality may power the x-ray/IR flares emitted from our Galactic Center.
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I. INTRODUCTION

Study of the accretion process helps in observational
identification of black hole candidates. The dynamical
and thermodynamic properties of such an accretion flow
reveal the extreme nature of space-time surrounding

black holes. The emergent spectra from the accretion
process is used to probe the characteristic features of
the black hole metric [1]. It is thus imperative to understand
the dynamics of the relativistic black hole accretion
phenomenon.
In order to satisfy the inner boundary condition imposed

by the black hole event horizon, black hole accretion
usually manifests transonic properties, until the source of
accreting matter is perceived to be supersonic stellar wind.
The transonic mechanism is simple—accreting matter starts
subsonically from a large distance and becomes supersonic
in the course of its motion since it has to cross the event
horizon supersonically. The maximum relativistic sound
speed allowed for the steepest possible equation of state is
c=

ffiffiffi
3

p
, whereas the bulk velocity of the infalling matter
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while crossing the horizon should reach the velocity of light
[2]. Hence, black hole accretion of initially subsonic matter
is necessarily transonic [3]. The location at which such
change of state of “sonicity” takes place is called the
sonic point.
Whether the steady state accretion flow may encounter

more than one sonic point depends on the angular
momentum content of the flow. For reasonably low angular
momentum sub-Keplerian flow (the value of the specific
angular momentum is not sufficient for the flow to form a
closed stable circular orbit at a large distance from the black
hole) with advective velocity (almost radial velocity owing
to sub-Keplerian flow initialized with some nonzero value
at a large distance from the black hole leading to advection
towards the event horizon), usually more than one sonic
transition is possible, and the flow may become multi-
transonic provided that a stationary shock may develop to
join the stationary integral flow solutions passing through
the aforementioned sonic points. Such low angular momen-
tum flow is common in nature (for instance, accretion onto
the supermassive black hole situated at the center of our
Galaxy), and a host of literature is available where such
shocked multitransonic accretion has been studied in detail
(see Refs. [4–39] and the references therein).
The epoch making recent discovery regarding the

observational evidence of black holes through shadow
imaging [40–45] clearly indicates that it is imperative to
study the dynamical and thermodynamic states of matter
very close to the black hole event horizon. In this
connection, it is important to understand the dynamical
behavior of low angular momentum shocked multitran-
sonic flow at the extremely close vicinity of the event
horizon in order to demonstrate the shadow image for
flow onto Sgr A�, since accretion onto our Galactic Center
black hole is supposed to be weakly rotating low angular
momentum flow [34,46–55]. Apart from the astrophysical
aspects, study of the physics of transonic black hole
accretion has recently found importance in dynamical
systems theory as well. Attempts have been made to
understand the astrophysical black hole system as an
example of relativistic fluid flow under the strong gravi-
tational field where the critical point analysis of dynamical
systems theory can find its application. Analytical methods
from the theory of dynamical systems have been borrowed
in the context of investigating general accretion problems
[56–59]. A few earlier works have even explored this
approach while studying the problem of astrophysical
accretion [9,13,60].
It is thus tempting to observe whether one can provide a

combined treatment of relativistic black hole accretion
where both the astrophysical context and the dynamical
systems features of the flow can be investigated simulta-
neously. In this interdisciplinary work, we make such an
attempt to illustrate the properties of accreting black hole
systems from a broader perspective. We study steady state

accretion disk models with various geometrical configura-
tions of accreting material. For stationary integral solutions
of such low angular momentum accretion, we show that the
space derivatives of the dynamical flow velocities and that
of the sound speed may be expressed by a set of coupled
first order ordinary differential equations which can be
readily mapped onto the equations governing an autono-
mous dynamical system, and we borrow the techniques of
critical point analysis from dynamical systems theory to
identify the transonic point(s) of the flow. Various related
concepts of dynamical systems theory which are applied in
this article will be clarified in subsequent sections. Once the
sonic points have been identified, we analyze the depend-
ence of the flow profile on the geometric configuration of
the accretion disk. A more detailed description of what we
plan to do in this work is provided in Sec. III.

II. CONNECTION TO DYNAMICAL SYSTEMS

The number of dynamical physical systems and their
respective phase-space plots are innumerably large. There
exist such points on phase-space diagrams which might
attract or repel the phase trajectories of a system; i.e., all
possible trajectories on the respective phase space either
converge onto these points or diverge from them. A system
resting on such a point, upon being subjected to small local
perturbations, would either restabilize to its unperturbed
state or destabilize away from it. Such points are called
critical points or fixed points or stable points or equilibrium
points or stationary points of the system. In order to avoid
any confusion, we would like to inform the reader that these
terms, wherever used in this article, should be considered
synonymous. Depending on dimensions of the system, the
natures of the critical points in its phase space are equally
diverse. In our work, we encounter the emergence of
center-type and saddle-type critical points only. Had it
been a case of viscous flows, we would have to deal with
spiral-type critical points as well. Center-type points are
forbidden from phase-space trajectories, and the system
keeps oscillating around them. The equilibrium points of
conservative simple harmonic oscillators are typical exam-
ples of center-type critical points. For saddle-type critical
points, a system rests upon a very delicate equilibrium.
Depending on the direction of perturbation, the system
might either return to the stable point or fly away from it.
The phase portraits pertaining to the physical systems of
interest display combinations of center- and saddle-type
critical points, as will be shown in the subsequent sections.
The reason behind devoting a whole section to critical

points is that the fundamental idea of our work is to analyze
black hole accretion from the perspective of the theory of
dynamical systems, and the concept of critical points is
central to it. Since this work is primarily concerned with
stationary flows, it might naturally seem surprising to try
and draw any connection with the theory of dynamical
systems. However, dynamical systems theory endows us

TARAFDAR, BOLLIMPALLI, NAG, and DAS PHYS. REV. D 100, 043024 (2019)

043024-2



with a rich plethora of elegant analytical methods to study
the behavior of critical points of a system, and critical
points are particular features of stationary states. Our work
is about transonic astrophysical flows, and hence a major
portion of it deals with the derivation of results related to
sonic points of the system, as defined in the previous
section, and derivation of the related critical point con-
ditions almost always reveal direct correlations between the
critical points and sonic points of the accreting fluid. This
connection immediately hints at the applicability of math-
ematical tools related to stability analysis in the theory of
dynamical systems to the seemingly unrelated theory of
transonic astrophysical accretion. As a matter of fact, the
approach of linear stability analysis of fixed points in
problems of general fluid dynamics has been in practice for
quite some time [61].

III. PLAN OF WORK

We consider general relativistic axially symmetric sta-
tionary integral flow solutions in the Kerr metric. In
general, astrophysical black holes are believed to possess
nonzero spin angular momentum [62–81], and such spin
angular momentum (the Kerr parameter a) assumes a vital
role in influencing the various characteristic features of
accretion-induced astrophysical phenomena [39]. Attempts
to study relativistic low angular momentum accretion of
inviscid perfect fluids using hydrodynamical codes [82]
bridging analytics and numerical relativity are significant in
this context. There have also been recent numerical works
regarding accretion onto spinning black holes investigating
parameters that might influence the stability, stationarity,
and other longtime behaviors of the flow [83–85]. The
geometrical configurations of low angular momentum
accreting matter may be roughly classified into three
different categories. When the thickness of the flow is
assumed to be constant with respect to the radial distance,
the flow is dubbed “constant height accretion flow.” If the
flow thickness is not constant at all radial distances but the
ratio of the local flow thickness and the radial distance is
constant, it is called conical flow, which actually may be
considered a quasispherical slowly rotating flow, and such a
geometrical configuration is a ideal setup for studying
inviscid accretion. For the third category of flow, neither
the flow thickness nor the ratio of the local flow thickness
to the radial distance remains constant, and the flow
assumes a wedgelike structure. Such a geometric configu-
ration remains in hydrostatic equilibrium along the vertical
direction, and it will thus be referred to in this work as
“flow in vertical equilibrium” for short. Further details
about such flows are available in Refs. [2,86–88]. The
geometric configurations of flow directly influence the flow
properties at close proximity of the event horizon. It is thus
imperative to learn how the black hole spin dependence of
accretion is influenced by the matter geometry. This is
precisely what we would like to explore in this work.

We formulate and solve the general relativistic Euler
equation and the continuity equation in the Kerr metric to
obtain the stationary integral accretion solutions for the
three different geometric configurations (see, e.g., Sec. 4.1
of Ref. [89], and the references therein, for a detailed
classification of three such geometries) of low angular
momentum axially symmetric advective flow onto spinning
black holes. We then study the stationary phase portrait of
multitransonic accretion and demonstrate how stationary
shocks may form for such flow topologies. Then, we study
the astrophysics of shock formation and demonstrate how
the Kerr parameter influences the location of the shock
formed and other shock-related quantities. We also report
on how such spin dependence varies from one type of flow
geometry to the other. The overall process to accomplish
such a task has been performed in the following way.
We first try to address the issue, to a certain extent,

completely analytically. It can be shown that the stationary
transonic solutions for inviscid accretion can be mapped
as critical solutions onto the phase portrait spanned by
radial Mach number, and the corresponding radial distance
measured on the equatorial plane [90]. For all three geo-
metries, the Euler and continuity equations are formulated
in the Kerr metric. Borrowing relevant methodologies from
the theory of dynamical systems, the time-independent
parts of these equations are considered in order to locate the
corresponding critical/sonic points. One can obtain more
than one critical point as well. In such cases, one needs to
classify which kinds of critical points they are. We provide
an eigenvalue-based analytical method to find out the
nature of the critical points and demonstrate that they
are either center type or saddle type. What can be done
analytically is that once the nature of the critical points is
determined following the aforementioned procedures, the
tentative nature of corresponding orbits on the phase
portrait can be roughly anticipated, and the overall multi-
transonic phase portraits can be understood. The purview
of the analytical regime is limited at this point. The
advantage of introducing the eigenvalue-based analytical
method is to qualitatively understand how the phase orbits
corresponding to the stationary transonic solutions would
look, without incorporating any complicated numerical
techniques.
The exact shape of the phase orbits, however, can

never be obtained analytically. One needs to numerically
integrate the Euler and continuity equations to obtain
the stationary integral mono-multitransonic solutions. In
Sec. VIII, we provide the methodology for integrating the
fluid equations to obtain the transonic solutions.
Multitransonic solutions require the presence of a sta-

tionary shock to join the integral solutions passing through
the outer and inner sonic points, respectively. In Sec. IX, we
discuss shock formation phenomena in detail and demon-
strate how the Kerr parameter influences the shock-related
quantities for three different matter geometries. In Sec. X,
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the concept of quasiterminal values is introduced to under-
stand how the weakly rotating accretion flow behaves at the
extremely close proximity of the event horizon and how
such behaviors, for three different matter geometries, are
influenced by black hole spin. The subsequent sections deal
with a similar line treatment for isothermal flows.
The entire study presented in our work has been divided

into six subcategories. We study three different geometrical
models of polytropic accretion, then study the same models
for isothermal accretion—and for each flow model, we
analyze the black hole spin dependence of various flow
properties.
Such a comprehensive treatment, although apparently too

technical at first sight, is actually useful to the astrophysics
community, we believe. Our low angular momentum flow
model resembles accretion onto Sgr A�. Thus, it would not
be unreasonable to believe that the theoretical study of
shockedmultitransonic accretionmight be helpful for under-
standing the black hole spectra of Sgr A�, as well as for
realizing the nature of the shadow image of the correspond-
ing black hole. As of now, no study has been performed on
how accretion-induced shockmay influence the image of the
shadow of the event horizon. Only continuous flows have
been studied thus far from the imaging point of view,whereas
flows with large scale discontinuities have not yet been
investigated. Such an investigation with hot and dense
postshock flow may reveal various important features of
the shadow image.Wewill discuss this issue inmore detail in
the last section in our concluding remarks.
In the context of a very detailed study of the flow for

various disk geometries, it is important to note that such
flow geometries have been previously considered as
theoretical constructs. Since we did not have an observa-
tional tool with the necessary high resolving power, there
was no option for direct verification of the actual geometric
configuration of the flow. However, the recent observation
of an actual black hole shadow image has opened up new
horizons in this area and may shed some light on this issue.
If one studies the dynamical/thermodynamic properties of
accretion for all possible geometric configurations, con-
structs spectra out of it, creates images of the corresponding
shadow, and finally compares the details of the theoretical
construction with the observed image, it might be possible
to answer the following long-standing questions:
(1) What should be the actual geometric shape of the

accretion disk?
(2) Of the different proposed theoretical expressions for

disk geometry, which one should have the closest
resemblance to a realistic flow structure?

We believe that, in this area, our comprehensive work
regarding the dependence of flow properties on flow
geometries will be beneficial.

