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Until fairly recently, it was widely accepted that local cosmic-ray spectra were largely featureless power
laws, containing limited information about their acceleration and transport. This viewpoint is currently
being revised in light of evidence for a variety of spectral breaks in the fluxes of cosmic-ray nuclei. Here,
we focus on cosmic-ray electrons and positrons which at the highest energies must be of local origin due to
strong radiative losses. We consider a pure diffusion model for their Galactic transport and determine its
free parameters by fitting data in a wide energy range: measurements of the interstellar spectrum by
Voyager at mega-electron-volt energies, radio synchrotron data (sensitive to giga-electron-volt electrons
and positrons), and local observations by AMS up to approximately 1 TeV. For the first time, we also model
the time-dependent fluxes of cosmic-ray electrons and positrons at giga-electron-volt energies recently
presented by AMS, treating solar modulation in a simple extension of the widely used force-field
approximation. We are able to reproduce all the available measurements to date. Our model of the
interstellar spectrum of cosmic-ray electrons and positrons requires the presence of a number of spectral
breaks, both in the source spectra and the diffusion coefficients. While we remain agnostic as to the origin
of these spectral breaks, their presence will inform future models of the microphysics of cosmic-ray
acceleration and transport.
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I. INTRODUCTION

The last decades have witnessed an impressive effort
aimed at understanding the acceleration and the transport of
Galactic cosmic rays (CRs). On the observational side, a
large number of experiments have presented measurements
of local fluxes of various CR species and their combined
anisotropy. In addition, measurements of the diffuse
gamma-ray flux contain information about the CR fluxes
in other regions of the Galaxy. The wealth of accurate and
diverse data has challenged our understanding of CR origin
and propagation. In particular, the long-held wisdom that
CR spectra are featureless power laws from giga-electron-
volt to peta-electron-volt energies had to be revised in
the light of a number of spectral breaks observed, most
prominently the “discrepant hardening” in nuclei fluxes at
rigidities of a few hundred gigavolts [1–5]. On the modeling
side, this requires modifications of the underlying assump-
tions, in particular on the shapes of source spectra and the
rigidity dependence of the Galactic diffusion coefficient.
CR electrons and positrons are of central importance in

investigating the origin of CRs in that at the highest energies
they must be necessarily of local origin. For example, in the
usually assumed radiation fields (cf., e.g., Ref. [6]), elec-
trons of 1 TeV cool in approximately 3 × 105 yr, which
limits their distances to approximately 300 pc. (Here, we

have assumed a diffusion coefficient of 1029 cm2 s−1.)
Specifically, spectral features at hundreds of giga-elec-
tron-volts or higher energies can be related to individual
sources of CR electrons and positrons. In addition, CR
electrons and positrons in other regions of the Galaxy
contribute to the diffuse emission at radio/microwave and
gamma-ray wavelengths by synchrotron emission and
inverse Compton scattering, respectively. Understanding
the local fluxes is imperative for any global model of
CR electrons and positrons. Finally, CR positrons have
received heightened attention as a probe for dark matter
annihilation or decay. The fluxes of CR electrons and
positrons from astrophysical sources constitute an irreduc-
ible background for any search of exotic signatures such that
precise predictions are required.
In CR electrons and positrons, two features have attracted

the most attention over the last decade. First, the positron
fraction, i.e., the ratio of the positron flux to the sum of
electron and positron fluxes, is rising above approximately
7 GeV. The existence of such a rise, which was already
hinted at in the 1–50 GeV energy range by the HEAT
observations in 1994 [7,8], was proven by the PAMELA
orbital observatory [9] and later confirmed by AMS at an
unprecedented level of precision [4]. Over the years, this
excess of high-energy positrons has attracted several

PHYSICAL REVIEW D 100, 043007 (2019)

2470-0010=2019=100(4)=043007(18) 043007-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.043007&domain=pdf&date_stamp=2019-08-09
https://doi.org/10.1103/PhysRevD.100.043007
https://doi.org/10.1103/PhysRevD.100.043007
https://doi.org/10.1103/PhysRevD.100.043007
https://doi.org/10.1103/PhysRevD.100.043007


interpretations mostly in terms of astrophysical mechanisms
such as the emission from pulsar wind nebulae [10,11] or the
diffusive shock acceleration of positrons produced in spalla-
tion reactions occurring inside the shock region of one or
more supernova remnants (SNRs) [12,13]. Numerous inter-
pretations of this anomaly in terms of dark matter annihi-
lation or decay have also been put forward [14,15], even if it
has been shown that such interpretations can be in strong
contention with the constraints that are derived from other
dark matter indirect detection channels [16]. Secondly, a
spectral softening was observed in the sum of electron and
positron fluxes at approximately 1 TeV by H.E.S.S. obser-
vations [17,18] and recently confirmed by DAMPE [19].
Very recently, AMS reported a spectral cutoff in the
positrons around 300 GeV [20], notably at significantly
smaller energies than the break in the all-electron spectrum.
At energies below a few tens of giga-electron-volts,

studies of the interstellar spectra are hampered by solar
modulation, that is the energy losses and flux suppression
due to the interaction of CRs with the solar wind and its
frozen-in magnetic field. (See Ref. [21] for a review). This
modulation is periodic with a primary period of 11 years.
Until recently, the statistics of the experimental data was
such that onlyCR spectra averaged over significant fractions
of the 11 year period and therefore only studies of the
average properties of solar modulation were possible. These
time-averaged data could be reasonably well described by
the simple and popular force-field model. Recently, the
substantial increase in the number of events collected by the
detectors has made time-dependent measurements of CR
spectra possible. Time-dependent lepton spectra have been
released by PAMELA [22,23] and AMS [24]. In particular,
Ref. [22] reports the measurement performed by PAMELA
of the electron flux in the [70 MeV–50 GeV] energy range,
binned in seven time bins (of around six months each) that
cover the solar minimum from July 2006 toDecember 2009.
PAMELA has also presented the positron-to-electron ratio
in the [500 MeV–5 GeV] energy range for 35 time intervals
(of around three months each) between July 2006 and
December 2015 [23]. AMS has presented the electron flux,
the positron flux, and the positron-to-electron ratio mea-
sured in the [1 GeV–50 GeV] energy range and in the time
period from June 2011 to April 2017, binned in time
intervals with a duration of one Bartels rotation each [24].
The study of solar modulation and modeling of the

interstellar spectra benefits not only from these new time-
dependent measurements but also from the first direct
measurements in the interstellar medium. Specifically,
the Voyager I spacecraft, launched in 1977, transited the
heliopause in 2012 and entered into interstellar space [25].
It should be mentioned, in any case, that the Voyager
measurements are at significantly lower energies than
those at the Earth’s position such that the effect of solar
modulation cannot be estimated without an extrapolation
or, better, modeling of the spectra.

