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Gravitational wave (GW) measurements will provide insight into the population of coalescing compact
binaries throughout the universe. We describe and demonstrate a flexible parametric method to infer the
event rate as a function of compact binary parameters, accounting for Poisson error and selection biases.
Using synthetic data based on projections for LIGO and Virgo’s third observing run (O3), we discuss how
well GW measurements could constrain the mass and spin distribution of coalescing neutron stars and
black holes (BHs) in the near future, within the context of several phenomenological models described in
this work. We demonstrate that only a few tens of events can enable astrophysically significant constraints
on the spin magnitude and orientation distribution of BHs in merging binaries. We discuss how
astrophysical priors or other measurements can inform the interpretation of future measurements. Using
publicly available results, we estimate the event rate versus mass for binary black holes (BBHs). To connect
to previously published work, we provide estimates including reported O2 BBH candidates, making several
unwarranted but simplifying assumptions for the sensitivity of the network and completeness of the
reported set of events. Consistent with prior work, we find BHs in binaries likely have low natal spin.
With available results and a population favoring low spin, we cannot presently constrain the typical
misalignments of the binary black hole population. All of the tools described in this work are publicly
available and ready-to-use to interpret real or synthetic LIGO data, and to synthesize projected data from
future observing runs.1
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I. INTRODUCTION

The Advanced Laser Interferometer Gravitational Wave
Observatory (LIGO) [1] and Virgo [2,3] detectors have and
will continue to discover gravitational waves (GW) from
coalescing binary black holes (BBHs) and neutron stars.
Several tens of binary black holes and potentially neutron
stars are expected to be seen in O3, LIGO’s next observing
run, alone; and several hundreds more detections are expec-
ted over the next five years [4,5]. Already, the properties of
the sources responsible—the inferred event rates, masses,
and spins—have confronted other observations of black
holes’ masses and spins [5], challenged previous forma-
tion scenarios [5,6], and inspired new models [7–10] and
insights [11,12] into the evolution of massive stars and the
observationally accessible gravitational waves they emit
[13,14]. Over the next several years, our understanding of
the lives and deaths of massive stars over cosmic time will
be transformed by the identification and interpretation of
the population(s) responsible for coalescing binaries

[6,15,16], because measurements will enable robust tests
to distinguish between formation scenarios [17] with
present [18] and future instruments [19,20].
During the first few years of discovery, substantial

theoretical modeling challenges and the rapid pace of
events suggest that GW observations could soon outpace
theory. In this work, we introduce a flexible, concrete,
and production-ready approach to infer a compact binary
merger rate and compact binary distribution, in the context
of an (arbitrary) parametrized phenomenological model.
We extend or employ previously proposed models [21,22].
We are motivated by how constraints on these phenom-
enological models enable us to address broad astrophysical
questions—the mass and spin distribution of neutron stars
and black holes, as imparted at their birth; the dominant
formation mechanism for compact binaries, such as the
role of dynamical versus isolated formation channels for
binary black holes. To that end, we provide concrete
demonstrations of how a few GW measurements will
provide insights that enable sharp discrimination between
proposed astrophysical alternatives, or measurements of
their parameters. We use simple phenomenological argu-
ments and calculations to characterize the information that
these first few hundred observations should provide.
Conversely, we provide simple approaches to extend our
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phenomenological approach in sophistication and com-
plexity as several thousand compact binarymergers provide
sharp constraints on their underlying properties. This
approach complements inferences that work within a
concrete model family as explored in other proof-of-
concept investigations (see, e.g., [16,17,23–28] and refer-
ences therein).
GW measurements probe only a selection-biased part

of the compact binary distribution. Previously reported
estimates of the overall compact binary event rate rely on
extrapolation away from the observed population, using
some fixed model for the compact binary mass distribution
[5]. In fact, the compact binarymass distribution and inferred
event rate are strongly coupled. This paper provides the first
self-consistent approach to infer both the compact binary
event rate and parameter distribution; then it describes and
explains the expected correlation in an accessible way.
Several recent studies have explored how well GW

measurements can constrain the mass and spin distribution
of binary black holes [5,21,23,29–38]. Our approach is
novel insofar as it reconstructs both the strongly correlated
event rate and the parameter distribution, making our
method a robust tool to assess astrophysical formation
scenarios. In our modeling, we focus on measuring the
black hole (BH) spin magnitude and misalignment distri-
bution, as a method to probe the formation scenarios for
binary BHs. As first described in [17], GW provide a
unique opportunity to distinguish between isolated and
dynamic formation mechanisms: measurements of the spin
properties of the BHs [6,18,32,36,39,40]. The presence of a
component of the BH spins in the plane of the orbit leads to
precession of that plane. If suitably massive and signifi-
cantly spinning, such binaries will strongly precess within
the LIGO sensitive band. If BBHs are the end points of
isolated binary star systems, they would be expected to
contain BHs with spins preferentially aligned with the
orbital angular momentum [40,41], and therefore rarely be
strongly precessing. If, however, BBHs predominantly
form as a result of gravitational interactions inside dense
populations of stellar systems, the relative orientations of
the BH spins with their orbits will be random, and some
gravitational wave signals may be very strongly precessing.
At this early stage, observations cannot firmly distinguish
between these two scenarios, or more broadly other
possible BBH formation mechanisms [6]. These include
the evolution of isolated pairs of stars [7,8,25,42–44],
dynamic binary formation in dense clusters [9], and pairs
of primordial BHs [10]; see, e.g., [6] and references therein.
Loosely speaking, however, the isolated evolution and
globular cluster formation scenarios are the most well-
developed and verifiable using independent observational
constraints. More broadly, precise measurements of their
properties will provide unique clues into how BHs and
massive stars evolve [18–20,33,36,39,45].
This paper is organized as follows. In Sec. II we des-

cribe our techniques to infer compact binary populations,

building upon inferences about parameters of individual
events. Unlike prior work, we simultaneously reconstruct
the event rate, mass distribution, and spin (vector) distri-
bution. In Sec. III, we demonstrate our population inference
strategy with two examples. In the first, we perform a full
end-to-end analysis of synthetic GW data generated from a
synthetic population of astrophysically distributed sources.
In the second, using a tool to mimic how well we could
constrain parameters of a candidate GW signal, we perform
a large-scale investigation into how well GW measure-
ments could constrain the mass and spin distribution of
binary black holes. We find that the mass and spin
distribution can be tightly constrained with only a few
tens of events. By virtue of explicitly exploiting only some
of the available information, our estimates are necessarily
conservative. In Sec. IV, we apply our method to the
currently reported binary black hole population. For sim-
plicity, assuming the reported events to date represent a fair
sample of the results of LIGO’s first two observing runs
(O1 and O2), we corroborate previous results, finding black
hole spins are likely small and that the black hole mass
spectrummay have an upper bound. Due to small BH spins,
except for GW151226, we can extract no information about
typical BBH spin-orbit misalignments. We emphasize our
demonstration uses a nonfinal sample for LIGO’s O2
survey: depending on that survey’s results, applying our
methods to final O2 results could produce substantially
different astrophysical conclusions. In Sec. V we briefly
discuss the accuracy to which population parameters can be
determined, and the surprisingly significant role of wave-
form systematics in the near future. After summarizing our
conclusions in Sec. VI, we supply three Appendixes.
In Appendix A, we describe a robust, extensible procedure
for generating synthetic posterior distributions for pro-
posed GW events. This open-source procedure could be
widely used to assess the viability of GW measurements
to distinguish between proposed astrophysical channels.
A subsequent short Appendix B describes how to generate
synthetic populations of selection-biased GW sources using
this procedure. Next, in Appendix C, following on and
extending previous work, we use toy models for both the
measurement process and source population to illustrate
how well GWobservations will constrain the mass and spin
distribution of compact binaries, likely providing robust
insights into compact object formation (e.g., BH natal spins
and maximum masses) and binary formation mechanisms
(e.g., dynamical over isolated).

II. METHOD

A. Characterizing and inferring parameters
of individual binary black holes

A coalescing compact binary in a quasicircular orbit can
be completely characterized by its intrinsic parameters,
namely its individual masses mi and spins Si, and its seven
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extrinsic parameters: right ascension, declination, luminos-
ity distance, coalescence time, and three Euler angles
characterizing its orientation (e.g., inclination, orbital
phase, and polarization). In this work, we will also use
the total mass M ¼ m1 þm2 and mass ratio q defined in
the following way:

q ¼ m2=m1; where m1 ≥ m2: ð1Þ
We will also refer to two other commonly used
mass parametrizations: the chirp mass Mc ¼ ðm1m2Þ3=5=
ðm1 þm2Þ1=5 and the symmetric mass ratio η ¼ m1m2=
ðm1 þm2Þ2. With regard to spin, we define an effective
spin [46–48], which is a combination of the spin compo-
nents along the orbital angular momentum direction L̂, in
the following way:

χeff ¼ ðS1=m1 þ S2=m2Þ · L̂=M; ð2Þ
where S1 and S2 are the spins on the individual BH. Wewill
also characterize BH spins using the dimensionless spin
variables

