
 

Do current astronomical observations exclude the existence
of nonstrange quark stars?
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As is pointed out in a recent work [Phys. Rev. Lett. 120, 222001 (2018)], quark matter may not be
strange. Inspired by this argument, we use a new self-consistent mean field approximation method to study
the equation of state of cold dense matter within the framework of the two-flavor NJL model. Then the
mass-radius relationship of two-flavor pure quark stars is studied. In the new self-consistent mean field
approximation method we introduced, there is a free parameter α, which reflects the weight of different
interaction channels. In principle, α should be determined by experiments rather than the self-consistent
mean field approximation itself. In this paper, thus, the influence of the variation of α on the critical
chemical potential of chiral phase transition and the stiffness of the equation of state (EOS) are thoroughly
explored. The stiffness of the EOS can be increased greatly to support a two-solar-mass pure quark star
when α is greater than 0.9, because the contribution from the vector term is retained by the Fierz
transformation. Our result is also within the constraints on the radius from the recent data analysis of the
tidal deformability. This means that the current theoretical calculations and astronomical observations
cannot rule out the possibility of a two-flavor pure quark star.
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I. INTRODUCTION

The equation of state (EOS) is the crux of the studies of
neutron stars. Once the EOS describing a single or several
phases is specified, the mass-radius relation can be obtained
by integrating the Tolman-Oppernheimer-Volkoff (TOV)
equation. Recent results derived from observations have
provided serious constraints on EOSs. On one hand, there
has been strong evidence that 2-solar-mass neutron stars
exist [1–4]. On the other hand, the gravitational-wave
signal from the neutron star merger GW170817 provides
not only a constraint on the tidal deformability but also
possible constraints on neutron star radii [5–9]. However,
both the mass-radius relation and the inner structure of
neutron stars are severely model dependent.

It is generally believed that the description of the matter in
term of interacting nucleons is valid when the density of
matter is smaller than two times of nuclear saturation density
n0. Then, in the region of 2n0 ∼ 7n0, the system gradually
changes from hadronic to quark matter. When the density is
greater than 4n0, the matter is percolated and quarks no
longer belong to specific baryons [10]. So, neutron stars are
usually considered as hybrid stars and the EOSs are also
hybrid containing both nuclear matter, deconfined quark
matter, and even mixed matter. In the conventional descrip-
tion of the onset of quark matter, hadronic matter (hyperons
can also be included) and quark matter are two distinct
phases. Then, the Maxwell construction is conceived to
guarantee pressure and chemical potential continuity across
the transition [11–14]. In recent studies, between the
hadronic matter and quark matter, a smooth crossover and
a so-called quarkyonic regime at the intermediate baryon
density are introduced to remedy our limited understanding
of the hadron-quark phase transition [15,16].
In this work, we want to point out that there is a subtle

paradox in most of the hybrid star models. From the picture
of quark degrees of freedom, the strong interaction matter
will undergo the well-known chiral phase transition along
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with the continuous increase of the quark chemical poten-
tial to a critical value μc. Because lattice quantum chromo-
dynamics (LQCD) is invalid to deal with the large chemical
potential problem at present, the value of μc depends on
the phenomenological QCD models. The value of μc is
predicted to be about 330–380 MeV in most Nambu-Jona-
Lasinio (NJL) type models [17–22]. Other phenomeno-
logical QCD models from the quark degrees of freedom
also give a similar prediction [23–27]. Nonetheless, from
the picture of hadron degrees of freedom, the quark
chemical potential corresponding to the 4n0 is around
600 MeV. Even 2n0 indicates a quark chemical potential
around 400 MeV [28–31]. A recent work try to constrain
the hadron-quark phase transition chemical potential via
astronomical observations [32]. According to the Ref. [32],
the most possible baryon chemical potential where hadron
matter disappears totally is 1.49 GeV corresponding to a
500 MeV quark chemical potential. All of these facts
indicate that there is a huge contradiction between the
model predictions derived from quark degrees of freedom
and hadron degrees of freedom. To resolve this contra-
diction, a new approach of self-consistent mean field
approximation is proposed for NJL type models in our
previous work [28]. In this paper, we derive the EOS at
finite density based on our new self-consistent mean field
approximation approach, and integrate the TOVequation to
calculate the mass-radii relation of quark stars.
There are two motivations for doing this. First, although