The aim of this paper is to model the electron and
positron local interstellar spectra (LIS) over a wide energy
range from tens of mega-electron-volts to approximately
tera-electron-volts. Our model will contain a number of
spectral breaks in the source spectra and in the rigidity
dependence of the diffusion coefficient. To this end, we will
exploit a variety of complementary experimental datasets.
We will emphasize which dataset requires the introduction
of which spectral break. Our analysis will benefit from the
recent time-dependent measurements of the electron and
positron fluxes performed by AMS [24]. We will illustrate
how the effect of solar modulation on these fluxes can be
described to a very good extent within the framework of a
simple analytical extension of the force-field approximation.
The paper is organized as follows. In Sec. II, we illustrate

the main features that characterize our implementation of
the acceleration and transport of CR electrons and posi-
trons. In Sec. III, we describe the setup of the different
analyses that we perform, and we discuss our results. Then,
in Sec. IV, we summarize our findings and provide our
conclusions.

II. METHOD

A. CR sources

CR electrons and positrons can be of either primary or
secondary origin. Primary CRs are those particles that
undergo acceleration in astrophysical sources. Primary
electrons are expected to be accelerated by SNRs through
diffusive shock acceleration. The number of CRs of a given
species injected by SNRs into the interstellar medium
(ISM) per unit time, volume, and energy is described by
a source term that can be expressed as

QSNR ¼ Q0fðr; zÞgðRÞ; ð1Þ
where we have made the standard assumption that the
rigidity and spatial dependence can be factorized. The
rigidity dependence is defined by the function gðRÞ, which
we assume to be a power law, possibly with a number of
breaks, as will be illustrated in greater detail in Sec. III for
the different steps of our analysis. The function fðr; zÞ,
which describes the spatial dependence of the SNR source
term, is assumed to be the one proposed by Ref. [26].1

Lastly, the normalization factor Q0 takes into account the
rate of supernova explosions and the luminosity that SNRs
inject into the ISM in the form of CRs.
As mentioned above, for the rise in the positron fraction,

several interpretations have been put forward. In this paper,

1We have verified that the use of the source profile proposed in
Ref. [27] gives identical results to the ones presented in Sec. III.
On the other hand, the profile proposed in Ref. [28], which is
significantly different than the ones in Refs. [26] and [27], results
in a slightly different e� spectrum in the mega-electron-volt range
and therefore would require different values for the parameters
that will be introduced to fit Voyager data in Sec. III C.
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we take a model-independent viewpoint and assume this
extra component of high-energy electrons and positrons to
have a spatial dependence that traces the one of SNRs and a
rigidity dependence that can be expressed as a power law
with an exponential cutoff:

Qextra ¼ Nx

�
R
R0

�
−Γx

exp

�
−

R
Rcut

�
fðr; zÞ: ð2Þ

Such a spectrum is compatible with models that describe
the acceleration of electrons and positrons in the magneto-
sphere of pulsars (see the discussion in Ref. [11]) as well as
with models that describe the acceleration of secondary
positrons in SNRs (as detailed in Ref. [13]). In all our
investigations, we adoptRcut ¼ 600 GV.We assumeQextra
to be a charge-symmetric source term, in the sense that the
electron and positron spectra injected into the ISM by the
extra source are identical. This assumption is not perfectly
consistent with our model-independent take on the extra
term. Indeed, while pulsars are expected to be charge-
symmetric sources of CR leptons, other sources invoked as
interpretations to the rising positron fraction may not be. As
an example, if one assumes this extra source to be SNRs
accelerating secondaries produced in spallation reactions,
such a mechanism will produce slightly more positrons
than electrons (as a consequence of charge conservation in
proton-proton collisions). If we were to fix the normaliza-
tion of the extra source by fitting to the positron flux, the
small charge asymmetry would have a negligible impact on
the electron flux as typically high-energy electrons are
dominated by the SNR component described by QSNR. In
any case, one has to consider that within the present
experimental precision a charge-symmetric source term
can be neither confirmed nor excluded.
Secondary electrons and positrons are produced by the

interaction of primary CRs (mostly proton, denoted here
with p, and He nuclei) scattering off the hydrogen and
helium nuclei of the ISM. We describe this process with the
source term

Qe�ðR; x⃗Þ

¼ 4π
X
i¼p;He

X
j¼H;He

nj

Z
dEiΦiðR; x⃗Þ dσ

dR
ðiþ j→ e�þXÞ;

ð3Þ
where dσ

dR ðiþ j → e� þ XÞ represents the differential
inclusive cross section for the production of electrons
and positrons in ij reactions; for the pp case, we take
the parametrization proposed in Refs. [29,30], while for the
processes involving He, as a projectile or as a target, we
adopt the rescaling of the pp cross section obtained by
following the prescriptions given in Ref. [31]. The quantity
nj represents the density of the target species j, which is
taken from the model discussed in Ref. [32], while
ΦiðR; x⃗Þ is the flux of the primary CR species i.

B. Galactic propagation setup

CRs propagate across the diffusive halo of the Galaxy,
which we assume here to be a cylinder of half-height
H ¼ 4 kpc and radius R ¼ 20 kpc. The propagation is
characterized by the interplay between several processes,
and it is typically described in terms of a transport equation
which models the time evolution of the CR density per unit
momentum Ψðr⃗; p; tÞ, which is related to the CR flux Φ by
the relation Φ ¼ v=ð4πÞΨ, with v being the CR velocity.
In full generality, the transport equation can be written
as [33,34]

∂Ψðr⃗;p;tÞ
∂t ¼Qðr⃗;p;tÞþ∇⃗ ·ðDxx∇⃗Ψðr⃗;p;tÞ− V⃗cΨðr⃗;p;tÞÞ

þ ∂
∂pp

2Dpp
∂
∂p

1

p2
Ψðr⃗;p;tÞ

−
∂
∂p

�
_p−

p
3
ð∇⃗ · V⃗cÞΨð ⃗r;p;tÞ

�

−Ψðr⃗;p;tÞ
�
1

τf
−
1

τr

�
: ð4Þ

We adopt the free-escape boundary condition,
ψðz ¼ �HÞ ¼ 0.
As is customary, we have written the above equation in

terms of the CR momentum per nucleon p, related to the
rigidity R by the relation p ¼ ðZ=AÞR, with A and Z
being, respectively, the mass and atomic number of the CR
species under consideration. The terms on the right-hand
side of Eq. (4) describe, respectively, the CR source terms
(as described in the previous paragraph), spatial diffusion,
convection (with the velocity of the convective wind
being V⃗c), diffusive reacceleration, energy losses, and
(in the fourth line) nuclear fragmentation and radioactive
decays. These two processes are characterized, respec-
tively, by the timescales τf and τr (with τr being the lifetime
of the CR species under consideration). The terms in the
third line are to be included only when treating CR nuclei,
as it is in the case discussed in Sec. III A.
In this paper, we consider a simplified form of the

transport equation, which we use to model the transport of
all CR species and which refers to a scenario where both
diffusive reacceleration and convection are neglected. Our
transport equations, which we solve with the publicly
available DRAGON code [35], are therefore

∂Ψ
∂t ¼

8<
:
Qþ ∇⃗ ·Dxx∇⃗Ψ− ∂

∂p _p− 1
τf
Ψ− 1

τr
Ψ CRnuclei;

Qþ ∇⃗ ·Dxx∇⃗Ψ− ∂
∂p _p CRleptons:

ð5Þ

In the following, we only consider steady-state solutions,
i.e., ∂Ψ=∂t≡ 0.
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The energy loss processes that dominate the _p term are
Coulomb and ionization losses in the case of CR nuclei and
synchrotron, inverse Compton, and bremsstrahlung losses
in the case of CR leptons. For a detailed discussion on how
these processes can be modeled, see Ref. [36]. Important
ingredients for the modeling of these energy loss mecha-
nisms are the gas density, the Galactic magnetic field, and
the interstellar radiation field. As already mentioned, for
the gas density, we follow the prescriptions of Ref. [32],
while the magnetic field follows the model of Ref. [37],
and the interstellar radiation field is the one described in
Refs. [38,39].
The most important mechanism in our modeling of

CR transport is spatial diffusion. CRs diffuse due to their
resonant interaction with turbulent magnetic fields. This
diffusion process is treated in terms of a diffusion coef-
ficient Dxx, which, in the most general case, is a tensor of
which the components are both spatially and rigidity
dependent. Here, we will assume the simplest scenario
in which diffusion is isotropic and homogeneous across the
whole diffusive halo. Hence, we consider a scalar diffusion
coefficient with no spatial dependence.
The rigidity dependence of the diffusion coefficient

is set by the spectrum of the small-scale turbulence in
the interstellar medium. In particular, a (one-dimensional)
power-law spectrum k−q in wave number k leads to a
diffusion coefficient proportional to∝Rδ, where δ ¼ 2 − q.
We assume that the rigidity dependence of the diffusion
coefficient is in the form of an n-times broken power law,

DxxðRÞ¼D0β

�
R
R1

�
δ1Yn

i¼1

�
1þ

�
R
Ri

�
1=si

�
siðδiþ1−δiÞ

; ð6Þ

where D0 is a normalization factor, β is the velocity of the
particle under consideration, δi are the spectral indices in
the rigidity regimes partitioned by the break rigidities Ri,
and the si parametrize the smoothness of the rigidity
breaks. For the Galactic diffusion coefficient, we assume
two breaks, n ¼ 2. In Fig. 1, we show the diffusion
coefficient as a function of rigidity with the parameters
as determined below.
Under a physical point of view,R1 (which we assume to

be located at rigidities below 10 GV) is introduced
following Ref. [40] to model in an effective way the
damping of turbulence due to an (almost) isotropic dis-
tribution of cosmic rays. Moreover, as it will be detailed in
the following, the presence of such a break is required to
reproduce the behavior of the diffuse radio emission. On
the other hand, the second breakR2, which we expect to be
at around 200 GV, is introduced as it provides a satisfactory
fit to the most recent data from AMS [41,42], which have
clearly shown that, at this rigidity, the fluxes of light
secondary CRs (Li, Be, and B) exhibit identical hardening,
stronger than the one that characterizes the flux of primary
CRs (He, C, and O). A possible physical motivation for the

existence of a break in the diffusion coefficient at around
200 GV could be a change in the origin of the turbulence
that is responsible for CR diffusion. As an example, in
Ref. [43], it has been suggested that such a break could be
associated to the transition between diffusion in an external
turbulence (as the one injected from SNRs) and diffusion
onto CR self-generated waves (through the mechanism of
streaming instability).

C. Solar modulation

Before reaching Earth, CRs have to cross the helio-
sphere. This region hosts a turbulent magnetic field,
together with a hot and ionized outflow called solar wind.
The interaction of CRs with these agents impacts the CR
distribution function, in a process known as solar modu-
lation. Similarly to the case of Galactic propagation
discussed above, also solar modulation can be modeled
by means of a transport equation. Assuming a steady-state
scenario and no injection of CRs in the heliosphere, this
equation can be written as [44]

V⃗ ·∇f −∇ðK∇fÞ −R
3
ð∇ · V⃗Þ ∂f∂R ¼ 0; ð7Þ

where f is the CR phase space density (related to the
number density by the relation dΨ ¼ fðr; pÞd3rd3p),
while K is the spatial diffusion coefficient in the helio-
sphere and V⃗ is the velocity of the solar wind. Here, below,
we discuss two ways of solving Eq. (7).

1. Standard force-field approximation

Away of solving Eq. (7) is within the framework of the
so-called force-field approximation introduced in Ref. [45].
Such a scenario is characterized by a series of simplifying
assumptions. In particular, these assumptions consist in
considering spherically symmetric boundary conditions at
the heliospheric radius R, a radially directed and constant

FIG. 1. Diffusion coefficient as a function of rigidity for the
parameters determined below.
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solar wind velocity (V⃗ ¼ Vr̂), and a uniform and isotropic
spatial diffusion (such thatK is a scalar). Moreover, one has
to assume that the CR streaming (or radial current density),
under the influence of diffusion and convection, is zero,

CVf − κ
∂f
∂r ¼ 0; ð8Þ

where C ¼ −ð1=3Þð∂ ln fÞ=ð∂ lnpÞ is the Compton-
Getting factor.
Under these assumptions, Eq. (7) simplifies to

RV
3K

∂f
∂Rþ ∂f

∂r ¼ 0; ð9Þ

which can be solved with the method of characteristics. If
one assumes K ¼ K0βðR=R1Þ, in the relativistic case
(where β ≈ 1), the CR rigidity at the top of the Earth’s
atmosphere (i.e., after solar modulation) is given by

RTOA ¼ RLIS − ϕ; ð10Þ
whereRLIS andRTOA are the local interstellar and Top-Of-
Atmosphere rigidities, i.e., the rigidities before and after
solar modulation, respectively, while

ϕ ¼ VR
3K0

R1 ð11Þ

is the force-field potential.2 Once the relation between
RTOA and RLIS is known, one can exploit the fact that the
CR distribution function is conserved (as a consequence of
Liouville’s theorem) and write the CR top-of-atmosphere
intensity as

JTOA ¼ fR2
TOA ¼

�
RTOA

RLIS

�
2

JLIS: ð12Þ

2. Extended force-field approximation

To investigate the recent AMS time-dependent electron
and positron data, we construct an extension of the force-
field approximation, which is based on assuming a more
general rigidity dependence of the CR diffusion coefficient
in the heliosphere. In particular, we assume a broken
power-law behavior:

KðRÞ ¼ K0β

�
R
Rb

�
γ1
�
1þ

�
R
Rb

�
1=s

�
sðγ2−γ1Þ

: ð13Þ

The physical motivation behind this assumption is that
the rigidity dependence of the diffusion coefficient reflects
the wave number dependence of the power spectrum of the
turbulent component of the magnetic field. For resonant
interactions between the CRs and the turbulent magnetic
field, there is a one-to-one relation between the particle’s

rigidity and the turbulence’s wave number, with the rigidity
being inversely proportional to the resonant wave number.
The range of wave numbers far above 2π=l0, where l0 is
the outer scale of turbulence, is referred to as the inertial
range and is commonly modeled with a power spectrum
PðkÞ ∝ k−q, e.g., with q ¼ 5=3 for a Kolmogorov phe-
nomenology. For smaller wave numbers, the turbulent
power is usually significantly suppressed. Quasilinear
theory then predicts resonant interactions for particles with
rigidities small enough such that the resonant wave number
is above 2π=l0 and a diffusion coefficient K ∝ R2−q. For
rigidities large enough such that the resonant wave number
is below 2π=l0, interactions are nonresonant, and transport
is in the small-angle scattering limit with K ∝ R2. (See,
for example, the recent discussion presented in Ref. [46].)
Note that small-angle scattering is oftentimes considered
for ultrahigh-energy cosmic rays for which the resonant
scale would be beyond any conceivable outer scale of
turbulence. However, the only scale in the problem is the
outer scale of turbulence such that the problem can be
easily scaled to environments with a smaller outer scale,
like the heliosphere.
We assume l0 to be equal to the coherence length of the

heliospheric field, which has been estimated to be in a
range that goes from 0.0079 [47] to 0.04 A.U. [48]. Such
values roughly correspond to rigidities in the interval
3–12 GV. As it will be detailed in Sec. III, in our analysis,
we will consider both γ1 and γ2 as free parameters. The
reason is that, as discussed, for example, in Ref. [49], while
the behavior of the spectral indices at scales much smaller
and much larger than l0 can be well understood in terms of
the considerations illustrated above, the same cannot be
said about the rigidity dependence of the diffusion tensor
across the coherence length, the shape of which might
depend on the turbulence model that is adopted and can
even have a functional form that is more complicated than
the broken power law that we are imposing here. The TOA
rigidity is obtained as a function of LIS rigidity by
integrating Eq. (9). Due to the complicated functional form
of the diffusion coefficient, the relation between RTOA and
RLIS is not as simple as in the original force-field model,
cf. Eq. (10). However, the overall strength of modulation is
still determined by the ϕ-parameter as before; see Eq. (11).
AMS time-dependent electron and positron data cover a

period of six years within the 24th solar cycle, from
November 2011 (Bartels rotation number 2427) to April
2017 (Bartels rotation number 2506). In modeling the time
dependence of the force-field potential, we consider the fact
that this quantity should have two minima at the two
extremes of the time interval that is covered by the dataset
that we consider and a maximum that should correspond to
the maximum of the solar activity in the solar cycle that we
are considering (roughly April 2014). We parametrize ϕðtÞ
as the sum of a constant term, a Lorentzian function, and a
hyperbolic tangent:

2It is important to point out that ϕ has the dimensions of a
rigidity only in this specific case where β ¼ 1 and K ∝ R.
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ϕðtÞ ¼ aþ b − a − c−a
2

1þ ðt−t0τ Þ2 þ c − a
2

�
1þ tanh

�
t − t0
τ

��
:

ð14Þ

The time coordinate t corresponds to the Bartels rotation
number (which we shift to have the first data point at
t ¼ 0). The parameter t0 identifies the position of the
maximum, τ parametrizes the width of the maximum,
a ¼ ϕð−∞Þ, b ≈ ϕðt0Þ, and c ¼ ϕð∞Þ.

III. ANALYSIS

This section is devoted to the description of the different
steps of our analysis. The analysis consists in fitting models
of varying complexity to different combinations of datasets.
Indeed, we start with a relatively small number of datasets,
which can be reproduced by a relatively simple source
spectrum. Adding in more datasets requires more compli-
cated source spectra, and our analysis aims at understand-
ing which particular dataset requires an additional feature
in the source spectrum.
In particular, we start in Sec. III A by fitting to the AMS

measurement of the boron-to-carbon ratio, which fixes the
diffusion coefficient. Next, in Sec. III B, we determine the
source spectrum of electrons and positrons by fitting to
the radio spectrum at high latitudes and the high-energy
data on the local electron and positron spectra as measured
by AMS. In Sec. III C, we then add the low-energy Voyager
I data for the all-electron spectrum beyond the heliopause,
that is the presumed interstellar flux. Finally, in Sec. III D,
we consider the recent AMS measurement of the time-
dependent electron-positron data at energies of 1–50 GeV.

A. Fitting to AMS B/C, proton and helium data

We fix the parametersD0, δ1, δ2, δ3,R1, andR2 of Eq. (6)
by fitting the AMS data on the boron-to-carbon ratio (B/C)
[41]. In addition, we fit also the AMS data on the CR proton
[4] and helium [42], since the spectra of these CR particle
species are needed to compute the secondary e� emission, as
discussed in Sec. II A. The systematic uncertainties of the
different data points are treated as detailed in Appendix A.
The proton and helium injected spectra are assumed to be

broken power laws in rigidity. This means that for both
species the function gðRÞ that appears in Eq. (1) is assumed
to be of the form

gðRÞ ¼

8>>><
>>>:

�
R
R�

�
−θ1

for R ≤ R�;
�
R
R�

�
−θ2

for R > R�;
ð15Þ

where R� is the position of the rigidity break, where the
spectral index passes from θ1 to θ2. For all CR species
heavier than helium, we adopt the helium spectral indices. TA
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It is important to point out that, because of this, the fits to
B/C and to He data are not independent of each other.
The proton, helium, and B/C data that are considered

here in the fit are solar modulated data. As we are mainly
concerned with CR electrons and positrons, we treat solar
modulation in terms of the standard force-field model
described in Sec. II C 1. In our fit, we allow for different
values of the Fisk potential for the different observables
under consideration.
Another remark that has to be made is that when

determining the position of the low-rigidity break in the
diffusion coefficient R1 we consider the value of this
parameter that provides the best fit to the diffuse synchrotron
emission. More in detail, we follow an iterative procedure
whereweperform several fits of proton, helium, andB/Cdata
under different flat priors for the R1 parameter. Among the
configurations of the parameters that are obtained in thisway,
we isolate the ones that provide an acceptably good fit to
nuclear data (i.e., we exclude the ones for which
χ2=d:o:f > 1), and we select the best-fit configuration as
the one that is in best agreement with radio data, fitted within
the 0 breaks model (both the model and the fit will be
discussed in the next section). It is worth stressing that, as
mentioned above, radio observations require a break in the
diffusion coefficient; indeed, when fitting the 0 breaksmodel
to radio data without the low-energy break in the diffusion
coefficient, the χ2 we obtain is 19.5 (for six data points).
The best-fit parameters found in the fit are reported in

Table I, while the χ2 values associated to the different
datasets can be found in Table II, and the best-fit configu-
rations are shown together with AMS B/C and proton data

in Fig. 2. The quality of the fit is remarkably good, as it can
be seen, in the case of the proton and B/C data, from the
pulls that are shown in the lower panel of the plots. One
potential issue could be represented by the fact that the
rigidity breaks in the proton and helium source terms are
found to be very close to the low-rigidity break in the
diffusion coefficient. Similar results were already found in
Ref. [25] for purely diffusive CR transport models very
similar to the one we are discussing here. Given the lack of
theoretical arguments that can be invoked to motivate the
existence or the location of such breaks in the H and He
source terms, it is difficult to establish if their vicinity to the
break in the diffusion coefficient represents an issue or not.
Moreover, it is to be expected that the rigidities at which all
the breaks are found (both in the diffusion coefficient and in
the source terms) would shift depending on the treatment of
solar modulation. In any case, even if a thorough inves-
tigation on this issue is beyond the scope of this paper, it is
clear that the vicinity of the breaks introduces a correlation
between the parameters δ1, θp;1, and θHe;1.

