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An important question when studying the light curves produced by hot spots on the surface of rotating
neutron stars is, how might the shape of the light curve be affected by relaxing some of the simplifying
assumptions that one would adopt on a first treatment of the problem, such as that of a pointlike spot. In this
work we explore the dependence of light curves on the size and shape of a single hot spot on the surface of
slowly rotating neutron stars. More specifically, we consider two different shapes for the hot spots (circular
and annular) and examine the resulting light curves as functions of the opening angle of the hot spot (for
both) and width (for the latter). We find that the pointlike approximation can describe light curves
reasonably well, if the opening angle of the hot spot is less than ∼5°. Furthermore, we find that light curves
from annular spots are almost the same as those of the full circular spot if the opening angle is less than
∼35° independently of the hot spot’s width.
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I. INTRODUCTION

Supernova explosions, the last act of massive stars, are
the birth places of neutron stars. During these processes, the
density inside the star significantly exceeds the standard
nuclear density and the gravitational and magnetic fields
inside/around the star become much stronger than those in
the Solar System [1]. Thus, the resulting neutron stars are
the best natural candidates for probing the physics under
these extreme environments. In fact, due to the saturation
property of nuclear matter, it is challenging to obtain
information about matter in such high-density regions in
Earth laboratories, which leads to many uncertainties in the
equation of state (EOS) of neutron stars [2]. This difficulty
may be overcome by observing neutron stars themselves
and/or the phenomena associated to them. One of the main
observational constraints on the EOS at supranuclear
densities comes from the discoveries of ∼2M⊙ neutron
stars [3–5]. Due to the existence of such massive neutron
stars one can exclude the soft EOSs that have expected
maximum masses that are less than the observed neutron
star masses. Another constraint on the EOS is the infor-
mation about the tidal deformability obtained from the

observation of the gravitational waves emitted by
GW170817, which is the binary neutron star merger
[6,7]. From the obtained tidal deformability, the radius
of a 1.4 M⊙ neutron star is constrained to be around
≈11 km [8] with a maximum value of 13.6 km [9], which
suggests that some of the relatively stiffer EOSs in the low
density region should be ruled out. These examples
demonstrate that the observations of neutron stars and
astrophysical phenomena involving them are essential
for constraining the EOS of neutron star matter at high
densities [10].
Electromagnetic observations of astrophysical processes

involving neutron stars offer another avenue to probe the
properties of these extreme objects. Due to their strong
gravitational field, radiation from the immediate vicinity of
neutron stars experiences gravitational light bending, the
magnitude of which is controlled by the star’s mass and
radius, allowing (in principle) these parameters to be
inferred and consequently be used to shed light on the
underlying EOS [11–14]. Prime systems for such studies
include accreting millisecond pulsars and x-ray bursters.
In both scenarios, parts of the star’s surface are heated,
producing in this way hot spots (relative to the rest of the
star). These hot spots corotate with the star producing an
observable x-ray flux which is modulated by the star’s spin
frequency, called a light curve (or pulse profile). These light
curves encode information about the physical properties
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of the hot spot such as e.g., its size, geometry, temperature
distribution and spectra. Moreover, they encode informa-
tion of the spacetime curvature around the star and thereby
of the bulk properties of the star. One of the main goals of
the ongoing Neutron star Interior Composition ExploreR
(NICER) [15–17] mission is to measure light curves from a
number of sources with unprecedented time resolution,
constraining their masses and radii within 5%–10% accu-
racy in optimal cases [18–20] (see also e.g., [21–23]).
Several theoretical studies of the properties of light

curves from hot spots on the surface of rotating neutron
stars have been carried out in the past (see e.g., [24–28]).
The contribution of the various ingredients that affect the
shape of a light curve due to the rotation of the neutron star
have been studied in several instances. For example, there
have been calculations of the light curve that are taking into
account the Doppler factor and the time delay in the
Schwarzschild spacetime [26,29–31].1 In other cases, light
curves were calculated either within the Hartle-Thorne
approximation [32] or in the numerically determined
spacetime of rapidly rotating neutron stars [33,34].
These works showed that the inclusion of effects such as
Doppler, aberration and gravitational time delay in the
Schwarzschild spacetime can estimate relatively well the
light curve produced by moderately rapidly rotating neu-
tron stars with spin frequencies ≲300 Hz, above which the
inclusion of stellar oblateness is required [33–36]. In
addition, since light curves from neutron stars also depend
on the spacetime geometry and on the gravitational theory,
one can use light curve observations to perform strong-field
tests of general relativity (GR), although the effect of the
gravitational theory may be degenerate with uncertainties
on the EOS [37–40].
A simplifying assumption used in some of these studies