stable quark stars can exist based on the theory of E. Witten
where strange quark matter might be the ground state of
strong-interaction matter [33,34]. With the lack of a first-
principles understanding of the strong interaction at finite
density, the MIT bag model was used in early works [35].
Since then, most works of the inner structure of neutron
stars have assumed that the neutron stars are composed of
u, d and s three-flavor quarks. For a recent example, see
Ref. [36]. However, a recent study shows that stable quark
matter may not be strange, and two-flavor quark stars with a
larger maximum mass can also exist [37]. It should be
noticed here, at present, it is an open question whether the
most stable matter is two-flavor or three-flavor quark
matter. So, we want to seek for the possibility that a
two-solar-mass quark star contains only u and d quarks in
this paper. Second, we recently proposed a new self-
consistent mean field approximation method by means
of Fierz transformation [28], and applied it to the two-flavor
NJL model. This new self-consistent mean field approxi-
mation introduces a new free parameter α that reflects the
weight of different interaction channels. The parameter α in
our model can influence not only the value of the critical
chemical potential μc of chiral phase transition, but also the
continuity of the chiral susceptibility. The chiral phase
transition can become a crossover if α is greater than 0.71.
So, it is interesting to investigate how it will influence the
maximum mass of compact stars predicted by our model.

This paper is organized as follows: In Sec. II, we
introduce our self-consistent mean field theory of the
NJL model. In Sec. III, the mass-radii relations are
calculated by solving the TOV equation and the effects
of the parameters on the stiffness of the EOS are explored.
Section IV is the summary and discussion of our work.

II. SELF-CONSISTENT MEAN FIELD
APPROXIMATION

The NJL model is widely adopted as a quark model to
describe cold dense matter in neutron stars and quark
stars [38]. The standard two-flavor NJL Lagrangian with
interaction terms in the scalar and pseudoscalar-isovector
channels is given by:

L ¼ ψ̄ði=∂ −mÞψ þ G½ðψψ̄Þ2 þ ðψ̄iγ5τψÞ2�; ð1Þ

where m is the current quark mass and G denotes the
coupling constant. The Fierz identity of it is

LF ¼ ψ̄ði=∂ −mÞψ þG
1

8Nc
½2ðψ̄ψÞ2 þ 2ðψ̄iγ5τψÞ2

− 2ðψ̄τψÞ2 − 2ðψ̄ iγ5ψÞ2 − 4ðψ̄γμψÞ2
− 4ðψ̄γμγ5ψÞ2 þ ðψ̄σμνψÞ2 − ðψ̄σμντψÞ2�: ð2Þ

Comparing Eqs. (1) and (2), it is easy to find that the
contribution of the next leading order term Oð1=NcÞ of the
large Nc expansion can be introduced by the Fierz trans-
formation in the framework of the mean-field approxima-
tion. Because Fierz transformation is a mathematically
equivalent transformation, the original Lagrangian and
the transformed Lagrangian are equivalent. One can also
construct a refined new equivalent Lagrangian by taking the
linear combination of them:

LR ¼ ð1 − αÞLþ αLF; ð3Þ

where α is an arbitrary complex number. Just as it is pointed
out in Ref. [38], if the mean field approximation is applied
here to study the position of the phase transition of strong
interaction at finite chemical potential, mean field
Lagrangian hLi and hLFi will give different results. The
Ref. [38] suggests this form: 1=2hLi þ 1=2hLFi ðα ¼ 1=2Þ
to include both the Hartree term and Fock term, which means
the contributions of them are assumed to be identical.
Nonetheless, it is obviously that there are no physical
requirements for the value of α. And actually α should be
constrained by experiments. Currently, with the lack of
experiment data on finite density strongly interacting matter,
in our model α is assumed to be an arbitrary complex
number and our redefined mean field Lagrangian is