IV. POLYTROPIC FLOW STRUCTURES FOR
VARIOUS MATTER GEOMETRIES

Before delving into detailed and involved calculations,
we shall break down and summarize the whole formalism

that has been used for deriving the conditions satisfied at
the critical points of polytropic flows with constant height
disks (hereafter, CH), quasispherical or conical disks
(hereafter, CF), and disks in vertical hydrostatic equilib-
rium (hereafter, VE) into the following basic steps. The
corresponding critical point conditions for isothermal flows
shall be derived in relevant sections following a similar
method.
(1) We write down the equations for the conserved

specific energy (E) and the conserved mass accre-
tion rate ( _M) pertaining to the specific flow. It may
be noted that E remains the same for the CH, CF, and
VE disks. Disk geometry influences _M due only to
its dependence on the area of cross section through
which influx of matter occurs.

(2) We differentiate the equations for E and _M with
respect to radial distance r, and we solve simulta-
neously to obtain expressions for the spatial gra-
dients of the advective velocity u and sound
speed cs.

(3) Expression for spatial gradient of the advective
velocity is of the form du=dr ¼ N ðr; u; csÞ=
Dðr; u; csÞ. Integrating du=dr with proper initial
conditions generates the corresponding phase-space
plots. Since velocity and their gradients at specific
radial distances cannot be readily known without
actual numerical integration; hence, the initial con-
ditions required for carrying out the integration are
fixed using the values of u, cs, and du=dr at the
critical points rc given by the critical point con-
ditions. These conditions are obtained by equating
N and D simultaneously to zero. It is a standard
method that has been borrowed from the theory of
dynamical systems and their stability [91]. Setting
the numerator and denominator to zero simultane-
ously ensures a smooth and continuous physical
transonic flow. For multitransonic flows, the con-
tinuity is broken at locations of shock. This issue
will be dealt with separately in later sections.

As shown in [92], one needs to obtain the expressions
for two first integrals of motion—the conserved specific
energy E, which is obtained from integral solutions of the
time-independent part of the Euler equation and remains
invariant for all three matter geometries, and the mass
accretion rate _M, which is obtained from the integral
solutions of the time-independent part of the continuity
equation and varies with the geometric configuration of
matter. We start with the constant height flow and then
continue the same for two other flow geometries, i.e.,
wedge-shaped quasispherical or conical flow, and flow in
hydrostatic equilibrium along the vertical direction.
For an ideal fluid, the general relativistic Euler and the

continuity equations are obtained through the covariant
differentiation of the corresponding energy-momentum
tensor,
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Tμν ¼ ðϵþ pÞvμvν þ pgμν; ð1Þ

where

ϵ ¼ ρþ p
γ − 1

ð2Þ

is the energy density (which includes the rest mass energy
density and the internal energy density), p is the fluid
pressure, and vμ is the velocity field. Using the Boyer-
Lindquist coordinate, one can show [39] that the con-
served specific energy defined on the equatorial plane is
expressed as

E ¼ γ− 1

γ− ð1þ c2sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1−u2

�
Ar2Δ

A2− 4λarAþ λ2r2ð4a2− r2ΔÞ
�s
:

ð3Þ

In the above expression, γ is the ratio of the two specific
heat capacities, Cp and Cv, where an adiabatic equation of
state of the form p ¼ Kργ has been used ρ being the matter
density. cs denotes the position-dependent adiabatic sound
speed, defined as

c2s ¼
�∂p
∂ϵ

�
constant entropy

: ð4Þ

The advective velocity u measured along the equatorial
plane can be obtained by solving the following equation:

vt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2tϕ − gttgϕϕ
ð1 − λΩÞð1 − u2Þðgϕϕ þ λgtϕÞ

s
; ð5Þ

where ðgtϕ; gtt; gϕϕÞ are the corresponding elements of the
metric

ds2 ¼ gμνdxμdxν

¼ −
r2Δ
A

dt2 þ r2

Δ
dr2 þ A

r2
ðdϕ − ωdtÞ þ dz2; ð6Þ

where the line element has been expressed on the equatorial
plane, using the Boyer-Lindquist coordinate, and ω ¼ 2ar

A ,
Δ ¼ r2 − 2rþ a2, A ¼ r4 þ r2a2 þ 2ra2. λ and Ω are the
specific angular momentum and the angular velocity,

respectively, as defined by λ ¼ − vϕ
vt
, Ω ¼ vϕ

vt ¼ − gtϕþλgtt
gϕϕþλgtϕ

.

It is to be noted that the expression for E has been obtained
using the natural unit where the radial distance (measured
along the equatorial plane) has been scaled by GMBH=c2,
and the dynamical as well as the sound velocity have been
scaled by the velocity of light in vacuum c, withMBH being
the mass of the black hole considered. We also norma-
lize G ¼ c ¼ MBH ¼ 1.

A. Constant height flow

The mass accretion rate may be obtained as

_MCH ¼ 4π
ffiffiffiffi
Δ

p
Hρ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

1 − u2

s
; ð7Þ

whereH is the radius-independent constant thickness of the

accretion disk and ρ ¼ ½ c2sðγ−1Þ
γKðγ−1−c2sÞ�

1
γ−1. The corresponding

entropy accretion rate may be obtained through the trans-

formation _Ξ ¼ _MðKγÞ 1
γ−1 as

_ΞCH ¼ 4π
ffiffiffiffi
Δ

p
H

�
c2sðγ − 1Þ
γ − 1 − c2s

� 1
γ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

1 − u2

s
: ð8Þ

The idea of an entropy accretion rate was initially proposed
in Refs. [4,10] in order to calculate the stationary solutions
for low angular momentum nonrelativistic transonic accre-
tion under the influence of [93] pseudo-Newtonian poten-
tial onto a nonrotating black hole.
The space gradient of the acoustic velocity as well as the

dynamical velocity can be computed as

dcs
dr

¼ N CH
1

DCH
1

; ð9Þ

du
dr

¼ N CH
2

DCH
2

; ð10Þ

where N CH
1 ¼ −2u

2ð1−u2Þ
du
dr −

f0
2f, DCH

1 ¼ 2cs
γ−1−c2s

, N CH
2 ¼

uð1 − u2Þ½r−1Δ c2s −
f0
2f�, DCH

2 ¼ u2 − c2s , and f ¼ Δ
B,

B ¼ gϕϕ þ 2λgtϕ þ λ2gtt, and where f0 denotes the space

derivative of f, i.e., dfdr. Hereafter, the sub-superscripts CH
will stand for “constant height.”
The critical point conditions may be obtained as

u2jrc ¼ c2s jrc ¼
f0

2f

����
rc

Δc

rc − 1
: ð11Þ

Inserting the critical point conditions into the expression of
the conserved specific energy, one can solve the corre-
sponding algebraic equation for a specific set of values of
½E; λ; γ; a� to obtain the value of the critical point rc.
The gradient of the sound speed and that of the

dynamical velocity can also be evaluated at the critical
points as

du
dr

����
rc

¼ −
βCH
2αCH

� 1

2αCH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2CH − 4αCHΓCH

q
; ð12Þ

dcs
dr

����
rc

¼ N 1

D1

����
rc

; ð13Þ
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where the coefficients αCH, βCH, and ΓCH are given by

αCH¼
γ−3c2sþ1

ðc2s−1Þ2
����
rc

;

βCH¼
2csðr−1Þðc2s−γþ1Þ
ðc2s−1Þða2þðr−2ÞrÞ

����
rc

;

ΓCH¼
2ðc2s−1Þðr−1Þ2
ða2þðr−2ÞrÞ2

����
rc

−
c2s−1

a2þðr−2Þr
����
rc

þc2sðr−1Þ2ð−c2sþγ−1Þ
ða2þðr−2ÞrÞ2

����
rc

−
�−a2λ4ða2ðrþ2Þþr3Þ

ða2ðrþ2Þþλ2rÞ2 þ2a2λ4ðr−2Þða2þλ2Þða2ðrþ2Þþr3Þ
ða2ðrþ2Þþλ2rÞ3 −a2λ4ðr−2Þða2þ3r2Þ

ða2ðrþ2Þþλ2rÞ2 þλ4ða2þλ2Þðr3−a2ðr2−8ÞÞ
ða2ðrþ2Þþλ2rÞ2 þ λ4rð2a2−3rÞ

a2ðrþ2Þþλ2r−2a2rþ4aλrþ5r4

r4ð−λ4ðr−2Þða2ðrþ2Þþr3Þ
r3ða2ðrþ2Þþλ2rÞ þ2a2

r þa2−4aλ
r þr2Þ

�
rc

þ
4ð−a2λ4ðr−2Þða2ðrþ2Þþr3Þ

ða2ðrþ2Þþλ2rÞ2 −a2r2þλ4ða2ðr2−8Þ−r3Þ
a2ðrþ2Þþλ2r þ2aλr2þr5Þ

r5ð−λ4ðr−2Þða2ðrþ2Þþr3Þ
r3ða2ðrþ2Þþλ2rÞ þ2a2

r þa2−4aλ
r þr2Þ

����
rc

þ

2
666664
2ð2a5λr2ðrþ2Þ2þ4a3λ3r3ðrþ2Þþ2a2λ2r3ðrþ2Þðr3−a2Þþλ6ð−rÞðr3−a2ðr2−8ÞÞ

þλ4ða4ðr−3Þðrþ2Þ2−3a2r4þr7Þþa4r2ðrþ2Þ2ðr3−a2Þþ2aλ5r4Þ2
r2ða2ðrþ2Þþλ2rÞ2ða4ðrþ2Þ2r2−4a3λðrþ2Þr2

þa2ðrþ2Þðr5þλ2r3−λ4ðr−2ÞÞ−4aλ3r3þλ2r6−λ4ðr−2Þr3Þ2

3
777775
rc

:

Using numerical techniques, Eqs. (9)–(13) can simulta-
neously be solved to obtain the phase portrait correspond-
ing to the transonic flow.

B. Conical flow

The corresponding expression for the mass and entropy
accretion rates for the conical flow come out to be

_MCF ¼ 4π
ffiffiffiffi
Δ

p
Θrρ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

1 − u2

s
; ð14Þ

_ΞCF ¼ 4π
ffiffiffiffi
Δ

p
Θr

�
c2sðγ − 1Þ
γ − 1 − c2s

� 1
γ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

1 − u2

s
; ð15Þ

where Θ is the solid angle subtended by the accretion disk
at the horizon. The space gradient of the sound speed and
the flow velocity may be obtained as

dcs
dr

¼ N CF
1

DCF
1

; ð16Þ

du
dr

¼ N CF
2

DCF
2

; ð17Þ

where N CF
1 ¼N CH

1 , DCF
1 ¼DCH

1 , N CF
2 ¼ uð1 − u2Þ×

½2r2−3rþa2
Δr c2s −

f0
2f�, DCF

2 ¼ u2 − c2s , f ¼ Δ
B, B ¼ gϕϕ þ

2λgtϕ þ λ2gtt, where the sub-superscripts CF stand for
“conical flow.”
Hence, the corresponding critical point condition comes

out to be

u2jrc ¼ c2s jrc ¼
f0

2f

����
rc

Δcrc
2r2c − 3rc þ a2

: ð18Þ

Substituting the critical point conditions into the expression
of the conserved specific energy, one can solve the
corresponding algebraic equation for a specific set of
values of ½E; λ; γ; a� to obtain the value of the critical point
rc. The space gradient of cs and u at the critical points may
be obtained as

du
dr

����
rc

¼ −
βCF
2αCF

� 1

2αCF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2CF − 4αCFΓCF

q
; ð19Þ

dcs
dr

����
rc

¼ N CF
1

DCF
1

����
rc

; ð20Þ

where the coefficients αCF, βCF, and ΓCF are given by
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αCF ¼ αCH;

βCF ¼ 2csða2 þ rð2r − 3ÞÞðc2s − γ þ 1Þ
ðc2s − 1Þrða2 þ ðr − 2ÞrÞ

����
rc

;

ΓCF ¼ −
c2s − 1

a2 þ ðr − 2Þr
����
rc

þ 2ðc2s − 1Þðr − 1Þ2
ða2 þ ðr − 2ÞrÞ2

����
rc

þ c2s
r2

����
rc

þ c2sðr − 1Þða2 þ rð2r − 3ÞÞðc2s − γ þ 1Þ
ðc2s − 1Þrða2 þ ðr − 2ÞrÞ2

����
rc

þ c2sð−c2s þ γ − 1Þ
r2

����
rc

þ c2sðr − 1Þð−c2s þ γ − 1Þ
rða2 þ ðr − 2ÞrÞ

����
rc

þ c4sðr − 1Þða2 þ rð2r − 3ÞÞð−c2s þ γ − 1Þ
ðc2s − 1Þrða2 þ ðr − 2ÞrÞ2

����
rc

−

2
6664
− a2λ4ða2ðrþ2Þþr3Þ

ða2ðrþ2Þþλ2rÞ2 þ 2a2λ4ðr−2Þða2þλ2Þða2ðrþ2Þþr3Þ
ða2ðrþ2Þþλ2rÞ3 − a2λ4ðr−2Þða2þ3r2Þ

ða2ðrþ2Þþλ2rÞ2

þ λ4ða2þλ2Þðr3−a2ðr2−8ÞÞ
ða2ðrþ2Þþλ2rÞ2 þ λ4rð2a2−3rÞ

a2ðrþ2Þþλ2r − 2a2rþ 4aλrþ 5r4

r4ð− λ4ðr−2Þða2ðrþ2Þþr3Þ
r3ða2ðrþ2Þþλ2rÞ þ 2a2

r þ a2 − 4aλ
r þ r2Þ

3
7775
rc

þ
4
�
− a2λ4ðr−2Þða2ðrþ2Þþr3Þ

ða2ðrþ2Þþλ2rÞ2 − a2r2 þ λ4ða2ðr2−8Þ−r3Þ
a2ðrþ2Þþλ2r þ 2aλr2 þ r5

	
r5
�
− λ4ðr−2Þða2ðrþ2Þþr3Þ

r3ða2ðrþ2Þþλ2rÞ þ 2a2
r þ a2 − 4aλ

r þ r2
	 ����

rc

þ

2
666664
2ð2a5λr2ðrþ 2Þ2 þ 4a3λ3r3ðrþ 2Þ þ 2a2λ2r3ðrþ 2Þðr3 − a2Þ þ λ6ð−rÞðr3 − a2ðr2 − 8ÞÞ

þλ4ða4ðr − 3Þðrþ 2Þ2 − 3a2r4 þ r7Þ þ a4r2ðrþ 2Þ2ðr3 − a2Þ þ 2aλ5r4Þ2
r2ða2ðrþ 2Þ þ λ2rÞ2ða4ðrþ 2Þ2r2 − 4a3λðrþ 2Þr2

þa2ðrþ 2Þðr5 þ λ2r3 − λ4ðr − 2ÞÞ − 4aλ3r3 þ λ2r6 − λ4ðr − 2Þr3Þ2

3
777775
rc

:

Using numerical techniques, Eqs. (16)–(20) may be solved
to obtain the phase portrait of the transonic solutions.

