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We investigate the dynamical stability of relativistic, differentially rotating, quasitoroidal models of
neutron stars through hydrodynamical simulations in full general relativity. We find that all quasitoroidal
configurations studied in this work are dynamically unstable against the growth of nonaxisymmetric
modes. Both one-arm and bar mode instabilities grow during their evolution. We find that very high rest
mass configurations collapse to form black holes. Our calculations suggest that configurations whose rest
mass is less than the binary neutron star threshold mass for prompt collapse to black hole transition
dynamically to spheroidal, differentially rotating stars that are dynamically stable, but secularly unstable.
Our study shows that the existence of extreme quasitoroidal neutron star equilibrium solutions does not
imply that long-lived binary neutron star merger remnants can be much more massive than previously
found. Finally, we find models that are initially supra-Kerr (J=M2 > 1) and undergo catastrophic collapse
on a dynamical timescale, in contrast to what was found in earlier works. However, cosmic censorship is
respected in all of our cases. Our work explicitly demonstrates that exceeding the Kerr bound in rotating
neutron star models does not imply dynamical stability.
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I. INTRODUCTION

Following the first ever multimessenger detection with
gravitational waves (GWs) of a binary neutron star (BNS)
[1], there have been a number of studies considering the
stability of the merger remnant to place constraints on
the nuclear equation of state [2–7]. The exact nature of the
merger remnant is unknown, but it is possible that the
remnant was a hypermassive neutron star (HMNS) [8–11].
HMNSs are differentially rotating stars with rest mass
greater than that allowed by uniform rotation [12] (i.e., the
supramassive limit [13]). The solution space of differ-
entially rotating neutron stars has been studied in great
detail for polytropes of varying polytropic indexes [14–16]
(see also [17] for a review), and recently for realistic
nuclear equations of state (EOSs) [18], strange quark star
EOSs [19,20], and hybrid hadron-quark EOSs [21]. The
solution space of differentially rotating neutron stars in
equilibrium includes configurations that can support more
than twice the maximum supportable rest mass by a
nonrotating model with the same EOS, i.e., the Tolman-
Oppenheimer-Volkoff (TOV) limit. There are even models
that can support more than twice the supramassive limit
mass with the same EOS. Such stars are highly unlikely to
form following BNS mergers [18]. These extreme, differ-
entially rotating configurations tend to be quasitoroidal,

i.e., equilibria where the maximum energy (or rest mass)
density of the fluid does not occur at the center of mass of
the configuration but in a ring around it. Quasitoroidal
configurations have so far been found only when differ-
ential rotation is allowed.
Differentially rotating massive neutron stars naturally

arise as remnants of BNS mergers. Recent numerical
simulations have shown that quasitoroidal HMNSs can
form following a BNS merger [22,23]. There are also
simulations that find a double core structure (see, e.g.,
[24,25,10] for a review on different types of BNS merger
remnants). Despite this possibility, most relativistic simu-
lations of isolated stars modeling BNS merger remnants
have focused on spheroidal configurations (see [17] for a
review). Dynamical simulations of HMNSs suggest that
specific features can arise during the evolution, such as the
one-arm instability [26–32], other nonaxisymmetric insta-
bilities [33], the bar mode instability [12,34], and the
low-T=jWj instability [28,30,35–40]. Recent work has also
considered the dynamical stability of differentially rotating,
spheroidal stars based on approximate turning points
[41,42]. Knowing whether such HMNSs are dynamically
stable or unstable can inform us about the most massive
remnants that may form following a BNS merger, how long
such remnants may live for, the properties of the black hole
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(BH) that forms when they collapse, and the subsequent
electromagnetic signatures that accompany the GWs.
Isolated stars can also help probe theoretical aspects of
gravitation such as cosmic censorship and the ergoregion
instability (see, e.g., [43–46]).
In this paper we examine the dynamical stability of

quasitoroidal, differentially rotating neutron stars modeled
as Γ ¼ 2 polytropes. In [15,16] differentially rotating
models that can support up to 4 times the TOV limit rest
mass were found. In fact, there exists a continuum of
quasitoroidal configurations that can support a range of
masses. The reference mass in our study is the BNS
threshold mass for prompt collapse to BH, which is
1.3–1.7 times the TOV limit mass [47–51] depending on
the equation of state (note that the threshold mass refers to
the premerger binary total rest mass). We consider equi-
librium configurations that are above and below this
threshold. Based on the fact that such high-mass equilib-
rium configurations exist, one might assume that long-lived
BNS merger remnants much more massive than the BNS
threshold mass for prompt collapse could possibly arise.
Most of these extremely massive differentially rotating
configurations are highly quasitoroidal, and their dynami-
cal stability has never been tested before. If extreme
quasitoroidal configurations are viable long-lived BNS
merger remnants, they should be stable on a dynamical
timescale.
Here we initiate a study of the dynamical stability of

several quasitoroidal configurations that have rest masses
ranging from astrophysically relevant values (∼1.4 times
the TOV limit rest mass) to extreme, likely astrophysically
irrelevant values (∼4.0 times the TOV limit rest mass). We
perform hydrodynamic simulations in full 3þ 1 general
relativity of these configurations and find that all quasitor-
oidal configurations we investigate are dynamically unsta-
ble against the development of nonaxisymmetric modes.
Both a one-arm and a bar mode grow during the evolution.
We find that BH formation on a dynamical timescale is the
outcome of configurations (quasitoroidal or spheroidal)
with rest mass exceeding the BNS threshold mass for
prompt collapse to BHs. On the other hand, one of our
quasitoroidal configurations with rest mass less than the
BNS threshold mass for prompt collapse transitions
dynamically to a differentially rotating, spheroidal con-
figuration that is dynamically stable, but secularly unstable.
Our work shows that the existence of the massive,

extreme quasitoroidal neutron star solutions that were
recently found in the literature do not imply that dynami-
cally stable BNS merger remnants can exist with masses
much larger than the BNS threshold mass for prompt
collapse to a BH. Finally, several of the models we study
are initially supra-Kerr (J=M2 > 1), yet they undergo
catastrophic collapse on a dynamical timescale. This result
is in contrast to what was found in earlier work [52], where
dynamically unstable, differentially rotating supra-Kerr

models of Γ ¼ 2 neutron stars could not be found, and
supra-Kerr models could only be induced to collapse
through severe pressure depletion. However, cosmic
censorship is respected in all of our cases. Our study
explicitly shows that exceeding the Kerr bound initially
does not imply dynamical stability of a rotating neutron star
configuration.
The rest of the paper is structured as follows. In Sec. II,

we review the properties of the solution space of differ-
entially rotating stars, and detail the properties of the
equilibrium configurations we adopt as initial data for
our simulations. In Sec. III, we briefly describe the set of
initial perturbations we consider, our evolution code, and
the diagnostics we employ in our analysis. In Sec. IV we
describe the results of our simulations. In Sec. V we discuss
our findings in connection with key global properties of the
initial configurations and the final state of our quasitoroidal
configuration that does not collapse to a BH. In Sec. VI we
present out conclusions and discuss possible future avenues
of investigation. Throughout this paper we adopt geom-
etrized units, where c ¼ G ¼ 1 (where c is the speed of
light in vacuum and G the gravitational constant). We
commonly designate the TOV limit rest mass asMTOV

0;max and
the gravitational [or Arnowitt-Deser-Misner mass (ADM)]
mass as M.

