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We examine the constraints on the Yukawa regime from the nonminimally coupled curvature-matter
gravity theory arising from deep underwater ocean experiments. We consider the geophysical experiment
of Zumberge et al. [Phys. Rev. Lett. 67, 3051 (1991)] for searching deviations of Newton’s inverse square
law in ocean. In the context of nonminimally coupled curvature-matter theory of gravity the results of
Zumberge et al. can be used to obtain an upper bound both on the strength α and range λ of the Yukawa
potential arising from the nonrelativistic limit of the nonminimally coupled theory. The existence of an
upper bound on λ is related to the presence of an extra force, specific of the nonminimally coupled theory,
which depends on λ and on the gradient of mass density, and has an effect in the ocean because of
compressibility of seawater. These results can be achieved after a suitable treatment of the conversion of
pressure to depth in the ocean by resorting to the equation of state of seawater and taking into account the
effect of the extra force on hydrostatic equilibrium. If the sole Yukawa interaction were present, the
experiment would yield only a bound on α, while, in the presence of the extra force we find an upper bound
on the range: λmax ¼ 57.4 km. In the interval 1 m < λ < λmax the upper bound on α is consistent with the
constraint α < 0.002 found in [Phys. Rev. Lett. 67, 3051 (1991)].
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I. INTRODUCTION

In this work we show that it is possible to constrain the
parameters of a nonminimally coupled (NMC) gravity
model by using the results of a geophysical experiment,
performed in 1991 by Zumberge et al. [1] to look for
deviations from Newton’s inverse square law in the ocean.
In NMC gravity the Einstein-Hilbert action functional of
general relativity (GR) is replaced with a more general form
involving two functions f1ðRÞ and f2ðRÞ of the Ricci scalar
curvature R of space-time [2]. The function f1ðRÞ has a role
analogous to fðRÞ gravity theory [3–6], and the function
f2ðRÞ multiplies the matter Lagrangian density giving rise
to a nonminimal coupling between geometry and matter.
NMC gravity has been applied to several astrophysical

and cosmological problems such as cosmological pertur-
bations [7], postinflationary reheating [8], possibility to
account for dark matter [9,10], and the current accelerated
expansion of the Universe [11]. The Solar System

constraints were examined in Ref. [12]. For other impli-
cations of the NMC gravity theories, see Refs. [13–16].
In Ref. [17] a nonminimally coupled curvature-matter

gravity model has been considered where the functions
f1ðRÞ and f2ðRÞ have been assumed analytic at R ¼ 0, and
the coefficients of their Taylor expansions around R ¼ 0
have been considered as the parameters of the model. The
metric around a spherical body with uniform mass density
has been shown to be a perturbation of the weak-field
Schwarzschild metric; particularly, the perturbation of the
00 component of the metric tensor contains a Yukawa
potential. It has been shown that, in the nonrelativistic limit,
the range λ of the Yukawa perturbation is given by
λ ¼ ffiffiffiffiffiffiffi

6a2
p

, where the parameter a2 of the model is propor-
tional to the coefficient of R2 in the Taylor expansion of the
function f1ðRÞ. The strength α0 of the Yukawa potential is
given by α0 ¼ ð1 − θÞ=3, where θ is the ratio q1=a2 and the
parameter q1 is the coefficient of R in the Taylor expansion
of f2ðRÞ [17,18]. Since f2ðRÞ multiplies the matter
Lagrangian density in the action functional, then the effect
of the NMC vanishes in vacuum, however, it affects the
gravitational source, so that the NMC affects only the
strength of the Yukawa potential.
It was shown, in Ref. [17], that the parameters of

the NMC gravity model can be constrained through
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perturbations to perihelion precession by using data from
observations of Mercury’s orbit. If the ratio θ is sufficiently
close to 1, a2 ≈ q1, then the strength α0 of the Yukawa
potential is small and the Yukawa range λ can reach
astronomical scales in the Solar System, satisfying the
constraints resulting from data on Mercury’s orbit [17].
Moreover, the resulting value of parameter γ of the para-
metrized post-Newtonian approximation is close to 1
according to Solar System constraints on gravity [18].
In Refs. [2,19] the equations of motion of a perfect fluid