B. Fitting to radio and AMS local high-energy electron
and positron data

CR electrons and positrons can be injected in the ISM
through a variety of processes as discussed in Sec. II A.
Here, we assume the source term of primary electrons
injected by SNRs to be a simple power law; i.e., the rigidity
dependence of Eq. (1) is given by

gðRÞ ¼ Ne−

�
R
R0

�
−α2

: ð16Þ

As discussed in Sec. II A, high-energy positrons and
electrons are assumed to be accelerated by an extra source,
with a rigidity spectrum that depends on two parameters:
the normalization Nx and the spectral index Γx. Con-
cerning the secondary component produced by spallation

TABLE II. χ2 values associated to the different datasets.

χ2B=C=d:o:f: χ2He=d:o:f: χ2p=d:o:f:

25.61=58 61.44=59 45.80=55

FIG. 2. The left and right panels show, respectively, the boron-to-carbon ratio and the proton flux for the best-fit configuration of our
model, in comparison with AMS data. B/C and proton data are taken, respectively, from Refs. [41] and [4]. For both plots, the lower
panels show the pulls.
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processes, it is modeled as in Eq. (3), with the proton and
helium spectra determined through the fitting procedure
described in the previous paragraph.
With all this considered, the model that we are inves-

tigating here, which we label the 0 breaks model, is
characterized by five free parameters. Four of these
parameters are directly associated to the electrons and
positrons source terms. They are the spectral index α2 and
the normalization Ne− of the electron spectrum injected by
SNRs [see Eq. (16)] and the spectral index Γx of the e�
spectrum injected by the extra component and its normal-
isation Nx [see Eq. (2)]. In addition, the synchrotron flux
depends on the strength of the magnetic field Bðr⃗Þ which
varies as a function of position. We adopt a model, with a
simple exponential dependence, on the galactocentric
radius r and the distance from the disk, z,

Bðr; zÞ ¼ B0 exp½−ðr − r0Þ=ρ − jzj=z0�: ð17Þ

Our results are rather insensitive to the specific values of r0,
ρ, and z0, and so we adopt r0 ¼ 8.5 kpc, ρ ¼ 8 kpc, and
z0 ¼ 2 kpc. However, we allow for the normalization to
float in the fit by a factor fB with respect to the fiducial
value of B0 ¼ 3 μG. We expect for fB to differ from 1 by a
factor of a few at most. It is important to remark that fB is
expected to be degenerate with respect to the halo size H.
More specifically, one has f2B ∝ H−1 as a consequence of
the fact that the synchrotron signal is sensitive to the total
magnetic energy of the Galaxy.3

We determine the five free parameters by fitting to radio
and AMS local high-energy electron and positron data
[20,51]. In building the dataset of radio measurements to be
used in the fit, we follow the approach described in
Refs. [50,52–55], which consists of considering those radio
surveys that display a complete (or nearly complete) sky
coverage at several frequencies in the megahertz to giga-
hertz interval (more precisely, 22 MHz, 45 MHz, 408 MHz,
1420MHz, 2326 MHz, 23 GHz, 33 GHz, 41 GHz, 61 GHz,
and 94 GHz). For each one of these frequencies, an average

flux is estimated by integrating the sky maps produced by
the respective survey over the high-latitude region, once the
contribution from the Galactic plane and from radio sources
is removed through the application of the WMAP extended
temperature analysis mask [56]. The uncertainty associated
to the radio flux in each frequency bin is the result of the
variance of the flux in the region of the sky under
consideration. It is important to point out that in our
analysis of the synchrotron data not all the frequencies
enter in the calculation of the χ2. In particular, we will not
include in our assessment of the goodness of the fit the
frequencies above 10 GHz as at these frequencies the radio
emission is expected to receive important contributions
from free-free and thermal dust emission. Therefore, one
can consider the radio flux determined at these frequencies
as an upper limit to the diffuse emission from CR electrons
and positrons.
When fitting to AMS high-energy data, we adopt the

prescription described in Appendix A to treat systematic
uncertainties and to determine an uncertainty on the best-fit
parameters. Furthermore, we consider only measurements
above a minimum energy, which we set at Ecut ¼ 40 GeV.
The reason for this choice is that we compare AMS data to
the unmodulated LIS. This means that we have to consider
energies that are sufficiently large that the effect of solar
modulation can be considered negligible with respect to the
accuracy of the data. We have checked that alternative
choices of Ecut do not change our results in a significant
way. More details on the impact that solar modulation
has on the flux at different energies will be provided in
Sec. III D when we will describe the fit to the AMS time-
dependent data.
Within the scenario that we have described in the

previous section, characterized by a double break in the
rigidity dependence of the spatial diffusion coefficient, this
simple model is able to fit remarkably well all the datasets
we are considering. Our best-fit parameters are reported in
the first row of Table III, while the values of the χ2

associated to each dataset are reported in the first row of
Table IV. The best-fit configuration is shown in comparison
with data in the upper line and lower left panels of Fig. 3
(specifically, the 0 breaks model is represented by the
magenta dotted-dashed lines). One important point to

TABLE III. Best-fit parameters for the three fits to different combinations of datasets considered in our analysis. The parameters Φe−

and Φx correspond to the fluxes associated to SNRs and to the extra component at R ¼ 30 GV, the normalizations of which are a
function of the free parameters Ne− and Nx, respectively. The uncertainty on each parameter is determined through the procedure
described in Appendix A.

Model Φe− ðGeV−1m−2sr−1s−1Þ Φx ðGeV−1m−2sr−1s−1Þ Γx Ra (GV) Rb (GV) α1 α2 α3 fB

0 breaks ð4.21� 0.05Þ × 10−3 ð2.38� 0.02Þ × 10−4 1.60� 0.01 � � � � � � � � � 2.58� 0.01 � � � 3.08þ0.02
−0.05

1 break ð4.21� 0.05Þ × 10−3 ð2.37� 0.01Þ × 10−4 1.60þ0.01
−0.03 0.109þ0.005

−0.003 � � � 2.13þ0.01
−0.02 2.57� 0.02 � � � 3.07þ0.03

−0.08
2 breaks 4.37þ0.01

−0.06 × 10−3 2.39þ0.06
−0.02 × 10−4 1.63� 0.01 0.411þ0.001

−0.004 83.4þ1.8
−0.1 2.12þ0.002

−0.012 2.69� 0.01 2.53� 0.01 2.48þ0.04
−0.01

3Moreover, as discussed in Ref. [50], one can use the latitude
profile of the synchrotron emission at 408 MHz that allows one to
place a lower bound on the halo size at 2 kpc.
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remark is that the fit requires the slope of the primary
electron spectrum to be rather hard, and this has a great
impact at low energies, where, as can be seen in the top left
panel of Fig. 3, the electron LIS can even be below the data

(in particular in the region below 40 GeV, not included in
the fit). This will pose issues when the low-energy data (and
solar modulation) will be taken into account, as we will
discuss in detail later.