C. Flow in hydrostatic equilibrium along
the vertical direction

The mass accretion rate is found to be

_MVE ¼ 4π
ffiffiffiffi
Δ

p
HðrÞρ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

1 − u2

s
: ð21Þ

The disk height can be calculated as

HðrÞ ¼
ffiffiffi
2

γ

s
r2
�

c2sðγ − 1Þ
ðγ − 1 − c2sÞF

�1
2 ð22Þ

with vt ¼
ffiffiffiffiffiffiffiffi
f

1−u2

q
and F ¼ λ2v2t − a2ðvt − 1Þ. The corre-

sponding entropy accretion rate is given by

_ΞVE ¼ 4πur2
�
c2sðγ − 1Þ
γ − 1 − c2s

� γþ1

2ðγ−1Þ
�

2Δ
γð1 − u2ÞF

�1
2

: ð23Þ

The space gradient of cs and u can be obtained as

dcs
dr

¼ N VE
1

DVE
1

; ð24Þ

du
dr

¼ N VE
2

DVE
2

; ð25Þ

where N VE
2 ¼ 2c2s

γþ1
ð− P1vtð2λ2vt−a2Þ

4F þ Δ0
2Δ þ 2

rÞ − P1
2
, DVE

2 ¼
u

1−u2 −
2c2s
γþ1

1
ð1−u2Þu ð1 −

u2vtð2λ2vt−a2Þ
2F Þ, P1 ¼ Δ0

Δ þ dΩ
dr

λ
1−Ωλ−

g0ϕϕþλg0tϕ
gϕϕþλgtϕ

, and Ω ¼ vϕ
vt , where the sub-superscripts VE stand

for “vertical equilibrium.” This provides the corresponding
critical conditions as

u2
�����
rc

¼ P1
Δ0
Δ þ 4

r

�����
rc

; ð26Þ

c2s

����
rc

¼ ðγ þ 1Þð2Fu2Þ
2ð2F − u2vtð2λ2vt − a2ÞÞ

����
rc

: ð27Þ

The corresponding space gradients of velocities at critical
points are obtained as

du
dr

����
rc

¼ −
βVE
2αVE

� 1

2αVE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2VE − 4αVEΓVE

q
; ð28Þ
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dcs
dr

����
rc

¼ N VE
1

DVE
1

����
rc

; ð29Þ

where the coefficients αVE, βVE, and ΓVE are given by

αVE¼
1þu2

ð1−u2Þ2−
2nD2D6

2nþ1
; βVE¼

2nD2D7

2nþ1
þτ4;

ΓVE¼−τ3; n¼ 1

γ−1
; D2¼

c2s
uð1−u2Þð1−D3Þ;

D6¼
3u2−1

uð1−u2Þ−
D5

1−D3

−
ð1−nc2sÞu
nc2sð1−u2Þ;

D7¼
1−nc2s
nc2s

P1
2
þD3D4vtP1

2ð1−D3Þ
;

τ3¼
2n

2nþ1

�
c2sτ2−

vtP1v1
2nvt

ð1−nc2sÞ−c2sv5vt
P1
2

�
−
P10

2
;

τ4¼
2n

2nþ1

vtu
1−u2

�
v1
nvt

ð1−nc2sÞþc2sv5

�
;

v1¼
Δ0

2Δ
þ2

r
−ð2λ2vt−a2Þvt

P1
4F

;

D3¼
u2vtð2λ2vt−a2Þ

2F
; D4¼

1

vt
þ 2λ2

2λ2vt−a2
−
2λ2vt−a2

F
;

D5¼D3

�
2

u
þD4vtu
1−u2

�
; τ2¼τ1−

vtð2λ2vt−a2Þ
4F

P10;

v5¼ð2λ2vt−a2ÞP1
4F

v4; τ1¼
1

2

�
Δ00

Δ
−
ðΔ0Þ2
Δ2

�
−
2

r2
;

v4¼
v3

ð2λ2vt−a2ÞF; v3¼ð4λ2vt−a2ÞF−ð2λ2vt−a2Þ2vt:

Note that the Mach number is not unity at the critical
points. Hence, apparently the critical points and the sonic
points are not isomorphic. This issue may be resolved in
two different ways:
(a) The time-dependent Euler equation and the continuity

equation can be linearly perturbed to find the corre-
sponding wave equation which describes the propa-
gation of the acoustic perturbation through the
background fluid space-time. The speed of propaga-
tion of such a perturbation can be taken as the effective
adiabatic sound speed. The critical points become the
sonic points for such an effective sound speed. This
treatment requires dealing with the time-dependent
perturbation techniques, which is beyond the scope of
this work. For related calculations, one may refer to
Ref. [94], where such a perturbation technique has
been applied for accretion in the Schwarzschild metric.

(b) The integral solutions may be numerically carried out
starting from the critical point and up to a certain radial
distance where the Mach number becomes exactly
equal to unity and the corresponding radial distance

can be considered the sonic point. In our work, we
shall follow this approach.

V. PARAMETER SPACE FOR POLYTROPIC
ACCRETION

One obtains [39] the limits for the four parameters
governing the flow as ½0 < E < 1; 0 < λ < 4; 4

3
< γ < 5

3
;

−1 < a < 1�. For polytropic accretion in the Kerr metric,
the parameter space is four dimensional. For our conven-
ience, we deal with two-dimensional parameter space. 4C2

such spaces may be obtained. For the time being, we
concentrate on ½E − λ� parameter space for fixed values
of ½γ; a�.
Figure 1 shows the ½E − λ� parameter space for adiabatic

accretion in quasispherical geometry for [γ ¼ 1.35,
a ¼ 0.1]. Similar diagrams can be produced for the two
other geometries as well. A1A2A3A4 represents the region
of ½E; λ� for which the corresponding polynomial equation
in rc along with the corresponding critical point conditions
provides three real positive roots lying outside rþ, where
rþ ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
, with a being the Kerr parameter. For

region A1A2A3, one finds _Ξinner > _Ξouter, and accretion is
multicritical. A3A5A6 (shaded in green), which is a sub-
space of A1A2A3, allows shock formation. Such a subspace
provides true multitransonic accretion where the stationary
transonic solution passing through the outer sonic point
joins with the stationary transonic solution constructed
through the inner sonic point through a discontinuous
energy-preserving shock of Rankine-Hugoniot type.
Such a shocked multitransonic solution contains two
smooth transonic (from sub to super) transitions at two
regular sonic points (of saddle type) and a discontinuous
transition (from super to sub) at the shock location.
On the other hand, the region A1A3A4 represents the

subset of ½E; λ; γ�mc (where the subscript “mc” stands for

FIG. 1. E-λ plot for quasispherical disk geometry (γ ¼ 1.35 and
a ¼ 0.1).
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“multicritical”), for which _Ξinner < _Ξouter and hence
incoming flow can have only one critical point of saddle
type, and the background flow possesses one acoustic
horizon at the inner saddle-type sonic point. The boundary
A1A3 between these two regions represents the value of
½E; λ; γ� for which multicritical accretion is characterized by
_Ξinner ¼ _Ξouter, and hence the transonic solutions passing
through the inner and outer sonic points are completely
degenerate, leading to the formation of a heteroclinic orbit
[95] on the phase portrait. Such a flow pattern may be
subjected to instability and turbulence as well.
In Fig. 2, for the same values of ½γ; a�, we compare the

parameter spaces for three different flow geometries. The
common region for which multiple critical points are
formed for all three flow geometries are shown in the inset.

VI. CLASSIFICATION OF CRITICAL POINTS
FOR POLYTROPIC ACCRETION

In the previous section, we found that the transonic
accretion may possess, depending on the initial boundary
conditions defined by the values of ½E; λ; γ; a�, one or three
critical points. Since we consider inviscid, nondissipative
flow, the critical points are expected to be either of saddle
type or of center type. No spiral- (instead of center-type) or
nodal-type points may be observed. The nature of the
critical points, whose locations are obtained by substituting
the critical point conditions for accretion flow into different
geometries and solving for the equation of specific energy,
cannot be determined from such solutions. A classification
scheme has been developed [90] to accomplish such a task.
Once the location of a critical point is identified, the
linearized study of the space gradients of the square of

the advective velocity in the close neighborhood of such a
point may be carried out to develop a complete and rigorous
mathematical classification scheme to understand whether
a critical point is of saddle type or of center type. Such a
methodology is based on a local classification scheme. A
global understanding of the flow topology is not possible to
accomplish using such a scheme. For that purpose, study of
the stationary integral flow solution, which can be accom-
plished only numerically, is necessary. Such a numerical
scheme to obtain the global phase portraits will be
discussed in detail in the subsequent sections.
Stationary axisymmetric accretion in the Kerr metric can

be described by a first order autonomous differential
equation [90] to apply the formalism borrowed from
dynamical systems theory and to find out the nature of
the critical points using such a formalism. Below, we
generalize such an analysis for polytropic accretion in three
different models.

A. Constant height flow

The gradient of the square of the sound speed and the
dynamical flow velocity (the advective velocity) can be
written as

dc2s
dr

¼ ðγ − 1 − c2sÞ
�

−1
2ð1 − u2Þ

du2

dr
−

f0

2f

�
; ð30Þ

du2

dr
¼

2½r−1Δ c2s −
f0
2f�

1
u2 ð 1

1−u2Þðu2 − c2sÞ
: ð31Þ

One can decompose the expression for du2
dr into two

parametrized equations using a dummy mathematical
parameter τ as

du2

dτ
¼ 2

�
r − 1

Δ
c2s −

f0

2f

�
;

dr
dτ

¼ 1

u2

�
1

1 − u2

�
ðu2 − c2sÞ: ð32Þ

The above equation is an autonomous equation, and hence
τ does not explicitly appear on the right-hand sides. About
the fixed values of the critical points, one uses a perturba-
tion prescription of the following form,

u2 ¼ u2c þ δu2; ð33Þ

c2s ¼ cs2c þ δc2s ; ð34Þ

r ¼ rc þ δr; ð35Þ

and derives a set of two autonomous first order linear
differential equations in the δr − δu2 plane by expressing
δc2s in terms of δr and δu2 as

FIG. 2. Comparison of the E-λ plots for three different flow
geometries (γ ¼ 1.35 and a ¼ 0.1). Constant height disk, quasi-
spherical flow, and flow in vertical hydrostatic equilibrium
represented by blue dashed lines, green dotted lines, and red
solid lines, respectively. The shaded region in the inset depicts
½E; λ� space overlap with multicritical solutions for all three
models.