hLRi ¼ ð1 − αÞhLi þ αhLFi: ð4Þ
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Indeed, the parameter α in our manuscript reflects the
weight of vector-isoscalar channel contribution in the case
of finite density. Just as is pointed out in Ref. [39], the
vector-isoscalar channel is very important at finite chemical
potential. Considering this fact, the vector-isoscalar term is
added into the standard NJL model by hand in some model
studies [18]. However, it should be noted here that those
model Lagrangian are different from that of the original
standard NJL model. And the artificially introduced inter-
action items lead to more parameters, which causes the
standard NJL model to lose its predictive power. For
example, when the case of finite chemical potential is
discussed, the vector-isoscalar channel is artificially
added to the standard NJL model Lagrangian. Similarly,
if the axial chemical potential is discussed (in this case,
isovector-isoscalar channel is very important), the isovec-
tor-isoscalar channel is also artificially added to the
standard NJL model (for the introduction of axial chemical
potential, see Ref. [40]). More importantly, if the Fierz
transformation is not considered, it means that only the
contribution of the leading order term of the large Nc
expansion is considered and the next leading termOð1=NcÞ
is ignored in the mean field approximation. As the authors
of Ref. [41] pointed out, since the Fierz transformation is
not considered, the mean field approximation approach at
this time is theoretically not self-consistent.
In contrast, our self-consistent mean field approximation

approach avoids this arbitrariness and can be handled in a
self-consistent manner for any background field, for exam-
ple, in the case of strong magnetic field. Because there
exists a strong magnetic field on the surface of neutron stars
[42], we must consider the effects of the strong magnetic
field in the investigations of the EOS of the neutron star.
Based on our new Lagranian (4), the two-flavor gap

equation is then given by:

Mi¼miþð12−11αÞg

×
X

f¼u;d

Mf

π2

Z
Λ

0

p2

Epf
½1−npfðT;μrfÞ− n̄pfðT;μrfÞ�dp;

ð5Þ

where i ¼ u or d, mu ¼ md ¼ 5 MeV is the current quark
mass, Epi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

i

p
, Nc ¼ 3, g ¼ G

2−11α=6 can be fixed

by the coupling constant G ¼ 4.93 × 10−6 MeV−2, Λ ¼
653 MeV is the three-momentum cutoff, μr is the effective
chemical potential that satisfies:

μri ¼ μi −
6αg
Ncπ

2

×
X

f¼u;d

Z
Λ

0

p2½npfðT; μrfÞ − n̄pfðT; μrfÞ�dp; ð6Þ

and

npiðT; μriÞ ¼
1

expðEpi−μri
T Þ þ 1

;

n̄piðT; μriÞ ¼
1

expðEpiþμri
T Þ þ 1

: ð7Þ

Then, the number density is given by:

ρi ¼
3

π2

Z
Λ

0

p2½npiðT; μriÞ − n̄piðT; μriÞ�dp: ð8Þ

To get the EOS for the asymmetric matter in quark stars, we
take the chemical equilibrium into account. The chemical
equilibrium and electric neutrality for the two-flavor quark
matter are

�
μd ¼ μu þ μe;
2
3
ρu ¼ 1

3
ρd þ ρe:

ð9Þ

Combining Eqs. (5)–(9), we get the relations between
densities of u,d quarks and the chemical potential of the
equilibrium system. Results with different α are shown in
Fig. 1. It can be seen from Fig. 1 that no matter how much
the α is, the number density of quarks is zero unless the
chemical potential is greater than a value. This is a model-
independent result proposed by Ref. [43]. It is proved,
based on a universal argument, that when the chemical
potential μ is smaller than a value μ0, the quark-number
density vanishes identically. Also, the curves of quark
number densities break off at a critical point μc that
suggests the chiral phase transition point. When α is
0.85, the number density curves become smooth because
the phase transition becomes a crossover. Our value of α
that changes the type of phase transition differs from our
previous work [28] slightly because Fig. 1 describes the
beta-equilibrium matter where the chemical potentials of

FIG. 1. The densities of u,d quarks with α ¼ 0.55, 0.65, 0.75,
0.85, and μB is the baryon chemical potential. When α is 0.85,
the number density curves become smooth because the phase
transition has become a crossover.
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different kinds of quark are not the same. A very precise
value of α should be obtained by calculating an order
parameter such as the chiral susceptibility. But in this work,
this value is not what we are interested in, because the
jumps in the number density become smaller and smaller
and the curves become continuous gradually as our α
increases, and thus the stiffness of our EOS increases with
α, but no remarkable signature of where the transition
becomes a crossover can be identified in the M-R relation.
By definition, the most general pressure formula of

strong interaction matter at finite chemical potential and
zero temperature is [44,45]:

Pðμu; μd;MÞ ¼ Pðμ ¼ 0;MÞ þ
Z

μu

0

ρuðμ0u; 0Þdμ0u

þ
Z

μd

0

ρdðμ0u; μ0dÞdμ0d: ð10Þ

where Pðμ ¼ 0;MÞ denotes the vacuum pressure, which is
a density-independent quantity and M is a solution of the
quark gap equation. Actually, the vacuum pressure can not
be measured. The only one can be measured is the vacuum
pressure difference and a typical example is the Casimir
effect. To do this, we need to choose a reference ground
state. This reference ground state should in principle be a
trivial vacuum state of strong interaction system we are
studying. In the past, the trivial vacuum pressure is often
marked as Pð0;mÞ, here m is the current quark mass. Like
in the bag model, the bag constant B describes the pressure
difference between the trivial vacuum and non-trivial
vacuum (Nambu vacuum, reflecting the spontaneous sym-
metry breaking of the vacuum), which is pointed out by
Ref. [18]. Thus, the bag constant commonly used in the
past is defined as

B ¼ Pð0; 0;m; 0Þ − Pð0; 0;M; 0Þ; ð11Þ

whereM specially denotes the Nambu solution of the quark
gap equation. It should be noted here, except in the chiral
limit, m is not a solution of the quark gap equations. Since
m is not a solution of the quark gap equation, it is not
appropriate to select this state as a reference ground state. In
order to overcome the defect of Eq. (11), the authors of
Ref. [46] suggest that the quasi-Wigner vacuum (the quasi-
Wigner vacuum corresponding to quasi-Winger solution of
the gap equation, details can be found in Refs. [22,46,47])
is regarded as the reference ground state and the bag
constant is redefined as

B ¼ Pð0; 0;MW; 0Þ − Pð0; 0;MN; 0Þ; ð12Þ

where, MW and MN denote the quasi-Wigner and Nambu
solution of the quark gap equation, respectively. Therefore,
the EOS that is actually used in our manuscript is

Pðμu; μd;MÞ ¼ −Bþ
Z

μu

0

ρuðμ0u; 0Þdμ0u

þ
Z

μd

0

ρdðμu; μ0dÞdμ0d: ð13Þ

Here, it should be stressed that the EOS of the strong
interaction matter depends on not only the Nambu solution,
but also the choice of the reference ground state, which is
very important in the study on the structure of the
neutron star.
Since the bag constant reflects the nonperturbative

vacuum nature of QCD, it is difficult to calculate it from
the first principle of QCD. In this case, we often use some
nonperturbative QCD models for related calculations,
such as Dyson–Schwinger equations and NJL model.
According to the new definition Eq. (12), the bag constant
calculated by the Dyson–Schwinger equations approach is
ð171 MeVÞ4 [46]. And in the framework of the NJL model,
different model parameters will give different results, as is
shown clearly in Table. I. The parameters utilized are
calibrated by fitting hadronic experiment and LQCD data at
zero temperature and zero chemical potential, such as the
two-quark condensate, mπ and fπ . The parameter set 2 is
adopted in our work. From Table I, it is easy to find that the
bag constant depends on the model parameters, but it
agrees with the empirical domain [48,49], which ranges
from ð100 MeVÞ4 to ð200 MeVÞ4. Since the bag constant
plays an important role in the study on EOS of neutron star,
and at the same time we cannot calculate it from the first
principle of QCD, in this case we treat the bag constant as a
free parameter within the empirical domain, and see how it
affects the stiffness of EOS.
According to the thermodynamic relationship, the energy

density of strong interaction matter is given by [50,51]:

ϵ ¼ −Pþ
X

i

μiρi: ð14Þ

From Eq. (14), it is easy to find that the energy density ϵ
depends on the pressure. As it is shown in Eq. (13), the
pressure depends on the choice of the reference ground state.
That is to say, whether the minimal energy per baryon is
discussed in the quark degrees of freedom or the hadron
degrees of freedom, a reference ground state must be chosen
in advance. But what needs to be emphasized here is that we
do not know how to do hadronization from the basic degrees
of freedom of QCD, which means that we do not know the

TABLE I. Bag constant with different model parameters.