χ i ¼ Si=m2
i : ð3Þ

We will express these dimensionless spins in terms of
Cartesian components χi;x; χi;y; χi;z, expressed relative to a
frame with ẑ ¼ L̂ and (for simplicity) at the orbital
frequency corresponding to the earliest time of astrophysi-
cal interest (e.g., an orbital frequency of ≃10 Hz).
When necessary, compact binary parameters are inferred

through the use of Bayesian analysis via Rapid parameter
Inference on gravitational wave sources via Iterative Fitting
(RIFT) [49], which reproduces the results of standard
Monte Carlo techniques described in [50,51] and references
therein. For any event, fully characterized by parameters x,
we can compute the (Gaussian) likelihood function pðdjxÞ
for detector network data d containing a signal by using
waveform models and an estimate of the (approximately
Gaussian) detector noise on short timescales (see, e.g., [50–
52] and references therein). In this expression x is short-
hand for the set of 15 parameters needed to fully specify a
quasicircular BBH. The posterior probability distribution is
therefore pðxjdÞ ∝ pðdjxÞpðxÞ, where pðxÞ is the prior
probability of finding a merger with different masses, spins,
and orientations somewhere in the universe. These param-
eters x can and are often described with alternate coordinate
systems. We sometimes refer to the source luminosity
distance dL or equivalently its source redshift z, and to the
detector-frame or redshifted masses mi;z ¼ mið1þ zÞ. (To
distinguish from the detector-frame masses, we will some-
times refer to mi as the source-frame binary masses.)
LIGO-Virgo analyses have adopted a fiducial prior
prefðxÞ that is uniform in orientation, in luminosity distance
cubed, in redshifted mass, in spin direction (on the sphere),
and, importantly for us, in spin magnitude [50,51]. Using

standard Bayesian tools [50,51], one can produce a
sequence of independent, identically distributed samples
xn;s (s ¼ 1; 2;…; S) from the posterior distribution pðxjdÞ
for each event n; that is, each xn;s is drawn from a
distribution proportional to pðdnjxnÞprefðxnÞ. Typical cal-
culations of this type provide ≲104 samples [50,51] from
which the posterior probability distribution is inferred.
For other examples involving purely synthetic observing

scenarios, we perform this procedure with a familiar Fisher
matrix approximation for the form of pðdjxÞ as a function
of x [53–55]; see Appendix A for details.

B. Population inference

We use Bayesian inference to constrain the mass and
spin distributions of the astrophysical population of BBHs.
To do this, we assume that the distribution is one of a family
of distributions, parametrized by Λ and scaled by some
overall rateR ¼ dN=ðdtdVcÞ, which is constant in comov-
ing volume Vc. Each BBH in the population has properties
denoted by λ≡ ðm1; m2; χ 1; χ 2Þ.
Ultimately we are interested in determining the like-

lihood of the astrophysical BBH population having a given
merger rate R and obeying a given parametrization Λ,
given the data for N detections, D ¼ ðd1;…; dNÞ. This
likelihood, LðR;ΛÞ≡ pðDjR;ΛÞ, is that of an inhomo-
geneous Poisson process

LðR;ΛÞ ∝ e−μðR;ΛÞ YN
n¼1

Z
dλlnðλÞRpðλjΛÞ; ð4Þ

where μðR;ΛÞ is the expected number of detections under
a given population parametrization Λ with overall rate R
and where lnðλÞ ¼ pðdnjλÞ is the likelihood of data dn
given binary parameters λ. A derivation for μ is given in
Sec. II C.
Using Bayes’ theorem, pðR;ΛjDÞ ∝ pðR;ΛÞLðR;ΛÞ,

one may obtain a posterior distribution on R and Λ, after
assuming some prior pðR;ΛÞ. To avoid computing the
normalization constant, we instead draw samples from the
posterior distribution via Goodman and Weare’s affine
invariant Markov chain Monte Carlo (MCMC) ensemble
sampler [56], as implemented in the PYTHON package
EMCEE [57].

C. Estimate for VT

Current LIGO-Virgo search sensitivity is well approxi-
mated by a familiar approximation: a source will typically
be detected if the estimated signal to noise (SNR) of the
second-most-sensitive detector is greater than 8; see, e.g.,
[58] and references therein. Using this approximation, one
can directly evaluate the characteristic volume within
which a source will be detected [59]; for nonspinning
BH binaries, this estimate is in reasonable agreement with
detailed calculations of search sensitivity [5]. In this work,
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we therefore adopt the same approximation. Specifically,
we estimate the orientation-averaged sensitive 3-volume V
to which a search is sensitive by the integral [6,60]

VðλÞ ¼
Z

Pð< DðzÞ=DhðλÞÞ
dVc

dz
dz

1þ z
; ð5Þ

where DðzÞ is the luminosity distance for redshift z;
Dhðm1ð1þ zÞ; m2ð1þ zÞÞ is the horizon distance to which
the source can be seen; Vc is the comoving volume; z is the
redshift of the merger event; and the cumulative distribution
Pð>wÞ ¼ R

w>wðΩ;ι;ψÞ dΩdψd cos ι is a cumulative distribu-
tion for w ¼ 8=ρ where ρ is the signal to noise ratio
[59–61]. Using this definition for V, we expect that for a
uniform comoving merger rate R (e.g., in units of
Gpc−3 yr−1), and after observing at this sensitivity for a
time T, the average number of detections will be

μðR;ΛÞ ¼
Z

ðVTÞðλÞRpðλjΛÞdλ; ð6Þ

where pðλjΛÞ is the probability density function for
a random binary in the Universe to have intrinsic param-
eters λ. In this expression, Λ denotes the parameters that
characterize the distribution from which all coalescing
binaries are drawn. To calculate the horizon distance Dh
and hence V for each combination of candidate binary
parameters, we use the IMRPHENOMD gravitational wave-
form approximation [62,63].
The procedure described above allows us to estimate V

for any nonprecessing binary. Figure 1 shows this estimate
as a function of the component masses, based on a single
LIGO detector operating at O1 sensitivity. Motivated by
LIGO observations to date, however, we assume black
holes will not be rapidly spinning. In these circumstances,
spin has at best a modest impact on the sensitive volume;

further complications due to precession would be expected
to be smaller still [64,65].
Though we pursue a semianalytic estimate for VT and

hence the expected number of GW-detected events, detailed
analysis of gravitational wave searches in real data with
synthetic sources can evaluate μ and hence the search
sensitivity directly [4,5,66,67]. Such an approach will be
particularly necessary when search selection biases (e.g.,
due to detector noise non-Gaussianity) cause the search
sensitivity threshold to deviate away from the simple SNR
threshold described here.

D. Examples of phenomenological population models

Motivated by the qualitative features of predictions
produced by detailed binary formation calculations, several
groups have proposed purely or weakly phenomenological
models for the binary mass distribution [5,21,21,22,68].
Following [5,21], we adopt a pure truncated power law for
the relative intrinsic probability pðm1; m2Þ for the source-
frame masses inm1 andm2. Departing from previous work,
we assume the probability density is nonzero only in
a region mmin ≤ m2 ≤ m1 ≤ mmax, and m1 þm2 ≤ Mmax.
Unless otherwise noted, we assume that Mmax is a pro-
perty of the detector, not astrophysics, and following the
conservative scenario described in [21] fix it at 200 M⊙.
With these assumptions, our mass distribution model has
parameters αm, km, mmin, mmax and a functional form

pðm1; m2Þ ¼
ðm2=m1Þkmm−αm

1

ðm1 −mminÞ
× Cðαm; km;mmin; mmax;MmaxÞ ð7Þ

inside our mass limits and zero elsewhere, representing
a truncated power law in m1 with index −αm and a
simple power-law conditional distribution pðm2jm1Þ in

FIG. 1. Estimated sensitive comoving volume (V) versus mass and spin. Left: Sensitive comoving volume V at O1 sensitivity for
nonspinning BBHs, in cubic giga-parsecs. Right: Sensitive comoving volume for equal-mass, equal-spin, nonprecessing BBHs, relative
to the zero-spin case. Note that V is strictly increased (decreased) if χi;z > 0 (< 0), with higher mass making the effect more pronounced.
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secondary mass. The normalization constant C is defined
so

R
A dm1dm2pðm1; m2Þdm1dm2 ¼ 1. Unless otherwise

noted, we will adopt km ¼ 0 in this work. Because GW
networks are much more sensitive to more massive BHs
with M ≳ 200 M⊙, this model and its fiducial choices
(e.g., αm ≃ 2) produce a detected merger distribution ∝
Rpðm1; m2ÞVT which is roughly uniform over a wide
range of masses, usually terminated by the specific cutoff
choices mmax, mmin rather than by selection biases against
low mass black holes or the rarity of massive BBHs. In the
analysis described below, we leave Mmax fixed.
Motivated by binary neutron star observations as well as

the desire to reproduce arbitrary substructure and features
in the mass distribution, we will also examine Gaussian
mass distributions in component mass mi,

pGðm1Þ ¼ N ðm̄; σmÞðm1Þ; ð8Þ

which is characterized by its mean value m̄ and variance
σm. In this work, we will typically explore the special case
of pðm1; m2Þ ¼ pGðm1ÞpGðm2Þ and apply this distribution
to the case of binary neutron stars, where the narrow
width σ relative to the mean m̄ implies the distribution has
effectively no support for undesirable regions (e.g.,m < 0).
Finally, for complete generality, we also discuss mixtures
of mass distributions, including Gaussian mixture models
as previously employed in [29]:

pðm1; m2jΛÞ ¼
X
α

wαpαðm1; m2jΛαÞ: ð9Þ

This latter approach allows complete generality and, with
suitable smoothing priors on w, the ability to reproduce
arbitrarily complicated mass distributions and circumvent
systematic limitations due to our choice of model. In
particular, these more generic models would allow us to
reproduce features previously proposed in the literature,
including overabundances at specific masses near the pair-
instability supernova threshold [69–74].
For binary black hole spins, we adopt a simple flexible