II. SOLUTION SPACE OF DIFFERENTIALLY
ROTATING STARS AND INITIAL EQUILIBRIA

The spacetime of stationary, axisymmetric, rotating
neutron star equilibria is described in spherical polar coor-
dinates r and θ by the line element [53] (see also [17] for a
review of other line elements used in the literature),

ds2 ¼ −eγþρdt2 þ e2αðdr2 þ r2dθ2Þ
þ eγ−ρr2 sin2 θðdϕ − ωdtÞ2; ð1Þ

where γðr; θÞ; ρðr; θÞ; αðr; θÞ, and ωðr; θÞ are the metric
potentials determined by the solution of the Einstein
equations coupled to the equation of hydrostationary
equilibrium for perfect fluids. The matter is modeled as
a perfect fluid whose stress-energy tensor is given by

Tab ¼ ρ0huaub þ pgab; ð2Þ

where ua, ρ0, and p are the fluid four velocity, rest
mass density, and pressure, respectively; h is the specific
enthalpy, given by

h ¼ 1þ ϵþ p
ρ0

; ð3Þ

with ϵ the specific internal energy. To close the system of
equations an EOS must be supplied. In this work we focus
on polytropic EOSs which are described by
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p ¼ κρΓ0 ; ð4Þ

where κ is the polytropic constant and Γ is the adiabatic
index. In particular, we consider stars that are described by
Γ ¼ 2. We also adopt polytropic units (equivalent to setting
κ ¼ 1) unless otherwise noted.
The integrability condition on the equation of hydrosta-

tionary equilibrium enforces that the specific angular
momentum (j ¼ utuϕ) be a function of the angular velocity
Ω as measured by an observer at infinity at rest, i.e.,
j ¼ utuϕ ¼ FðΩÞ. By choosing FðΩÞ, we specify a rota-
tion law for the matter. Here we work with the Komatsu-
Eriguchi-Hachisu (KEH) rotation law [54],

FðΩÞ ¼ A2ðΩc − ΩÞ; ð5Þ

where Ωc is the angular velocity at the pole. The parameter
A in Eq. (5) has units of length and parametrizes the length
scale over which the angular velocity changes in the star.
As in previous studies, we work with a rescaled version of
A given by

Â−1 ¼ re
A
; ð6Þ

where re is the equatorial radius of the configuration. The
parameter Â−1 (which we refer to as the degree of differ-
ential rotation) lies in the range 0≤ Â−1<∞, with Â−1 ¼ 0
corresponding to uniform rotation.
Under the assumption of the KEH rotation law, it was

shown in [14–16] that the solution space of differentially
rotating, polytropic neutron stars can generally be divided
into four classes. It was recently also shown that at least
three of these classes also exist for realistic EOSs [18] and
for hybrid EOSs [21]. Each solution type may be charac-
terized by specific ranges of the values in the quadruplet
ðϵmax; rp=re; Â

−1; β̂Þ, where ϵmax is the maximum energy
density in the star, rp=re is the ratio of polar to equatorial
radius (which parametrizes the angular velocity at the
center of the star), and β̂ is the mass-shedding parameter
which measures how close to the Keplerian limit the
configuration is. The parameter β̂ is defined as [14]

β̂ ¼ β

1þ β
; ð7Þ

where

β ¼ −
�
re
rp

�
2 dðz2bÞ
dðϖ2Þ

����
ϖ¼re

; ð8Þ

with ϖ ¼ r sinðθÞ and z ¼ r cosðθÞ the usual cylindrical
coordinates, and z ¼ zb describing the surface of the star. The
mass-shedding parameter takes on several limiting values
depending on the shape of the configuration. Configurations

at the mass-shedding limit have dðz2bÞ=dðϖ2Þjϖ¼re ¼ 0 and

hence β̂ ¼ 0; spherical (nonrotating) models correspond to
rp=re ¼ 1, dðz2bÞ=dðϖ2Þjϖ¼re ¼ −1, and hence β̂ ¼ 1

2
; qua-

sitoroids correspond to rp=re → 0, and β̂ → 1. In this work
we focus on configurations with small but nonzero values of
rp=re, which are the quasitoroids.
In Fig. 1 we show a projection of the solution space for a

Γ ¼ 2 polytrope in the ðβ̂; rp=reÞ plane at a fixed value of
ϵmax. The methods we adopt for building these stars are the
same as those developed in [18]. The different lines in
Fig. 1 correspond to sequences of constant Â−1 [or contours
of the function Â−1ðβ̂; rp=reÞ]. Each curve is labeled by its
corresponding value of Â−1. The solid black line corre-
sponds to the critical degree of differential rotation Â−1

crit
which divides the solution space into four regions, each
corresponding to one of the four solution types. In this
study we will focus on the solution types that we were able
to build with the code of Cook et al. [13,53,55], namely the
type A, B, and C solutions detailed in [14]. Since we were
unable to construct type D models, the Â−1

crit curve divides
the plot in Fig. 1 into only three regions (see Fig. 2 in [14]
for an example of the complete solution space for a Γ ¼ 2
polytrope with ϵmax ¼ 0.12). The type A solutions consist

FIG. 1. Projection of the solution space for a Γ ¼ 2 polytrope in
the ðrp=re; β̂Þ plane for a fixed value of the stellar maximum
energy density ϵmax ¼ 0.12 (in polytropic units) and several
values of the degree of differential rotation Â−1. Each sequence is
labeled by Â−1. The bold black line corresponds to the critical
value of the degree of differential rotation Â−1

crit ¼ 0.75904 [14],
which here divides the solution space into three regions corre-
sponding to type A (bottom right), B (left), and C (top) models.
The color bar corresponds to the rest mass of models along each
sequence of fixed Â−1, normalized by the maximum rest mass for
a nonrotating model (i.e., the TOV limit rest mass) MTOV

0;max.

DYNAMICAL STABILITY OF QUASITOROIDAL DIFFERENTIALLY … PHYS. REV. D 100, 043014 (2019)

043014-3



of spheroidal models and correspond to relatively low
degrees of differential rotation Â−1 < Â−1

crit. Spinning these
stars up, i.e., decreasing rp=re, results in mass shedding.
Type A solutions reside in the lower right part of Fig. 1,
where one end of the sequences is located at β̂ ¼ 0.5
(corresponding to a spherical model) and the other is
located at β̂ ¼ 0 (corresponding to mass shedding).
Type B solutions are related to type A models, in that
they may exist for the same values of Â−1 < Â−1

crit, but they
are quasitoroidal. The type B solutions correspond to the
left side of Fig. 1; these sequences have one end located at
β̂ ¼ 1 (corresponding to a toroidal model) and the other
located at β̂ ¼ 0 (corresponding to mass shedding). We
were unable to construct type B stars pinched at the
equator, which results in type B sequences shown in
Fig. 1 that do not terminate at the mass-shedding limit.
Type B solutions are the most massive among the four
types, as also depicted by the color bar in Fig. 1. The type C
sequences include both spheroidal and quasitoroidal mod-
els. Nevertheless, the most massive models in this class of
stars tend to be extremely close to a toroidal topology. The
fourth solution class, type D, is also quasitoroidal (see [14]

for more details). For each of the solution types considered,
we built the maximum rest mass models found in [14].
We searched the solution space for the maximum rest

mass models by building sequences of solutions at constant
ϵmax as detailed in [18]. We present relevant properties of
these maximum rest mass models in Table I. For the two
quasitoroidal solution types, we also consider lower mass
equilibria (labeled Blow and Clow) to probe the role that the
rest mass plays on stability. As shown in Table I the
maximum mass type B models are the most massive ones
supporting up to 4 times the TOV limit rest mass.
Equatorial contours of the rest mass density of the most
massive A, B, and C type models in Table I are shown in
Fig. 2. Figure 2 shows the quasitoroidal nature of the B and
C models, where an underdense region exists at the
geometric center of the configuration, and the maximum
rest mass density is located in a ring around the center.
These models, along with the Blow and Clow models listed in
Table I, represent our initial equilibria.

III. METHODS

We evolve the initial data presented in Sec. II using the
well-tested Illinois GRMHD code [56,57] which operates

TABLE I. Properties of the equilibrium models considered in this work. For each model we list the model label/model type, the
dimensionless spin parameter J=M2, the central period divided by the ADM mass Tc=M, the rest massM0 in units of MTOV

0;max (the TOV
limit rest mass), the ADM mass M in units of MTOV

max (the TOV limit gravitational mass), the compactness C ¼ M=Rc (with Rc the
circumferential radius at the equator), the ratio of kinetic to gravitational potential energy T=jWj, the maximum energy density ϵmax in
units of ϵTOVmax (the maximum energy density of the TOV limit configuration), the ratio of polar to equatorial radius rp=re, the degree of

differential rotation Â−1, and the mass-shedding parameter β̂.