is that of a pointlike approximation for the hot spot, where
its size is assumed to be negligible. This approximation
may be valid under some conditions, but in realistic
astrophysical scenarios one should take into account the
finite-size effects of the hot spot on the light curve (e.g.,
[41,42]). Furthermore, hydromagnetic numerical simula-
tions of accreting millisecond pulsars reveal that these hot
spots might not necessarily even be circular and can instead
have ring or crescent-moonlike shapes [43,44] with impli-
cations on the resulting light curve of known systems
[45,46].
In this work, we examine in detail the effects of the shape

and size of single hot spots, in the controlled scenario of
slowly rotating neutron stars, which allows one to single
out their effects in the light curve. This paper is organized
as follows. In Sec. II we summarize the theory behind light
curve modeling of slowly rotating neutron stars, with

special emphasis on how to deal with finite-size effects
of the hot spot. In Sec. III we discuss how these light curves
are calculated numerically and present a simple approach to
study ring-shaped hot spots. Then, we investigate in detail
the resulting light curves, considering different hot-spot-
observer arrangements and hot spot sizes. We also contrast
the differences between circular and annular hot spots and
in the latter case examine the validity of the pointlike hot
spot approximation. Finally, in Sec. IV we summarize our
findings and discuss possible extensions of our work. We
use geometric units, c ¼ G ¼ 1, where c and G denote the
speed of light in vacuum and the gravitational constant
respectively, and use metric signature ð−;þ;þ;þÞ.

II. RADIATION FLUX FROM SLOWLY
ROTATING NEUTRON STARS

For generality, we consider the following line element
for a static, spherically symmetric spacetime given by

ds2¼−AðrÞdt2þBðrÞdr2þCðrÞðdθ2þ sin2 θdψ2Þ; ð1Þ

where we focus on asymptotically flat spacetimes for which
AðrÞ → 1, BðrÞ → 1, and CðrÞ → r2 as r → ∞. In these
coordinates, the circumference radius, rc, is given by r2c ≡
CðrÞ at each radial position r. This line element is general
enough to describe neutron stars not only in GR, but also in
modified theories of gravity [37,39]. While in Sec. III the
particular case of the Schwarzschild spacetime is taken,
in the present section we develop a general approach for
dealing with finite sized hot spots that can readily be used
outside of GR.
Let us consider the trajectory of photons on this

spacetime, initially emitted from the star’s surface located
at r ¼ R and propagating outwards to an observer located
at a distance D (≫R) from the star. The equation of motion
for null geodesics can be obtained from the Euler-Lagrange
equation, i.e.,

∂L
∂xμ −

d
dλ

�∂L
∂ _xμ

�
¼ 0; ð2Þ

where L is the Lagrangian and the dot denotes a derivative
with respect to an affine parameter λ. Using Eq. (1), we
obtain

2L ¼ −A_t2 þ B_r2 þ C _ψ2; ð3Þ

where, due to spherical symmetry, we can choose the
photon trajectory to be on the plane θ ¼ π=2without loss of
generality. Then, combining Eqs. (2) and (3), the angle at
the stellar surface ψðRÞ is given by [24]

ψðRÞ ¼
Z

∞

R

dr
C

�
1

AB

�
1

b2
−
A
C

��
−1=2

; ð4Þ
1The slow-rotating approximation without the Doppler factor

and the time delay is valid at least with ∼0.1 Hz [31], while one
can see the significant deviation with a few hundred Hz [26,30].
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where

sin α ¼ b

ffiffiffiffiffiffiffiffiffiffiffi
AðRÞ
CðRÞ

s
; ð5Þ

with b≡ l=e being the impact parameter, defined in terms
of the photon’s energy e and angular momentum l, while α
is the emission angle as shown in Fig. 1, measured relative
to the normal to the star’s surface.
Using Eqs. (4) and (5), we can numerically calculate the

relation between ψðRÞ and α for a given radiusR (once A, B
and C have been specified), where the value of ψ increases
as α increases. This allows us to define a critical value of ψ ,