in NMC gravity have been derived, showing the existence
of an extra force inside the fluid besides the Yukawa force.
More precisely, the nonminimal coupling induces a non-
vanishing covariant derivative of the energy-momentum
tensor. That leads to a deviation from geodesic motion and,
consequently, the appearance of an extra force in the fluid.
In the present paper we compute the extra force in a

perfect fluid for the NMC gravity model considered in
Ref. [17] and show that the extra force per unit volume is
proportional to the gradient∇ρ2 of squared mass density of
the fluid, with coefficient Gλ2θ2, where G is the gravita-
tional coupling. Since θ is constrained to be close to 1 from
astronomical observations [17], then a value of λ of the
order of the astronomical scale gives rise to an extra force
which can lead to a large perturbation of the hydrostatic
equilibrium of a compressible fluid.
Constraints resulting from the hydrostatic equilibrium of

a gravitating body, for instance the Sun, could then be used
to impose an upper bound on the strength of the extra force,
hence on the Yukawa range λ. Such an effect was not taken
into account in Ref. [17] since orbits where computed
around a body with uniform mass density, so that the extra
force inside the body vanishes.Amore stringent upper bound
on λ is expected to be found from the condition of hydrostatic
equilibrium of a compressible fluid on the Earth.
The experiment devised in Ref. [1] to test the presence of

a Yukawa force in the ocean is suitable for this purpose.
This experiment was concluded in 1991 and never
repeated. Moreover, more recent lake and tower experi-
ments provide more stringent constraints on the Yukawa
force over the same distance scales [20]. Nevertheless, the
results from the ocean experiment in Ref. [1], based on
measurements of gravitational acceleration along continu-
ous profiles to depths of 5000 m in seawater, are particu-
larly useful to constrain the NMC extra force. This is a
consequence of the role played by hydrostatic equilibrium
of seawater in the experiment.
The result of the experiment inRef. [1] is an estimate of the

Newtonian gravitational constant G which also yields a
constraint on the presence of a Yukawa force. Such an
estimate was achieved by measuring the gravitational accel-
eration gðzÞ at varying depth, z, in the ocean by using a
gravimeter in a submersible. The depth was computed from
measuring sea pressure by resorting to the equation of state
of seawater and the condition of hydrostatic equilibrium.

Hence, the extra force could not be directly measured since
the gravimeter was not immersed in seawater. Nevertheless,
the extra force has an indirect effect on the measurement
through the dependence of the pressure to depth conversion
on the hydrostatic equilibrium of seawater. In the present
paper we show how an upper bound on the Yukawa range λ
can then be achieved at the geophysical scale by exploiting
the compressibility properties of seawater. We point out that
in the case of gravity models which predict a Yukawa force,
but not a further force depending on the gradient of mass
density of the fluid, the constraints from these kinds of
experiments yield an upper bound on the strength of the
Yukawa force only, but not on the range λ [20].

II. THE NONMINIMALLY COUPLED
GRAVITY MODEL

The action functional of nonminimally coupled gravity is
of the form [2]

S ¼
Z �

1

2
f1ðRÞ þ ½1þ f2ðRÞ�Lm

� ffiffiffiffiffiffi
−g

p
d4x; ð1Þ

where fiðRÞ (with i ¼ 1, 2) are functions of the Ricci scalar
curvature R, Lm is the Lagrangian density of matter, and g
is the metric determinant. The standard Einstein-Hilbert
action of GR is recovered by taking

f1ðRÞ ¼ c4

8πGN
R; f2ðRÞ ¼ 0; ð2Þ

where GN is Newton’s gravitational constant.
The first variation of the action functional with respect to

the metric gμν yields the field equations:

ðf1R þ 2f2RLmÞRμν −
1

2
f1gμν

¼ ð∇μ∇ν − gμν□Þðf1R þ 2f2RLmÞ þ ð1þ f2ÞTμν; ð3Þ

where fiR ≡ dfi=dR. The trace of the field equations is
given by

ðf1R þ 2f2RLmÞR − 2f1 þ 3□f1R þ 6□ðf2RLmÞ
¼ ð1þ f2ÞT; ð4Þ

where T is the trace of the energy-momentum tensor Tμν.
A distinctive feature of NMC gravity is that the energy-

momentum tensor of matter is not covariantly conserved
[2]. Indeed, applying the Bianchi identities to Eq. (3), one
finds that

∇μTμν ¼ f2R
1þ f2

ðgμνLm − TμνÞ∇μR: ð5Þ
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This property will play a crucial role in the nonrelativistic
limit of hydrodynamics.

A. Metric and energy-momentum tensors

We use the following notation for indices of tensors:
greek letters denote space-time indices ranging from 0 to 3,
whereas latin letters denote spatial indices ranging from 1
to 3. The signature of the metric tensor is ð−;þ;þ;þÞ.
We consider the metric, gμν, and energy-momentum, Tμν,

tensors at the order of approximation required to obtain the
nonrelativistic limit of equations of motion. At such an
order, the expansion of the metric tensor around the
Minkowski metric in powers of 1=c is given by

g00 ¼ −1þ h00 þO

�
1

c4

�
; ð6Þ

gij ¼ δij þO

�
1

c2

�
; g0i ¼ O

�
1

c3

�
; ð7Þ

where h00 ¼ Oð1=c2Þ.
The components of the energy-momentum tensor to the

relevant order are (Ref. [21], Chap. 4.1)

T00 ¼ ρc2 þOð1Þ; ð8Þ

T0i ¼ ρcvi þO

�
1

c

�
; ð9Þ

Tij ¼ ρvivj þ pδij þO

�
1

c2

�
; ð10Þ

where matter is considered as a perfect fluid with matter
density ρ, velocity field vi, and pressure p. The trace of the
energy-momentum tensor is

T ¼ −ρc2 þOð1Þ: ð11Þ

In the present paper we use Lm ¼ −ρc2 þOð1Þ for the
Lagrangian density of matter [19].

B. Assumptions on functions f 1ðRÞ and f 2ðRÞ
In what follows we will denote GN the value of the

Newtonian gravitational constant measured in the labora-
tory; we allow for the difference G ≠ GN , given the
presence of a Yukawa interaction in the NMC model of
gravity, as it will be discussed in the next section, and
we set

κ ¼ c4

16πG
: ð12Þ

We assume that the functions f1ðRÞ and f2ðRÞ admit the
following Taylor expansions around R ¼ 0, which coincide
with the ones used in Ref. [8]:

f1ðRÞ ¼ 2κða1Rþ a2R2Þ þOðR3Þ; ð13Þ

f2ðRÞ ¼ q1RþOðR2Þ: ð14Þ

In the following, in order to recover GR when the function
f1 is linear (i.e., a2 ¼ 0) and f2 ¼ 0, we set a1 ¼ 1. Both
the parameters a2 and q1 affect the nonrelativistic limit of
the theory.

III. NONRELATIVISTIC LIMIT

In this section we consider the nonrelativistic limit of the
solution of the field equations found in Ref. [17] and
compute the equations of hydrodynamics of a perfect fluid
in the nonrelativistic limit. The solution of the field
equations contains both the Newtonian and the Yukawa
potentials with range and strength depending on NMC
parameters a2 and q1.