Model J=M2 Tc=M M0=MTOV
0;max M=MTOV

max C T=jWj ϵmax=ϵTOVmax rp=re Â−1 β̂

A 0.89 27.95 1.63 1.66 0.22 0.22 0.74 0.35 0.7 0.66
B 1.07 24.78 3.79 3.73 0.28 0.33 0.21 0.035 0.4 0.99
C 1.02 21.97 2.57 2.59 0.25 0.29 0.23 0.005 0.8 0.99
Blow 1.56 144.67 1.36 1.47 0.09 0.3 0.05 0.005 0.8 0.99
Clow 0.89 15.38 1.81 1.85 0.23 0.24 0.29 0.01 1.5 0.99

FIG. 2. Equatorial contours (i.e., on the X-Y plane, where we scale the X and Y coordinate by the gravitational mass M) of the rest
mass density ρ0 at t ¼ 0 for the maximum rest mass A, B, and C type models (left, middle, and right, respectively) in Table I. The color
bar shows the value of the rest mass density scaled to the maximum value on a logarithmic scale.
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within the CACTUS infrastructure [58] and uses CARPET

[59,60] for mesh refinement. Illinois GRMHD solves the
Einstein equations within the ADM 3þ 1 framework and
evolves the spacetime using the Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) formulation of the Einstein
equations [61,62]. Our gauge choice employs 1+log time
slicing for the lapse [63] and the “Gamma-freezing”
condition for the shift cast in first order form [64,65]
[see also Eqs. (2)–(4) in [66] ]. We use the MOL thorn to
solve the equations in time by the use of a fourth order
Runge-Kutta scheme with the Courant factor set to 0.5. We
ignore magnetic fields, and the equations of hydrodynamics
are solved in conservation-law form adopting the high-
resolution shock-capturing methods described in [67,68].
To close the evolution system, an EOS needs to be
provided. We adopt a Γ-law EOS P ¼ ðΓ − 1Þρ0ϵ, with
Γ ¼ 2, for the evolution.

A. Grid hierarchy

Our fixed mesh refinement grid hierarchy consists of
nested cubes with seven refinement levels. The finest level
half-side length is set to r1 ≈ 1.25RNS, where RNS is the
neutron star coordinate equatorial radius. Thus, the entire
star is covered by the finest level. The half-side length of
refinement level n is set to rn ¼ 2ðn−1Þr1 (where n ¼ 1
corresponds to the finest level and n ¼ 7 to the coarsest
one). We set the spatial resolution on the finest level to
dx1 ¼ M=20 in order to capture BH properties should a BH
form following collapse of the star, where M is the ADM
mass of the initial configuration. Each subsequent refine-
ment level has half the resolution of the previous.
Therefore, the resolution of refinement level n is given
by dxn ¼ 2ðn−1Þdx1. Cartesian coordinates are adopted, and
equal resolution is chosen for the x, y, and z directions. We
impose reflection symmetry across the equatorial plane
to reduce computational cost, such that our grid extent in
the z direction is 0 ≤ z ≤ 80RNS. We do not impose a
π-rotational symmetry, so that odd-number nonaxisymmet-
ric modes are not artificially suppressed [69]. In the type A
and type B cases we also performed simulations at 1.2
times and 1.5 times the canonical resolution. The code of
Cook et al. uses spherical coordinates, whereas Illinois
GRMHD uses Cartesian coordinates. To avoid coordinate
singularities in transforming the initial data from spherical
to Cartesian coordinates we shift our Cartesian coordinates
in the y direction by a small amount to avoid the origin of
the coordinate system. In the Appendix we investigate the
effects of grid resolution and the y-coordinate shift on our
results.

B. Initial perturbations

Each of the initial configurations presented in Table I is
evolved without and with initial perturbations. We consider
three types of perturbations: (a) we evolve the initial

data after exciting a quasiradial perturbation in the star.
We achieve this by locally depleting the pressure by 0.5%
everywhere in the star at t ¼ 0; we also excite (b) one-arm
(m ¼ 1) and (c) bar mode (m ¼ 2) nonaxisymmetric rest
mass density perturbations of the form [70]

ρ0 → ρ0

�
1þ Bϖ sinðmϕÞ

re

�
; ð9Þ

where re is the stellar coordinate equatorial radius, ϕ is the
azimuthal coordinate, and B is the perturbation amplitude.
We excite only one perturbation per evolution to determine
the role that each mode plays. Given that we have five
configurations in Table I and four types of evolutions, we
have a total of 20 cases in our study. In all of the evolutions
considered, we set B ¼ 0.5%. Note that 0.5% is the
maximum perturbation near the edge of the star. Near
the location of the maximum density this is reduced to
∼0.1%. We have checked that the amplitude of our initial
perturbations is small enough that truncation error domi-
nates the initial constraint violations. Therefore, we do not
resolve the constraints after applying the perturbation.

C. Diagnostics

We use several diagnostics during the evolution to test
for stability against collapse, assess nonaxisymmetric mode
growth, measure black hole properties, and extract GWs.
We calculate the maximum of the rest mass density as a
function of time ρ0;maxðtÞ to determine whether the
configuration is undergoing collapse. The “collapse” of
the lapse function is also used as an indicator for BH
formation. We locate BH apparent horizons (AH) with the
AHFINDERDIRECT thorn [71]. The AHFINDERDIRECT

thorn provides the BH irreducible mass as well as the
equatorial and meridional AH circumferences. The ratio Cr
of the meridional circumference to that of the equator can
be used to provide a good approximation to the BH
dimensionless spin, for which we employ the approximat-
ing formula of [72]

aBH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð2.55Cr − 1.55Þ2

q
: ð10Þ

This formula is derived for aKerr spacetime and is applicable
to the final black hole as the spacetime approaches the Kerr
solution at late times.
We compute the volume-integrated azimuthal density

mode decomposition, given by [22,69,73]

Cm ¼
Z ffiffiffiffiffiffi

−g
p

ρ0u0eimϕd3x; ð11Þ

to test for the growth of nonaxisymmetric modes. Note that
C0 is the total rest mass of the configuration. Note also that
Eq. (11) yields zero for jmj > 0, if the density, velocity, and
metric fields are axisymmetric.
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Equation (11) is useful for a qualitative understanding of
the matter evolution, but does not provide a gauge-invariant
measure of nonaxisymmetric modes. Therefore, we also
extract gravitational radiation to determine the growth of
nonaxisymmetric modes during the evolution. For this,
we compute the Newman-Penrose scalar Ψ4 and decom-
pose it into s ¼ −2 spin-weighted spherical harmonics, to
determine the growth of axisymmetric (m ¼ 0) and non-
axisymmetric (m ≠ 0) GW modes during evolution in a
gauge-invariant way. We denote the coefficients of this
decomposition as Ψl;m

4 and focus on the l ¼ 2, m ¼ 0,
m ¼ 1, and m ¼ 2 modes in this work. We compute jΨ2;m

4 j
in the wave zone. We find that generally Cm and Ψ2;m

4 are
consistent as indicators of nonaxisymmetric mode growth,
i.e., the same nonaxisymmetric modes that are excited in
Cm are also excited in Ψ2;m

4 . This is not unexpected because
the decomposition in both diagnostics carries the eimϕ term.
We show these diagnostics in Sec. IV.
Finally, we also monitor the L2 norm of the Hamiltonian

jjHjj and momentum jjMjj constraints via Eqs. (40) and
(41) in [66], which along with Ψ4 we use to demonstrate
convergence in Appendix.

IV. RESULTS

In this section we present the results from dynamical
spacetime simulations of the models listed in Table I under
no initial perturbation and the three types of initial
perturbations we described in Sec. III B. For each model
we scale the evolution time by the initial period at the center
of the configuration Tc, all rest mass densities by the
maximum at the start of simulation ρ0;maxð0Þ, and all
density mode amplitudes by the amplitude of the dominant
C0 mode. We generally find that the quasitoroidal models
considered here are unstable to nonaxisymmetric mode
growth on dynamical timescales. First, we discuss our

study of the most massive models, and subsequently we
present the results from the lower-mass models.

A. Most massive A, B, C models

Here we report our results for the most massive A, B, and
C models listed in Table I, categorized by the type of
perturbation considered at the start of simulation.