ψ cri ≡ ψðα ¼ π=2Þ; ð6Þ

for a photon to reach the observer, where α ¼ π=2 means
that the photon is emitted tangentially with respect to the
stellar surface. This in turn allows us to introduce the notion
of an invisible zone, defined by α > π=2 (or ψ > ψ cri)
wherein photons cannot reach the observer. We remark that
the ψ cri (and thus the invisible zone) also depends on the
underlying theory of gravity.
Since light bending is a GR effect, ψ cri increases as the

gravitational field becomes stronger. Thus, the value of ψ cri
increases (or conversely, the invisible zone decreases) as
the compactness C≡M=R of the radiating object increases.
In the Schwarzschild spacetime, the invisible zone vanishes
if C ≥ 0.284, implying that the whole surface of the star is
visible to the observer. In the absence of an invisible zone,
photon trajectories can whirl around the star multiple times
[24,47] resulting in multiple images of the star’s surface.
These strong lensing effects do not happen for canonical
neutron stars for whichM=R≲ 0.2 (see Fig. 3 in Ref. [47]),
which we consider hereafter.

How do we calculate the flux measured by an observer,
that is coming from a single hot spot on the star’s surface?
The area of the hot spot, dS, and the corresponding solid
angle on the observer’s sky, dΩ, are given by

dS ¼ CðRÞ sinψdψdϕ; ð7Þ

dΩ ¼ bdbdϕ
D2

; ð8Þ

where, recall, D is the distance between the star and the
observer, while ϕ is an azimuthal angle in the observer’s
sky as shown in Fig. 1. The observed spectral flux, dFE,
inside dΩ is expressed as

dFE ¼ IEdΩ; ð9Þ

where IE is the specific intensity of the radiation measured
in terms of the energy E measured at infinity by the
observer. It is however more convenient to write IE in terms
of the specific intensity I0ðE0; αÞ measured by an observer
at the vicinity of the stellar surface. These two specific
intensities are related as

IE ¼ AðRÞ3=2I0ðE0;αÞ; ð10Þ

where E0 is the photon energy measured by an observer at
the vicinity of the star’s surface.
We can now combine Eq. (10) with Eqs. (5), (8), and (9)

to obtain

dFE ¼ AðRÞ1=2CðRÞ
D2

I0ðE0; αÞ sin α cos α
dα
dψ

dψdϕ; ð11Þ

which, upon integration over all energies E, leads to the
observed bolometric flux dF,

dF ¼
Z

∞

0

dFEdE;

¼ AðRÞCðRÞ
D2

I0ðαÞ sin α cos α
dα
dψ

dψdϕ: ð12Þ

Here, I0ðαÞ≡ R
I0ðE0; αÞdE0 is the bolometric intensity

measured in the vicinity of the stellar surface. To derive
Eq. (12) we also converted the emitted to observed energies
using the usual redshift relation

E ¼ AðRÞ1=2E0: ð13Þ

Although I0 generally depends on the emission angle due
to scattering as photons propagate through the neutron
star’s atmosphere [48–51], we consider for simplicity that
the emission is uniform, i.e., I0 ¼ const:, as in the previous
studies (e.g., [27,31,37]). The bolometric flux F and the
observed area of the hot spot S are then given by

FIG. 1. Geometry used to describe the emission of photons
from a neutron star. The dashed line indicates the trajectory of a
photon, emitted with an angle α (measured with respect to the
normal to the star’s surface) from the star’s surface Rc

[Rc ¼ C1=2ðRÞ] from a point located at ψ (measured with respect
to the line of sight to the observer). The star’s gravitational field
bends the trajectory by an amount ψ − α and the photon is
observed arriving with an impact parameter b. The angle ϕ
denotes the azimuthal angle in the observer’s sky.
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F ¼ F1

Z Z
S
sin α cos α

dα
dψ

dψdϕ;