A. Field equations

In this subsection we give the Ricci scalar R at order
Oð1=c2Þ and the quantity h00, computed in Ref. [17], which
yield the nonrelativistic limit of NMC gravity. The trace of
the field equations (4) at order Oð1=c2Þ is given by

�
∇2 −

1

6a2

��
R −

8πG
c2

θρ

�
¼ −

4πG
3c2a2

ð1 − θÞρ: ð15Þ

In the following we assume a2 > 0. The solution is of the
Yukawa type [17]:

R ¼ 8πG
c2

θρþ ð1 − θÞ
3c2a2

Y; ð16Þ

where Y denotes the Yukawa potential

Y ¼ G
Z

ρðt; yÞ e
−mjx−yj

jx − yj d
3y; ð17Þ

and

θ ¼ q1
a2

; m2 ¼ 1

λ2
¼ 1

6a2
: ð18Þ

The range λ of the Yukawa potential depends on the NMC
parameter a2 and θ is a dimensionless quantity (see
Ref. [17] for further details).
Expanding the 00 component of the Ricci tensor Rμν as

R00 ¼ −
1

2
∇2h00 þO

�
1

c4

�
; ð19Þ

and using the expression, Eq. (8), of T00 ¼ T00, the 00
component of the field equations (3), written at order
Oð1=c2Þ, is
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∇2

�
h00 þ 4a2R −

2q1
κ

ρc2
�

¼ R −
1

κ
ρc2: ð20Þ

The solution of this equation is [17]

h00 ¼
2

c2

�
U þ 1

3
ð1 − θÞY

�
; ð21Þ

where U is the usual Newtonian potential

U ¼ G
Z

ρðt; yÞ
jx − yj d

3y: ð22Þ

Hence, the perturbation of the 00 component of the
Minkowski metric at order Oð1=c2Þ (nonrelativistic limit)
consists of the Newtonian potential plus a Yukawa potential
with range λ and strength α0, given, respectively, by (see
Ref. [17] for further details)

λ ¼
ffiffiffiffiffiffiffi
6a2

p
; α0 ¼

1

3
ð1 − θÞ ¼ 1

3

�
1 −

q1
a2

�
: ð23Þ

Then the constant G describes the gravitational interaction
of two masses located a distance r apart, as r → ∞.
Because of the presence of the Yukawa perturbation, if λ
is such that r=λ ≪ 1 at laboratory distances r, then G is
different from the value GN measured in the labora-
tory [20].

B. Equations of hydrodynamics

The equations of hydrodynamics of a perfect fluid follow
from the covariant divergence of the energy-momentum
tensor [2], as given by Eq. (5) that we repeat for conven-
ience:

∇μTμν ¼ f2R
1þ f2

ðgμνLm − TμνÞ∇μR: ð24Þ

First we compute the 0th component of this equation. Using
the components of the energy-momentum tensor given by
Eqs. (8)–(10), and taking into account that terms involving
Christoffel symbols give a contribution of order Oð1=cÞ to
the 0th component of the covariant divergence of Tμν, the
left-hand side of Eq. (24) yields

∇μTμ0 ¼ ∂Tμ0

∂xμ þO

�
1

c

�
¼ c

∂ρ
∂t þ c

∂
∂xi ðρv

iÞ þO

�
1

c

�
:

ð25Þ

The right-hand side of Eq. (24) yields

f2R
1þ f2

ðgμ0Lm − Tμ0Þ ∂R∂xμ ¼ O

�
1

c

�
: ð26Þ

Neglecting terms of order Oð1=c2Þ the continuity equation
then follows in the nonrelativistic limit as usual:

∂ρ
∂t þ

∂
∂xi ðρv

iÞ ¼ 0: ð27Þ

The NMC term on the right-hand side of Eq. (24) gives a
distinctive contribution to the spatial part of this equation
that now we compute. The left-hand side yields

∇μTμi ¼ ∂Tμi

∂xμ þ Γi
00T

00 þO

�
1

c2

�
; ð28Þ

where, using Eqs. (6) and (21) for the metric tensor, the
Christoffel symbol Γi

00 is given by

Γi
00 ¼ −

1

c2

�∂U
∂xi þ

1

3
ð1 − θÞ ∂Y∂xi

�
þO

�
1

c4

�
; ð29Þ

and all other Christoffel symbols give contributions of
order Oð1=c4Þ to the ith component of the covariant
divergence of Tμν and thus are neglected. Then, using
the components of the energy-momentum tensor given by
Eqs. (8)–(10), for i ¼ 1, 2, 3, we have