1. Evolution of equilibrium configurations
without perturbation

When evolving the initial equilibria without perturba-
tion, we find that all models except for model A are
unstable to the growth of nonaxisymmetric modes on a
dynamical timescale. We will often refer to evolutions
without initial perturbation as “equilibrium evolutions.”
In the left panel of Fig. 3 we show the maximum rest

mass density ρ0;max as a function of time. We show the
evolution either up to collapse (for models which form
BHs) or until an approximately steady state has been
reached (for noncollapsing models). Figure 3 shows that
the equilibrium evolution of the A model results in a ∼10%
oscillation of the maximum rest mass density about the
value ρ0;max=ρ0;maxð0Þ ≈ 0.87. In this case, we evolved the
A model until t ≈ 10Tc and saw no sign of dynamically
unstable mode growth by the end of simulation. However,
together with the fact that this model is unstable to radial
perturbations (as discussed in the next subsection), the
oscillation of ρ0;max by ∼10% suggests that this model is
only marginally stable. By contrast, in models B and C the
density grows slowly until it reaches a point after which it
increases rapidly and the configurations undergo cata-
strophic collapse.
Although we do not excite any perturbations, seeded

perturbations at the level of truncation error grow such that
all quasitoroidal models exhibit nonaxisymmetric instabil-
ities. This can be seen in the center and right panels of

FIG. 3. Left panel: Maximum rest mass density as a function of time for the A, B, and C models in the case of zero initial perturbations.
The green, blue, and red lines correspond to the A, B, and C models, respectively. Center panel: Evolution of the amplitude jCmj of
nonaxisymmetric density modes for the B model [m ¼ 1ðred lineÞ, m ¼ 2ðblue lineÞ, m ¼ 3ðgreen lineÞ, and m ¼ 4ðyellow lineÞ] in
the case of zero initial perturbations. Right panel: Same as the center panel but for the C model.

ESPINO, PASCHALIDIS, BAUMGARTE, and SHAPIRO PHYS. REV. D 100, 043014 (2019)

043014-6



Fig. 3, where we show the azimuthal density mode
decomposition, with mode amplitudes given by Eq. (11).
We focus on the m ¼ 1; 2; 3, and 4 modes. We find that the
m ¼ 1 and m ¼ 2 modes grow at similar rates (exponen-
tially with time) dominating over the higher modes.
Nevertheless, the m ¼ 2 mode is dominant throughout
most of the evolution for the quasitoroidal models. Model
A does not exhibit any growth of nonaxisymmetric modes
and is not plotted here. We find that the B and C
configurations are especially unstable to nonaxisymmetric
modes corresponding to the bar mode instability, even
though the m ¼ 2 mode was not explicitly excited at the
start of simulation. The evolution of the cases developing
strong m ¼ 2 modes generally proceeds as in the dynami-
cal bar mode instability [12,34,74], but eventually leads to
catastrophic collapse.
In Fig. 4 we show density contours on the equatorial

plane that demonstrate how the dynamics of a strongm ¼ 2
mode proceeds in the C model under equilibrium evolution.
First, two overdense regions develop in the ring of
maximum density of the quasitoroids (left panel of
Fig. 4). Next, as the two overdense regions move apart,
a typical high-density bar develops, with the two overdense
regions forming the “arms” of the bar (center panel of
Fig. 4). As the two overdense arms coalesce near the
geometric center of the configuration, the maximum rest
mass density in the bar continues to rise. For the most
massive models, such as the B and C models, the maximum
density grows rapidly until complete gravitational collapse
ensues and a single BH forms near the center of mass (right
panel of Fig. 4).
The value of ρ0;maxðtÞ also shows features which are

consistent with a dominant m ¼ 2 mode in cases that
develop m ¼ 2 nonaxisymmetries in our study. As shown
in the left panel of Fig. 3, ρ0;max shows a local peak prior to
collapse (the local peak is seen at t ≈ 5.75Tc for the B
model and t ≈ 11Tc for the C model). This local maximum

in time coincides with the saturation of the bar as it reaches
maximum density. After this brief saturation, the two
overdense arms of the bar mode bounce, launching shocks
which lead to a momentary decrease in ρ0;max that explains
the “dip” in the evolution of the maximum rest mass
density. Eventually, the overdense arms coalesce near the
geometric center, leading to a significant rise in ρ0;max, and
ultimately to catastrophic collapse. This “double-peak”
feature is observed in many of our cases with a dominant
m ¼ 2 mode.

2. Pressure depletion

In the left panel of Fig. 5 we show the evolution of the
maximum rest mass density and the density mode decom-
position in the case of pressure depletion for the most
massive models. The evolution of the maximum rest mass
density is comparable to the case of equilibrium evolution
for the quasitoroidal B and C models, and they collapse
practically on the same timescales as in the evolution
without perturbation. This suggests that these stars are not
quasiradially unstable, but are unstable only to the develop-
ment of nonaxisymmetric modes.
The quasiradial (m ¼ 0) pressure depletion evolution

was the only type of evolution that resulted in collapse for
the A model, which indicates that on dynamical timescales
it is unstable to collapse against quasiradial perturbations,
but not against nonaxisymmetric ones. Note that model A
has a rest mass of MA

0 ¼ 1.8MTOV
0;max, and the fact that it

collapses to a BH following a quasiradial perturbation is
coincidentally consistent with the threshold mass of
1.65–1.75MTOV

0;max for prompt collapse in the case of Γ¼2

BNS mergers [47].
Compared to the equilibrium evolutions, in the case of

pressure depletion we observe a stronger m ¼ 1 density
mode developing early in the evolution of the most massive
quasitoroids, with the m ¼ 1 density mode comparable to

FIG. 4. Snapshots of equatorial contours (i.e., on the X-Y plane) of the rest mass density ρ0, scaled to the maximum value at the start of
simulation ρ0;maxð0Þ for the C model under equilibrium evolution. The dashed lines indicate the boundary of the regions within which
the rest mass density satisfies ρ0 ≥ ρ0;maxð0Þ. The left and center panels show the development of the model at t ¼ 8.07Tc and
t ¼ 10.85Tc, respectively. The right panel shows the state of the model in the time near collapse at t ¼ 12.68Tc.
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them ¼ 2mode in the time leading up to collapse or by the
end of simulation. The evolution in the case where an
m ¼ 1 density mode dominates in quasitoroids generally
proceeds as follows: first, a single overdense region
develops somewhere in the ring of maximum rest mass
density in the quasitoroid. Next, this single overdense
region develops a single arm, akin to the one-arm instability
[26,27]. For massive enough configurations, the overdense
region continues to collapse until it forms a BH.
The similarity in amplitude and growth times for the

m¼1 and m ¼ 2 density modes in the cases of equilibrium
andpressure depletion evolutions of thequasitoroidalmodels
suggests that whichever mode is excited first, and with
stronger amplitude, will dominate throughout the evolution.
We test this expectation in the following subsection.

3. Nonaxisymmetric perturbations

Under nonaxisymmetric initial perturbations, the A
model did not collapse and evolved in a fashion similar
to the equilibrium evolution case [see the left panel of
Fig. 6, where we show the value of ρ0;maxðtÞ for the A, B,

and C models under both m ¼ 1 (solid lines) and m ¼ 2
(dash-dotted lines) initial perturbations]. Thus, we focus the
discussion on the quasitoroidal models here.
In the cases discussed thus far, the dominant density

modes during evolution have been the m ¼ 1 and m ¼ 2
modes. To better understand the features of evolution in the
case of strong nonaxisymmetric mode growth, we excite
initial perturbations of the form given in Eq. (9) withm ¼ 1
orm ¼ 2. We find that them ¼ 1 andm ¼ 2 density modes
grow on very similar timescales for both the B and the C
models, with the m ¼ 1 initial perturbation forcing slightly
earlier collapse than the m ¼ 2 initial perturbation (see the
left panel of Fig. 6).
In the center and right panels of Fig. 6 we show the

density mode decomposition for the B (solid lines) and C
(dashed lines) models in the case of m ¼ 1 and m ¼ 2
initial perturbations, respectively. We focus on the evolu-
tion of the two most dominant density modes (m ¼ 1 in red
and m ¼ 2 in blue). Exciting an m ¼ 1 or m ¼ 2 mode at
the start of simulation ensures that the corresponding mode
is dominant throughout the evolution. We observe that in

FIG. 5. Same as Fig. 3 but for the case of pressure depletion.