EFFECT OF MATTER GEOMETRY ON LOW ANGULAR … PHYS. REV. D 100, 043024 (2019)

043024-9



δc2s
cs2c

¼ ðγ − 1 − cs2cÞ
�

−1
2u2cð1 − u2cÞ

δu2 −
rc − 1

Δc
δr

�
: ð36Þ

This form of δc2s has been derived using the modified form
(in terms of u2 instead of u) of the mass accretion rate
[Eq. (7)] and its corresponding expression for the entropy
accretion rate Eq. (8)]. Through this procedure, a set of
coupled linear equations in δr and δu2 will be obtained as

d
dτ

ðδu2Þ ¼ ACHδu2 þ BCHδr; ð37Þ

d
dτ

ðδrÞ ¼ CCHδu2 þDCHδr; ð38Þ

where

ACH ¼ ð1 − rcÞðγ − 1 − c2scÞ
Δcð1 − u2cÞ

; ð39Þ

BCH ¼ 2

�
c2sc
Δc

−
ðrc−1Þ2c2sc

Δ2
c

ðγþ1−c2scÞ−
f00

2f
þ1

2

�
f0

f

�
2
�
;

ð40Þ

CCH ¼
�
1þ ðγ − 1 − c2scÞ

2ð1 − u2cÞ
�

1

u2cð1 − u2cÞ
; ð41Þ

DCH ¼ −ACH: ð42Þ

Using trial solutions of the form δu2 ∼ expðΩτÞ and δr ∼
expðΩτÞ [Ω, in this context, should not be confused with
the angular velocity of the flow in Eq. (5)], the eigenvalues
of the stability matrix can be expressed as

Ω2
CH ≡ΩCH1

ΩCH2
¼ BCHCCH −ACHDCH: ð43Þ

Once the numerical values corresponding to the location of
the critical points are obtained, it is straightforward to
calculate the numerical value corresponding to the expres-
sion for Ω2 since Ω2 is essentially a function of rc. The
accreting black hole system under consideration is a
conservative system; hence, either Ω2 > 0, which implies
that the critical points are of saddle type, or one obtains
Ω2 < 0, which implies that the critical points are of center
type. One thus understands the nature of the critical points
(whether saddle type or center type) once the value of rc is
known. It has been observed that the single critical point
solutions are always of saddle type. This is obvious,
otherwise monotransonic solutions would not exist. It is
also observed that for multicritical flow, the middle critical
point is of center type and the inner and the outer critical
points are of saddle type. This will be explicitly shown
diagrammatically in the subsequent sections.

B. Conical flow

The gradient of the square of the sound speed and the
advective velocity are given by

dc2s
dr

¼ ðγ − 1 − c2sÞ
�

−1
2ð1 − u2Þ

du2

dr
−

f0

2f

�
; ð44Þ

du2

dr
¼

2½ð2r2−3rþa2Þ
Δr c2s −

f0
2f�

1
u2 ð 1

1−u2Þðv2 − c2sÞ
: ð45Þ

The parametrized form of the expression of du2
dr is given by

the equations

du2

dτ
¼ 2

�ð2r2 − 3rþ a2Þ
Δr

c2s −
f0

2f

�
;

dr
dτ

¼ ðu2 − c2sÞ
1

u2ð1 − u2Þ : ð46Þ

Using the perturbation scheme of Eqs. (33)–(35), we obtain

δc2s
c2sc

¼ ðγ − 1 − c2scÞ

×

�
−

1

2u2cð1 − u2cÞ
δu2−

ð2r2c − 3rc þ a2Þ
Δcrc

δr

�
; ð47Þ

where δc2s has been derived using a modified form of
Eqs. (14) and (15). The coupled linear equations in δr and
δu2 are given by

d
dτ

ðδu2Þ ¼ ACFδu2 þ BCFδr; ð48Þ

d
dτ

ðδrÞ ¼ CCFδu2 þDCFδr; ð49Þ

where

ACF ¼ −
ð2r2c − 3rc þ a2Þðγ − 1 − c2scÞ

Δcrcð1 − u2cÞ
; ð50Þ

BCF ¼
2ð4rc−3Þc2sc

Δcrc
−
f00

f
þ
�
f0

f

�
2

−
2c2sc
Δ2

cr2c
ð2r2c−3rcþa2Þ

× ½ð3r2c−4rcþa2Þþðγ−1−c2scÞð2r2c−3rcþa2Þ�;
ð51Þ

CCF ¼
�
1þ ðγ − 1 − c2scÞ

2ð1 − u2cÞ
�

1

u2cð1 − u2cÞ
; ð52Þ

DCF ¼ −ACF: ð53Þ

Using the prescriptionmentioned in the previous subsection,
eigenvalues of the stability matrix are obtained as
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Ω2
CF ≡ΩCF1

ΩCF2
¼ BCFCCF −ACFDCF: ð54Þ

C. Flow in hydrostatic equilibrium along
the vertical direction

The gradient of the square of the advective velocity is
given by

du2

dr
¼

β2c2s ½F
0
1

F1
− 1

F
∂F
∂r � − f0

f

ð1 − β2c2s
u2 Þ 1

ð1−u2Þ þ β2c2s
F ð∂F∂u2Þ

; ð55Þ

where F1 ¼ Δr4 and β ¼
ffiffiffiffiffiffi
2

γþ1

q
. The parametrized form of

the expression of du2
dr is given by the equations

du2

dτ
¼ β2c2s

�
F0
1

F1

−
1

F
∂F
∂r

�
−
f0

f
;

dr
dτ

¼
�
1 −

β2c2s
u2

�
1

ð1 − u2Þ þ
β2c2s
F

�∂F
∂u2

�
: ð56Þ

Using the perturbation scheme of Eqs. (33)–(35) and
modified forms of Eqs. (21) and (23), we obtain

δc2s
c2sc

¼ Aδu2 þ Bδr; ð57Þ

where A ¼ − γ−1−c2sc
γþ1

½ 1
u2cð1−u2cÞ −

1
Fc
ð∂F∂u2Þjc�, B ¼ − γ−1−c2sc

γþ1
×

½F0
1
ðrcÞ

F1ðrcÞ −
1
Fc
ð∂F∂rÞjc�. The coupled linear equations in δr and

δu2 are given by

d
dτ

ðδu2Þ ¼ β2c2sc

�
AF0

1

F1

−
AC
F

þ CD
F2

−
Δ3

F

�
δu2

þ
�
β2c2scF0

1

F1



B þ

�
F00
1

F0
1

−
F0
1

F1

��

−
f0

f

�
f00

f0
−
f0

f

�
−
β2c2scC
F

�
B −

C
F
þ Δ4

C

��
δr;

d
dτ

ðδrÞ ¼
�

1

ð1 − u2cÞ2
−

β2c2sc
u2cð1 − u2cÞ



Aþ 2u2c − 1

ð1 − u2cÞ2
�

þ β2c2scD
F

�
A −

D
F
þ Δ1

D

��
δu2

þ
�
−

β2c2scB
u2cð1 − u2cÞ

þ β2c2scD
F

�
B −

C
F
þ Δ2

D

��
δr;

ð58Þ

where C ¼ ð∂F∂rÞjc, D ¼ ð∂F∂u2Þjc, Δ1 ¼ ∂
∂u2 ð∂F∂u2Þjc, Δ2 ¼

∂
∂r ð∂F∂u2Þjc, Δ3 ¼ ∂

∂u2 ð∂F∂rÞjc, Δ4 ¼ ∂
∂r ð∂F∂rÞjc. Using the pre-

scription mentioned in the previous subsection, eigenvalues
of the stability matrix are obtained as

Ω2
VE ¼ β4c4scχ

2 þ ξ1ξ2; ð59Þ

where χ¼ ½F0
1
A

F1
−AC

F þ CD
F2 −Δ3

F � ¼ ½ B
u2cð1−u2cÞ−

BD
F þ CD

F2 −Δ2

F �,
ξ1 ¼ β2c2scF0

1

F1
½Bþ F00

1

F0
1

− F0
1

F1
�− f0

f ½f
00
f0 −

f0
f �− β2c2scC

F ½B− C
Fþ Δ4

C �, and

ξ2 ¼ 1
ð1−u2cÞ2 −

β2c2sc
u2cð1−u2cÞ ½Aþ 2u2c−1

u2cð1−u2cÞ� þ
β2c2scD

F ½A − D
F þ Δ1

D �.

VII. DEPENDENCE OF Ω2 ON FLOW AND SPIN
PARAMETERS FOR POLYTROPIC ACCRETION

WITH VARIOUS MATTER GEOMETRIES

In the previous section, we derived the explicit analytical
expressions for calculating the numerical values ofΩ2 once
the locations of the critical points were known. We also
argued that the solutions corresponding to multitransonic
accretion consist of three critical points—one of center type
and the other two of saddle type. In order to represent a real
multitransonic flow, the middle critical point is required to
be of center type such that the actual physical flow occurs
through the inner and outer critical points, which are
required to be of saddle type in nature. In terms of the
present analytical formalism, Ω2 corresponding to the inner
and outer critical points must assume a positive numerical
value, whereas those corresponding to the middle critical
points must be negative. Figures 3–5 establish the validity
of this requirement.

FIG. 3. Comparison ofΩ2 vs ½E; λ� of the inner and outer critical
points for constant height flow (CH), quasispherical flow (CF),
and flow in vertical hydrostatic equilibrium (VE) (γ ¼ 1.35,
a ¼ 0.1).
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In Fig. 3, the variation of Ω2 for inner and outer critical
points has been depicted over the entire physically acces-
sible domain of ½E; λ� for a given value of [γ ¼ 1.35,
a ¼ 0.1]. As predicted, the numerical values are all
positive, indicating a saddle nature. A similar observation
is made in Fig. 4, where the values of Ω2 for the middle
critical points over the entire domain of ½E; λ� with the same
values of the other flow parameters are negative, indicating
a stable point of center type in nature. An immediate
comparison can be made between the absolute magnitudes
ofΩ2 for the inner and outer critical points. It is interesting to
note that Ω2

inner ≫ Ω2
outer, indicating a correlation between

the numerical value of the quantity and the influence of
gravity due to the central accretor, not only propagated
through the value of metric components at the point but also
through the dynamical and thermodynamic variables per-
taining to the flow. However, it is too far fetched to comment
on any physical realization of the quantity at hand, as we are
dealing with a highly nonlinear system with a large number
of parameters and variables with complicated implicit
dependence on one another. It is safe to state only that
the sign of the quantity is all that we are interested in at
present, to understand the nature of the critical points in
order to visualize the phase-space orbitswithout delving into
actual numerics. A comparison of the three different flow
geometries reveals that jΩ2jCH > jΩ2jCF > jΩ2jVE.
Figure 5 provides an elegant pictorial method of real-

izing the nature of accretion over the entire range of black
hole spin for a given value of specific energy and specific
angular momentum of the flow at a particular polytropic
index (E ¼ 1.003, λ ¼ 0.3, γ ¼ 1.35). The region with a
single positive value of Ω2 (shown in the inset) represents a
saddle-type critical point indicating at monotransonic flow

for all three geometric configurations. The single positive
value is then observed to split into one negative value and
two positive values, indicating the formation of one center-
type middle critical point and two saddle-type critical
points. One of the two saddle points with its numerical
value comparable to that of the single saddle-type point in
the monotransonic region represents the outer critical point,
while the other, with a higher value, represents the inner
critical point which is closer to the event horizon. It appears
as if a saddle-center pair is generated from the initial saddle
at a particular value of spin, and as one moves towards
higher values of black hole spin, the new saddle, i.e., the
inner critical point moving closer and closer to the horizon
begins assuming higher values of Ω2 until it crosses the
horizon and ultimately disappears from the physically
accessible regime. And finally, one is left with the
center-type middle critical point through which no physical
flow can occur, and the previous saddle-type outer critical
point through which accretion continues as a purely
monotransonic flow. The same universal trend can be
observed in all three disk structures, although splitting
occurs at different values of a, and the relative magnitudes
of Ω2 are distinct for each flow geometry. It is to be noted
that, for the same energy and angular momentum of the
accreting fluid, flow in the hydrostatic equilibrium along
the vertical direction allows for multitransonic solutions at
the lowest values of black hole spin (even for counter-
rotating black holes in the given case). It may also be
observed that, since the values of Ω2 represent critical
points of a system, the splitting actually corresponds to a
supercritical pitchfork bifurcation in the theory of dynami-
cal systems where a stable critical point bifurcates into two
stable critical points (inner and outer in this case, through
which actual flow occurs) and an unstable critical point

FIG. 5. Comparison of Ω2 vs a for constant height flow (blue
dashed lines), quasispherical flow (green dotted lines), and flow
in vertical hydrostatic equilibrium (red solid lines) (γ ¼ 1.35,
E ¼ 1.003, λ ¼ 3.0). (Inset) Magnified view of the common
monotransonic region for the three flow geometries.

FIG. 4. Comparison of Ω2 vs ½E; λ� of the middle critical point
for constant height flow (CH), quasispherical flow (CF), and flow
in vertical hydrostatic equilibrium (VE) (γ ¼ 1.35, a ¼ 0.1).
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(middle center-type point through which physical flow in
not allowed).