S ¼ CðRÞ
Z Z

S
sinψdψdϕ; ð14Þ

with

F1 ≡ I0AðRÞCðRÞ
D2

; ð15Þ

and where ∬S means that the integration should be done
only over the region occupied by the hot spot.
Let us consider the case where the hot spot is circular,

with size determined by an opening angle Δψ . As shown in
Fig. 2, we can choose the coordinate at any time, where the
center of the hot spot is located at ðψ ;ϕÞ ¼ ðψ�; 0Þ. In these
coordinates, the unit vector pointing to the center of the hot
spot, n, and the unit vector pointing to an arbitrary position
of ðψ ;ϕÞ, x, are given by n ¼ ðsinψ�; 0; cosψ�Þ and
x ¼ ðsinψ cosϕ; sinψ sinϕ; cosψÞ. The condition that
the position of ðψ ;ϕÞ is inside the circular hot spot is
cosðΔψÞ ≤ n · x, which yields

cosðΔψÞ ≤ sinψ� sinψ cosϕþ cosψ� cosψ : ð16Þ

The hot spot on a rotating neutron star with an angular
velocity ω measured by the observer is characterized by
two angles, i and Θ, as shown in Fig. 3. That is, Θ is the
angle between the center of the hot spot and the rotation
axis, while i is the angle between the direction to the
observer and the rotation axis. Choosing t ¼ 0when the hot
spot is closest to the observer, the angular position of the
center of the hot spot, ψ�, is given by

cosψ� ¼ sin i sinΘ cosðωtÞ þ cos i cosΘ: ð17Þ
Within the pointlike approximation (Δψ ≈ 0) (see the top

panel of Fig. 4) one can classify when the hot spot would be
visible as a function of the angles of i and Θ, as a function
of ψ cri as follows [30]:

(i) region A: the hot spot is always observed,
(ii) region B: the hot spot enters the invisible zone for a

fraction of the period,
(iii) region C: the hot spot is invisible at any time.

When we include a finite size to the hot spot the boundaries
between these regions become blurred, as illustrated in the
bottom panel of Fig. 4. In this panel, the shaded region
corresponds to the situation in which a part of the hot spot
can enter the invisible zone.

FIG. 2. At any time, one can choose the coordinate where the
center of the hot spot is located at ðψ ;ϕÞ ¼ ðψ�; 0Þ.

FIG. 3. Illustration of the hot spot on a rotating star with angular
velocity ω. The angle between the direction to the observer and
the rotation axis is i, while the angle between the center of the hot
spot and the rotation axis is Θ. The shaded region denotes the
invisible zone whose boundary is determined by the angle ψcri.

FIG. 4. Visibility classification of the single hot spot, as a
function of the angles of i andΘ. The top panel corresponds to the
case with a pointlike approximation, where three situations exist,
i.e., (A) the hot spot can be always observed, (B) the hot spot can
enter the invisible zone for a fraction of the period, and (C) the hot
spot cannot be observed in any time. The bottom panel corre-
sponds to the case with the effect of hot spot size, where the
boundary of the classification becomes blurred. This example is
the case for Δψ ¼ 10°. The colored region denotes the situation
that a part of the hot spot can enter the invisible zone.
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III. LIGHT CURVES OF FINITE-SIZED
HOT SPOTS

Until this point, our discussion has been very general and
applicable for a wide family of spacetimes whose line
element can be written in the form (1). From now on, we
consider the particular case of the Schwarzschild spacetime
to describe the star’s exterior spacetime (motivated by
Birkhoff’s theorem in GR) for which

AðrÞ¼ 1−
2M
r

; BðrÞ¼ 1

AðrÞ ; CðrÞ¼ r2: ð18Þ

Nonetheless, we emphasize that the calculations and
methods present here can be applied to other static,
spherically symmetric spacetimes.
Furthermore, to focus our attention on how the spot’s