FIG. 3. In the top row, the electron (left panel) and positron (right panel) LIS predicted by the 0 breaks (magenta dot-dashed lines) and
2 breaks (black solid lines) models described in the text are shown together with AMS data [20,51]. We also show the secondary
component only (dashed black lines), which is the same in both models. In each plot, gray data points are the ones that have been
excluded in the fitting procedure. The panels below each plot show the pulls (data-model/ σexp). In both plots, the LIS predicted by the 1
break model is not shown, as it is undistinguishable from the one of the 0 breaks model. The bottom left panel illustrates the behavior of
the predicted synchrotron emission, for both the 0 breaks and the 2 breaks models in comparison with data. Data points that are not used
in the fit are in gray. In the bottom right panel, the all-electron flux predicted at low energies by the two models and by the 1 break model
is shown together with data from Voyager 1 [25].

TABLE IV. χ2 values associated to the fit of the different models to the datasets considered in our analysis.

Model χ2e− HE=d:o:f: χ2eþ HE=d:o:f: χ2radio=d:o:f: χ2Voy=d:o:f: χ2e− TD=d:o:f: χ2eþ TD=d:o:f: χ2eþ=e− TD=d:o:f:

0 breaks 27.5=20 23.0=23 3.3=4 � � � � � � � � � � � �
1 break 28.0=20 23.0=23 3.2=4 12.1=6 � � � � � � � � �
2 breaks 17.9=18 26.3=23 6.5=4 12.9=6 21654=3808 6533=3812 4510=3798
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C. Fitting to radio, high-energy, and Voyager data

Our intent in this part of the analysis is to constrain the
very low-energy range (i.e., below 100 MeV) of the
electron LIS. To this end, we consider the measurements
of the total electron flux made by Voyager 1 [25] at energies
between 2.7 and 74.1 MeV.
As seen in the bottom right panel of Fig. 3, the model,

which was found in the previous part of the analysis to
provide a remarkably good fit to high-energy and radio
data, produces a total electron LIS that is in disagreement
with Voyager data. More precisely, the spectrum appears to
be too soft, and its normalization seems too large. If the
parameters of the 0 breaks model are refitted including
Voyager data, one gets chi-square values of 69 and 140 with
respect to Voyager and AMS high-energy electron data,
respectively. We are thus led to adopt a break also in the
source spectrum of primary electrons,

gðRÞ ¼

8>>><
>>>:

�
R
R0

�
−α1

for R ≤ Ra;

�
Ra

R0

�
−α1

�
R
Ra

�
−α2

for R > Ra:

ð18Þ

The model that we are considering here, which we label the
1 break model, consists of seven free parameters, which are
the five that characterized the 0 breaks model, plusRa and
α1. The best-fit parameters and the χ2 associated to each
dataset are reported, respectively, in Tables III and IV, and
the low-energy total electron LIS is shown, together with
Voyager data in the bottom right panel of Fig. 3 (specifi-
cally, the 1 break model is represented by the dashed cyan
line). The goodness of fit with respect to this dataset has
significantly improved.

D. Fitting to radio, high-energy, Voyager
and AMS time-dependent data

In the previous sections, we have investigated the
electron and positron LIS. We now turn our attention to
the investigation of the solar modulated fluxes. The idea is
that modulated fluxes can provide additional constraints to
our models of the LIS. As discussed above, for example,
the fit to radio data requires a rather hard electron spectrum
which at energies O (1–10) GeV might cause the LIS
to even be lower than the measured spectrum, thus
leaving very little room, or even no room at all, for solar
modulation. A fit including low-energy local measurements
is mandatory in order to assess this potential issue.
We use the local electron and positron fluxes measured

by the AMS experiment in the 1–50 GeVenergy range. We
model solar modulation as described in Sec. II C 2. We tune
our model, which we label 2 breaks model, by performing a
global fit to all the datasets considered in the previous steps
of the analysis (radio, high-energy, and Voyager data)

together with the time-dependent electron and positron
data from AMS. In fitting the high-energy electron and
positron spectra, we consider only data above 50 GeV,
thus avoiding any overlap with the time-dependent
datasets. In building the model, we start from the one
described in the previous section (i.e., with a low-energy
break in the electron spectrum in order to reproduce
Voyager data), and then we add the possibility of having
a second break in the electron spectrum at high energies
(here, “high energies” means outside the regime where
solar modulation has an impact). This addition of a
second break is motivated by our expectation that a
model able to correctly reproduce solar modulated
data will be characterized by an electron spectrum at
Oð1 − 10Þ GeV energies, which will probably be softer
than the one found in the previous steps of the analysis.
If the spectrum is softer at low energies, a spectral
hardening will be required to reproduce the high-energy
end of the electron spectrum measured by AMS. Adding
a break adds two free parameters to the model, which
now consists of nine parameters associated to the
modeling of the positron and electron LIS, in addition
to the parameters associated to the solar modulation
model.
The results of the fit are reported in the bottom row of

Table III, while the various observables related to the
positron and electron LIS are shown in Fig. 3, and the χ2

values associated to the different datasets are listed in
Table IV. In addition, the electron and positron LIS are
reported in tabulated form in Appendix B. The LIS are
substantially modified now that solar modulated data are
taken into account. In particular, the electron LIS is
significantly softer at intermediate energies (Γ2 changes
from 2.57 to 2.69). This requires a relatively strong hard-
ening in order to fit high-energy electron data. Overall, the
fit to high-energy electron data is significantly better than in
the previous cases we considered. Moreover, as predicted,
the fit to radio data worsens as a result of the electron
LIS being steeper at low energies, but it is still in acceptably
good agreement with data. Another important consequence
of the necessity to have a softer electron spectrum at
Oð1 − 10Þ GeV energies is that the low-energy spectral
break needed to fit Voyager data gets shifted to larger
energies (it moves from 109 to 411MeV). This is illustrated
in the bottom right panel of Fig. 3.
The results of the fit to the time-dependent AMS electron

and positron fluxes are shown in Figs. 4 and 5, while the
best-fit solar modulation parameters are reported in
Table V. Our model provides a satisfactory fit to the
long-term behavior of both the positron and electron
spectra, across the whole energy range covered by AMS
time-dependent data. However, it is also manifest that there
are several short-term variations in both spectra that cannot
be described within the framework of our model. Indeed, as
discussed in Sec. II C 2, our solar modulation model is
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based on the assumption that the force-field potential varies
smoothly with time, which is not the case for the short-term
events that appear here. This complex structure of short-
term fluctuations is the result of different solar phenomena,
namely, coronal mass ejections and solar wind streams,
which can determine both increases (solar energetic particle
events) and decreases (Forbush decrease) of the fluxes of
CRs that reach Earth. These variations are typically much
larger than the experimental uncertainty associated to the
AMS measurement of the fluxes, in particular at the lowest
energies. This is illustrated in Figs. 4 and 5 for the case of
the March 2012 Forbush decrease, which is one of the
strongest solar events recorded during the AMS data-
taking period [57]. The fact that the fluctuations in the
spectra associated to short term events are larger than

the experimental uncertainties on the data points is
particularly true for the electron spectrum, which is
characterized by the smallest uncertainty, and this
explains the large χ2 value associated to this dataset.
Figure 6 illustrates the predicted eþ=e− ratio, and it can
be seen that short-term events have a much more limited
impact on the eþ=e− ratio.
It is important to stress that the introduction of the second

break in the SNR source term is necessary in order to get a
good fit to the time-dependent data. Indeed, when fitting
the parameters of the 1 break model to all the datasets that
we consider here, we get a fit to the electron time-
dependent data which is characterized by a chi-square
per degree of freedom of 6.7. This value might seem not
much higher than the one we get for the 2 breaks model