∇μTμi ¼ ∂
∂t ðρv

iÞ þ ∂
∂xj ðρv

ivjÞ − ρ

�∂U
∂xi þ

1

3
ð1 − θÞ ∂Y∂xi

�

þ ∂p
∂xi þO

�
1

c2

�
: ð30Þ

Using now the continuity equation (27), at order Oð1Þ, we
get

∇μTμi ¼ ρ
dvi

dt
− ρ

∂U
∂xi −

1

3
ð1 − θÞρ ∂Y∂xi þ

∂p
∂xi ; ð31Þ

where d=dt ¼ ∂=∂tþ vi∂=∂xi is the time derivative
following the fluid.
For i ¼ 1, 2, 3, using Eqs. (13) and (14) for functions f1,

f2, the solution for R, Eq. (16), and formulas (23), the right-
hand side of Eq. (24) at order Oð1Þ yields

f2R
1þf2

ðgμiLm−TμiÞ ∂R∂xμ ¼
f2R

1þ f2
gjiLm

∂R
∂xj

¼−c2q1ρ
∂R
∂xi ¼−

1

3
θð1− θÞρ∂Y∂xi−

2

3
πGλ2θ2

∂ρ2
∂xi : ð32Þ

Combining this equation with Eq. (31), for i ¼ 1, 2, 3,
yields the equations of NMC hydrodynamics for a perfect
fluid in the nonrelativistic limit:

ρ
dvi

dt
¼ ρ

∂U
∂xi −

∂p
∂xi þ

1

3
ð1 − θÞ2ρ ∂Y∂xi −

2

3
πGλ2θ2

∂ρ2
∂xi :

ð33Þ
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We observe the presence of two additional terms in
comparison with Eulerian equations of Newtonian
hydrodynamics:

(i) a Yukawa force density with strength αðθÞ ¼
ð1 − θÞ2=3;

(ii) an extra force density proportional to the gradient of
squared mass density, ρ2, with coefficient of pro-
portionality ð2π=3ÞGλ2θ2.

The extra force density in (ii) has been extensively
discussed in Ref. [2], and for relativistic perfect fluids in
Ref. [19]. Here we have derived the explicit expression of
such a force density corresponding to the functions f1ðRÞ,
f2ðRÞ given by Eqs. (13), (14).
By equating dvi=dt to the centripetal acceleration on

rotating Earth [22], we obtain the equations of hydrostatic
equilibrium for seawater:

∂p
∂xi ¼ ρ

∂U
∂xi þ

ω2

2
ρ

∂
∂xi ðr cosϕÞ

2 þ 1

3
ð1 − θÞ2ρ ∂Y∂xi

−
2

3
πGλ2θ2

∂ρ2
∂xi ; ð34Þ

where ω ¼ 7.292115 × 10−5 rad=s is the angular velocity
of the Earth, r is the distance to center of Earth, and ϕ is
geocentric latitude. These equations will be used in order to
constrain the NMC parameters a2, q1 (equivalently, λ, θ) by
means of the ocean experiment reported in Ref. [1].

C. Motion of a test body in a static,
spherically symmetric field

In this subsection we discuss the implications of the
nonrelativistic limit of NMC gravity for the motion of a test
body in the gravitational field of a static, spherically
symmetric body. The resulting constraints from Solar
System observations will justify the need for further
constraining the NMC model of gravity by means of an
ocean experiment as reported in Ref. [1].
The action for a point particle with mass m is given

by [17]