area affects the light curve, we consider for simplicity only
slowly rotating neutron stars, where one can neglect the
rotational effects, such as Doppler shifts, aberration and
the time delay [29–31]. In this case, the light curve
obtained for ðΘ; iÞ ¼ ða; bÞ is the same as that obtained
for ðΘ; iÞ ¼ ðb; aÞ, a symmetry that arises due to Eq. (17).
In practice, we analyze light curves only for Θ ¼ i and
more specifically show representative results for the cases
with Θ ¼ i ¼ 30°, 45°, 60°, and 90°. An additional sym-
metry of the light curve is that its amplitude at t=T for
0.5 ≤ t=T ≤ 1 is the same as that at 1 − t=T, where T is the
rotational period defined by T ≡ 2π=ω. In light of these
properties, we limit our calculation of the light curves in the
rotation phase interval 0 ≤ t=T ≤ 0.5. For our stellar
models, we consider two stars with R ¼ 5M and 4M,
for which ψcri are respectively ψ cri ¼ 0.7191π (129.4°) and
ψ cri ¼ 0.8476π (152.6°).
Considering these models, we further assume two

possible geometries for the hot spot. First, in Sec. III A,
we consider circular hot spots with an opening angleΔψ , as
shown in the left-hand-side of Fig. 5. Next, in Sec. III B, we
study hot spots with an annular shape. This geometry is
obtained by removing from an otherwise circurlar hot spot
(with angular radius Δψ) an internal circular region with
opening angle Δψ i. This situation is illustrated in the right-
hand side of Fig. 5. In both cases, the hot spot’s center is
fixed at ψ ¼ ψ�.
To calculate the light curve of a circular hot spot we

proceed as follows. For any time instant, the center of the
spot ψ� is determined from Eq. (17). Since the flux with a
specific value of ψ is independent of the value of ϕ, the flux
from the hot spot is calculated from Eq. (14) as

FðΔψÞ ¼ 2F1

Z
ψ�þΔψ

ψ�−Δψ
ϕðψÞ sin α cos α dα

dψ
dψ ; ð19Þ

where ϕðψÞ is the boundary of the hot spot in the ϕ
direction determined from the constraint equation (16) as a
function of ψ . As we explained previously, we can

determine αðψÞ using Eqs. (4) and (5), once a mass M
and radius R have been specified for the neutron star.
In the case of an annular hot spot we exploit our

assumptions of isotropic emission and slow rotation.
Under these assumptions, the flux coming from the excised
internal region (centered at ψ� with opening angleΔψ i) can
simply be subtracted from the flux of the total circular spot
of opening angle Δψ , i.e.,

F ¼ FðΔψÞ − FðΔψ iÞ

¼ 2F1

Z
ψ�þΔψ

ψ�−Δψ
ϕðψÞ sin α cos α dα

dψ
dψ

− 2F1

Z
ψ�þΔψ i

ψ�−Δψ i

ϕiðψÞ sin α cos α
dα
dψ

dψ ; ð20Þ

where ϕiðψÞ is the boundary of the inner circle.

A. Circular hot spots

First, let us consider the light curves with the filled circle
hot spots, as shown in the left-hand side of Fig. 5. In the top
panels of Fig. 6, we show the light curves for the neutron
star model with R ¼ 5M, where the different lines corre-
spond to the results with different values of Δψ and for
reference the results with the pointlike approximation are
also shown by the open circles. The panels from left to right
correspond the results for the cases with i ¼ Θ ¼ 30°, 45°,
60°, and 90°. To make explicit the role of the hot spot size
on the light curve relative to those calculated in the
pointlike approximation, we show the relative deviation
defined as

Δ≡ jF=Fmax − FðpÞ=FðpÞ
maxj

F=Fmax
ð21Þ

in the bottom panels of Fig. 6. In Eq. (21), F=Fmax and

FðpÞ=FðpÞ
max denote respectively the observed bolometric

fluxes normalized by the maximum flux including the
effect of the spot’s finite size and that calculated using the

FIG. 5. Illustration of two different geometries for the hot spot.
Left image: a circular hot spot with angular radius Δψ . Right
image: an annular geometry with width Δψ − Δψ i. In both cases,
the center of the hot spot is chosen to be ψ ¼ ψ�.