VIII. INTEGRAL FLOW SOLUTIONS WITH
SHOCK FOR POLYTROPIC ACCRETION

In the previous section, one finds that it is possible to
understand the nature of the critical points through some
local stability analysis, i.e., the methodology is applicable
in the close neighborhood of the critical points. The global
nature of the flow topology, however, is possible to know
only through the stationary integral solutions of the
corresponding flow equations. Such integral solutions
are obtained through numerical techniques. For a particular
set of values of ½E; λ; γ; a�, one calculates the location of the
critical point(s). The values of ½u; cs; dudr ; dcsdr � on such critical
points are then computed. Starting from the critical point,
the expressions corresponding to du

dr and dcs
dr are then

numerically solved to obtain the radial Mach number vs
the radial distance profile. For transonic flow with multiple
critical points, a stationary shock may form. For such a
flow, integral stationary subsonic solutions pass through the
outer sonic point (associated with the saddle-type outer
critical point) and becomes supersonic. The supersonic
flow then encounters a discontinuous transition through
shock and becomes subsonic once again. The location of
the shock has to be determined by solving the correspond-
ing shock conditions. The postshock subsonic flow then
passes through the inner sonic point (corresponding to the
saddle-type inner critical point) to become supersonic again
and ultimately plunges into the event horizon.
Figure 6 shows the Mach number vs the radial distance

phase portrait of a shocked multitransonic flow for accre-
tion in a quasispherical geometry. Branch AOB (green

curve) represents accretion through the outer sonic pointO.
The flow encounters a stable, standing, energy-preserving
shock at r ¼ routsh whose location is obtained by using the
numerical scheme of equating shock-invariant quantities
(elaborated in the next subsection). It then jumps along the
line of discontinuity BC (blue dashed line). Thus, being
transformed into a subsonic, compressed, and hotter flow, it
then approaches the event horizon moving along the line
CC0ID (red curve) and becoming supersonic once again
while passing through the inner sonic point I. B0C0 shows
an unstable line of discontinuity which is inaccessible to
physical flow. FOE represents the corresponding wind
solution, while DIC0CF is a homoclinic orbit encompass-
ing the middle critical point M.

A. Shock-invariant quantities (Sh)

The shock-invariant quantity (Sh) is defined as a quantity
whose numerical value remains the same on the integral
solution branch passing through the outer sonic point as
well as the branch passing through the inner sonic point,
exclusively at the location(s) of physically allowed dis-
continuities obeying the general relativistic Rankine-
Hugoniot conditions. Thus, once expression for the
shock-invariant quantities are obtained, the corresponding
shock locations can be evaluated by numerically checking
for the condition South ¼ Sinh , where South and Sinh are the
shock-invariant quantities defined on the integral flow
solutions passing through the outer and the inner sonic
points, respectively. The Rankine-Hugoniot conditions
applied to a fully general relativistic background flow
are given by

½½ρuμ�� ¼ 0 and ½½Tμν�� ¼ 0; ð60Þ

where ½½V�� ¼ V− − Vþ, Vþ, and V− symbolically denote
the values of some flow variable V before and after the
shock, respectively.
Equation (60) can further be decomposed into the

following three conditions,

½½ρur�� ¼ 0; ð61Þ

½½ðpþ ϵÞutur�� ¼ 0; ð62Þ

½½ðpþ ϵÞurur þ p�� ¼ 0; ð63Þ

where ur ¼ uΔ
1
2

r
ffiffiffiffiffiffiffiffi
1−u2

p . Using the definition for specific

enthalpy (h) of the fluid given by

h ¼ pþ ϵ

ρ
ð64Þ

and using Eqs. (2) and (4) together with the polytropic
equation of state p ¼ Kργ , one can express ρ, p, and ϵ in
terms of the adiabatic sound speed c2s as

FIG. 6. Phase-space portrait (Mach number vs r plot) for
quasispherical disk (E ¼ 1.0003, λ ¼ 3.5, γ ¼ 1.35, a ¼ 0.1).
rinsh ¼ 4.805, routsh ¼ 38.15, rin ¼ 4.5 (inner sonic point I), rmid ¼
13.712 (middle sonic point M), rout ¼ 2244.313 (outer sonic
point O).
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ρ¼
�

c2sðγ−1Þ
Kγðγ−1−c2sÞ

� 1
γ−1
;

p¼K
−1
γ−1

�
c2sðγ−1Þ

γðγ−1−c2sÞ
� γ

γ−1
;

ϵ¼
�

c2sðγ−1Þ
Kγðγ−1−c2sÞ

� 1
γ−1
�
1þ1

γ

�
c2s

γ−1−c2s

��
: ð65Þ

Now, considering that the geometry of the flow equa-
tion (61) can be rewritten as

½½ρurHðrÞ�� ¼ 0; ð66Þ
where the accretion-geometry-dependent terms HðrÞ for
three different flow structures are given by

HCHðrÞ ¼ 2πrH;

HCFðrÞ ¼ Θr2;

HVEðrÞ ¼ 4πrHðrÞ; ð67Þ
with H being the thickness of the constant height disk, Θ
being the solid angle subtended by the quasispherical disk
at the horizon, and HðrÞ being the radius-dependent
thickness for flow in hydrostatic equilibrium along the
vertical direction given by Eq. (22).
Substituting Eqs. (67) and (65) into Eqs. (66) and (63)

and then solving simultaneously, we derive the shock-
invariant quantities (Sh) for all three flow geometries as

ShjCH ¼ u2ðγ Δ
r2 − c2sÞ þ c2s

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
ðγ − 1 − c2sÞ

; ð68Þ

ShjCF ¼ u2ðγ Δ
r2 − c2sÞ þ c2s

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
ðγ − 1 − c2sÞ

; ð69Þ

ShjVE ¼
ffiffiffiffi
F

p fu2ðγ Δ
r2 − c2sÞ þ c2sg

ucs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − u2Þðγ − 1 − c2sÞ

p : ð70Þ

IX. SHOCK PARAMETER SPACE FOR
POLYTROPIC ACCRETION

We now intend to see which region of the ½E − λ�
parameter space allows shock formation. For a fixed set
of [γ ¼ 1.35, a ¼ 0.57], we check the validity of the
Rankine-Hugoniot condition corresponding to every value
of ½E; λ� for which the accretion flow possesses three critical
points. This means that the shock-invariant quantity is
calculated for every ½E; λ� for which the multitransonic
accretion is possible, and it is observed that the quantities
calculated along the solution passing through the outer and
inner sonic points become equal at a particular radial
distance, i.e., at the shock location, only for a subset of
such ½E; λ�. We then plot the corresponding ½E; λ�shock for
various geometric configurations of matter.

In Fig. 7, we plot such shock-forming parameter space
for three different flow geometries. The shock-forming
region of ½E; λ� for a relevant combination of a and γ, which
is common to all three geometries, is shown in Fig. 8.
Similarly, Fig. 9 shows the domain of ½a; λ� for a given
value of E and γ where shock-forming regions of the three
flow models overlap. This particular plot indicates at the
requirement of an anticorrelation between the angular
momentum of flow and spin of the central gravitating
source for multitransonic accretion to occur. Moreover, it
may be observed that a higher difference between these two
values allows for a greater multitransonic shock-forming
region. The only probable reason behind this typical

FIG. 7. Comparison of E-λ plots of allowed shocked multi-
transonic accretion solutions for three different flow geometries
(γ ¼ 1.35 and a ¼ 0.57). Constant height disk, quasispherical
flow, and flow in vertical hydrostatic equilibrium represented by
blue dashed lines, green dotted lines, and red solid lines,
respectively.

FIG. 8. Shaded region depicts the common domain of ½E; λ�
(γ ¼ 1.35, a ¼ 0.57), which allows shock formation in a constant
height disk (blue circles), quasispherical disk (green circles), and
flow in hydrostatic equilibrium (red dots).
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observation seems to be an increase in the effective
centrifugal barrier experienced by the flow. These over-
lapping parameter space domains are of extreme impor-
tance for our purposes. All of the shock-related flow
properties for which the flow behavior is to be compared
for three different geometries are to be characterized by
½E; λ; γ; a� corresponding to these common regions only.
We will show this in greater detail in subsequent sections.
In what follows, we will study the dependence of the

shock location (rsh), shock strength (the ratio of pre- to
postshock values of the Mach number, Mþ=M−), shock
compression ratio (the ratio of the post- to preshock matter
density, ρ−=ρþ), and the ratio of post- to preshock temper-
ature (T−=Tþ) and pressure (P−=Pþ) on the black hole spin
parameter a. The subscripts “þ” and “−” represent pre- and
postshock quantities, respectively. One can study the
dependence of such quantities on other accretion param-
eters, i.e., ½E; λ; γ�, as well. Such dependence, however, is
not very relevant for our study in this work since, for a fixed
value of the Kerr parameter, the nature of such dependence
should actually be equivalent to the corresponding nature of
the dependence of ½rsh;Mþ=M−; ρ−=ρþ; P−=Pþ� on
½E; λ; γ�, as observed in the Schwarzschild metric which
has already been investigated in [92]. Hereafter in this
work, we will study the dependence of every physical
quantity on the Kerr parameter only for a fixed set
of ½E; λ; γ�.
Figure 10 depicts variation of the shock location (rsh)

with spin parameter a. The value of λ in this figure and all
subsequent figures illustrating other shock-related quan-
tities has been chosen from the common region in Fig. 9 so
as to ensure the maximum possible overlapping range of a
permissible for shocked accretion at a given value of E and γ
for all three flow models. The shock location is observed
to shift further from the horizon as the black hole spin
increases. This is what we may expect, as an increasing Kerr

parameter for a fixed angular momentum of the flow implies
growth in the difference of the two parameters, thus
strengthening the effective centrifugal barrier. Thus, tran-
sonicity and shock formation are speculated to occur in
earlier phases of the flow at greater distances from the
massive central source. A comparison of the models reveals
the following trend at a given value of a, rshðVEÞ >
rshðCFÞ > rshðCHÞ. This indicates the fact that flow in
hydrostatic equilibrium has to face much more opposition
than the other two disk geometries for the same amount of
impediment posed by the rotation of the flow and that of
the black hole.

FIG. 10. Shock location (rsh) vs a plot (γ ¼ 1.35, E ¼ 1.00024,
λ ¼ 2.9) for a constant height disk (dashed blue line), quasi-
spherical disk (dotted green line), and flow in hydrostatic
equilibrium (solid red line).

FIG. 11. Variation of shock strength (Mþ=M−), compression
ratio (ρ−=ρþ), pressure ratio (P−=Pþ), and temperature ratio
(T−=Tþ) with black hole spin parameter a (γ ¼ 1.35,
E ¼ 1.00024, λ ¼ 2.9) for a constant height flow (dashed blue
lines), quasispherical flow (dotted green lines), and flow in
hydrostatic equilibrium (solid red lines). Subscripts “þ” and
“−” represent pre- and postshock quantities, respectively.

FIG. 9. Overlap region of ½a; λ� (γ ¼ 1.35, E ¼ 1.00024), which
allows shock formation in a constant height disk (blue circles),
quasispherical disk (green circles), and flow in hydrostatic
equilibrium (red dots).
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It is also interesting to note from Fig. 11 that not only
does the vertical equilibrium model experience maximum
hindrance due to rotation, but it also exhibits the formation
of shocks with the weakest strength, i.e., the preshock to
postshock ratio of the Mach number (Mþ=M−), when
compared with the other two models. The shocks are
strongest in the case of disks with a constant height, and
intermediate in the case of quasispherical flows. The
strengths are observed to decrease with a. This might be
explained by the dependence of shock location on the spin
parameter. Greater values of rsh point at decreasing
curvature of physical space-time leading to diminishing
influence of gravity. Thus, dropping of shock strength with
increasing a, or, in other words, higher values of rsh,
establishes that weaker gravity amounts to the formation
of weaker discontinuities in the flow, and vice versa.
Naturally, waning shock strengths in turn lead to lower
post- to preshock compression (ρ−=ρþ), pressure (P−=Pþ),
and temperature (T−=Tþ) ratios, as observed in the figure.
A seemingly anomalous behavior is observed in this
context for the constant height flow geometry, in which
case, in spite of an outward shifting of the shock location,
shock strength is seen to increase, although the behavior of
the other related ratios falls in line with our previous
arguments. We shall try to discuss the reason behind such
an anomaly in the next section.

X. QUASITERMINAL VALUES

Accreting matter manifests extreme behavior before
plunging through the event horizon because it experiences
the strong curvature of space-time close to the black hole.
The spectral signature of such matter corresponding to that
length scale helps to understand the key features of the
strong gravity space-time to the close proximity of the
horizon. It may also help to study the spectral signature of
black hole spin. The corresponding spectral profiles and the
light curves may be used for constructing the relevant black
hole shadow images [96–101].
For a very small positive value of δ (∼0.0001), any

accretion variable Vδ measured at a radial distance rδ ¼
rþ þ δ will be termed a “quasiterminal value” of the
corresponding accretion variable. In Ref. [39], dependence
of Vδ on the Kerr parameter was studied for polytropic
accretion flow in hydrostatic equilibrium along the vertical
direction. In this work, we intend to generalize such work
by computing the Vδ for all three different matter geom-
etries. This generalization will be of paramount importance
in understanding the geometric configuration of matter
flow close to the horizon through the imaging of the
shadow.
In what follows, we will study the dependence of

½M; ρ; T; P�rδ on the Kerr parameter for shocked multi-
transonic accretion in three different flow geometries to
understand how the nature of such a dependence gets
influenced by the flow structure. We will also study such a
dependence for monotransonic flows for the entire range of

Kerr parameters, going from −1 to þ1, to study whether
any general asymmetry exists between corotating and
counterrotating accretion in connection to values of the
corresponding Vδ.