FIG. 4. Electron time-dependent fluxes, as predicted by our model (solid lines) and as measured by AMS [24] (points). Each panel
refers to a specific energy (as reported in the labels).
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(5.7), but if one looks at the quality of the fit in the single
energy bins, one finds that at energies around 10 GeV the 2
breaks model performs much better; as an example, in the
[9.62, 10.32] GeV energy bin, the chi-square per degree of
freedom is 2.7 for the 2 breaks model and 5.5 for the 1
break model. This occurs because, as discussed above, the
LIS that is found without a high-rigidity break in the SNR

source term falls below data, and this leaves no room for
solar modulation.
In order to better assess the performance of our solar

modulation model in fitting the average trend of the spectra,
we compare in the left panel of Fig. 7 the maximum
fluctuation of the electron spectrum that our fit predicts
with the one that is actually observed in AMS data and with

FIG. 5. Positron time-dependent fluxes, as predicted by our model (solid lines) and as measured by AMS [24] (points). Each panel
refers to a specific energy (as reported in the labels).

TABLE V. Best-fit parameters for the solar modulation parameters [see Eqs. (13) and (14)].

Particle γ1 γ2 Rb (GV) a (GV) b (GV) c (GV) t0 (Bartels rotation) τ (Bartels rotation)

Electron 1.32þ0.05
−0.03 1.76þ0.10

−0.01 5.71þ0.26
−0.35 0.12þ0.02

−0.03 0.585þ0.016
−0.011 0.067þ0.027

−0.035 2474.54� 0.01 34.01þ0.74
−1.47

Positron 1.25þ0.01
−0.05 2.29þ0.29

−0.33 5.13þ0.52
−0.93 0.12þ0.01

−0.04 0.413þ0.031
−0.011 0.010þ0.002

−0.03 2467.5� 0.7 26.12þ3.01
−0.83

VITTINO, MERTSCH, GAST, and SCHAEL PHYS. REV. D 100, 043007 (2019)

043007-12



the fluctuation that results from a direct fit of the spectrum
with a harmonic function of period T,

Φe−ðtÞ ¼ Aþ B cos

�
2πðt − t0Þ

T

�
; ð19Þ

where the parameters A, B, and T are taken as free
for each one of the energy bins of AMS data. In
particular, the period T is typically found to be around
8 years. The variation predicted by our model is in good
agreement with the one resulting from the harmonic fit,
which, albeit not a physically motivated model, certainly
offers a good assessment of the maximum fluctuations
that can be found within the framework of a model
where the solar modulation parameters are assumed to
have a smooth dependence on time. The behavior of the

harmonic fit at high energies is that such a fit is noise
dominated because of the increased uncertainty associ-
ated with AMS data. By comparing the fluctuations
observed in the data with the ones predicted by the
harmonic fit and by our model, one can estimate
the impact of short-term solar events. The results shown
in the left panel of Fig. 7 allow also for an estimate of the
maximum impact of solar modulation on the electron
flux; if one considers only the long-term fluctuations,
such impact is still above 1% at 20 GeV, while if one
takes into account also short-term events, the impact
reaches 4%.
In the right panel of Fig. 7, we show the unmodulated

momenta pIS as a function of time for modulated momenta
pTOA ¼ 0.1; 2 and 10 GeV=c, based, respectively, on

FIG. 6. Positron-to-electron time-dependent ratio, as predicted by our model (solid lines) and as measured by AMS [24](points). Each
panel refers to a specific energy (as reported in the labels).
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Eqs. (14) and (13) with the parameters of Table V. First,
there is the usual overall trend with energy, in that high-
energy electrons and positrons are less affected by solar
modulation than low-energy electrons and positrons.
(Compare, for instance, the pTOA ¼ 0.1 GeV=c curves
with the pTOA ¼ 10 GeV=c ones.) Second, modulation is
markedly charge-sign dependent; electrons are modulated
more strongly than positrons, in particular from approx-
imately 2014 onward, whereas at earlier times both are
modulated in similar ways. This is compatible with our
expectations as most of the AMS time-dependent data
collected in Ref. [24] refer to a period of positive polarity

of the heliospheric magnetic field. Indeed, as discussed in
Ref. [58], because of drifts, positively charged particles at
Earth have propagated across polar directions, while the
negatively charged particles have traveled along the
heliospheric current sheet (HCS). Due to the waviness
of the HCS, negatively charged particles travel longer
distances and are thus subject to stronger adiabatic losses.
Our solar modulation model does not explicitly feature
drift effects, but we allow for different ϕ functions for
electrons and positrons, and thus the modulation can be
different if the data require it. At earlier times, that is
between approximately 2011 and 2014, solar activity was

FIG. 7. Left: Maximum fluctuation of the electron spectrum as a function of energy, as inferred from AMS data (blue curve) and as
predicted within the framework of our solar modulation model (solid black line) or by means of the fit with the harmonic function of
Eq. (19) (red points). Right: Unmodulated momentum pIS as a function of time for modulated momenta pTOA ¼ 0.1; 2, and 10 GeV=c.
The shaded bans reflect the error on the fitted solar modulation parameters, cf. Table V. Note that, while the modulation to momenta
pTOA > 1 GeV=c is constrained by AMS data, the modulation at lower momenta is an extrapolation.

FIG. 8. Electron flux (left panel) and electron-to-positron ratio (right panel) in two different energy bins, as predicted from our model
with the parameters of Table V compared with AMS data [24] (red points) and PAMELA data [23,59] (blue points). In the case of the
ratio, the AMS data points have been integrated over several energy bins, in order to have the maximal compatibility with the PAMELA
energy bins.
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at a maximum, and electrons and positrons will have been
modulated similarly. This is in line with the curves in the
right panel of Fig. 7 being closer together.
Despite the fact that our solar modulation model is

able to reproduce the average spectra remarkably well,
and with parameters that are compatible with our
expectations, a word of caution is in order about the
possibility of using the parameters of our model to make
predictions outside of the AMS data-taking period.
Indeed, since our model is based on a simplified
description of solar modulation and, at present, AMS
data cover only a limited fraction of the solar cycle, we
do not expect our model to have strong predictive
power. To better illustrate this point, we plot in
Fig. 8 the prediction of our model, extended in the
past by assuming a 22 years periodicity for the electron
and positron force-field potentials, compared to the e−

flux and the eþ=e− ratio measured by PAMELA [23,59].
The predictivity of our solar modulation model will
certainly improve if its parameters were tuned on a
dataset extended over a whole solar cycle, but still it has
to be taken into account that different solar cycles might
also be very different, and therefore a simple periodicity
of the force-field potentials might not be a realistic
assumption.