phenomenological model for each BH spin magnitude χi: a
beta distribution,

pðχijαχi ; βχiÞ ¼
χ
αχi−1
i ðχmax − χiÞβχi−1
Bðαχi ; βχiÞχβþαþ1

max
; ð10Þ

with unknown shape parameters αχi and βχi (i ¼ 1; 2).
This tractable two-parameter distribution allows us to fit to
the observed mean and variance—all that the sparse sample
of existing observations will allow. In this work, we for
simplicity assume both black hole spins are drawn from the
same distribution and χmax ¼ 1. Likewise, for simplicity we
adopt the unphysical but easily described parametrization
of the spin-orbit misalignment θi ¼ arccos L̂ · Ŝi proposed
by Talbot and Thrane [32]: a unimodal distribution based

on a Gaussian in cos θ that smoothly deforms into a
uniform distribution in the limit of large σχi :

pðcos θijσχiÞ ∝ N ðcos θi; 1; σχiÞ: ð11Þ

When using this model, we assume the polar angles ϕi of
each spin vector relative to the orbital angular momentum
direction L̂ are uniformly distributed between 0; 2π. In this
work, we assume BH spins are drawn from the same spin
misalignment distribution σχ1 ¼ σχ2 . In this approach, as in
our parameter inference, all spins are assumed specified at a
gravitational wave frequency fref ¼ 20 Hz. No compelling
reason exists that astrophysical formation processes should
cause binaries of different masses and spins to be drawn
from a single, universal misalignment distribution at an
arbitrary reference frequency fref ; see, e.g., [16,75] for
more detailed models. That said, this phenomenological
approach is qualitatively consistent with the kinds of
misalignments produced by binary SN natal kicks (e.g.,
1 − cos θi ≲ 0.1 for BH natal kicks of order 50 km=s [40]),
allowing us a simple way to characterize whether obser-
vations support or disfavor plausible amounts of spin-orbit
misalignment.

E. Useful phenomenological parameters

Observations will constrain combinations of these phe-
nomenological parameters which reflect clear physical
features in the observed (selection-biased) distribution of
binary black holes. We can better characterize what we
learn from GW observations early on by adopting coor-
dinates conforming to these features.
For example, we could have a mixture model [Eq. (9)]

consisting only of elements with distinctive features,
each characterizing a distinctive subpopulation of BHs.
Such subpopulations might be BHs near the pair-instability
supernova peak, binary neutron stars, and a population
of binaries with a continuous mass spectrum formed
through hierarchical growth in globular clusters (see,
e.g., [21,34,76] and references therein). In such a scenario,
observations quickly constrain each element, leveraging
their distinctive features to identify the relative rates Rwα

and the subpopulations from each domain to constrain
that region’s parameters. For the first few tens of events,
these observations will principally constrain the mean
and variance of the detection-weighted subpopulation
pαðm1; m2ÞVT. We therefore expect that the following
coordinate system will produce roughly uncorrelated
observables for a typical model: (a) the relative rates
Rw for different subpopulations; (b) the mean chirp mass
Mcα, symmetric mass ratio η̄α, effective spin χ̄eff;α,
and mean spin χ̄ in each subpopulation, based on our
understanding of GW measurement errors; and (c) the
respective widths ΣMc;α;Ση;α;Σχeff ;α;Σχ , where we adopt
uppercase to distinguish between these symbols and our
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model hyperparameters. In Appendix C, we use order-of-
magnitude arguments to explain how reliably each of these
quantities can be measured.
In the context of our fiducial single-component model,

we adopt a reference mass m1 ¼ mref ¼ 15 M⊙ and char-
acterize the overall event rate not by its normalization,
which depends on unobserved binaries with high and low
masses, but by the event rate RpðmrefÞ of binaries whose
primary m1 has a mass comparable to GW151226 [77].
We identify other natural coordinates for the distribution
of m1 via its detection-weighted cumulative distribution
Pð< m1Þ:

Pð< xÞ ¼
R
dλVðλÞpðλÞΘðx −m1ðλÞÞR

dλVðλÞpðλÞ : ð12Þ

The mass corresponding to the upper (lower) bound
of the 90% symmetric detection-weighted probability on
m1 serves as a proxy for mmax (mmin) which is directly
observable and thus a more natural coordinate.2 In this
work, we emphasize the upper bound m� of the detection-
weighted mass distribution:

Pðm�Þ≡ 0.95: ð13Þ
For BH spins, closed-form expressions for the appropriate
mean values and variances are generally not available for
arbitrary selection biases VT; however, to the extent that
VT depends only weakly on BH spin, our model for BH
spins and misalignments [Eqs. (10), (11)] implies that

χ̄ ≃
αχ

αχ þ βχ
; ð14aÞ

Σ2
χ ≃

αχβχ
ðαχ þ βχÞ2ðαχ þ βχ þ 1Þ ; ð14bÞ

χ̄eff ≃ χ̄ cos θ; ð14cÞ

cos θ ≃
erfð ffiffiffi

2
p

=σÞ þ 2σðe−2=σ2 − 1Þ= ffiffiffiffiffiffi
2π

p

erfð ffiffiffi
2

p
=σÞ ; ð14dÞ

for our fiducial case where both BH spins are drawn from
the same distributions; in these expressions, Σ2

χ refers to the
variance of the one-dimensional χ distribution, while χ̄
refers to its mean.

F. Interpreting results: Posterior predictive
distributions and revised priors

If we ask any question about compact binary properties x
rather than model hyperparametersΛ, the only quantity that

appears in our posterior inferences pðΛjfdgÞ informed by
our observations fdg is the posterior predictive distribution
pppdðxjfdgÞ:

pppdðxjfdgÞ ¼
Z

dΛpðxjΛÞpðΛjfdkgÞ: ð15Þ

The posterior predictive distribution (PPD) encodes our
best estimates of the properties of any randomly selected
future binary, based on observations to date and accounting
for our initial prior knowledge about Λ. Unlike the model
parameters themselves, which may be highly degenerate
and lack physical meaning, the PPD provides an unam-
biguous estimate for how likely different binary parameters
are, given our knowledge. Note that by design, the PPD is a
probability distribution and, folding in all uncertainties,
does not have an error estimate.
As events accumulate, we can use posterior constraints

pðΛjfdgkÞ on model hyperparameters Λ based on the first
k ¼ 1…N observations to provide a nuanced, observatio-
nally revised perspective on future measurements k > N.
These prior insights can be particularly powerful when
individual future measurements are only weakly informa-
tive about certain binary parameters such as the mass ratio
or spin; see, e.g., [78,79] for examples.
To be concrete, our usual population inferences are

performed using a single fiducial choice of reference
prior prefðxÞ ¼ pðxjΛrefÞ: the posterior is pðxjdk;Λ�Þ ¼
pðdkjxÞpðxjΛ�Þ=

R
pðdjxÞpðxjΛrefÞ. We exploit prior mea-

surements via

pðxjdk; fdgÞ ¼
pðdkjxÞ

R
dΛpðxjΛÞpðΛjfdkgÞR

dxpðdkjxÞ
R
dΛpðxjΛÞpðΛjfdkgÞ

:

ð16Þ

In this expression, the numerator
R
dΛpðxjΛÞpðΛjfdkgÞ is

the posterior predictive distribution described above.

III. CONTROLLED TESTS WITH SYNTHETIC
POPULATIONS AND MEASUREMENTS

To demonstrate our method can infer population param-
eters, we perform several validation studies using toy
models which mimic key features of real gravitational
wave observations. These completely controlled illustra-
tions also let us highlight what can be inferred and why
about the mass and spin distribution, within the context of
our approach. Finally, these examples allow us to demon-
strate how population inference can strongly inform the
interpretation of individual future GW observations.

A. BNS mass and (aligned) spin distribution

For each component of a binary neutron star (BNS),
observations of galactic pulsars suggest that the component
masses are drawn from a Gaussian distribution with mean

2By contrast, Talbot and Thrane [22] introduce a model which
depends on both a minimum massmmin and a tapering mass scale
δm, but only a linear combination of them is easily observable;
see their Fig. 5.
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1.33 M⊙ and standard deviation 0.09 M⊙ [80]. Obser-
vations of pulsars and theoretical models of pulsar spin-
down suggest that if both NS are not recycled, then their
dimensionless spins will be small [≃Oð0.05Þ]. Under the
assumption that NS spins are parallel to their orbital angular
momentum, we construct a synthetic population drawn
from this phenomenological model; construct synthetic
observations for each binary, recovering 13 synthetic
sources based on a three-detector advanced LIGO/Virgo
network using a threshold set by the second-most-sensitive
detector’s recovered amplitude; perform full GW inference
on each source using RIFT [49]; and, with the resulting
posterior distributions, use the techniques of Sec. II to infer
the underlying NS mass and spin distribution. In our
reconstruction, we assume both components of a NS binary
are independently drawn from a Gaussian distribution with
unknown mean and variance, and with spins χi;z drawn
from a beta distribution with unknown mean and variance,
such that jχi;zj ≤ 0.05.
Figure 2 shows the synthetic measurements used as

inputs in our calculation. These synthetic measurements
incorporate significant uncertainty in each source’s red-
shift, which contributes to the overall uncertainty in each
binary’s chirp mass. For each neutron star in our synthetic
population, we use the APR4 equation of state to calculate
each neutron star’s tidal deformability λi ¼ λðmjAPR4Þ.
We generate and recover our synthetic sources with
IMRPHENOMD _NRTIDAL [81]. Figure 3 compares our
recovered NS mass and spin distribution. When inferring
source parameters, our waveform model and parameter
inferences include the effects of NS tides, treating each NS
tidal deformability λi as a free parameter. Despite consid-
erable uncertainties in each measurement, each BNS
observation constrains that binary’s chirp mass reasonably
well, to an accuracy σMc