S ¼ mc
Z

dτ½1þ f2ðRÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν

dxμ

dτ
dxν

dτ

r
; ð35Þ

where τ is an affine parameter (which can be identified
with proper time). Variations with respect to δxμ yield the
equations of motion [23],

d2xα

dτ2
þ Γα

μν
dxμ

dτ
dxν

dτ
¼ f2RðRÞ

1þ f2ðRÞ g
αβ ∂R
∂xβ ; ð36Þ

showing that the NMC gravity model leads to a deviation
from geodesic motion [2,24].
The nonrelativistic limit of the equations of motion of a

test body in a static, spherically symmetric field can be

extracted from Ref. [17], where the full relativistic equa-
tions of motion have been computed:

dv
dt

¼ −GMS
r
r3

þ ð1 − θÞY 0ðrÞ r
r
; ð37Þ

whereMS is the mass of the central attracting body, r and v
denote the radius vector and the velocity of the test body,
respectively, the prime denotes derivative with respect to
r ¼ jrj, and Y is the Yukawa potential

YðrÞ ¼ GMS

r
½1þ α0Aðλ; RSÞ�e−r=λ; ð38Þ

where RS is the radius of the central body, the range λ and
the strength α0 are given by Eq. (23), and Aðλ; RSÞ is a form
factor which depends on the distribution of mass inside the
central body [18,20]. If the central attracting body has
uniform mass density, and RS ≪ λ, then

Aðλ; RSÞ ¼ 1þ 1

10

�
RS

λ

�
2

þ 1

280

�
RS

λ

�
4

þ…: ð39Þ

The effect of deviation from geodesic motion is contained
in the factor (1 − θ) multiplying Y 0 in Eq. (37), see Ref. [17]
for the details.
If the unperturbed Newtonian orbit of the test body is

elliptical, then the most significant effect of the Yukawa
perturbation in Eq. (37) is an anomalous precession of the
pericenter of the orbit, with precession per revolution given
by [17,20]

δϕP ¼ ð1 − θÞ2 π
3

�
1þ e2

�
3

2
−
L
λ
þ 1

8

�
L
λ

�
2
��

×

�
1þ 1

10

�
RS

λ

�
2
��

L
λ

�
2

exp

�
−
L
λ

�

≈ ð1 − θÞ2 π
3

�
L
λ

�
2

exp

�
−
L
λ

�
; ð40Þ

where e and L are the eccentricity and the semilatus rectum
(i.e., the mean radius) of the orbit, respectively, and the
inequalities e ≪ 1, RS=λ ≪ 1 are assumed.
If the Yukawa range λ reaches astronomical values at

Solar System scales, i.e., values of order of either Sun-
planets distances or the Earth-Moon distance, then astro-
nomical tests of the Yukawa force, based on observations of
planetary precessions and Lunar Laser Ranging measure-
ments [25], impose the constraint:

ð1 − θÞ2 ≪ 1 ⇒ a2 ≈ q1; ð41Þ

where Eq. (23) has been used. Hence, if the NMC
parameter q1 is close enough to a2, then the range λ of
the Yukawa force can reach astronomical values in the
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Solar System, still evading the stringent constraints from
astronomical tests on the Yukawa perturbation.
Nevertheless, if ð1 − θÞ2 ≪ 1 (hence, θ ≈ 1) and λ is

large in comparison with the radius of Earth, then the extra
force (ii) in Eq. (34) of hydrostatic equilibrium,

−
2

3
πGλ2θ2

∂ρ2
∂xi ; ð42Þ

can become a significant perturbation of the hydrostatic
equilibrium of a compressible fluid (∂ρ=∂p ≠ 0) on Earth.
Hence, an upper bound on λ has to follow from suitable
experiments devised to test the presence of a Yukawa force
in a compressible fluid. In the next section, by exploiting
the compressibility properties of seawater [26], we discuss
how an upper bound on the Yukawa range λ can be imposed
from the measurement in the ocean of the Newtonian
gravitational constant G reported from the experiment
of Ref. [1].