FINITE SIZE EFFECTS ON THE LIGHT CURVES OF … PHYS. REV. D 100, 043006 (2019)

043006-5



pointlike approximation. From this figure, we observe
(unsurprisingly) that the deviation from the result calcu-
lated using the pointlike approximation increases as the
spot area increases. In particular, the deviation becomes
significant when the hot spot approaches the invisible zone.
This happens because even if the center of the hot spot
enters the invisible zone, a part of it may still lay within the
visible region. Thus, when exactly the flux is going to
vanish completely depends strongly on the spot size, as
shown in the rightmost lower panel of Fig. 6. On the other
hand, we also find that the light curves of hot spots with
angular radius up to Δψ ≤ 5° are captured by the pointlike
approximation within 1% accuracy, if the center of the hot
spot lies outside the invisible zone.
In Fig. 7 we show the spot area S outside the invisible

zone, normalized by R2. We can see that when i ¼ Θ and
Δψ are large, a portion of the hot spot’s area enters the

invisible zone earlier over the course of the star’s rotation.
We also observe that the spot area normalized by R2

becomes constant with Δψ ¼ 70° and i ¼ Θ ¼ 90° for
t=T ∼ 0.45–0.5, where the invisible zone completely enters
into the hot spot. This happens due to the following. When
the hot spot has a large opening angle, Δψ , it is more
difficult for it to be completely eclipsed (i.e., to fall
completely in the invisible zone). Notice that the opening
angle of the invisible zone is given by

Δψcri ≡ π − ψ cri; ð22Þ
and it decreases as the compactness increases. Consequently,
if the opening angle of the spot Δψ is larger than Δψcri, a
fraction of the hot spot is always visible.

FIG. 6. For the neutron star model with R ¼ 5M, the light curves calculated considering the finite area of the hot spot are compared
with that with the pointlike spot approximation. In the top panels, the light curves with various opening angle (Δψ ¼ 5°, 10°, 30°, 50°,
and 70°) are shown with different lines, while the light curves with the pointlike approximation are shown with the open circles, where
the all light curves are normalized by their maximum values, i.e., the flux at t=T ¼ 0. In the bottom panels, the relative deviations
calculated by Eq. (21) are shown. The panels from left to right correspond to the case for i ¼ Θ ¼ 30°, 45°, 60°, and 90°. For
i ¼ Θ ¼ 90°, the time when the observed flux becomes 0 depends on Δψ , which is shown by the filled circle, filled diamond, filled
square, and filled triangle for Δψ ¼ 5°, 10°, 30°, and 50° in the rightmost lower panel.

FIG. 7. The visible area of the hot spot (normalized by R2) for
the neutron star model with R ¼ 5M, for various combinations of
Δψ and i ¼ Θ. The significant decrease in the visible area
indicates when a part of the hot spot enters the invisible zone.
When Δψ ¼ 70°, the visible hot area never drops to 0 regardless
of the values of i ¼ Θ considered.

FIG. 8. The critical value of the opening angle, Δψcri, given by
Δψ cri ¼ π − ψ cri is shown as a function of M=R. For the case
when the opening angle Δψ is larger than Δψ cri (the region above
the line) the hot spot cannot entirely enter into the invisible zone.
Two vertical dashed lines correspond to the values ofM=R for the
stellar models with R ¼ 5M and 4M.
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In Fig. 8, we show the value of Δψ cri as a function of
M=R, where the two vertical dashed lines correspond to the
two stellar models with R ¼ 5M (left line) and 4M (right
line). The values of Δψ cri are respectively 50.6° and 27.4°
for stars with radii R ¼ 5M and R ¼ 4M. Hence, in Figs. 6
and 7, we can understand that the hot spot withΔψ ¼ 70° is
always visible. Moreover, we see that, in principle, one
could constrain the relation between the stellar compact-
ness and the opening angle of hot spot. Specifically, if the
flux vanishes (i.e., the hot spot entirely enters into the
invisible zone) one can constrain the size of the opening
angle of the hot spot to be in the region below the line
in Fig. 8.
Similarly, we also calculated the light curves for the