FIG. 6. Left panel: Maximum rest mass density as a function of time for the A, B, and C models in the case of nonaxisymmetricm ¼ 1
(solid lines) and m ¼ 2 (dash-dotted lines) initial rest mass density perturbations. The green, blue, and red lines correspond to the A, B,
and C models, respectively. Center panel: Evolution of the dominant m ¼ 1 (solid lines) and m ¼ 2 (dashed lines) nonaxisymmetric
density modes for the B (blue lines) and C (red lines) models in the case of anm ¼ 1 perturbation. Right panel: Same as the center panel
but for an m ¼ 2 perturbation.
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the case where anm ¼ 1mode is initially explicitly excited,
the amplitude of the m ¼ 2 density mode becomes com-
parable to that of the m ¼ 1 mode near collapse, but the
m ¼ 1 density mode remains dominant. In the case where
anm ¼ 2mode is initially excited, them ¼ 2 density mode
remains significantly stronger than the m ¼ 1 mode even
until collapse (e.g., compare the center and right panels of
Fig. 6). On the other hand, exciting anm ¼ 1mode initially
tends to lead to faster collapse.
These results show that the one-arm instability is as

important as the bar mode instability in collapsing quasi-
toroidal configurations, and that the nonaxisymmetric
mode, which dominates early in the evolution of an
unstable quasitoroidal configuration, is chiefly responsible
for its collapse.

B. Low mass B and C models

The most massive B and C models considered thus far
have M0;max > 2MTOV

0;max, making them unlikely models of
BNSmerger remnants. For this reason, we also consider the
dynamical stability of models with a rest mass that could
represent the total rest mass of BNSs. In this section we
present our results for the low mass type B and C models
(which we refer to as Blow and Clow) listed in Table I to
study the effect of total mass on the stability of quasitor-
oidal neutron stars.

1. Evolution of equilibrium configurations
without perturbation

Model Blow, which is the lowest rest mass quasitoroidal
model in our study, undergoes nonaxisymmetric instabil-
ities and transitions dynamically from a quasitoroidal shape
to a spheroidal one. This dynamical transition was observed
for all types of evolutions we considered. Here we describe

the basic evolution of the configuration and its unstable
modes, and we discuss the properties of the final state in
Sec. V C.
In the left panel of Fig. 7 we plot ρ0;maxðtÞ for the

equilibrium evolution of model Blow. The maximum rest
mass density peaks at ρ0;max ≈ 2.5ρ0;maxð0Þ and sub-
sequently oscillates around ρ0;max ≈ 1.7ρ0;maxð0Þ as the
configuration evolves toward a steady state. The fact that
the maximum density does not continue to increase
demonstrates that this configuration is dynamically stable
against catastrophic collapse, but it will collapse on secular
timescales due to viscous/magnetic effects that redistribute
angular momentum, because the total rest mass exceeds the
supramassive limit rest mass [75–77]. The presence of the
dip in the maximum density evolution after its first peak is
consistent with the feature discussed in IVA 1, where the
bar mode dominates the evolution. Thus, the maximum
density evolution alone suggests that the equilibrium
evolution of model Blow develops a bar mode early on.
This can be seen in the density mode decomposition, which
is plotted in the center panel of Fig. 7 and shows the m ¼ 2
mode dominance. The plateau, which the m ¼ 2 density
mode exhibits in the time interval ∼6–8Tc, corresponds to
the saturation of the bar mode. The time of onset of the bar
mode saturation coincides with the first peak of the
maximum rest mass density. Subsequently, a single,
approximately spheroidal, overdense region forms, giving
rise to the second peak of the maximum rest mass density
(seen at t ≈ 8Tc in the left panel of Fig. 7). The formation of
the single spheroidal overdense region signals the decay
of the m ¼ 2 mode that starts at t ≈ 8Tc (center panel of
Fig. 7).
Model Clow undergoes catastrophic collapse in the

case of equilibrium evolution, which is indicated by the
rapidly increasing maximum density in the left panel of

FIG. 7. Left panel: Maximum rest mass density as a function of time for the Blow and Clow models in the case of zero initial
perturbations. The orange and magenta lines correspond to the Blow and Clow models, respectively. Center panel: Evolution of
nonaxisymmetric density modes for the Blow model for the [m ¼ 1ðred lineÞ, m ¼ 2ðblue lineÞ, m ¼ 3ðgreen lineÞ, and
m ¼ 4ðyellow lineÞ] modes in the case of zero initial perturbations. Right panel: Same as the center panel but for the Clow model.
Note that model Blow has a central period which in units ofM is almost an order of magnitude longer than that of model Clow. Thus, the
evolution of model Blow is very long. It is the normalization with respect to Tc that makes it appear that this evolution is short.
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Fig. 7. Model Clow is unstable against the development of
nonaxisymmetric modes as shown in the right panel of
Fig. 7, which drive the evolution toward catastrophic
collapse.

2. Pressure depletion

In Fig. 8 we show the evolution of the maximum rest
mass density and the azimuthal density modes for the
pressure depletion perturbation. These are practically the
same as the equilibrium evolution for model Blow and very
similar to the equilibrium evolution for model Clow. Only
the dominant nonaxisymmetric density modes are slightly
different, but qualitatively the evolutions are very similar.
The dynamical transition to a spheroidal model for model
Blow and the collapse for model Clow in this case occur
practically on the same timescale as in the equilibrium
evolution case. This is a clear indication that these
quasitoroidal models are not unstable against quasiradial
perturbations. As in the equilibrium evolution case, non-
axisymmetric modes seeded at the level of truncation error
dominate the evolution.

3. Nonaxisymmetric perturbations

To test whether the initial excitation of anm¼1 orm¼2
mode leads to dominance of the excited nonaxisymmetric
mode, we now consider m ¼ 1 and m ¼ 2 initial pertur-
bations separately. Before discussing the evolution of
azimuthal density modes in each case, we first discuss
the general dynamics and how the evolution proceeds in the
Blow model for nonaxisymmetric initial perturbations. The
Clow model evolves similarly to the Blow model with a
strong one-arm mode developing in the case of an m ¼ 1
initial perturbation, and a strong bar mode developing in the
case of anm ¼ 2 initial perturbation, but ultimately leading
to catastrophic collapse.
In Fig. 9 we show equatorial snapshots of the rest mass

density for the Blow model in the cases ofm ¼ 1 andm ¼ 2
perturbations. In the plots we also indicate with dashed
lines the regions where ρ0 ≥ ρ0;maxð0Þ, which early on

show where in the star the one-arm or bar modes begin
to grow.
In the case of them ¼ 1 initial perturbation, first a single

overdense region develops in the high-density ring around
the center of mass (see the top left panel of Fig. 9). The
growth of them ¼ 1mode occurs on a dynamical timescale
and the overdense region quickly grows (top center panel of
Fig. 9), eventually migrating toward the geometric center of
the original configuration and settling there (top right panel
of Fig. 9).
When an m¼2 perturbation is initially excited, the

m ¼ 2 mode is seen to dominate throughout the evolution.
A bar develops early on, and the two arms of the bar
continue to separate into a dumbbell-like configuration,
with two overdense regions momentarily orbiting around a
third overdense region near the center of mass (see the
bottom left panel of Fig. 9). Subsequently, the bar mode
saturates, after which the two overdense arms coalesce with
the central overdense region to form a single overdense
core (see the bottom center panel of Fig. 9). The configu-
ration eventually settles toward a spheroidal shape (bottom
right panel of Fig. 9).
In Fig. 10, we show the evolution of the maximum

rest mass density and the density mode decomposition for
the Blow and Clow models under initial nonaxisymmetric
rest mass density perturbations. For the Blow model, at late
times ρ0;max exhibits small oscillations around the value
ρ0;max ≈ 1.85ρ0;maxð0Þ for the m ¼ 1 initial perturbation
case, and at ρ0;max ≈ 2ρ0;maxð0Þ in the m ¼ 2 initial per-
turbation case. Note that in the cases of equilibrium
evolution and pressure depletion the quasi–steady state
maximum rest mass density is closer to 1.7ρ0;maxð0Þ. This
result suggests that the remnants may be settling to similar
(though not identical) final configurations. We investigate
this issue further in the next section. The center and right
panels of Fig. 10 show only the dominant m ¼ 1 and
m ¼ 2 density mode amplitudes. The plots demonstrate
clearly that when an m ¼ 1 (m ¼ 2) mode is initially
excited, then the m ¼ 1 (m ¼ 2) density mode dominates
the evolution.