set Λ [MeV] GΛ2 m [MeV] B [MeV4]

1 664.3 2.06 5.0 ð156Þ4
2 653.0 2.10 5.0 ð158Þ4
3 587.9 2.44 5.6 ð182Þ4
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relationship between the reference ground of two different
degrees of freedom. Therefore, we believe that it is not
appropriate to judge whether the quark phase or the hadron
phase is more stable by using minimal energy per baryon as
a criterion. Therefore, inspired by Ref. [37], in this paper, we
further assume that the two-flavor quark matter is more
stable than the nonstrange hadronic matter. Under this
assumption, we would like to discuss if the current astro-
nomical observations can rule out the possibility of non-
strange quarks.

III. MASS-RADII RELATION OF QUARK STARS

As is pointed out in Ref. [28], the chiral phase transition
becomes a crossover if α is greater than 0.71, and μc ¼
400 MeV and 600 MeV is roughly corresponding to α ¼
0.92 and 1.04. So, we calculate the mass-radii relations
of quark stars with α ¼ 0.55, 0.65, 0.75, 0.85 and 0.9
respectively to show all possible situations. But the cutoff
Λ ¼ 653 MeV we introduced into the NJL model indicates
our model is valid under this energy scale only. So, α
cannot be greater than 0.9 because the central chemical
potential of d quark corresponding to the maximummass of
the neutron star must be smaller than our cutoff. The mass-
radii relation can be obtained by solving the TOVequation:

dPðrÞ
dr

¼ −
ðϵþ PÞðM þ 4πr3PÞ

rðr − 2MÞ ;

dMðrÞ
dr

¼ 4πr2ϵ: ð15Þ

To show the influence of α on the phase transition and
stiffness of the EOS, several results with different values of
α are compared in Fig. 2 while B is fixed. Also, in Fig. 3,
the constituent u quark mass is plotted to roughly indicate
the transition of constituent quark masses.

As α increases, both μc and the stiffness of our EOS
increase. They increase rapidly after α is greater than the
point where the chiral phase transition becomes a crossover.
Just as what we have pointed out, if μc is small, dressed
quarks will lose their dynamical mass, and the quark mass
gradually become bare quark mass at an early stage because
of the chiral restoration. This is in conflict with what we
expected. However, in our modified NJL model, if α is
greater, the point where constituent quarks lose their mass
will be postponed, and the stiffness of our EOS will also
increase. To explore the effects of the negative pressure of
vacuum, mass-radii relations with different values of B are
exhibited in Fig. 4.
From Fig. 4 we can see that the maximum mass of the

quark star does not increase with B monotonically. It
reaches a maximum value at B ¼ ð100 MeVÞ4. Of course,
the corresponding value of B will also change with α.
So, by manipulating the combination of B and α slightly,
we can promote the stiffness of our EOS greatly and

FIG. 2. Mass-radii relations are exhibited with α ¼ 0.55, 0.65,
0.75, 0.85. B ¼ ð100 MeVÞ4. The maximum mass increases with
α. Masses are scaled by the mass of sun: Msol.

MeV

M
eV

µ

FIG. 3. Constituent u quark mass as a function of u quark
chemical potential. α ¼ 0.55, 0.65, 0.75, 0.85.

FIG. 4. Mass-radii relations are exhibited with B¼ð80MeVÞ4,
ð100 MeVÞ4, ð120 MeVÞ4, ð140 MeVÞ4 and α ¼ 0.75. Here the
maximum mass is 1.75 Msol.
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construct a two-solar-mass quark star. This is because the
contribution from the vector term is retained by the Fierz
transformation, which is in accordance with the result
in Ref. [52].
In a recent observation, a super massive neutron star with

about 2.17 times of solar mass at 68.3% credibility is
reported in Ref. [4]. This value is also the upper limit on
neutron star mass given by a study combining electromag-
netic and gravitational wave information on the binary
neutron star merger GW170817 [53]. The maximal
quark star mass computed in our model is greater than
two times of solar mass but smaller than this value. In
Fig. 5, the mass-radius relation is plotted with α ¼ 0.9
and B ¼ ð90 MeVÞ4. Important data are included in
Table II.
In the Table II,Mmax is the maximum quark star mass, the