≃ 0.05 M⊙, dominated by uncer-
tainty in source redshift. Because GW measurements are
only weakly informative about the mass ratio, these
measurements each constrain the total mass to be m1 þ
m2 ≃ 26=5Mc to an accuracy σMc

26=5; averaging all such
observations, we can deduce the mean NS mass m̄. With
n ¼ 13 such measurements, we expect to constrain the
mean mass of the population to a 1 standard deviation

accuracy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Mc

212=5=4þσ2
q

=
ffiffiffi
n

p
≃0.027M⊙, which com-

pares favorably to 0.02 M⊙, the standard deviation of our
Bayesian estimate for m̄. (A similar analysis shows that we
constrain the NS population standard deviation σm almost
entirely through these one-dimensional chirp mass con-
straints.) Because GW measurements have a smaller
statistical uncertainty than the astrophysical population
width in total mass, the accuracy to which we constrain
the mean NS mass is dominated by a simple frequentist
error estimate (σ=

ffiffiffi
n

p
), allowing us to reliably project the

information we will extract about NS masses from future
GW observations.

The measurement accuracy for GW measurements of
BNS has been long known [54], and their implications for
astrophysics (e.g., mass and BNS spin distributions) have
been immediately apparent; see, e.g., [82–84] and refer-
ences therein. We provide the first end-to-end demonstra-
tion of how well binary NS population parameters can be
measured, using a detailed waveform model at a level
where waveform systematics should not dramatically
impact the mass, spin, or tidal parameter inferences being
performed. By contrast, many previous studies focusing on
NS tidal deformation have demonstrated that waveform
systematics could bias inferences [85–87], if not controlled.
Only recently have systematic errors between waveform
models diminished enough to enable consistent inferer-
ence; see, e.g., [88].

FIG. 2. Source information for our synthetic BNS population:
For each synthetic signal used in the BNS population
reconstruction calculation described in Sec. III A, these two
panels show the true injected source-frame parameters (as
crosses) and posterior distributions (contours of their 95% highest
posterior density regions). Each color corresponds to a different
source. Source parameters have been inferred using full Bayesian
parameter inference via RIFT, as described in the text.
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Reliable population inference allows us to draw
informed conclusions about future measurements, using
previous observations as prior input. Particularly for cases
like NS binaries where individual measurements can be
weakly informative and produce highly correlated con-
straints on NS parameters, these prior inputs enable much
sharper constraints on astrophysical parameters. As a con-
crete example, Fig. 4 shows inferences about one para-
meter (Λ̃ ¼ 16

13
½ðm1 þ 12m2Þm4

1λ1 þ ðm2 þ 12m1Þm4
2λ2�=

ðm1 þm2Þ5) of one of our synthetic NS binaries, where
the inferences are performed in isolation (blue line) and
using information obtained from all other NS observations
in our sample about NS masses and spins (but not tides Λ̃,
which are presumed arbitrary and spin). Because our other

measurements have allowed us to strongly constrain the NS
population’s mass and spin distribution, we can exploit
correlations between our inferences about these parameters
and the NS tidal deformability to more tightly constrain
this parameter. In this way, even though only the strongest
few GW measurements will provide most of the informa-
tion about NS tides and the nuclear EOS, by exploiting
population measurements we expect to more efficiently
draw conclusions using all available information about the
NS population.

B. BBH mass and (precessing) spin distribution

To assess our ability to simultaneously constrain both the
mass and spin distribution of binary black holes using GW
observations, we constructed a synthetic population drawn
from our fiducial BBH population model, with parameters
as described in Table I. Following the procedure described
in Appendix B, we drew freely from this population, then
selected a subsample based on their relative probability
of detection, producing 25 events based on 300 days of
synthetic observation at O1 sensitivity. For both the syn-
thetic population and sensitivity model, we approximate
VT by neglecting any effects of spin, as a self-consistent
leading-order approximation. For each event, we generated
1000 fair draws from a synthetic posterior distribution,
using the procedure described in Appendix A. These
synthetic or “mock” posterior distributions mimic the
effects of full GW parameter inference, but by construction
only explicitly constrain the binary chirp mass, mass ratio,
and effective spin χeff of each event. Figure 5 shows the
specific source population and synthetic posteriors used in
this analysis. Using these synthetic posterior distributions,
we apply the population inference procedure described in

FIG. 3. Recovered properties of NS mass and spin distribution:
For the synthetic population of BNS sources illustrated in Fig. 2,
this figure shows the recovered mass distribution (top figure) and
spin distribution parameters (bottom figure) derived using the
Gaussian mass and β-distribution spin model described in the
text. The solid line indicates the median distribution; the shaded
regions indicate the 68% and 95% credible intervals. Red dashed
lines denote the true underlying distribution. In the case of spin,
note that the truth is a delta function at zero, so it would require an
infinite number of detections to fall within the constraints on
this plot.

FIG. 4. Population measurement enables sharper constraints on
NS tides: Cumulative posterior distribution of Λ̃ for one of the
synthetic sources in our BNS population model. Blue curve
shows a single-event analysis, not exploiting information about
the mass and spin distribution from other events; red curve shows
an analysis based on Eq. (16) that employs our best estimate for
the underlying mass and spin distribution, as constrained from the
population of events in our BNS synthetic sample.
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Sec. II to produce our best estimates for the population
parameters responsible for our synthetic observations. As
summarized in Table I, our model has parameters

Λ≡ ðR; αm;mmin; mmax; αχ ; βχ ; σχÞ: ð17Þ

To be consistent with the priors adopted in other work [5],
we express our results after reweighting to correspond to a
Jeffries prior on the rate [πðRÞ ∝ R−1=2]. Even with only
25 events drawn from a preferentially low-spin population,
our calculations show that GW measurements should
strongly constrain the mass and spin distribution of binary
black holes.
Figure 6 shows how well we can determine the merger

rate versus binary masses, such as the primary mass.
Notably and in good agreement with previous work, we
find we can strongly constrain the maximum detectable
mass in the population [21,32]. Following the discussion
Sec. II E, however, we emphasize that while the maximum
detectable mass—demarcated by a sharp cutoff in the
observed population—is well constrained, the parameters
R, mmax, αm have a degeneracy: as shown in Fig. 6, a
population with extremely few but very massive BHs is
hard to rule out, enabling larger mmax to be consistent with
our synthetic observations. Additionally and for the first
time, we demonstrate how to self-consistently compute
both the overall event rate distribution, including Poisson
error, while simultaneously constraining the mass distri-
bution. Previous investigations have used specially devised
calculations which marginalize over the event rate distri-
bution, producing results that (for a suitable Jeffries prior)
are consistent with our results for the marginal mass
distribution. As desmonstrated in Fig. 6, to produce a
self-consistent rate distribution, due to strong correlations
between the event rate and mass distribution, we must
simultaneously measure the mass-dependent merger rate in
the local universe. Because the correlation between the
event rate and mass distribution arises through the expected
number of events, we can provide a simple analytic model

FIG. 5. Source information for our synthetic BBH popula-
tion: For each synthetic signal used in the BH population
reconstruction calculation described in Sec. III B, these two
panels show the true injected source-frame parameters (as
crosses) and posterior distributions (contours of their 95% highest
posterior density regions). Each color corresponds to a different
source.

TABLE I. Synthetic BBH population model: This table shows the parameters of the population model family we adopt to generate and
recover a synthetic binary black hole population as described in Sec. III B. The population is characterized by an overall BBH merger
rateR; a power-law slope αm for the primary mass, between mmin and mmax; a beta distribution for spin magnitude, characterized by the
two parameters α, β [Eq. (10)]; and a characteristic misalignment σχ for the angle between BH spins and the orbital angular momentum
at our reference frequency [Eq. (11)]. This analysis also fixes the maximum allowed total massMmax (i.e.,m1 þm2 ≤ Mmax) to 200 M⊙.
In this model, both black hole spins are assumed drawn independently from the same distribution. The second row shows the values
of these parameters used to generate our synthetic population. The third row shows the range of parameter space we explore when
attempting to reproduce our data. The fourth row shows the prior distribution adopted for each parameter, all assumed a priori
independent; in this row, “log uniform” implies the prior distribution for any variable x is uniform as a function of log x [i.e.,
pðxÞ ∝ 1=x]. Note that for simplicity we have assumed the minimum mass is known.