FIG. 8. Same as Fig. 7 but for the case of pressure depletion.
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Model Clow collapses to form a BH earlier in the case of
an m ¼ 1 initial perturbation than for an m ¼ 2 initial
perturbation. This suggests that the one-arm mode may be
growing on a faster timescale than the bar mode. However,
the fact that in the m ¼ 1 initial perturbation the collapse

does not occur much earlier than in the equilibrium or
pressure depletion cases suggests that the mode we excite
seeds the unstable mode eigenfunction, but may not be the
true eigenfunction. Nevertheless, the general result is
consistent with our findings for the high rest mass B

FIG. 9. Snapshots of equatorial contours (i.e., on the X-Y plane) of the rest mass density ρ0, scaled to the maximum value at the start of
simulation ρ0;maxð0Þ for model Blow under nonaxisymmetric initial perturbations. The top (bottom) panels show the evolution under an
initial m ¼ 1 (m ¼ 2) perturbation. The right panels show the final states in both cases. The dashed curves outline the boundary of the
regions within which the rest mass density satisfies ρ0 ≥ ρ0;maxð0Þ.

FIG. 10. Left panel: Maximum rest mass density as a function of time for the Blow and Clow models in the case of nonaxisymmetric
m ¼ 1 (solid lines) andm ¼ 2 (dash-dotted lines) rest mass density initial perturbations. The orange and magenta lines correspond to the
Blow and Clow models, respectively. Center panel: Evolution of the dominant m ¼ 1 (solid lines) and m ¼ 2 (dashed lines)
nonaxisymmetric density modes for the Blow (orange lines) and Clow models (magenta lines) in the case of anm ¼ 1 initial perturbation.
Right panel: Same as the center panel but for an m ¼ 2 initial perturbation.
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and C models (see the left panel of Fig. 6), i.e., the
nonaxisymmetric mode that is excited first dominates the
subsequent evolution.
Regardless of the details, our results demonstrate the

importance of m ¼ 1 modes, as has already been pointed
out in the studies of NS mergers in [69], where a one-arm
instability develops in long-lived remnants. In addition, our
calculations demonstrate the significance of an m ¼ 1
mode in triggering catastrophic collapse. Therefore,
imposing π-symmetry in BNS merger calculations, which
is often employed to save computational resources (e.g.,
[23,78–81]), should be avoided.

C. Gauge-invariant measure of nonaxisymmetric
mode development

As discussed in Sec. III C, the density mode decom-
position using Eq. (11) is a gauge-dependent diagnostic of
the dominant modes that develop during the evolution. To
ensure the features of evolution discussed thus far are not
gauge artifacts, we also study the gravitational wave
signatures using the Newman-Penrose formalism. We focus
on two representative cases that include one massive model
that collapses to a BH (the C model) and our low-mass
model the (Blow) that does not undergo collapse. In
particular, the evolutions we consider here are the C model
under no explicit initial perturbations and Blow under an
m ¼ 1 initial perturbation.
In Fig. 11, we show the real part of the s ¼ −2 spin-

weighted spherical harmonic modes Ψl;m
4 . In general, the

same conclusions reached by studying the density modes
Cm may be reached if we consider Ψ2;m

4 as a measure of
nonaxisymmetric mode growth. We find that quasitoroidal
stars exhibit growth of the m ¼ 1 and m ¼ 2 GW modes,
even in cases where neither of these modes were explicitly

excited. However, the relative amplitude of the GW modes
is not the same as in the density mode decomposition. For
example, even when anm ¼ 1mode is initially excited, the
GW m ¼ 1 mode does not dominate over the m ¼ 2 mode
(as shown in the right panel of Fig. 11). Moreover, in the
case of the Blow model we find that the m ¼ 2 mode
remains dominant until the end of the simulation, but with a
very small amplitude. Nevertheless, in all cases considered,
we observe strong growth of quasiradial and nonaxisym-
metric modes consistent with the results presented in
Secs. IVA and IV B.

V. DISCUSSION

In this section, we further discuss the results of our
simulations and compare them with the results in the
literature on differentially rotating Γ ¼ 2 polytropes. We
focus on the role that different properties may play in the
evolution of our initial data. We also discuss further
the final state that model Blow reaches after it settles,
and the implications of our findings on cosmic censorship
and the fragmentation instability of quasitoroids.

A. Role of T=jWj
Generally we find that our massive quasitoroidal

models with large values of T=jWj collapse on short
timescales due to the growth of nonaxisymmetric modes.
It is possible that for a given degree of differential rotation
there exists a critical value of T=jWjwhich signals the onset
of instability to nonaxisymmetric modes for quasitoroidal
neutron stars described by a Γ ¼ 2 polytropic EOS. In [74],
bounds were placed on the critical value T=jWjcrit which
indicates dynamical instability to the growth of the bar
mode for Γ ¼ 2 quasitoroids when Â−1 ¼ 1 and for masses
1M⊙−2.5M⊙ assuming a polytropic constant κ¼165M2

⊙.

FIG. 11. The real part of the Newman-Penrose scalar s ¼ −2 spin-weighted spherical harmonic modes Ψ2;m
4 (multiplied by the

coordinate radius of the extraction spherical surface r and the ADM massM) as a function of t − r (scaled by the central period Tc) for
two representative evolutions presented in this work. We focus on the contribution from the dominant l ¼ 2, m ¼ 0 (yellow lines),
m ¼ 1 (red lines), and m ¼ 2 (blue lines) modes. The model and type of perturbation are shown at the top of each panel.
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The following fit for T=jWjcrit as a function of the rest mass
was derived for Γ ¼ 2 quasitoroidal models,

T=jWjcritðM0Þ ¼ 0.2636 − 0.0047
M0

M⊙

¼ 0.2636 − 0.0108
M0

MTOV
0;max

ð12Þ

such that all Γ ¼ 2 quasitoroids of rest mass M0 with
T=jWj < T=jWjcrit should be dynamically stable against
the growth of the bar mode instability. We can now test the
applicability of Eq. (12) to our models. We convert from
polytropic units to units of M⊙ by using the value of the
polytropic constant adopted in [74]. The Clow model
considered in this work is the model with the lowest value
of T=jWj which is unstable to the growth of a dynamical
bar mode. Inserting the rest mass MClow

0 ≃ 4.18M⊙ of the
Clow model into Eq. (12), we find a critical value of
T=jWjClow

crit ¼ 0.244, suggesting that all Γ ¼ 2 quasitoroidal
stars of rest mass equal that of the Clow model and with
T=jWj < T=jWjClow

crit should be stable against the growth
of a dynamical bar mode. We find that the Clow model
slightly violates this bound, as it has T=jWj ¼ 0.238 ≈ 0.98
T=jWjClow

crit and is still unstable to the growth of a dynamical
bar mode. However, the violation is not significant, and we
cannot conclude that Eq. (12) is inconsistent with our
findings. Further studies are necessary to probe the appli-
cability of Eq. (12). As discussed in Sec. IV, all quasitor-
oidal models considered in this work were unstable to
nonaxisymmetric mode growth. Considering a similar
analysis to that provided above for the Clow model, we
find that all quasitoroidal models respect the bound on
T=jWjcrit set by Eq. (12). This suggests that the applicabil-
ity of Eq. (12) may be extended to Â−1 ≠ 1 and well outside
the mass range studied in [74].
However, our quasitoroidal models are unstable not only

to the bar mode but also to the one-arm mode. A similar
study to that presented in [74] and a derivation of a formula
similar to Eq. (12) but with a focus on the growth of the
one-arm mode are needed to determine the stability of
quasitoroidal Γ ¼ 2 configurations against the growth of
the m ¼ 1 mode, but is outside of the scope of this work.
We also point out that our model A has T=jWj ∼ 0.3 and
does not develop any nonaxisymmetric modes. Therefore,
our study demonstrates that T=jWj alone does not deter-
mine the type of instability in a differentially rotating
configuration. This is consistent with the existence of the
low-T=jWj instability.