A. Dependence of ½M;T;ρ;P�rδ on a for shocked
polytropic accretion

Figure 12 demonstrates how the quasiterminal values
pertaining to Mach number (Mδ), density (ρδ), pressure
(Pδ), and bulk ion temperature (Tδ) vary with black hole
spin a, at a given set of ½E; λ; γ� chosen such that a
substantial range of a is available for studying any
observable trend of variation in the common shock regime
for all three matter configurations. It might be noted that,
although a general course of dependence of the values may
be observed within a local set of flow parameters for each
geometry separately, it is impossible to conclude with any
global trends of the sort. This is primarily due to the reason
that each permissible set of ½E; λ; γ� offers an exclusively
different domain of black hole spin for multitransonic
accretion to occur, and an even narrower common window
for the viability of general relativistic Rankine-Hugoniot-
type shocks in different geometric configurations of the
flow. Hence, in spite of the fact that physical arguments
may be able to specifically establish the observed results in
certain cases, as it could be donewith results obtained in the
previous sections, similar specific attempts made in all
cases globally may turn out to be not only futile but also
dangerously misleading. The anomaly which was pointed
out in the preceding section is a stark example of such an
instance. However, there is absolutely no reason to dis-
believe in the universality or the validity of previous
physical arguments. It is only that nature offers a few

FIG. 12. Variation of quasiterminal values of Mach number
(Mδ), density (ρδ), pressure (Pδ), and temperature (Tδ) with a
(γ ¼ 1.35, E ¼ 1.00024, λ ¼ 2.9) for constant height flow
(dashed blue lines), quasispherical flow (dotted green lines),
and flow in hydrostatic equilibrium (solid red lines). Density
and pressure are in centimeter-gram-second (cgs) units of g cm−3

and dyn cm−2, respectively, and temperature is in absolute units
of kelvin.
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select cases to provide us the opportunity of peeking into its
global behavior. We present exactly such a case in the
following subsection.

B. Dependence of ½M;T;ρ;P�rδ on a for
monotransonic accretion

In Fig. 13, we show the dependence of quasiterminal
values on black hole spin for monotransonic accretion. It is
observed that weakly rotating and substantially hot flows
allow for stationary monotransonic solutions over the entire
range of Kerr parameters. From a careful glance at the
results, it becomes clear that the reason behind the
previously stated anomaly in the general spin-dependent
behavior of the corresponding physical quantities for three
different flow geometries is essentially due to intrinsic
limitations in the possibility of observing their variations
over the complete range of spin. Since, for any given set of
½E; λ; γ�, shocked stationary multitransonic accretion sol-
utions for all matter configurations are allowed over a
considerably small overlapping domain of a, one is able to
look only through a narrow slit of the whole window. It is
clearly evident from Fig. 13 that the quasiterminal values
indeed exhibit common global trends of variation over a for
all three geometric configurations. However, while con-
centrating upon a small portion of spin, asymmetry in the
distribution of such trends leads to crossovers and appa-
rently noncorrelative or anticorrelative mutual behaviors
among the various flow models. Hence, it is natural to
question the utility of results with such constraints at the
intrinsic level. But it is this very asymmetry that turns out to
be of supreme importance in pointing towards a prospective
observational signature of the black hole spin.

XI. ISOTHERMAL FLOW STRUCTURES FOR
VARIOUS MATTER GEOMETRIES

The equation of state characterizing isothermal fluid
flow is given by

p ¼ c2sρ ¼ R
μ
ρT ¼ kBρT

μmH
; ð71Þ

where T is the bulk ion temperature, R is the universal gas
constant, kB is the Boltzmann constant,mH is themass of the
hydrogen atom, and μ is the mean molecular mass of fully
ionized hydrogen. The temperature T, as introduced in
the above equation and which has been used as one of the
parameters to describe the isothermal accretion, is the
temperature equivalent of the bulk ion flow velocity. That
is the reason why the value appears to be high (1010–11 K) in
this work. The actual disk temperature is the corresponding
electron temperature, which should be on the order of
106–7 K. The electron temperature may be computed from
the corresponding ion temperature by incorporating various
radiative processes; see, e.g., Ref. [102]. These calculations
for our general relativistic model are, however, beyond the
scope of this particular work and will be reported elsewhere.
For low angular momentum shocked flow under the influ-
ence of the Paczyński and Wiita pseudo-Schwarzschild
black hole potential [93], such computations have been
performed; see, e.g., Ref. [34], as well as Ref. [49].
The energy-momentum conservation equation obtained

by setting the 4-divergence (covariant derivative with
respect to ν) of Eq. (1) to be zero is

p;νðgμν þ vμvνÞ þ ðpþ ϵÞvνvμ;ν ¼ 0: ð72Þ
Using Eq. (71), the general relativistic Euler equation for
isothermal flow becomes

c2s
ρ
ρ;νðgμν þ vμvνÞ þ vνvμ;ν ¼ 0: ð73Þ

Using the irrotationality condition ωμν ¼ 0, where ωμν ¼
lλμlσνv½λ;σ�, with ωμν being the vorticity of the fluid, lλμ being
the projection operator in the normal direction of vμ,
lλμ ¼ δλμ þ vλvμ, and v½λ;σ� ¼ 1

2
ðvσ;λ − vλ;σÞ, we obtain

∂νðvμρc2s Þ − ∂μðvνρc2s Þ ¼ 0: ð74Þ

Taking the time component, we thus observe that, for an
irrotational isothermal flow, vtρc

2
s turns out to be a con-

served quantity. The square of this quantity is defined as the
quasispecific energy given by

ξ ¼ v2t ρ2c
2
s ; ð75Þ

where ξ is the first integral ofmotion for the isothermal flows.
The second integral ofmotion is _M, which is a function of the
disk height H. The critical point conditions and expressions

FIG. 13. Variation of quasiterminal values of Mach number
(Mδ), density (ρδ), pressure (Pδ), and temperature (Tδ) with a
(γ ¼ 1.35, E ¼ 1.2, λ ¼ 2.0) for monotransonic accretion
in constant height flow (dashed blue lines), quasispherical
flow (dotted green lines), and flow in hydrostatic equilibrium
(solid red lines). Density and pressure are in cgs units of g cm−3

and dyn cm−2, respectively, and temperature is in absolute units
of kelvin.
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for the velocity gradients are computed using the same
formalism as illustrated in the case of polytropic flow for
three different configurations of the disk geometry.

A. Constant height flow

The radial gradient of the advective velocity is

du
dr

����
CH

¼
1−c2s
2c2s

Δ0
Δ − 1

2c2s
B0
B

1
u −

u
1−u2

1−c2s
c2s

: ð76Þ

The critical point conditions are

u2cjCH ¼ cs2cjCH ¼ 1 −
B0

B
Δ
Δ0 : ð77Þ

The velocity gradient at critical points is

�
du
dr

�
c

����
CH

¼ −

ffiffiffiffiffiffiffiffiffi
βCH
ΓCH

s
; ð78Þ

where

ΓCH ¼ 2

cs2cð1 − cs2cÞ
;

βCH ¼ βð1ÞCH þ βð2ÞCH þ βð3ÞCH − βð4ÞCH − βð5ÞCH;

βð1ÞCH ¼ 2ð1 − cs2cÞð1 − rcÞ2
cs2cðcs2c þ rcðrc − 2ÞÞ2 ;

βð2ÞCH ¼ cs2c − 1

cs2cðcs2c þ rcðrc − 2ÞÞ ;

βð3ÞCH ¼ βð31ÞCH

r4ccs2cðcs2c þ 2cs2c
rc

þ r2c −
4cscλ
rc

− ðrc−2Þðr3cþcs2cðrcþ2ÞÞλ4
r3cðcs2cðrcþ2Þþrcλ2Þ Þ

;

βð31ÞCH ¼ −2cs2crc þ 5r4c þ 4cscrcλþ
2cs2cðrc − 2Þðr3c þ cs2cðrc þ 2ÞÞλ4ðcs2c þ λ2Þ

ðcs2cðrc þ 2Þ þ rcλ2Þ3
−
cs2cðrc − 2Þðcs2c þ 3r2cÞλ4
ðcs2cðrc þ 2Þ þ rcλ2Þ2

−
cs2cðr3c þ cs2cðrc þ 2ÞÞλ4
ðcs2cðrc þ 2Þ þ rcλ2Þ2

þ ðr3c − cs2cðr2c − 8ÞÞλ4ðcs2c þ λ2Þ
ðcs2cðrc þ 2Þ þ rcλ2Þ2

þ ð2cs2c − 3rcÞrcλ4
cs2cðrc þ 2Þ þ rcλ2

;

βð4ÞCH ¼
4ð−cs2cr2c þ r5c þ 2cscr2cλ − cs2cðrc−2Þðr3cþcs2cðrcþ2ÞÞλ4

ðcs2cðrcþ2Þþrcλ2Þ2 þ ð−r3cþcs2cðr2c−8ÞÞλ4
cs2cðrcþ2Þþrcλ2

Þ
cs2cr5cðcs2c þ 2cs2c

rc
þ r2c − 4cscλ

rc
− ðrc−2Þðr3cþcs2cðrcþ2ÞÞλ4

r3cðcs2cðrcþ2Þþrcλ2Þ Þ
;

βð5ÞCH ¼ βð51ÞCH

βð52ÞCH

;

βð51ÞCH ¼ 2½−cs6cr2cðrc þ 2Þ2 þ 2cscr4cλ5 þ 2cs5cr2cðrc þ 2Þ2λþ 4cs3cr3cðrc þ 2Þλ3 þ r4cλ4ðr3c − λ2Þ
þ cs2crcλ2ð4r5c þ 2r6c − 3r3cλ2 − 8λ4 þ r2cλ4Þ þ cs4cðrc þ 2Þð2r5c þ r6c − 2r3cλ2 − 6λ4 − rcλ4 þ r2cλ4Þ�2;

βð52ÞCH ¼ ½cs2cr2cðcs2cðrc þ 2Þ þ rcλ2Þ2�½cs4cr2cðrc þ 2Þ2 − 4cs3cr2cðrc þ 2Þλ − 4cscr3cλ3 þ r3cλ2ðr3c − ðrc − 2Þλ2Þ
þ cs2cðrc þ 2Þðr5c þ r3cλ2 − ðrc − 2Þλ4Þ�2:

Equation (76) can be integrated numerically using
Eqs. (77) and (78) to obtain the exact topology of the
flow in the phase space.

B. Conical flow

The radial gradient of the advective velocity is

du
dr

����
CF

¼
1−c2s
2c2s

Δ0
Δ − 1

2c2s
B0
B − 1

r

1
u −

u
1−u2

1−c2s
c2s

: ð79Þ

The critical point conditions are

u2cjCF ¼ cs2cjCF ¼
Δ0
Δ − B0

B
2
r þ Δ0

Δ
: ð80Þ

The velocity gradient at critical points is

�
du
dr

�
c

����
CF

¼ −

ffiffiffiffiffiffiffiffi
βCF
ΓCF

s
; ð81Þ
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where

ΓCF ¼ 2

cs2cð1 − cs2cÞ
;

βCF ¼ βð0ÞCF þ βð1ÞCF þ βð2ÞCF þ βð3ÞCF − βð4ÞCF − βð5ÞCF;

βð0ÞCF ¼ −
1

r2c
;

βð1ÞCF ¼ 2ð1 − cs2cÞð1 − rcÞ2
cs2cðcs2c þ rcðrc − 2ÞÞ2 ;

βð2ÞCF ¼ cs2c − 1

cs2cðcs2c þ rcðrc − 2ÞÞ ;

βð3ÞCF ¼ βð31ÞCF

r4ccs2cðcs2c þ 2cs2c
rc

þ r2c −
4cscλ
rc

− ðrc−2Þðr3cþcs2cðrcþ2ÞÞλ4
r3cðcs2cðrcþ2Þþrcλ2Þ Þ

;

βð31ÞCF ¼ −2cs2crc þ 5r4c þ 4cscrcλþ
2cs2cðrc − 2Þðr3c þ cs2cðrc þ 2ÞÞλ4ðcs2c þ λ2Þ

ðcs2cðrc þ 2Þ þ rcλ2Þ3
−
cs2cðrc − 2Þðcs2c þ 3r2cÞλ4
ðcs2cðrc þ 2Þ þ rcλ2Þ2

−
cs2cðr3c þ cs2cðrc þ 2ÞÞλ4
ðcs2cðrc þ 2Þ þ rcλ2Þ2

þ ðr3c − cs2cðr2c − 8ÞÞλ4ðcs2c þ λ2Þ
ðcs2cðrc þ 2Þ þ rcλ2Þ2

þ ð2cs2c − 3rcÞrcλ4
cs2cðrc þ 2Þ þ rcλ2

;

βð4ÞCF ¼
4ð−cs2cr2c þ r5c þ 2cscr2cλ − cs2cðrc−2Þðr3cþcs2cðrcþ2ÞÞλ4

ðcs2cðrcþ2Þþrcλ2Þ2 þ ð−r3cþcs2cðr2c−8ÞÞλ4
cs2cðrcþ2Þþrcλ2

Þ
cs2cr5cðcs2c þ 2cs2c

rc
þ r2c − 4cscλ

rc
− ðrc−2Þðr3cþcs2cðrcþ2ÞÞλ4

r3cðcs2cðrcþ2Þþrcλ2Þ Þ
;

βð5ÞCF ¼ βð51ÞCF

βð52ÞCF

;

βð51ÞCF ¼ 2½−cs6cr2cðrc þ 2Þ2 þ 2cscr4cλ5 þ 2cs5cr2cðrc þ 2Þ2λþ 4cs3cr3cðrc þ 2Þλ3 þ r4cλ4ðr3c − λ2Þ
þ cs2crcλ2ð4r5c þ 2r6c − 3r3cλ2 − 8λ4 þ r2cλ4Þ þ cs4cðrc þ 2Þð2r5c þ r6c − 2r3cλ2 − 6λ4 − rcλ4 þ r2cλ4Þ�2;

βð52ÞCF ¼ ½cs2cr2cðcs2cðrc þ 2Þ þ rcλ2Þ2�½cs4cr2cðrc þ 2Þ2 − 4cs3cr2cðrc þ 2Þλ − 4cscr3cλ3 þ r3cλ2ðr3c − ðrc − 2Þλ2Þ
þ cs2cðrc þ 2Þðr5c þ r3cλ2 − ðrc − 2Þλ4Þ�2:

The flow profile is then obtained by integrating the
velocity gradient using critical point conditions and values
of velocity gradients evaluated at the critical points.