Quantity R [Gpc−3 yr] αm mmin [M⊙] mmax [M⊙] αχ βχ σχ

Synthetic population 100 0.8 5 40 1.1 5.5 0.4
Prior range ½10−1; 106� ½−5; 5� ½5; 5� ½30; 195� ½10−4; 104� ½10−4; 104� ½10−2; 102�
Prior distribution Log-uniform Uniform Uniform Uniform Log-uniform Log-uniform Log-uniform
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for the correlation between the mass distribution and event
rate, as described in Appendix C.
With 25 events, our population model has enough infor-

mation to produce strong constraints on the underlying
phenomenological distributions, even for parameters such
as spin which are weakly constrained by individual mea-
surements. Figure 7 illustrates how informative these con-
straints can be about the spin distribution. This figure
compares the true marginal distribution of q; χeff for the
BH-BH population to our best (posterior predictive) estimate
of that distribution. Even with only a few tens of detections,

the estimate traces the general structure of the true distribu-
tion. In particular, we can clearly and unambiguously identify
that a bias in the χeff distribution toward positive values
suggests an underlying tendency toward alignment. Of
course, our synthetic observations were intentionally drawn
from the model family we use to fit it; in general, the
underlyingastrophysical distributionmayhave a formoutside
the model family we adopt, introducing small biases into our
interpretation. Nonetheless, our analysis substantially gen-
eralizes previous proof-of-concept demonstrations on how
well BH measurements can measure BH spin distributions,

FIG. 6. Inferred merger rate versus mass: This figure shows how our estimated merger rate versus mass compares with the known
distribution used to generate our synthetic source population. For a more thorough statistical test, see the P–P plots in Appendix D. Top
left: This group of figures represents the one- and two-dimensional marginal posterior distributions for R, αm, and mmax, with the true
values overlaid as blue crosshairs. Top right: This group of figures represents the one- and two-dimensional marginal posterior
distributions for m�

1, Rpðm�
1Þ, and Rpð15 M⊙Þ, with the true values overlaid as blue crosshairs. Bottom left: In this figure, the red

dashed line shows the characteristic merger rate associated with a given mass scale [m1Rpðm1Þ] versus primary massm1. The black line
shows the median inferred value, and the two gray shaded regions show the symmetric 68% and 95% credible regions. Bottom right: The
solid lines in this figure show our posterior predictive distribution pðmijDÞ: the best estimate for the probability of a future event being
detected having masses mi. In this figure, blue and green correspond to the primary and secondary masses. For comparison, the dotted
lines show the true astrophysical distribution.
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not being limited to a single spin magnitude, a discrete and
restrictive family of orientation distributions, or similar strong
prior adopted in previous investigations [36,39].
Even with only 25 events, we strongly constrain the BH

spin distribution, in both magnitude and orientation
(Fig. 8). As described in Appendix C in greater quantitative
detail, these two constraints are easily understood. For this
synthetic analysis, the upper limit on spin follows from the
χeff distribution of recovered sources. Since our synthetic
observations included no events with large χeff , we can be
confident BH spins are not extremely large, since by chance
we ought to have found one large value of χeff out of 25,
even allowing for uncertainty in how they are oriented.
Similarly, because our synthetic population is preferentially
aligned (σ ¼ 0.4), the recovered population shown in Fig. 2
has a χeff distribution biased toward positive values. Using
Eq. (14) for χ̄eff, the bias in χeff inevitably implies cos θ is
preferentially positive and, as described in Appendix C,
allows us to limit σ.
In this analysis, we employ conservative synthetic

posteriors which assume only the chirp mass, mass ratio,
and effective spin can be constrained with GW measure-
ments. Precessing, coalescing binaries can produce a rich
symphony of gravitational waves just prior to and during
merger, reflecting complex binary dynamics and strong-
field multimodal radiation. Given the high expected event
rate in ongoing gravitational wave surveys, we expect that
future observations will provide clear examples of preces-
sional dynamics, if nature produces them, and that these
measurements will allow us to much more sharply con-
strain the BH spin distribution. However, for massive BH
binaries, model systematics complicate attempts to measure
BH parameters, including spin. We will conduct full

end-to-end calculations with synthetic data and state of
the art models in future work.

IV. ANALYSIS OF REPORTED
OBSERVATIONAL RESULTS

To date, five confident binary black hole mergers
have been reported: GW150914 [89], GW151226 [77],
GW170104 [90], GW170608 [91], and GW170814 [92]—
the latter discovered jointly with the Advanced Virgo
instrument [3], Additionally, an astrophysically plausible
candidate BBH signal has been reported (LVT151012) [5].
In this section, we describe inferences about the binary
black hole population based on reported events, deduced
from these reported observations and a simplified model
for the network’s search sensitivity. For O1 events, most
notably for GW151226, we use full posterior inferences

FIG. 7. Recovering the true mass ratio and χeff distribution: A
comparison between the underlying truth (black solid contours)
and the inferred posterior predictive (red dashed contours) for the
q, χeff marginal distribution. The inner (outer) contour for each
denotes the 50% (90%) highest probability density credible
region.

FIG. 8. Inferred spin distribution derived from synthetic BBH
observations: The top panel shows our inferences about the total
BH spin; the bottom panel shows our inferences about BH spin-
orbit misalignment. In both panels, the red dashed lines show the
underlying distribution, while the black solid lines and shaded
regions show the median recovered parameter distribution. To a
first approximation, the constraints on spin magnitude and
misalignment are as needed for the population model to repro-
duce the mass and χeff distribution of the underlying population
as shown in Fig. 7.
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derived from GW data, provided by the LIGO Scientific
Collaboration. For O2 events, in lieu of full posterior
inferences, we use the procedure described in Appendix A
to generate synthetic posterior distributions which closely
resemble the reported parameter estimates for mass and
χeff . For simplicity as well as to enable a concrete
illustration of our method using real data, we will produce
estimates under the (unwarranted) assumption that reported
O2 results available to date represent a comprehensive
and fair sample of binary black holes seen during LIGO’s
O2 observing run. In these estimates, we assume O1 and
O2 share a common sensitive volume V as estimated in
Sec. II C, with observing duration TO1 ¼ 48.6 days [5] and
TO2 ¼ 117 days [93]. Keeping in mind model systematics
such as the omission of a salient feature in the mass
distribution can demonstrably strongly bias recovered
model parameters [21,22], as well as sample incomplete-
ness for our O2-scale analysis, in Table II we provide our
inferences about the O1 and O2 population within the
context of the fiducial BBH population model described in
Sec. III B. For O2 in particular, we emphasize the sim-
plified VT and nonfinal sample used in that analysis, which
is provided solely for illustration and to connect to
previously published investigations about O2-scale events
[16,21,33]; applying our methods to final O2 results with
real samples and carefully calibrated VT could produce
substantially different astrophysical conclusions.
Figure 9 shows our best estimates for the merger rate of

BH-BH binaries of different masses, inferred within the
context of the model described in Table I and demonstrated
on synthetic data in Sec. III B. Naturally, we estimate an
overall BH-BHmerger rate and mass distribution consistent
with previously reported results [5]. Using a Jeffries’ prior
for the merger rate, we findR ¼ 122þ291

−96 Gpc−3 yr−1 based
on O1. For O2, we find uncertainty in the event
rate is reduced by roughly a factor of 2, both through
reduced Poisson error (e.g., six instead of three events)
and through sharper constraints on the mass distribution
(e.g., reducing prospects for a large maximum mass).
Our result for O1 is more conservative (wider) than the
power-law result reported previously in Abbott et al. [5],
97þ135

−67 Gpc−3 yr−1, because we employ a more flexible

model and therefore incorporate more model systematics,
notably including the correlation between event rate and
mass spectrum and also the impact of the upper mass cutoff.
Conversely, if we employ consistent assumptions, we arrive
at the same answers previously reported for O1 [5]. As we
adopt a merger rate model that reduces to previously
investigated power laws, by design we reproduce the
analysis reported in [21]: the events reported during O2
suggest the absence of very massive BHs in the observable
population.3 For this reason our inferences about the mass
spectrum exponent αm are considerably wider than prior
work which does not take a possible upper mass cutoff into
account. Evenwith the small sample publicly reported so far,
our analysis corroborates the analysis in [21] that O2-scale
GW measurements could be weakly informative about the
maximum mass of coalescing BHs.
As demonstrated in several previous investigations

[16,33], we know that BHs in merging binaries likely
have low typical spin. For example, based on the dis-
tribution of χeff , Farr et al. [33] argued that several
members of a discrete array of candidate spin orientations
(aligned or isotropic) and magnitude distributions are
inconsistent with observations to date, and that BH spins
were likely randomly oriented or small. Later, Wysocki
and collaborators [16] demonstrated that, if binary black
holes arose from isolated binaries whose spins were
weakly misaligned by SN natal kicks, then only relatively
small BH natal spins were consistent with observations
available at the time. As shown in Fig. 10, with more
events available to our analysis, and using much more
flexible models, we can draw sharper and more generic
conclusions about the BH spin distribution, even using
only six reported events. First and foremost, exactly as
seen with synthetic data, the absence of large χeff allows
us to with increasing confidence bound above the fraction
of BHs in merging binaries that have large spin. Too,
because collectively the observed population distribution of

TABLE II. Inferences about astrophysical binary BH model parameters: This table provides 90% credible intervals for the underlying
parameters of our fiducial BBH population model, applied to O1 and reported O2 observations as described in the text. Parameters with
clear unimodal structure are represented by their median and the widths of their 90% symmetric probability confidence interval, whereas
we only report the 90% upper and lower limits for more poorly constrained parameters. For the spin magnitude distribution, rather than
show the (highly correlated) credible intervals for the underlying sampling variables αχ , βχ , we instead show credible intervals for the
mean value of χ and the standard deviation of χ. We also show the posterior predictive range of spin magnitudes χ and effective spins
χeff . We apply an asterisk (O2*) to all O2 results, to highlight the nonfinal sample, simplified sensitivity model VT, and mocked-up
posteriors used in this proof-of-concept analysis.