IV. SUMMARY AND OUTLOOK

We have presented a model of the cosmic-ray electron
and positrons fluxes over a wide range of energies, from
the mega-electron-volt to the tera-electron-volt domain,
reproducing not only fluxes measured locally, but also the
Galactic radio background and measurements outside
the heliosphere. For sources of electrons and positrons

we have considered SNRs, charge-symmetric extra sources,
and spallation processes in the interstellar medium.
Moreover, we have assumed the Galactic transport of
electrons and positrons to be purely diffusive. In order
to motivate the spectral breaks needed in the spectrum of
SNRs, we have carefully considered the influence of
different datasets. A satisfactory fit to the high-energy
domain of the electron and positron fluxes measured by
AMS and to the diffuse radio emission can be achieved
with a simple power law for the electrons injected by SNRs.
However, such a model overproduces electrons atOðMeVÞ
energies as measured by Voyager I. Instead, a spectral break
in the SNR spectrum is required. Including in our fit also
recent time-dependent electron and positron top-of-atmos-
phere fluxes requires modeling the effects of solar modu-
lation, which we have performed within a simple extension
of the standard force-field approximation. We have shown
that the fit to solar modulated data requires the electron
spectrum injected by SNRs to be steeper atOð1 − 10Þ GeV
energies, and this makes a second spectral break at high
energies necessary to fit the electron flux. In addition, the fit
to the AMS time-dependent datasets has also proven that
our solar modulation model works very well in reproducing
the long-term trends of the low-energy electron and
positron fluxes.
We stress here that in this work we have worked under

the hypothesis that CR transport in the Galaxy is purely
diffusive and this clearly has an impact on the results
that we have found. In particular, one should expect
that if other processes (e.g., reacceleration and convec-
tion) are taken into account the observed data could be
fitted by different electron and positron LIS, namely with
a different configuration of the spectral breaks in the
injected spectra. This has been investigated in detail in

FIG. 9. Left: All electron spectrum, plotted together with the different datasets considered in this work. The green points represent the
average over the AMS data-taking period of the time-dependent datasets of Ref. [24], while the dashed black line is the average over the
same time period of the all-electron flux predicted by our solar modulation model with the best-fit parameters of Table V. The gray lines
show the contributions from the different electron and positron sources. Right: Same as in the left panel, with the addition of the eþ þ e−

LIS of Ref. [55] (red, dot-dashed line) and the e− LIS from Ref. [60] (green, dotted line).
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Ref. [55], where it has been also shown, however, that
radio and gamma-ray data seem to favor models with no
convection and with zero or very low reacceleration.
A summary of the performance of our model in fitting

the various datasets that we have considered in our analysis
is shown in the left panel of Fig. 9. In the plot, we compare
the time-averaged sum of the time-dependent electron and
positron datasets with the prediction given by the 2 breaks
model. The latter is obtained by averaging over the AMS
data-taking period the flux that results from solar modu-
lation, modeled within the extension of the force-field
model presented in this paper, with parameters as in
Table V. Data and theoretical prediction are in remarkable
agreement.
In the right panel of Fig. 9, we show the comparison

between the LIS predicted by our 2 breaks model and
the LIS given in Refs. [55] and [60] (for this latter case,
we consider the e− LIS, as it is the only one provided in
the paper). The three fluxes show a significant difference
in the [100 MeV–5 GeV] energy range. As it has been
illustrated in this paper, this is the domain probed mostly
by radio observations and by time-dependent solar
modulated fluxes. It is worth mentioning that, among
the three LIS considered here, our model is the only one
that is tuned on both these observations, as the LIS from
Ref. [55] is not based on solar modulated data, while the
model provided from Ref. [60] does not take into
account radio constraints.
We hope that future studies will make use of these

interstellar fluxes, which are listed in Table VI. Three
applications seem most interesting and pressing. First,
the inferred spectrum and charge symmetry of the extra
component is tightly constrained by the measured
electron flux even though it does not dominate the
electron flux at any energy. Modifying the extra com-
ponent would require modification of the electron
spectrum at lower energies, which again is constrained
by a variety of data at these energies. Therefore, the
extra component can be taken as a starting point for
future studies of the origin of the positron excess.
Second, at the highest energies, i.e., at TeV energies
and beyond, stochasticity effects due to the discrete
nature of the SNRs will shape the electron spectrum
(e.g., Ref. [6]). As we were mainly concerned with lower
energies, we have considered a smooth distribution of
sources, which produces the expectation value of the flux
at any one energy. This expectation value will be most
valuable when investigating the possible origin of the
break observed in the all-electron spectrum around a
tera-electron-volt [18,19,61]. Finally, what this study has
also contributed is a new, effective way to take into
account the effects of solar modulation in a time-
dependent fashion. While our model has been fitted to
time-dependent electron and positron fluxes above

approximately 1 GeV, it should be easy to apply it to
datasets extending to lower energies or the other species
altogether.

APPENDIX A: TREATMENT OF
CORRELATED UNCERTAINTIES

The total uncertainty that characterizes an experimental
measurement at a given energy is given by the quadratic
sum of the statistical and systematic errors:

σtot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2syst þ σ2stat

q
: ðA1Þ

When dealing with datasets that extend over an extended
energy range, the systematic uncertainty generally exhib-
its a certain degree of correlation between different
energy bins. This uncertainty has to be taken into
account when one is using the experimental uncertainties
to compute a χ2 in order to fit the data with a given
theoretical model.
The rigorous way of taking into account correlations

requires the knowledge of the correlation matrix, which
unfortunately is not available. Therefore, one has to
resort to simpler recipes, such as the one proposed by
Ref. [62]. Within such a framework, one assumes that,
when computing a χ2, the systematic uncertainty of each
data point is the sum of a fully correlated and a fully
uncorrelated component,

σsyst ¼ σsyst;cor þ σsyst;unc; ðA2Þ

with the uncorrelated component being 1% of the
measured value. Only this uncorrelated component enters
the definition of the total uncertainty:

σtot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2syst;unc þ σ2stat

q
: ðA3Þ

Concerning the correlated component, it can be treated
as an overall scale uncertainty on the acceptance
which acts as an uncertainty on the normalization of
the measured quantity. This basically means that the
correlated component of the systematic uncertainty
can be used to determine an uncertainty on the values
of the parameters of the theoretical model that we
are fitting against the data. Such uncertainty is deter-
mined by fitting the data shifted upward and downward
by an amount that corresponds to the correlated
uncertainty.
In the present work, we adopt the prescription described

above in the fit of the CR fluxes measured by AMS. On the
contrary, when we fit ratios between two CR species, we
assume the correlated component of the systematic uncer-
tainty to be negligible, i.e., σsyst ¼ σsyst;unc.
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