neutron star model with R ¼ 4M, for which ψ cri is larger in
comparison to the previous case (R ¼ 5M); i.e., the
invisible zone becomes smaller. In Fig. 9, we show the
light curves taking into account the finite size of the hot
spot together with the results using the pointlike approxi-
mation in the upper panels. The relative deviation [calcu-
lated using Eq. (21)] is shown in the lower panels. The
qualitative behavior of the light curve for R ¼ 4M is very
similar to that for R ¼ 5M. However, since the invisible
zone is now smaller, the hot spot area hardly enters it. In
fact, since Δψ cri ¼ 27:4°, even a relatively small hot spot
with Δψ ¼ 30° is always visible when i ¼ Θ ¼ 90°.
Finally we see that, even for fairly compact neutron stars,
the light curves from a hot spot with Δψ ≤ 5° can be well
captured using pointlike approximation, with relative errors
of less than 1%, if the center of the hot spot is outside the
invisible zone.
In Fig. 10, we show the visible hot spot area (again

normalized by R2). We see that due to the smaller size of
the invisible zone, it can now completely lay within the hot
spot forΔψ ¼ 30°, 50°, and 70° when the hot spot is behind
the neutron star. When this happens the visible spot area
becomes constant.

B. Annular hot spots

Now let us consider a ring-shaped hot spot, as illustrated
in the right-hand side of Fig. 5. In particular, we consider
hot spots with Δψ ¼ 35° and 70°, while varying the values
of Δψ i.
In Fig. 11, we show the light curves from the spot with

Δψ ¼ 70° for the neutron star with R ¼ 5M in the upper
panels and with R ¼ 4M in the lower panels, where the
panels from left to right correspond to the results for
i ¼ Θ ¼ 30°, 45°, 60°, and 90°. In each panel we show the
light curves for Δψ i ¼ 0°, 10°, 30°, 50°, and 65°, which
correspond to Δψ i=Δψ ¼ 0, 0.14, 0.43, 0.71, and 0.93
respectively. That is, the larger the Δψ i=Δψ , the thinner the
radiating region of the hot spot. The case of Δψ i ¼ 0° is
shown only as a reference to facilitate the comparison with
the circular hot spot case discussed in the previous
subsection.
In Fig. 11, we observe that the difference between

the minimum flux, Fmin (at t=T ¼ 0.5Þ, and the maximum
flux, Fmax (at t=T ¼ 0), decreases as Δψ i increases in
all the cases studied here. Additionally, we see that such
a difference becomes larger as the angle of i ¼ Θ
increases. To demonstrate this behavior, we show the value
of ðFmax−FminÞ=Fmax with various angles of i ¼ Θ in

FIG. 9. Same as Fig. 6, but for the neutron star model with R ¼ 4M.

FIG. 10. Same as Fig. 7, but for the neutron star model with
R ¼ 4M. This more compact neutron star has a smaller invisible
zone and therefore hot spot sizes which would become invisible
in the R ¼ 5M case (Δψ ¼ 30° and 50°) are now always visible.
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Fig. 12, where the left and right panels correspond to the
results for the neutron star model with R ¼ 5M and 4M.
Furthermore, since it can happen that the invisible zone
completely enters into the internal region with the opening
angle Δψ i for the case of i ¼ Θ ¼ 90°, i.e., the hot spot is
not eclipsed by the invisible zone when the hot spot
approaches the backside of the star, one can see in
Fig. 11 that the shape of the light curve can deviate from
that predicted by a filled hot spot. This could be used (in
principle) to distinguish between the two different hot spot
geometries.
In Fig. 13, the light curves from the ring-shaped hot

spot with Δψ ¼ 35° are shown for R ¼ 5M (upper panel)
and for R ¼ 4M (lower panel). In Fig. 14, we show the
value of ðFmax − FminÞ=Fmax is as a function of Δψ i=Δψ .
Here, we considered Δψ i ¼ 0°, 5°, 15°, 25°, and 33°, which

FIG. 11. Light curves from the annular hot spot with Δψ ¼ 70°. The upper and lower panels correspond to the observed flux
normalized by the maximum flux for the neutron star model with R ¼ 5M and 4M, respectively. The panels from left to right correspond
to the results for i ¼ Θ ¼ 30°, 45°, 60°, and 90°. In each panel, the different lines correspond to the results with different values of Δψ i,
i.e., Δψ i ¼ 0°, 10°, 30°, 50°, and 65°.