R [Gpc−3 yr−1] αm mmax [M⊙] E½χ� Std½χ� log10 σχ χeff χ

O1 122þ291
−96 2.8þ1.4

−2.5 70þ110
−30 0.28þ0.31

−0.15 0.02þ0.25
−0.02 0.1–9.5 0.00þ0.24

−0.24 0.03–0.68
O2* � � � 1.9þ1.5

−2.0 39þ98
−6 0.24þ0.21

−0.12 0.01þ0.19
−0.01 0.3–9.4 0.00þ0.19

−0.19 0.04–0.49

3While our assumptions about the mass distribution model
have modestly changed relative to Fishbach et al. [21], we
reproduce their results when adopting the same inputs and mass
model.
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FIG. 10. Inferences about astrophysical binary BH spin distribution. Left: Our best estimates for the binary BH spin magnitude
distribution (PPD) based on O1 (dashed orange) and O2 (solid purple) observations. We apply an asterisk (O2�) to all O2 results, to
highlight the nonfinal sample, simplified sensitivity model VT, and mocked-up posteriors used in this proof-of-concept analysis. Due to
the low characteristic spin and within the context of the information used in this analysis, these observations remain uninformative about
BH spin-orbit orientations. Right: Our best estimates for the binary BH spin distribution, as expressed using our model hyperparameters,
for O1 and O2.

FIG. 9. Inferences about astrophysical binary BH mass distribution: Inferences about the merger rate versus mass of coalescing BH-
BH binaries, using only O1 observations (dashed orange) and using O1 and reported O2 observations (solid purple), for simplicity
assuming the latter represents a comprehensive and fair sample. We apply an asterisk (O2�) to all O2 results, to highlight the nonfinal
sample, simplified sensitivity model VT, and mocked-up posteriors used in this proof-of-concept analysis. The panels in this figure
follow the format of Fig. 6 for representing one- and two-dimensional marginal posterior distributions.

RECONSTRUCTING PHENOMENOLOGICAL DISTRIBUTIONS … PHYS. REV. D 100, 043012 (2019)

043012-13



χeff remains nearly symmetrically distributed around zero,
we can with increasing confidence bound the fraction of
binaries that are preferentially aligned andwithmodest spin.
With at least one BH known to have spin (GW151226) and
for simplicitly assuming the BH spin and mass distribution
are uncorrelated, we are led to weakly disfavor scenarios
where BHs are preferentially aligned (i.e., small σ is
disfavored). We emphasize, however, that this conclusion
is driven by the absence of strong support for any spin in all
but one binary (GW151226). We would arrive at the same
nominal conclusion for a comparable number of random
draws from a binary population model with perfectly
aligned binaries with small BH spins. Future and more
informative observations of BH binaries could significantly
alter this conclusion.

V. DISCUSSION

In this work, we present concrete examples for how well
just a handful of GW measurements can improve our
phenomenology of the BH mass and spin distribution. Our
examples include real observational data from LIGO’s O1
and (an incomplete sample from) O2 observing run,
suggesting current observations could be on the cusp of
constraining BH spins and maximum masses. We provide
simple estimates to understand how well these parameters
have been constrained, allowing the reader to extrapolate to
larger sample sizes. For example, in the absence of positive
support for spin, the upper limit on BH spin will decrease
rapidly, allowing us to place strong upper limits for (or
enable discovery of) BH natal spin.
Because each empirical marginal distribution possesses

an infinite number of degrees of freedom (d.o.f.), any
phenomenological parametrization such as our own can
quickly be exhausted by the data [23], particularly when the
population must reproduce multiple observational features.
In the short run, therefore, we anticipate a fully generic and
regularized infinite-dimensional approach will soon be
required to adequately reproduce the thousands of events
that even the current generation of instruments will discover.
A fully generic approach, however, can easily bemisled, not
least because GWmeasurements are subject to many subtle
strong-field systematics due to model incompleteness. For
example, a waveform approximation widely used for rapid
parameter inference of binary black holes (IMRPv2 [94])
omits astrophysically critical d.o.f.—the calculation allows
for only one precessing spin instead of the two necessary to
fully describe the dynamics—and demonstrably has sys-
tematic errors large enough to shift posterior distributions
for O3-scale events by an appreciable fraction of their
statistically expected extent [49,79]. To illustrate the perni-
cious impact of these systematic biases, we can consider a
simple order-of-magnitude estimate: a single quantity, with
intrinsic Gaussian distribution of mean μ and width σ, being
observed multiple times by an apparatus with a (Gaussian,
random)measurement errorΔx and bias δx. The bias will be

important when it influences our best estimate of the average
(i.e., when δx≳ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 þ Δx2
p

=
ffiffiffiffi
N

p
). Applying this order-of-

magnitude approach to GW measurements, we expect that
after only a few tens of binary mergers, these modeling
systematics will progressively contaminate the interpreta-
tion of coalescing binaries, as posterior biases in each event
become reflected in biases in the inferred population
distribution. Waveform systematics will be even more
important because BH spins appear to be small: greater
accuracy is needed to separate the secular effects of spin. In
this work, when carrying out a full parameter inference, we
use the newly developed RIFT parameter inference engine
[49] to produce posteriors. We will discuss the impact of
waveform systematics on BH spin misalignment measure-
ments in future work.

VI. CONCLUSIONS

We have introduced a flexible, ready-to-use, and self-
consistent parametricmethod to estimate the compact binary
merger rate as a function of binary parameters, specifically
emphasizing mass and spin. Unlike prior work, our pro-
cedure self-consistently estimates themerger rate and binary
parameter distribution, accounting for statistical sampling
error, measurement error, and selection bias. Using this
procedure, we show by example that only a handful of NS-
NS andBH-BHmeasurements can enable strong constraints
on their respective populations via GWobservations alone.
Even in the astrophysically likely scenario of small BH spin,
we emphasize that just a few measurements will enable
sharp constraints on the BH spin distribution. Interpreting
current observations, we show that GW measurements are
already beginning to place astrophysically interesting con-
straints on the spin of BHs. We reproduce prior results
about the lack of reported BHs at high mass and its
implications for the BHmass spectrum. Finally, particularly
in our Appendix, we explain how to extrapolate toward the
measurement prospects available in the very near future.
The procedure described here assumes all sources have

been unambiguously resolved from observational data,
omitting any treatment of source significance aside from
a naive selection bias. Farr et al. [95] demonstrated and
popularized an approach to self-consistently perform the
detection and population inference process, estimating the
foreground and background distributions simultaneously;
see also [96–98]. Recently, Gaebel and collaborators [99]
developed a concrete procedure to apply this technique to
gravitational wave observations. Owing to many deep
similarities between our strategies, we anticipate we will
shortly incorporate this technique in our own analysis.
The approach described here also employs several strong

assumptions about the (lack of) correlations between model
parameters. For example, our fiducial BH model assumes
the mass-dependent BH merger rate is independent
of redshift; that BH masses and spins are completely
independent; and that BH spin misalignment and spin
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magnitudes are likewise uncorrelated. We will explore
more physically motivated correlations in future work.
In the long run, phenomenology is only as sound as the

underlying parametrization. Previous analyses have repeat-
edly shown that adopting an overly restrictive model will
produce biased results, as demonstrated by Fishbach et al.
(with the maximum mass) [21] and Talbot et al. [22] (with
the shape of the maximum mass cutoff). With sufficient
data, a suitably regularized infinite-dimensional paramet-
rization will make unintended systematic biases less
frequent. Mature methods for infinite-dimensional or non-
parametric inference exist [100–102], beginning with
simple infinite-dimensional parametrizations plus smooth-
ing priors or with Gaussian processes [103]. Early inves-
tigations have applied nonparametric methods to GW
population estimates [29,30]. However, because the GW
signal is so rich, many parameters can be measured for each
event, several of which are believed to be correlated in most
astrophysical formation scenarios. These correlations
should be more sharply identified with strong theoretical
priors for the immediate future.
Finally, several technical improvements can make this

approach faster and more robust. For example, we can
perform inference on all events simultaneously, using direct
estimates of the likelihood lðλÞ naturally reported by RIFT,
to ensure any population inferences are not limited by the
compact support of fiducial priors. Using accelerated
general-purpose inference engines, we expect to dramati-
cally accelerate the speed with which our population
inferences are provided, with a long-term goal of enabling
low-latency population-informed identification and classi-
fication of candidate sources.
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APPENDIX A: MOCK POSTERIOR
POPULATIONS PRECESSING BINARIES:
ALIGNED FISHER MATRIX APPROACH