B. Role of the rest mass

In our simulations, the value ofM0 appears to control the
final state of the configuration, i.e., whether the configu-
ration collapses to a black hole on a dynamical time.
Coincidentally, all of our models, except A and Blow, have

rest masses which well exceed the threshold mass for
prompt collapse found in BNS merger simulations of Γ ¼ 2

polytropes [47] (MClow
0 > 1.75MTOV

0; max), and all of these
models undergo collapse to BH on dynamical timescales.
By contrast, the Blow model does not collapse to a BH by
the end of the simulation and shows no signs that collapse
will ensue. This model’s rest mass MBlow

0 ¼ 1.36MTOV
0; max is

lower than the lower bound on the threshold rest mass
1.65MTOV

0;max for prompt collapse to a BH [47].
Although the above discussion suggests that even in

isolated rotating neutron star models, the total rest mass
controls whether there will be a collapse to a BH on
dynamical timescales, we point out that the dimensionless
angular momentum of model Blow is higher than all other
cases and larger than in BNS mergers. This excess angular
momentum may provide additional centrifugal support
against collapse. More models need to be considered for
a complete study, as well as to test whether the threshold
mass for prompt collapse found in BNS mergers also
provides the line of stability against collapse in isolated
neutron stars that may model BNSmerger remnants. This is
related to the study of [82] who derived the threshold mass
for prompt collapse by the use of rotating spheroidal
neutron star models.

C. Final state of the Blow model

Given that model Blow does not collapse to a BH, an
interesting question is whether this model evolves to the
same final, dynamically stable configuration under all
evolutions considered. Moreover, given the presence of
shocks during the evolutions it is also interesting to test
whether significant thermal pressure support exists. In this
section we investigate these questions.
Shocks arise during the evolution, and the amount of

shock heating differs between the one-arm mode and bar
mode evolutions. To test for the impact of shock heating we
exploit the fact that the total fluid pressure p can be
expressed as a sum of the cold pressure pcold and thermal
pressure ptherm,

p ¼ pcold þ ptherm; ð13Þ

where the cold part of the EOS is described by Eq. (4). Our
initial models are cold, i.e., ptherm ¼ 0 at t ¼ 0. As the
evolution proceeds, shock heating can take place and ptherm
grows. The separation in Eq. (13) allows us to determine
the contribution from the thermal pressure in the final
configuration as follows:

ptherm

pcold
¼ p

κρ20
− 1: ð14Þ

If the thermal pressure is a significant component of the
total pressure, it may be that the final configuration is
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possible only because of additional thermal support. This
would imply that if the configuration were allowed to cool,
it might collapse to a BH [24]. In Fig. 12 we show
snapshots of equatorial contours of ptherm=pcold after the
configurations in the different Blow evolutions have settled
down to an approximately steady state at t ¼ 20.13Tc. We
focus on regions where the density is ρ0 ≥ 10−3ρ0;max,
where the bulk of the matter is. We find similar results
under all evolutions, where thermal support near the end of
the simulation is small in the regions near the core. The
thermal pressure can be significant slightly outside the core
and in regions farther out. Therefore, the remnants are
primarily cold, but have experienced different amounts of
shock heating. Cases with a dominant m ¼ 2 mode during
the early stages of the evolution (i.e., the equilibrium
evolution, pressure depletion, and m ¼ 2 initial perturba-
tion) look more similar amongst themselves, and distinct
from the case where an m ¼ 1 initial perturbation is
excited.
Figure 13 shows the time and azimuthally averaged

radial rotation profiles, i.e., angular velocity (Ωz ¼ uϕ=ut)
in the z direction vs distance on the equatorial plane, that
correspond to the final states of model Blow shown in
Fig. 12. Also shown is the initial angular velocity profile.
The plot is only meant to be illustrative, because the angular
velocity we compute is not gauge invariant unlike the initial
angular velocity. We average the rotational profiles over the
azimuthal direction, while accounting for the shift of the
configuration’s center of rest mass from the initial center of
mass, i.e., the coordinate origin. We also average the
rotational profiles over a time window of Δt ≃ Tc. We
find that changing the value of the time window for time
averaging in the range 0.5Tc ≲ Δt≲ 2Tc results in a
change of the central value of Ω of ≲10%, while the
values for r≳M change by ≲1%.
The rotation profiles of the final state of the Blow model

are distinct from each other. All final configurations are
highly differentially rotating. Steep gradients are seen near
the center of the configurations for the equilibrium evolu-
tion and m ¼ 2 perturbation cases, corresponding to high

differential rotation in the innermost region near the core.
The central regions in the cases of pressure depletion and
for an m ¼ 1 perturbation show profiles with relatively
lower amounts of differential rotation, and the angular
velocity instead increases away from the core. The central
region is surrounded by a distribution of matter with
decreasing angular velocity for r≳ 5M in all cases.
Taking the final angular velocity profiles at face value, it
does not appear possible to approximate the angular
velocity of these configurations by the one parameter
KEH rotation law in Eq. (5), due to their nonmonotonic
nature. As such, we do not try to approximate the final
states of the Blow evolutions with stars described by the
KEH law. We conclude that the final states reached in

FIG. 12. Contour of the ratio of thermal pressure to cold pressure on the equatorial plane (i.e., on the X-Y plane) corresponding to the
final state of the Blow model under all initial perturbations. Only densities with ρ0 ≥ 10−3ρ0;max are shown, where ρ0;max corresponds to
the maximum rest mass density at the time of the snapshots. All snapshots correspond to t ¼ 20.13Tc; the second from the right and
rightmost snapshots corresponds to the top and bottom right panels of Fig. 9 for the m ¼ 1 and m ¼ 2 perturbations, respectively.

FIG. 13. Azimuthally and time-averaged angular velocity
(normalized by the initial maximum angular velocity) vs distance
on the equatorial plane in the case of equilibrium evolution (green
line), pressure depletion (yellow line), m ¼ 1 initial perturbation
(red line), and m ¼ 2 initial perturbation (blue line) near the end
of the simulations. The dashed black line corresponds to the
initial angular velocity profile.
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different evolutions of the Blow model are close to each
other but not identical, as was already suggested by the
different values of maximum rest mass density to which
they settle.

D. Fragmentation instability and cosmic censorship

Our initial data range over values of the dimensionless
spin parameter J=M2 which are both less than and greater
than the Kerr bound. If cosmic censorship holds [83],
models with J=M2 > 1will not be able to form a BH unless
they shed or redistribute angular momentum through mass
ejection, gravitational waves, or other mechanisms [52] or
possibly fragment [70].
In all collapsing cases, we were able to locate only a

single AH, and the evolution of the lapse function is
consistent with a single BH forming. Therefore, we do not
find that our stars could collapse to form binary black holes
as in [84], even in the most massive cases.
In [52], dynamically unstable, differentially rotating,

supra-Kerr models of Γ ¼ 2 neutron stars could not be
found and supra-Kerr models could only be induced to
collapse through severe pressure depletion. In this work we
found that dynamically unstable supra-Kerr models do exist
for Γ ¼ 2 polytropes (for instance, both the B and C models
collapsed to a BH on dynamical timescales even in the case
of equilibrium evolution). None of the dynamically unsta-
ble supra-Kerr models were found to produce naked
singularities. In all cases where the resulting BHs were
evolved long enough to settle into approximately steady
states, we find that they are surrounded by disks with rest
masses as large as 18% the rest mass of the initial
configuration. The BHs that form in all cases that undergo
catastrophic collapse (initially either sub- or supra-Kerr)
have dimensionless spin parameter a ≃ 0.85, and hence are
not close to unity. We have checked that GWs carry away
Oð1%Þ of the initial angular momentum, and that total
angular momentum is conserved to within 1%. The above
imply that the remnant disks carry a significant amount
of the initial angular momentum. These simulations pro-
vide yet another example in which cosmic censorship is
respected.