C. Flow in vertical hydrostatic equilibrium

The general equation for the height of an accretion disk
held by hydrostatic equilibrium in the vertical direction is
given by [88]

−
2p
ρ

þ
�
H
r

�
2 F
r2

¼ 0; ð82Þ

where F ¼ λ2u2t − a2ðut − 1Þ. The equation had been
derived for flow in the Kerr metric and holds for any
general equation of state of the infalling matter. Hence, for
isothermal flows, the disk height can be calculated as

H ¼
�
2c2sr4

F

�1
2

; ð83Þ

leading to the following results.

The radial gradient of the advective velocity is

du
dr

����
VE

¼ cs2cðΔ0
2Δ þ 2

r − ð2λ2vt − a2Þ vtP1
4F Þ − P1

2

u
1−u2 −

cs2c
uð1−u2Þ ð1 − ð2λ2vt − a2Þ u2vt

2F Þ
: ð84Þ

The critical point conditions are

u2cjVE ¼ P1
Δ0
Δ þ 4

r

; ð85Þ

cs2cjVE ¼ u2c

1 − u2cvtð2λ2vt−a2Þ
2F

: ð86Þ

The velocity gradient at the critical points is

�
du
dr

�
c

����
VE

¼ −
βVE
2αVE

� 1

2αVE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2VE − 4αVEΓVE

q
; ð87Þ
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where

αVE¼
1þu2c

ð1−u2cÞ2
−D2D6; βVE¼D2D7þτ4; ΓVE¼−τ3;

D2¼
c2s

uð1−u2Þð1−D3Þ; D6¼
3u2−1

uð1−u2Þ−
D5

1−D3

;

D7¼
D3D4vtP1
2ð1−D3Þ

; τ3¼
�
c2sτ2−c2sv5vt

P1
2

�
−
P10

2
;

τ4¼
c2sv5vtu
1−u2

; v1¼
Δ0

2Δ
þ2

r
−ð2λ2vt−a2Þvt

P1
4F

;

D3¼
u2vtð2λ2vt−a2Þ

2F
; D4¼

1

vt
þ 2λ2

2λ2vt−a2
−
2λ2vt−a2

F
;

D5¼D3

�
2

u
þD4vtu
1−u2

�
; τ2¼τ1−

vtð2λ2vt−a2Þ
4F

P10;

v5¼ð2λ2vt−a2ÞP1
4F

v4; τ1¼
1

2

�
Δ00

Δ
−
ðΔ0Þ2
Δ2

�
−
2

r2
;

v4¼
v3

ð2λ2vt−a2ÞF; v3¼ð4λ2vt−a2ÞF−ð2λ2vt−a2Þ2vt:

Equation (84) is integrated numerically using Eqs. (86)
and (87) to obtain the flow profile and also to locate the
sonic points corresponding to the respective critical points.

XII. PARAMETER SPACE FOR
ISOTHERMAL ACCRETION

Since the parameter space is three dimensional in the
case of isothermal accretion in the Kerr metric, for
convenience, we deal with a two-dimensional parameter
space among 3C2 such possible combinations. The limits

for two of the parameters governing the flow are
½0 < λ < 4;−1 < a < 1�. For the time being, we concen-
trate on ½T − λ� parameter space for a fixed value of a. A
general ½T − λ� diagram for a given accretion disk geometry
would look similar to the generic diagram for polytopic
accretion shown in Fig. 1.
In Fig. 14, for a ¼ 0.1, we compare the parameter spaces

for three different flow geometries. The common domain
for which multiple critical points are formed for all three
flow geometries is shown as a shaded region.

XIII. CLASSIFICATION OF CRITICAL POINTS
FOR ISOTHERMAL ACCRETION

Using the same technique elaborated on in Sec. IV,
eigenvalues of the stability matrices for isothermal accre-
tion can be computed for the three disk geometries.

A. Constant height flow

We have

Ωiso
CH

2 ¼ Biso
CHC

iso
CH; ð88Þ

where

Biso
CH ¼ f0c

fc

a2 − 1 − ðrc − 1Þ2
Δðrc − 1Þ −

f00c
fc

þ
�
f0c
fc

�
2

; ð89Þ

CisoCH ¼ 1

u2cð1 − u2cÞ
: ð90Þ

B. Conical flow

We have

Ωiso
CF

2 ¼ Biso
CFC

iso
CF; ð91Þ

where

Biso
CF ¼

f0c
fcð2r2c−3rcþa2Þ

�
−
Δc

rc
þ rc
Δc

ða2−1− ðrc−1Þ2Þ
�

−
f00c
fc

þ
�
f0c
fc

�
2

; ð92Þ

CisoCF ¼ 1

u2cð1 − u2cÞ
: ð93Þ

C. Flow in hydrostatic equilibrium along
the vertical direction

We have

Ωiso
VE

2 ¼ Biso
VEC

iso
VE −Aiso

VED
iso
VE; ð94Þ

FIG. 14. Comparison of T�λ plots for three different flow
geometries (a ¼ 0.1, T in kelvins). Constant height disk, quasi-
spherical flow, and flow in vertical hydrostatic equilibrium
represented by blue dashed lines, green dotted lines, and red
solid lines, respectively. The shaded region allows for multi-
critical solutions in all flow configurations.
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Aiso
VE ¼ csc2

g2

�ð2λ2vt − a2Þf0cg02
2g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − u2cÞfc

p − δ3

�
; ð95Þ

Biso
VE ¼ cs2c

�
2

Δc
−

4

r2c
−
4ðrc − 1Þ2

Δ2
c

−
δ4
g2

þ
� ð2λ2vt − a2Þf0c
2g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − u2cÞfc

p �
2
�
−
f00c
fc

þ
�
f0c
fc

�
2

; ð96Þ

CisoVE ¼ u4c − 2cs2cu2c þ cs2c
u4cð1 − u2cÞ2

þ cs2cδ1
g2

−
cs2cg022
g22

; ð97Þ

Diso
VE ¼ −Aiso

VE; ð98Þ

where g2 ¼ ðλvtÞ2 − vta2 þ a2, δ1 ¼ 2λ2f
ð1−u2cÞ3 −

3a2
4

ffiffiffiffiffiffiffiffiffiffiffiffi
f

ð1−u2cÞ5
q

,

δ3 ¼ λ2f0
ð1−u2cÞ2 −

a2f0

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð1−u2cÞ3

p , δ4 ¼ λ2f00
1−u2c

− a2

4
ffiffiffiffiffiffiffiffi
1−u2c

p 2ff00−f02

f
3
2

.

XIV. DEPENDENCE OF Ω2 ON FLOW AND SPIN
PARAMETERS FOR ISOTHERMAL ACCRETION

IN VARIOUS MATTER GEOMETRIES

Figures 15–17, obtained by evaluating the analytical
expressions for isothermal flow derived in the previous
section at rc, establish the same argument about multi-
transonicity and nature of the critical points as presented in
the corresponding section for polytropic flows. The
numerical value of Ω2 assumes a positive sign for the
inner and outer saddle-type critical points, and a negative
sign for the middle center-type critical points.

FIG. 15. Comparison of Ω2 vs ½T; λ� of the inner and outer
critical points for constant height flow (CH), quasispherical flow
(CF), and flow in vertical hydrostatic equilibrium (VE) (a ¼ 0.1).
The left and right panels depict Ω2 for the inner and outer critical
points, respectively, for CH, CF, and VE from top to bottom in the
respective order.

FIG. 16. Comparison of Ω2 vs ½T; λ� of the middle critical point
for (top left) constant height flow (CH), (top right) quasispherical
flow (CF), and (bottom left) flow in vertical hydrostatic equi-
librium (VE) (a ¼ 0.1).

FIG. 17. Comparison of Ω2 vs a for constant height flow (blue
dashed lines), quasispherical flow (green dotted lines), and flow
in vertical hydrostatic equilibrium (red solid lines) (T ¼ 1010 K,
λ ¼ 3.6). (Inset) Magnified view of the common monotransonic
region for the three flow geometries.
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In Fig. 15, the variation of Ω2 for the inner and outer
critical points has been depicted over the entire physical
domain of ½T; λ� for a given value of a ¼ 0.1. Positive
values indicate critical points of a saddle nature. Figure 16
depicts the values of Ω2 for the middle critical points over
the full accessible domain of ½T; λ� for the same value of a.
Negative values indicate critical points which are center
type. The same trend of comparison is observed between
the absolute magnitudes of Ω2 for the saddle-type critical
points in the case of isothermal flow as well. Ω2

inner ≫
Ω2

outer once again points towards a correlation between
the absolute value of Ω2 and space-time curvature at the
critical points. A comparison of the three different flow
geometries reveals that, for inner and middle critical points,
jΩ2jCH > jΩ2jCF > jΩ2jVE, whereas for the outer critical
point, jΩ2jVE > jΩ2jCF > jΩ2jCH.
Figure 17 is a similar plot as was obtained for polytropic

flow depicting the bifurcation of Ω2 along black hole spin
parameter a for a given value of temperature and a specific
angular momentum (T ¼ 1010 K, λ ¼ 3.6). Monotransonic
flow through a saddle-type critical point is shown in the
inset, where Ω2 assumes a single positive value for all three
flow geometries. The monotransonic flow then bifurcates
into multitransonic flow with a center-type middle critical
point (with negative value), a saddle-type inner critical
point (with a larger positive value), and a saddle-type outer
critical point (with a smaller positive value). Thus, a saddle-
center pair is generated at a definite value of a. The inner
saddle gradually shifts closer to the event horizon, acquir-
ing higher values of Ω2, and finally one is left with a single
saddle point through which physical monotransonic flow
can occur. As in the case of polytropic flow, the value of
parameter a at which the bifurcation occurs is different for
different flow geometries, and that value is found to be
minimum for disks in vertical hydrostatic equilibirum.

XV. SHOCK-INVARIANT QUANTITIES (Sh)

Applying the technique described in Sec. VI A, shock-
invariant quantities (Sh) for all three isothermal flow
geometries are obtained as follows.

A. Constant height flow

We have

ShjisoCH ¼
�

uffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
�

2c2s−1ðu2Δþ r2c2sð1 − u2ÞÞ: ð99Þ

B. Conical flow

We have

ShjisoCF ¼
�

uffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
�

2c2s−1ðu2Δþ r2c2sð1 − u2ÞÞ: ð100Þ

C. Flow in hydrostatic equilibrium
in the vertical direction

We have

ShjisoVE ¼ u2c
2
s−1ðu2Δþ r2c2sð1 − u2ÞÞ: ð101Þ

XVI. SHOCK PARAMETER SPACE FOR
ISOTHERMAL ACCRETION

We now intend to see which region of the T − λ
parameter space allows shock formation. For a fixed value
of a ¼ 0.1, we check the validity of the Rankine-Hugoniot
condition for every value of ½T; λ� for which the accretion
flow possesses three critical points. This means that the
shock-invariant quantity is calculated for every ½T; λ� for
which the multitransonic accretion is possible, and it is
observed that only for some subset of such ½T; λ� do the
shock-invariant quantities calculated along the solution
passing through the outer and the inner sonic points
become equal at a particular radial distance, i.e., at the
shock location. We then plot the corresponding ½T; λ�shock
for various geometric configurations of matter.
In Fig. 18, we plot the subsets of the T − λ spaces for

three different flow geometries at a fixed a (¼ 0.1), for
which the values of the shock-invariant quantities Sh, when
evaluated along the flow branches through inner and outer
critical points, become equal at particular values of r. This
value of radial distance rsh is the location of shock. The
shaded region depicts the overlap of the shock-forming
½T; λ� parameter set of the three disk configurations for a
given a.