We test our code using synthetic or “mock” posterior
distributions for binary black hole parameters, designed to
mimic the results of full end-to-end Bayesian inference on
synthetic data. For the mock BBH posterior distributions
constructed in this work, we adopt a very simple approxi-
mation, motivated by decades of experience suggesting that
for short BBH signals the likelihood for gravitational
wave signals is nearly Gaussian in three coordinates
(Mc; η; χeff ) and does not strongly constrain any other
d.o.f. Specifically, if λ0 are the true binary parameters and ρ
is the true network signal amplitude; if Γab ¼ h∂ahj∂bhi is
the Fisher matrix for the binary parameters λ, evaluated at
λ ¼ λ0 and for a signal amplitude ρ using a fiducial detector
power spetcrum; and if pðλÞ is the prior distribution on λ,
then we approximate the posterior distribution by a dis-
tribution proportional to

e−Γabðλ−λ�Þaðλ−λ�ÞbprefðλÞ; ðA1Þ

where λ� is a fixed random realization from a normal
distribution with mean λ0 and covariance matrix Γ−1. We
generate samples from this distribution via Monte Carlo
techniques. We evaluate the approximate Fisher matrix Γ
using the effective Fisher technique [55,82,109], applied to
a nonprecessing binary waveform model assigned the same
values of Mc; η; χeff (i.e., via χ1;z ¼ χ2;z ¼ χeff ).
This approximate posterior distribution has several dis-

tinct advantages. First and foremost, it captures in Γab the
strong, parameter-dependent, and well-understood correla-
tions between the variables that most significantly impact
the GW inspiral signal, while simultaneously populating all
intrinsic binary parameters. For example, it captures the
shape of the posterior distribution in mass ratio and spin
while correctly accounting for parameter boundary effects,
as described in [110]. Second, it accounts via λ� for the
effect of random noise realizations, which impact the best-
fitting parameters associated with each set of synthetic data.
By including an explicit prior prefðλÞ, it allows us to
carefully adopt fiducial prior assumptions, which have a
substantial impact on inferred binary masses and spins.
A ready-to-use implementation of this algorithm is

available.4

For simplicity, in this implementation, no cosmological
effects are applied. If used unaltered, this approximate
posterior applies either if cosmological redshift effects are
small compared to the width of the distribution in mass (i.e.,
bias is small compared to the statistical uncertainty) or if
these ambiguity distributions are used to approximate the
source-frame ambiguity function. Cosmological effects

4See https://git.ligo.org/daniel.wysocki/synthetic-PE-posteriors.
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dominate the accuracy to which a binary neutron star’s
chirp mass can be measured; to be used in such a scenario,
this approximation must be refined to reflect the significant
impact of the sources’ unknown redshift.

APPENDIX B: MOCK POPULATIONS

To generate a synthetic population of events, we employ
the following procedure. Using O1 sensitivity, and a detec-
tion criterion of ρ > 8 in a single interferometer, we used our
estimate of V and a fiducial observation time T to compute
the expected number of events μ. Using the Poisson
distribution, we select a total number of eventsN to observe.
We assumed each detected binary had a network SNR drawn
from a power law pðρnetworkÞ ∝ ρ−4network, with a lower cutoff
of 12 (roughly corresponds to 8 in two detectors).

APPENDIX C: OVERVIEW OF KEY
PHENOMENOLOGICAL CONSTRAINTS

1. How well can we measure distribution
hyperparameters?

Classical frequentist statistical methods provide a quick
way to assess how rapidly observations will constrain
model hyperparameters. For example, the sample mean
of maximum likelihood estimators converges rapidly to the
true mean, and (to a first approximation) the sample
variance is approximately χ2 distributed. Thus, by adopting
the mean and variance of our underlying distributions as
coordinates on the space Λ of hyperparameters, we can
estimate how efficiently observations will constrain them.
For example, if we account for measurement error, we can

measure the mean spin to an accuracy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðχÞ þ σ2χ

q
=

ffiffiffiffi
N

p

where VðχÞ is the variance of the spin magnitude distri-
bution and σχ is the typical spin measurement accuracy for
the mass range of interest [typically Oð0.3Þ]. Because of
sharp cutoffs, the maximum and minimum masses have a
qualitatively different behavior; see, e.g., [111]. Both the
maximum and minimum masses are best estimated using
the most extreme individual event, with an accuracy
converging as 1=N. In our context—the power-law mass
distribution—the accuracy with which these maximum
masses can be determined scales directly with the number
of events in a given region. We therefore expect the
maximum mass can be determined to an accuracy of order
mmax=N; the appropriate scale factor can be calibrated to
detailed analyses of the kind performed in Sec. III.
Similarly, as described below in Appendix C 2, we can
use the observed range of χeff to constrain spin magnitudes
and misalignments.
While providing a useful order-of-magnitude estimate

into how well we can measure distribution parameters, the
simple estimates above become cumbersome when trying
to capture correlations between our phenomenological
parameters, notably the event rate and mass distribution.

Following [23], we assess how well we can distinguish
model hyperparameters from the (expected) log-likelihood
as a function of model hyperparameters Λ of

hlnLi ¼ −μ� þ μ�

�
ln
Z

dλpðdjλÞRpðλjΛÞ
�

�
; ðC1Þ

where the expectation is performed relative to some
reference model characterized by parameters Λ� such that
p�ðλÞ≡ pðλjΛ�Þ and μ� ¼ μðΛ�Þ. Rather than work in
full generality, we perform a Taylor series expansion of
the likelihood around the local maximum, characterizing
the second order term by its inverse covariance or Fisher
matrix Γab,

hlnLi ≃ lnL� −
1

2
ΓαβðΛ − Λ�ÞαðΛ − Λ�Þβ: ðC2Þ

If γk are eigenvalues of Γ, then hyperparameters can be
measured to an accuracy 1=

ffiffiffiffiffi
γk

p
, which scales as 1=

ffiffiffiffi
N

p
for

N the number of observed events.
We first illustrate this technique in the idealized case

of zero measurement error, following previous work [23]
which characterized differences between two distribu-
tions q, p using the Kullback–Leibler (KL) divergence
DKLðpjqÞ≡ R

pðxÞ ln½pðxÞ=qðxÞ�dx. The marginalized log
likelihood only depends on model hyperparameters Λ
through the KL divergence between our proposed model
μ, p (which depends on Λ) and the reference model μ�; p�
(which does not):

hlnLi ¼ −DKLðμ�jμÞ − μ�DKLðp�jpÞ þ const: ðC3Þ
As a result, the Fisher matrix has two model-dependent
terms, each reflecting second derivatives of DKL with
respect to model parameters:

ΓðzeroÞ
αβ ¼ ΓðμÞ

α;β þ μ�Γ
ðpÞ
αβ ; ðC4Þ

where the first term arises from differences in the observed
number; where the second term reflects differences in
shape; and where we use the fact that DKL has a local
minimum (of 0) when the two distributions are equal
to eliminate cross terms. Thus, we can evaluate the
Fisher matrix simply by computing KL divergences and
carrying out the necessary derivatives. For example, for
the mass power-law model with fixed mass range,
pðmjαÞ ¼ Cðα; mþ; m−Þm−α

1 =ðm1 −m−Þ, the KL diver-
gence DKLðp�; pÞ becomes

DKLðα�jαÞ≡
Z

pðxjα�Þ lnpðxjα�Þ=pðxjαÞ ðC5Þ

¼ ðα − α�Þhln xiα� þ lnCðα�Þ=CðαÞ; ðC6Þ
where the conditional average is hfiα ≡

R
dxfðxÞpðxjαÞ.

In this expression, only the last term − lnCðαÞ does not
cancel in ∂2

αDKLðα�jαÞ.
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Again using the same concrete power-law example, we
next use this technique to show how, because μ [Eq. (6)]
and the mass distribution can be independently constrained,
the “overall event rate” R and the mass distribution are
correlated. Representing μ ¼ eX, the second derivative of
DKLðμ�jμÞ becomes [23]

DKL ≃
1

2
μ�ð∂aXÞð∂bXÞðΛ − Λ�ÞaðΛ − Λ�Þb: ðC7Þ

For the power-law model described above, the only two
derivatives needed are ∂ lnRX ¼ 1 and ∂αX ¼ ∂α ln hVTiα,
the latter of which can be well approximated by −1. This
term introduces correlations between the rate variable
(lnR) and shape (α). Conversely, using coordinates μ
and α to characterize the observed population, by con-
struction our inferred posterior distribution on the total
number and mass distribution are uncorrelated.
Roughly speaking, the effects of measurement error add

in quadrature in the Fisher matrix:

Γ ¼ ΓðzeroÞ þ ΓðmeasureÞ: ðC8Þ
We can therefore refine the estimates provided above to
incorporate simple estimates of GW measurement errors
and their correlations. For the simple power-law estimate
described above, however, these measurement errors are
relatively small compared to the range of the distribution,
unless α is very large.
In the above order-of-magnitude discussion, we have not

accounted for parameter-dependent selection bias. To a
good first approximation, GW selection bias enters only
through the masses, roughly as the (chirp) mass to a power.
We can therefore treat the observed population as a
(different) power law, which observations constrain to an
accuracy loosely characterized by the analysis above.
Therefore, for the power-law mass distribution, we

expect the posterior distribution of (log) rate and power-
law exponent will be correlated and follow a Gaussian
distribution characterized by the inverse covariance

Γ ≃ μ

�
1 −1
−1 1þ 2∂2

α lnCðαÞ

�
ðC9Þ

relative to the coordinates ðlnR;αÞ, if we adopt a uniform
prior on α and lnR. This expression captures the correla-
tions between the rate and mass ratio seen in our inferences,
when only varying the total event rate and mass ratio.