FIG. 12. The ratio of the difference between the maximum and
minimum flux to the maximum flux is shown as a function of
Δψ i=Δψ with Δψ ¼ 70°, where the circles, squares, diamonds,
and triangles correspond to the results for i ¼ Θ ¼ 30°, 45°, 60°,
and 90°. The left and right panels correspond to the results for the
neutron star model with R ¼ 5M and 4M.

FIG. 13. Same as Fig. 11, but for the neutron star model with Δψ ¼ 35°.

SOTANI, SILVA, and PAPPAS PHYS. REV. D 100, 043006 (2019)

043006-8



correspond to the same values of Δψ i=Δψ as for the Δψ ¼
70° case, i.e., Δψ i=Δψ ¼ 0, 0.14, 0.43, 0.71, and 0.93,
respectively. The behavior of the light curves is qualita-
tively the same as in the case with Δψ ¼ 70°, but the Δψ i
dependence is quite weak. Nevertheless, since the invisible
zone becomes larger as the stellar compactness is smaller,
one may have a chance to observe the deviation in the light
curve for the less compact stellar models, although such a
deviation must be still very small. In practice, for i ¼ Θ ¼
60° one can see a stronger dependence on Δψ i in the light
curve for the neutron star model with R ¼ 5M than that
from the model with R ¼ 4M. Anyway, if Δψ is less than
35°, it seems to be difficult to observationally identify the
Δψ i dependence. In such a case, via the observation of the
light curve one may be able to discuss the relation between
the stellar compactness and the spot size (Δψ) independ-
ently of Δψ i.

IV. CONCLUSION

In this work we have calculated bolometric light curves
from a single hot spot on a slowly rotating neutron star,
taking into account the effects of the size and shape of the
spot. In order to explore how the light curves are affected by
changes in shape and size, we have specifically considered
a filled circle hot spot and a ring-shaped hot spot. We found
that the light curve from a filled circle hot spot that has an
opening angle of less than 5° can be estimated with good
accuracy (less than 1%) even with the pointlike approxi-
mation if the center of the hot spot is outside the invisible
zone. Moreover, we showed that since the invisible zone at
the far side of the star becomes smaller as the stellar
compactness increases, the light curves may not be eclipsed
if the spot size is large enough for large compactnesses.
Thus, through the observation of light curves, one may in
principle constrain the relation between the stellar compact-
ness and the spot size (see Fig. 8).
For annular hot spots, we found that the resulting light

curves are hardly distinguishable from the filled circular
case, when the opening angle of the outer boundary of the
hot spot is less than ∼35°. This result yields a conservative

typical hot spot size for which its geometry does not affect
the resulting light curve. This is particularly interesting
given the fact that hydromagnetic numerical simulations of
accreting flows of matter onto millisecond pulsars indicate
that the resulting hot spot is not necessarily circular [43,44]
with implications to the modeling of known sources [45,46]
as mentioned previously.
In this study, as a first step, we considered the light curve

from a slowly rotating neutron star in order to isolate the
finite size and geometry influences on the resulting light
curves. To bring our work to the level of astrophysical
realism necessary to analyze, e.g., real NICER data, it is
important to revisit some of our simplifying assumptions.
For instance, the inclusion of Doppler and aberration
effects due to the star’s rotation can affect light curves
obtained here by skewing them towards the left (e.g., in
Fig. 6) and decreasing their amplitudes. On the other hand,
delays in the travel time from photons emitted from
different locations within the hot spot are expected to be
small, although it would be of interest to investigate this for
large hot spots where the inclusion of these two effects will
enhance the difference of the resulting light curves relative
to those studied here. It would also be interesting to study
the inclusion of a second hot spot and (in the case of the
annular geometry) allow the excised inner circle to be off
center with respect to the outer boundary. These however
come at the cost of expanding the parameter space to be
studied. For rapidly rotating neutron stars ω≳ 1800 Hz,
the inclusion of the rotation induced quadrupolar deforma-
tion of the star is critical for light curve modeling [33–35].
Finally, one could describe the radiation emitted using
blackbody spectra. The inclusion of additional ingredients
and an analysis of how they affect the results presented here
will be studied in the future.
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FIG. 14. Same as Fig. 12, but for the neutron star model with
Δψ ¼ 35°.
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