VI. CONCLUSIONS

In this work we performed dynamical simulations in full
general relativity to investigate the stability of differentially
rotating, high mass spheroidal, and quasitoroidal Γ ¼ 2
polytropic models of neutron stars. Compared to previous
works studying the stability of differentially rotating
hypermassive neutron stars, our work probes a part of
the parameter space that has not been probed before,
namely the part corresponding to highly quasitoroidal,
and very massive stars (as massive as ∼4 times the TOV
limit mass). Recent work, which discovered these extreme
configurations, suggested that massive quasitoroidal

configurations could have important consequences for
neutron star mergers or core collapse supernovae.
Indeed, the existence of such massive equilibria might
suggest that much more massive remnants than previously
found could exist in these astrophysical scenarios. But, for
this to be the case, such extreme quasitoroidal configura-
tions would have to be dynamically stable. Thus, here we
initiated a study of the dynamical stability of these extreme
equilibria.
Four of the five initial equilibria we investigated are

quasitoroidal: models B and C, which are the most massive,
and models Blow and Clow, with masses closer to remnants
that could form following a BNS merger. The fifth initial
configuration we considered is the most massive (type A)
spheroidal star, also with an astrophysically relevant rest
mass. Apart from model Blow, we found that all models
underwent catastrophic collapse to single BHs under
various types of initial perturbations or no perturbations
at all. The most massive spheroidal model was unstable
only against a quasiradial perturbation. By contrast, all
quasitoroidal configurations were unstable to the develop-
ment of nonaxisymmetric instabilities. We found that the
dominant nonaxisymmetric modes are either the m ¼ 1 or
the m ¼ 2 modes, which grow on very similar timescales.
Our simulations indicate that the first nonaxisymmetric
mode to be seeded early on in the evolution of a
quasitoroidal star is the mode that dominates the evolution.
Thus, when the m ¼ 1 mode is excited, a one-arm
instability takes over; whereas when the m ¼ 2 mode is
excited, a bar mode instability dominates. We find that in
some cases the one-arm mode may dominate over the bar
mode, when no explicit perturbations are seeded initially,
but perturbations are always excited at the level of
truncation error in our simulations because our grid
coordinates are slightly shifted to avoid the origin. Our
findings further demonstrate the importance of the m ¼ 1
mode for the stability of differentially rotating neutron stars
that was recently pointed out in [22,69,73].
We considered the role that the ratio of rotational kinetic

energy to gravitational binding energy T=jWj played in the
stability of these equilibria. We find that the prediction
of [74] (which applies to a particular degree of differential
rotation and a certain range of masses) for the critical value
T=jWjcrit marking the onset of the dynamical bar mode
instability is largely consistent with the models studied
here. Our model Clow, with the lowest value of T=jWj,
slightly violates the prediction but we cannot conclude that
it is inconsistent with it. However, we study models with
T=jWj > T=jWjcrit that do not undergo the bar mode
instability, indicating that there are other important param-
eters at play for a configuration to be unstable to the bar
mode instability. We also considered the role of the rest
mass in determining the final state of quasitoroidal con-
figurations. Our study suggests that the total rest mass
appears to determine primarily whether collapse to BH will
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ensue. However, more detailed studies are necessary to
solidify these conclusions.
Our lowest-mass quasitoroidal model (Blow) underwent a

transition to a spheroidal solution either through a bar mode
or a one-armmode instability, depending on themode that is
excited first. However, we did not excite higher nonaxisym-
metric modes, and it is conceivable that all quasitoroidal
models we considered are unstable against m > 2 modes,
too [85]. We find that the dynamically found, highly
differentially rotating, quasistationary, spheroidal solutions
resulting from the evolution of model Blow are similar to but
distinct from each other. These final configurations have a
small thermal pressure component at their cores, but thermal
pressure is non-negligible far from the core. We also found
that their angular velocity profiles do not appear to be
reasonably approximated by theKEH rotation law.All of the
final states of the Blow model are dynamically stable, but
secularly unstable due to dissipative effects.
We investigated the properties of the BHs formed in the

collapsing models, and we found that all resulting BHs
have high dimensionless spin (about 0.85) by the end of
simulation and cosmic censorship is always respected even
when the initial solutions exceed the Kerr limit. We did not
find evidence of the formation of multiple BHs. Our study
explicitly shows that exceeding the Kerr bound initially
does not imply the dynamical stability of a rotating stellar
configuration.
Our work shows that the existence of extreme quasitor-

oidal neutron star equilibrium solutions, which support a
mass well exceeding the BNS threshold mass for prompt
collapse to a BH, does not imply that BNSmerger remnants
can be very massive, too. Moreover, highly quasitoroidal
models of neutron stars appear to be dynamically unstable
against the development of nonaxisymmetric instabilities,
andwill either collapse to aBHor transition to a dynamically
stable, spheroidal, differentially rotating configuration.
A few caveats for the present work are in order. First, we

did not scan the entire solution space of differentially
rotating quasitoroidal solutions, nor did we build our initial
models to correspond to a particular sequence (i.e., constant
rest mass or constant angular momentum sequences). The
rationale in this work was to probe the most massive,
differentially rotating configurations recently found in the
literature and to include a few lower mass models of the
quasitoroidal type to test if configurations more massive
than what is achievable in BNSmergers can be dynamically
stable. More realistic descriptions of the matter may play
an important role in the evolution of quasitoroidal models,
but we do not expect it to change our basic conclusion
that massive, quasitoroidal models of neutron stars built
with the KEH differential rotation law are generically
dynamically unstable. In particular, analogous models to
those studied here described by the KEH rotation law
have been shown to exist for realistic, hybrid hadron-quark,
and strange quark matter equations of state [18,19,21].

The KEH law may not suitably describe the remnants of
BNS mergers [69,86,87]. More realistic rotation laws [88]
could possibly lead to different stability properties of
quasitoroidal stars. Finally, the effects of magnetic fields
could significantly affect the evolution of quasitoroids.
Magnetic braking and turbulent magnetic viscosity may
act to remove differential rotation on short timescales
[75–77,89], leading to faster collapse in the types of stars
studied here. We leave a more systematic investigation of
all these topics for future work.
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APPENDIX: RESOLUTION STUDY
AND GRID EFFECTS

In this Appendix we discuss the results of our resolution
study for a subset of the models presented in Table I. We
also discuss the effects of shifting the computational grid to
avoid the origin of the coordinate system.
For model A in the case of pressure depletion and

model B under both m ¼ 1 and m ¼ 2 perturbations we
performed runs at 1.2 and 1.5 times the resolution of the
canonical resolution discussed in Sec. III A. We find that
our results are qualitatively invariant with resolution, and
that they exhibit approximate second order convergence,
which is the order of accuracy of our hydrodynamic
numerical scheme. More specifically, the dominant unsta-
ble modes are invariant with resolution, and all collapsing
models collapse to BHs with properties that are consistent
with the canonical simulations discussed in Sec. V.
We demonstrate convergence using the evolution of

model B under an m ¼ 2 perturbation. In the left panel
of Fig. 14 we show the difference of jΨ2;2

4 j between the
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medium and canonical resolutions, between the high and
medium resolutions, and between the high and canonical
resolutions. The curves have been scaled assuming second
order convergence, and the overlap between them indicates
approximate second order convergence.
In the center and right panels of Fig. 14, we show the L2

norm of the Hamiltonian and momentum constraints,
respectively, times the squared ADM mass M2 for the
canonical, medium, and high resolutions. As is clear the
Hamiltonian and momentum constraints are converging to
0 with increased resolution, and the trend is consistent with
approximate second order convergence.
In order to avoid coordinate singularities associated with

transforming the initial data from spherical polar coordinates
to Cartesian, we shift our y coordinates by a small amount to
avoid the origin of the coordinate system. To test whether our
results are affected by this choice of coordinate grids,
we considered a sequence of simulations with decreasing
coordinate shift δy ∈ ½0.01; 0.005; 0.001; 0.0001�. We label
each of these shifts as δyhigh ¼ 0.01, δymed ¼ 0.005,
δystand ¼ 0.001, and δylow ¼ 0.0001 (note that our standard
runs employ a grid shift of δystand). In Fig. 15 we show the
evolution of the dominant nonaxisymmetric modes for this
sequence of simulations. It is clear that the results are
practically the same for all coordinate shifts.
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