2. Semianalytic model for constraints on the spin
magnitude and misalignment distribution

In this paper, for the purposes of illustration and as a
leading-order approximation suitable for the BH-BH bina-
ries reported to date, we adopt three simplifying approx-
imations: that the sensitive volume depends weakly on spin;
that GWmeasurements will only constrain χeff ; and that the

underlying mass and spin distributions of BH-BH binaries
are uncorrelated. In this framework of approximations, only
χeff measurements and hence the underlying χeff distribution
of the population determines how well we can distinguish
between population models via spin measurements. Within
this framework, we can simply and largely analytically
estimate how much information we gain about the BH spin
distribution from repeated measurements.
In our synthetic model (and nature) where BH spins

appear to be small, the first few measurements will
principally inform our upper limit on the BH spin distri-
bution, via the absence of observations consistent with
large χeff . For example, in our synthetic model, the 90%
upper limit expected in 25 events is χeff < 0.31; for our
inferred posterior predictive distribution based on all
published events, it is 0.19. In Fig. 11, we use a simple
toy model to illustrate how upper limits loosely inform our

FIG. 11. Why χeff measurements constrain the maximum spin:
cumulative distribution function for χeff for toy models with
isotropic spins and uniform spin magnitude distributions limited
by 0.1; 0.2; 0.3;…. In the top panel, the vertical lines, corre-
sponding to 0.51=3 and 0.51=25, indicate the locus of points in each
cumulative distribution function we can begin to constrain with
the absence of events above X with 3 and 25 events, respectively.
In the bottom panel, the lines have been changed to 0.91=3 and
0.91=25, respectively.
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estimates of the BH spin distribution. In this model, we
assume each BH in a binary has a random spin magnitude
drawn from a uniform distribution between 0 and χmax,
randomly (isotropically) oriented, for binaries with a
random mass ratio uniformly drawn between 0.1 and 1.
This figure shows the cumulative distribution of χeff
implied by these assumptions, for different choices of
χmax. (These cumulative distributions are well approxi-
mated by analytic expressions for the cumulative distribu-
tion of χ1;z and χeff under these assumptions; see [49] for
concrete expressions.) For comparison, the vertical shaded
regions show the largest values of χeff which have signifi-
cant support in our synthetic sample (χeff ≲ 0.5), consistent
with the largest plausible spins reported for O1 and O2
events. The lack of support for large χeff in any observation
to date strongly suggests that BH spins cannot be large.
Conversely, an observation of a binary with χeff bounded
below by ϵ (e.g., GW151226) implies that a significant
fraction of BH spins must be greater than of order ϵ.
We emphasize that we provide these estimates (and

perform our calculation within these underlying approx-
imations) to produce a conservative, well-understood
benchmark for how well the BH spin distribution can be
constrained with present and future GW measurements.
Real GW measurements, particularly of low-mass or closer
and therefore higher-amplitude BH-BH mergers, will
provide additional direct constraints on the other spin d.o.f.

APPENDIX D: END-TO-END TESTS OF
POPULATION HYPERPARAMETER RECOVERY:

P–P PLOTS

A standard technique to test Bayesian parameter infer-
ence codes is a probability-probability or P–P plot. We
employ this test both on our population inference engine
and on the procedure for making synthetic observations.
For our population inference code, we generate k ¼
1…1000 synthetic BBH populations, each a fair draw
from a set of population hyperparameters controlling the
rate, mass, and spin distribution. For each synthetic
population, we generate one random observing run with
O1 LIGO sensitivity and T ¼ 300 days coincident observ-
ing time, by computing the expected number of detections
μ [Eq. (6)] and taking one random Poisson draw
pðnkÞ ∝ e−μμnk=nk!. We take nk detection-weighted bina-
ries, generating parameter estimates according to the
procedure in Appendix B. We then apply our population
parameter inference code to generate posterior distributions
on the population hyperparameters Λ, and from that one-
dimensional marginal cumulative distributions P̂k;iðΛiÞ, for
each parameter Λi. It should be noted here that we used as
our prior the same distribution that these population
hyperparameters were drawn from, as anything else would
produce biases. Using the true hyperparameter values Λ�

k;i,

we generate a single number for each hyperparameter
P̂k;iðΛ�

k;iÞ. A P–P plot is the cumulative distribution of

these P̂k;iðΛ�
k;iÞ. If the code is behaving correctly, these

should be uniformly distributed from 0 to 1: the plot should
be diagonal. The top panel of Fig. 12 shows the P–P plots
for each of our model hyperparameters.
In addition to our population inference code, we made

P–P plots for our synthetic parameter estimation code,
described in Appendix B, as our population inference tests
make use of it. Here we generated k ¼ 1…1000 synthetic
BBH signals, drawing true values from the prior we used for
measuring the posteriors. We repeated the same process just
described, making posterior distributions on the intrinsic
parameters λ, and evaluating the marginal cumulative dis-
tribution functions at the true values λ�k. P–P plots for some
representations of the intrinsic parameters are shown in the
bottom panel of Fig. 12.

FIG. 12. P–P plots for hyperparameter recovery. Top (bottom)
panel shows the P–P plot for population (single synthetic event)
inferences.
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Forteza, and A. Bohé, Phys. Rev. D 93, 044007 (2016).

[64] D. A. Brown, A. Lundgren, and R. O’Shaughnessy, Phys.
Rev. D 86, 064020 (2012).

[65] R.O’Shaughnessy,B.Vaishnav, J.Healy, andD. Shoemaker,
Phys. Rev. D 82, 104006 (2010).

[66] R. Biswas, P. R. Brady, J. D. E. Creighton, and S. Fairhurst,
Classical Quantum Gravity 26, 175009 (2009).

[67] V. Tiwari, Classical Quantum Gravity 35, 145009 (2018).
[68] P. Christian, P. Mocz, and A. Loeb, Astrophys. J. Lett. 858,

L8 (2018).
[69] G. S. Fraley, Astrophys. Space Sci. 2, 96 (1968).
[70] C. L. Fryer, S. E. Woosley, and A. Heger, Astrophys. J.

550, 372 (2001).
[71] S. E. Woosley, A. Heger, and T. A. Weaver, Rev. Mod.

Phys. 74, 1015 (2002).
[72] S. E. Woosley, S. Blinnikov, and A. Heger, Nature

(London) 450, 390 (2007).
[73] D. Kasen, S. E. Woosley, and A. Heger, Astrophys. J. 734,

102 (2011).
[74] K. Belczynski, A. Heger, W. Gladysz, A. J. Ruiter, S.

Woosley, G. Wiktorowicz, H.-Y. Chen, T. Bulik, R.
O’Shaughnessy, D. E. Holz, C. L. Fryer, and E. Berti,
Astron. Astrophys. 594, A97 (2016).

[75] C. L. Rodriguez, P. Amaro-Seoane, S. Chatterjee, and F. A.
Rasio, Phys. Rev. Lett. 120, 151101 (2018).

[76] M. C. Miller and D. P. Hamilton, Mon. Not. R. Astron.
Soc. 330, 232 (2002).

[77] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F.
Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso,
R. X. Adhikari et al., Phys. Rev. Lett. 116, 241103 (2016).

[78] S. Vitale, D. Gerosa, C.-J. Haster, K. Chatziioannou, and
A. Zimmerman, Phys. Rev. Lett. 119, 251103 (2017).

[79] A. R. Williamson, J. Lange, R. O’Shaughnessy, J. A.
Clark, P. Kumar, J. Calderón Bustillo, and J. Veitch, Phys.
Rev. D 96, 124041 (2017).

[80] F. Özel and P. Freire, Annu. Rev. Astron. Astrophys. 54,
401 (2016).

[81] T. Dietrich, S. Khan, R. Dudi, S. J. Kapadia, P. Kumar, A.
Nagar, F. Ohme, F. Pannarale, A. Samajdar, S. Bernuzzi,
G. Carullo, W. Del Pozzo, M. Haney, C. Markakis, M.
Pürrer, G. Riemenschneider, Y. E. Setyawati, K. W. Tsang,
and C. Van Den Broeck, Phys. Rev. D 99, 024029 (2019).

[82] R. O’Shaughnessy, B. Farr, E. Ochsner, H.-S. Cho, C.
Kim, and C.-H. Lee, Phys. Rev. D 89, 064048 (2014).

[83] M. Hannam, D. A. Brown, S. Fairhurst, C. L. Fryer, and
I. W. Harry, Astrophys. J. Lett. 766, L14 (2013).

[84] X. Zhu, E. Thrane, S. Osłowski, Y. Levin, and P. D. Lasky,
Phys. Rev. D 98, 043002 (2018).

[85] L. Wade, J. D. E. Creighton, E. Ochsner, B. D. Lackey, B.
F. Farr, T. B. Littenberg, and V. Raymond, Phys. Rev. D 89,
103012 (2014).

[86] M. Favata, Phys. Rev. Lett. 112, 101101 (2014).

[87] B. D. Lackey and L. Wade, Phys. Rev. D 91, 043002
(2015).

[88] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K.
Ackley, C. Adams, T. Adams, P. Addesso et al. (LIGO
Scientific and Virgo Collaborations), Phys. Rev. X 9,
011001 (2019).

[89] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy,
F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso,
R. X. Adhikari et al., Phys. Rev. Lett. 116, 061102
(2016).

[90] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese,
K. Ackley, C. Adams, T. Adams, P. Addesso, R. X.
Adhikari, V. B. Adya et al., Phys. Rev. Lett. 118,
221101 (2017).

[91] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K.
Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari,
V. B. Adya et al. (LIGO Scientific and Virgo Collabora-
tions), Astrophys. J. Lett. 851, L35 (2017).

[92] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K.
Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari,
V. B. Adya et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 119, 141101 (2017).

[93] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K.
Ackley, C. Adams, T. Adams, P. Addesso et al. (LIGO
Scientific and Virgo Collaborations), Phys. Rev. Lett. 119,
141101 (2017).

[94] M. Hannam, P. Schmidt, A. Bohé, L. Haegel, S. Husa, F.
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