FIG. 18. Comparison of T-λ plots of allowed shocked multi-
transonic accretion solutions for three different flow geometries
(a ¼ 0.1, T in kelvins). Constant height disk, quasispherical flow,
and flow in vertical hydrostatic equilibrium represented by blue
dashed lines, green dotted lines, and red solid lines, respectively.
Shaded region depicts the overlapping domain of shock for-
mation in all three geometries.
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Once the common region for shock formation is
obtained, we investigate the variation of shock location
(rsh), shock strength (Mþ=M−), compression ratio
(ρ−=ρþ), pressure ratio (P−=Pþ), and quasispecific energy
dissipation ratio (ξþ=ξ−) (þ and − have the same meanings
as defined for polytropic accretion) on the black hole spin
parameter a, also comparing the trends of variation for
various disk geometries.
Figure 19 shows how the shock location (rsh) varies with

the spin parameter a. The bulk ion temperature has been
fixed at 1010 K, and the value of λ has been selected
accordingly (3.75) from the region of shock overlap
observed in Fig. 18 so that the available range of a is
maximum. The same set of ½T; λ� has been used in all
subsequent shock-related plots. Aswas already argued in the
corresponding section for polytropic flow, the growth in
strength of the effective centrifugal barrier due to the
increase in the difference between λ and a explains the
formation of shock farther away from the gravitating source
as the value of black hole spin is increased while keeping the
value of specific angular momentum fixed. Again, for a
particular value ofa, it is observed that rshðVEÞ>rshðCFÞ>
rshðCHÞ, which indicates that even in the case of isothermal
flow, an accretion disk in vertical hydrostatic equilibrium is
exposed to maximum resistance for a given centrifugal
barrier.
Figure 20, upon comparison with Fig. 11, establishes the

fact that, irrespective of whether the flow is polytropic or
isothermal, a gradual increase in black hole spin for a
specific flow angular momentum shifts the shock location
outward by boosting the effective centrifugal barrier. A
shock formed far from the event horizon is weaker in
strength owing to the eventual flattening of space-time.
Moreover, in both polytropic and isothermal cases, for a
given ½a; λ�, the strongest shocks are formed in constant

height disks, whereas disks in hydrostatic vertical equilib-
rium exhibit the weakest shocks. The same trend is
consistently observed for all of the relevant ratios across
the discontinuity.

XVII. POWERING THE FLARES THROUGH THE
ENERGY DISSIPATED AT THE SHOCK

For the isothermal accretion onto a rotating black hole
considered in this work, we concentrate on dissipative
shocks. Unlike the standing Rankine-Hugoniot-type
energy-preserving shocks studied for the polytropic flow,
a substantial amount of energy is dissipated at the shock
location to maintain the temperature invariance of the
isothermal flow. As a consequence, the flow thickness does
not change abruptly at the shock location, and handling the
pressure balance equation across the shock becomes more
convenient than that for the polytropic accretion. The
amount of energy dissipated at the shock might make an
isothermal shock appear “bright” since for the inviscid,
dissipationless flow considered in our work, accretion
remains grossly radiatively inefficient throughout.
The type of low angular momentum inviscid flow we

consider in this work is believed to be ideal for mimicking
the accretion environment of our Galactic Center black hole
[34]. Sudden substantial energy dissipation from the shock
surface may thus be conjectured to feed the x-ray and IR
flares emanating from our Galactic Center black hole
[103–111].
In our formalism, the ratios of the quasispecific energies

corresponding to the preshock and postshock flows is
assumed to be a measure of the amount of the dissipated
energy at the shock surface. In Fig. 21, we plot such ratios

FIG. 20. Variation of shock strength (Mþ=M−), compression
ratio (ρ−=ρþ), and pressure ratio (P−=Pþ) with black hole
spin parameter a (E ¼ 1010 K, λ ¼ 3.75) for a constant height
flow (dashed blue lines), quasispherical flow (dotted green lines),
and flow in hydrostatic equilibrium (solid red lines). The sub-
scripts “þ” and “−” represent pre- and postshock quantities,
respectively.

FIG. 19. Shock location (rsh) vs a plot (T ¼ 1010 K, λ ¼ 3.75)
for a constant height disk (dashed blue line), quasispherical
disk (dotted green line), and flow in hydrostatic equilibrium
(solid red line).
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for various ranges of the black hole spins (the Kerr
parameter a) for three different types of geometrical
thickness of the flow considered in our work. There are
four panels in the figure, with each plane corresponding to a
certain range of values of the black hole spin angular
momentum. As already discussed, for a fixed value of
½E; λ; γ� or ½T; λ�, shock formation over a continuous range
of a spanning the entire domain of the Kerr parameter,
−1 > a > 1, is allowed neither for polytropic nor for
isothermal accretion. The four different panels in the figure
are thus characterized by four different sets of ½T; λ�, as
mentioned in the figure caption. The following interesting
features are observed.
Depending on the initial conditions, a substantial amount

of energy gets liberated from the shock surface. Sometimes
even as much as 30% of the rest mass may be converted
into radiated energy, which is a huge amount. Hence, the
shock-generated dissipated energy can, in principle, be
considered a good candidate to explain the source of energy
dumped into the flare.
The length scale on the disk from which the flare may be

generated actually matches the shock location. Such “flare
generating” length scales obtained in our theoretical cal-
culations are thus in good agreement with observational
works [109].
What we actually observe is that the amount of dissi-

pated energy anticorrelates with the shock location, which
is perhaps intuitively obvious because the closer the shock
forms to the horizon, the greater is the available gravita-
tional energy to be converted into dissipated radiation.

Following the same line of argument, the amount of
dissipated energy anticorrelates with the flow angular
momentum. The lower the angular momentum of the flow
is, the closer to the boundary the centrifugal pressure
supported region forms. Such regions slow down the flow
and break the flow behind it, and hence the shock forms.
The locations of such a region are thus markers anticipating
from which region of the disk the flare may be generated.
It is imperative to study the influence of the black hole

spin in determining the amount of energy liberated at the
shock. What we find here is that, for the prograde flow,
such an amount anticorrelates with the black hole spin.
Thus, for a given flow angular momentum, slowly rotating
black holes produce the strongest flares. Hence, for a given
value of ½T; λ�, if shocked multitransonic accretion solu-
tions exist over a positive span of a including a ¼ 0, then
flares originating from the vicinity of the Schwarzschild
hole would consequently contain the maximum amount of
energy. Hence, unlike the Blandford-Znajek mechanism
[38,112–115], the amount of energy transferred to a flare is
not extracted at the expense of black hole spin.
Certain works based on the observational results argue

that there is no obvious correlation between the black hole
spin and the jet power (see Refs. [116,117] and the
references therein). Our present finding is in accordance
with such arguments.
In this connection, however, it is to be noted that the

Blandford-Znajek mechanism is usually associated with the
electromagnetic energy extractions, whereas energy liber-
ation at the shock is associated with the hydrodynamic
flow. Hence, no direct comparison can perhaps be made
between the Blandford-Znajek process and the process
considered in our work.
In recent years, the study of retrograde flow close to the

Kerr holes has also been of profound interest (see
Refs. [118,119] and the references therein). We thus study
the spin dependence of the amount of energy dissipation at
the shock. The result is shown in Fig. 22. Here we observe

FIG. 22. Variation of quasispecific energy ratio (ξþ=ξ−) with
black hole spin parameter a (T ¼ 1010 K, λ ¼ 4.0) for retrograde
flow. Constant height flow, quasispherical flow, and flow in
hydrostatic equilibrium are represented by dashed blue lines,
dotted green lines, and solid red lines. The subscripts “þ” and
“−” represent pre- and postshock quantities, respectively.

FIG. 21. Variation of quasispecific energy ratio (ξþ=ξ−) with
black hole spin parameter a (T ¼ 1010 K). In order to obtain
multicritical domains with shock over four different ranges of a,
four different values of λ have been set at the given T, i.e., λ ¼
3.75 (upper left panel), λ ¼ 3.25 (upper right panel), λ ¼ 3.0
(lower left panel), λ ¼ 2.7 (lower right panel). Constant height
flow, quasispherical flow, and flow in hydrostatic equilibrium are
represented by dashed blue lines, dotted green lines, and solid red
lines. The subscripts “þ” and “−” represent pre- and postshock
quantities, respectively.
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that the amount of dissipated energy is greater for faster
counterrotating holes. For retrograde flow, the negative
Kerr parameter essentially reduces the overall measure of
the angular momentum of the flow and the effective angular
momentum may probably be thought of as λeff ¼ λ − a,
which explains such a finding.
It is also observed that the amount of shock dissipated

energy is also influenced by the geometric configuration of
the flow. We find that axially symmetric flow with constant
thickness produces the largest amount of liberated energy at
the shock, whereas the flow in hydrostatic equilibrium
along the vertical direction produces the smallest amount.
The conical wedge-shaped flow contributes at a rate which
is intermediate to the rates for the constant height disk and
the disk in vertical equilibrium. This feature remains
unaltered for the prograde as well as the retrograde flow.

XVIII. QUASITERMINAL VALUES

A. Dependence of ½M;ρ;P�rδ on a for shocked
isothermal accretion

Variation of the quasiterminal values of Mach number
(Mδ), density (ρδ), and pressure (Pδ) with spin parameter a
is shown in Fig. 23 for a given T (¼ 1010 K) and λ
(¼ 3.75). It is observed that the variations are similar in
nature to those for polytropic flow, but even in this case,
limitations in the availability and overlap of a broad range
of spin for shocked multitransonic accretion for all geo-
metric models make it impossible to comment on the global
trend with which such quantities vary in accordance to
black hole spin or the disk configuration. Hence, we try to
resolve this issue in the next subsection by looking at the
case of monotransonic isothermal accretion.

B. Dependence of ½M;ρ;P�rδ on a for monotransonic
isothermal accretion

Figure 24 depicts how quasiterminal values of Mach
number, density, and pressure of monotransonic isothermal
flow depend on the Kerr parameter. Hot flows with low
angular momentum exhibit stationary accretion solutions
spanning the full domain of black hole spin. It is observed
that the general spin-dependent behavior of the correspond-
ing physical quantities for three different flow geometries is
quite well behaved in the case of isothermal accretion, as
opposed to the polytropic case. However, the previously
stated intrinsic limitations in the possibility of observing
variations over the complete range of spin still exist for
multitransonic flows. It is clear from Fig. 24 that quasi-
terminal values possess common global trends of variation
over a for all three geometric configurations. The important
observation in this context is the existence of asymmetry in
variation of the related quantities between prograde and
retrograde spin of the black hole. As mentioned in the case
of polytropic accretion, such asymmetry is an extremely
significant finding for the observation of black hole spin-
related effects.

XIX. CONCLUDING REMARKS

Computation of the quasiterminal values helps us to
understand the nature of spectra for which photons have
emanated from a close proximity of the horizon. Hence,
variation of the quasiterminal values may be useful to
understand how the black hole spin influences the con-
figuration of the image of the black hole shadow. This work
has put forth two important findings which are worth
mentioning in this context. Firstly, the spin dependence of

FIG. 23. Variation of quasiterminal values of Mach number
(Mδ), density (ρδ), and pressure (Pδ) with a (T ¼ 1010 K,
λ ¼ 3.75) for constant height flow (dashed blue lines), quasi-
spherical flow (dotted green lines), and flow in hydrostatic
equilibrium (solid red lines). Density and pressure are in cgs
units of g cm−3 and dyn cm−2, respectively, and temperature is in
absolute units of kelvin.

FIG. 24. Variation of quasiterminal values of Mach number
(Mδ), density (ρδ), and pressure (Pδ) with a (T ¼ 2 × 1011 K,
λ ¼ 2.0) for monotransonic accretion in constant height flow
(dashed blue lines), quasispherical flow (dotted green lines), and
flow in hydrostatic equilibrium (solid red lines). Density and
pressure are in cgs units of g cm−3 and dyn cm−2, respectively,
and temperature is in absolute units of kelvin.
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quasiterminal values has been studied for different geomet-
rical configurations of matter. Secondly, we have found that
(see, e.g., Figs. 13 and 24) the prograde and the retrograde
flows are distinctly marked by asymmetric distributions of
relevant quasiterminal values over the entire theoretical
range of the Kerr parameter. This indicates that the con-
structed image of shadow will be different for the co- and
counterrotating flows. We have also observed that the
physical quantities responsible for constructing the black
hole spectra [velocity, density, pressure, temperature (for
polytropic accretion), and quasispecific energy (for iso-
thermal accretion) of the flow] change abruptly at the shock
location. This indicates that the discontinuous changes in
the physical quantities should be manifested as a break in
the corresponding spectral index, and they will also show
up during the procedure of black hole shadow imaging. Our
work is thus expected to predict how the shape of the image
of the shadow might be governed by the dynamical and
thermodynamic properties of the accretion flow along with
the spin of a black hole. Through the construction of
such an image (a work in progress), not only shall we be
able to provide a possible methodology (at least at a
qualitative level) for the observational signature of the
black hole spin, but such images will also possibly shed
light on the difference between the prograde and retrograde
flows from an observational point of view. We have
analyzed general relativistic accretion of both polytropic
and isothermal fluids in the Kerr metric to study the effects

of matter geometry and black hole spin parameter on
multitransonic shocked accretion flow.
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