corresponding radius is RM¼max, and ρmin donates the
minimal baryonic density on the surface of the star. The
finite density at the surface of the quark star is due to the bag
constant we introduce. ρc is the central density correspond-
ing to the maximum mass and ρcutoff is the baryonic density
for which the Fermi momentum of the d quark is equal to
the cutoff. R1.6 and R1.4 are the radii corresponding to the
1.6-solar-mass quark star and 1.4-solar-mass quark star. Our
maximal mass is 2.05 Msol, and the central baryonic density
corresponding to it is 0.802 fm−3 that is slightly smaller than
the baryonic density for which the Fermi momentum of the d
quarks is equal to the cutoff. Besides, when the rotation of
the quark star is taken into consideration, the value of the
maximum mass is roughly 10%–20% higher than the
nonrotating case [54].

IV. SUMMARY AND DISCUSSION

As astronomy observations are accumulating, a reliable
EOS to describe the cold condense matter in compact stars
is desirable to astronomers. In our model, a parameter α
used to reflect the weight of different interaction channels.
This parameter can influence the nature of EOS greatly. In
this paper, different results with different α are compared.
If α is 0.5, our model reduces to the normal mean field
approximation model in Ref. [38]. However in this work
we find that as α increases, the critical chemical potential μc
increases, the chiral phase transition becomes a crossover
and the stiffness of EOS can increase greatly to support
a two-solar-mass pure quark star. This cannot be realized if
α is treated naively as a constant 0.5. So, our conclusions
are: 1. The stiffness of our EOS for quark matter will be
influenced greatly if the critical chemical potential is
increased when a greater α is introduced. 2. The existence
of two-flavor quark stars cannot be ruled out from the
observation of neutron star maximum mass.
Finally some prospects for further studies are given here:

First, it should be pointed out that in our modified NJL
model, the three-momentum cutoff is applied to all the
integrals. So, to get a reliable result, the chemical potential
of quarks cannot be greater than the cutoff. This means the
chemical potential in the center of the quark star cannot be
too high, and because of this we abandon the result with an
α greater than 0.9. But this constraint will disappear if a
better regularization scheme is introduced in our model.
Second, only two-flavor quark stars are discussed in this
paper while strange quark matter EOS can also be obtained
by performing the same routine, which can be compared
with this model. Third, although, in this paper, only the
maximum mass of neutron stars is discussed because it is
the most reliable and accurate data that can be extracted
from astronomy observations. Other properties such as
the tidal deformability from GW170817 can also be utilized
to constrain the parameter space in our model. But it can
also be translated to the constraint on the radius. For
example, the upper limit on the tidal deformability is often
associated with the upper limit on the radius of a 1.4-solar-
mass neutron star. The results from recent three works are
R ≤ 13.76 km, R ≤ 13.6 km, and 8.9 km ≤ R ≤ 13.76 km
respectively [55–57]. And the lower limit on the radius
imposed on a 1.6-solar-mass neutron star is 10.7 km [9].
When α is 0.9 and B ¼ ð90 MeVÞ4, the maximum mass of
our pure quark star is 2.05 Msol, the radius of a 1.4-solar-
mass quark star is 10.8 km, and the radius of a 1.6-solar-
mass quark star is 10.9 km. This result meets all the
observations above quite well, which is shown in Fig. 5.

FIG. 5. A mass-radius relation where the maximum mass can
reach 2.05 Msol. α ¼ 0.9, B ¼ ð90 MeVÞ4. This result is com-
pared with the radius constraint from observations.

TABLE II. properties of our two-solar-mass quark star.

α B Mmax ρmin ρc ρcutoff RM¼max R1.6 R1.4

0.9 ð90 MeVÞ4 2.05 Msol 0.157 fm−3 0.802 fm−3 0.808 fm−3 10.5 km 10.9 km 10.8 km
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To explore the range of our parameters α and B that satisfy
the observations, some results with different parameters are
listed in Table III.
Besides the observed gravitational-wave signal from the

neutron star merger GW170817, further gravitational-wave
data will be available in the near future. In the recent
general-relativistic simulation of merging neutron stars
including quarks at finite temperatures, the authors in

Ref. [58] point out that the postmerger gravitational-wave
spectrum can identify the phase transition from hadronic
matter to quark matter during the process of the neutron star
merger. So, further constraints from both experiments and
observations are necessary.
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