IV. EFFECTS OF NMC GRAVITY
IN OCEAN EXPERIMENTS

In Ref. [1] the Newtonian gravitational constant has been
measured in the ocean by means of an experiment of Airy
type (see Ref. [20], Chap. 3). Gravitational acceleration
was measured down to 5000 m vertical lines using a
submersible as a platform for gravity measurements. The
experimental input consists of data for the gravitational
accelerations at various depths, z, below the surface of the
ocean (see Sec. V B for definitions), along with data for
local mass density ρðzÞ of seawater. The main advantage in
carrying out an experiment of Airy type in the ocean is that
mass density ρ in the ocean is known with an accuracy
better than 1 part in 104, by resorting to the seawater
equation of state available at the time of the experiment
[27]. The result of the measurements in Ref. [1] constrains
the strength of a Yukawa modification to Newtonian
gravity to be less than 0.002 for scale lengths in the range
from 1 to 5000 m.
In the next subsections we model the theoretical con-

tributions to the gravitational acceleration in seawater due
to Newtonian gravity and the Yukawa perturbation, respec-
tively, and the contribution of the extra force to the pressure
to depth conversion.

A. Contribution of Newtonian gravity

Let us consider the contribution to the gravitational
acceleration from the Newtonian part of the NMC model of
gravity, with gravitational constant G. The Newtonian
potential U plus the centrifugal potential is referred to as
the geopotential, and the level surface of the geopotential
nearest to the mean sea level is denoted as the geoid [28].
Following Ref. [1], the contribution of Newtonian

gravity is computed starting with a model for the mass
density of the Earth, described in Refs. [29–31], which is

ellipsoidally layered beneath the topographic surface of the
Earth, in the vicinity of the measurements. Then the model
is refined by applying corrections for the localized depar-
tures from the layered structure. Let P be a point inside the
Earth, and let Q be the point on the topographic surface
such that the segment PQ is normal to the ellipsoid of
constant mass density passing through P. The depth of P is
denoted by z and it is approximately given by the length
of PQ.
We denote by γ the magnitude of the gravitational

acceleration (Newtonian plus centrifugal) computed for
z ≥ 0 by means of the layered model. The difference in γ
between P and the point Q at the surface (z ¼ 0),
γðzÞ − γð0Þ, is predicted by the ellipsoidally layered model
with an accuracy of 1 part in 105 or less [29]. Such a
precision was necessary when comparing the raw gravity
data of the experiment reported in Ref. [1] with the
theoretical prediction. For the purpose of constraining
NMC gravity, it is sufficient to use the spherical approxi-
mation of the gravity difference, which corresponds to
neglect the effects of the Earth’s rotation [29,30]:

γðzÞ − γð0Þ ≈ 2
γð0Þ
rs

z − 4πG
Z

z

0

ρlðz0Þdz0; ð43Þ

where rs is the distance ofQ to the center of Earth, and ρl is
the model layered mass density of the Earth. The complete
formulas of the ellipsoidalmodel aregiven in theAppendixA
where also terms of second order in z=rs are reported.
The magnitude of the acceleration in the field of the

Earth, due to actual Newtonian gravity plus the centrifugal
force, is represented by

gðzÞ ¼ γðzÞ þ δgðzÞ; ð44Þ

where δgðzÞ is a gravity disturbance which, in the case of
the ocean experiment, is caused by deviations from
ellipsoidally layered mass density like, for instance, a
varying attraction of the seafloor topography, the presence
of a sediment layer and regional mass density variations in
the soil beneath the ocean. The seawater mass density ρw
did not exhibit significant lateral changes across the
experimental site in the ocean [1], so that we can set for
the actual seawater density ρw ¼ ρwðzÞ.
The experimental site in Ref. [1] was chosen in the

Pacific ocean in order to minimize gravity perturbations
from the ocean-continent boundary (1000 km away) and
from oceanic fracture zones. Moreover, remote irregular-
ities, such as large continental elevations and deep oceanic
trenches, have negligible effect because of the phenomenon
of isostatic compensation [28,32]. By Archimedes law,
topographic loads on the crust are buoyantly supported by
similar but inverted undulations in the shape of the crust-
mantle boundary of the Earth: the attraction of this interface
cancels at large enough distances the gravity perturbation
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from the changing topography. In Ref. [1] the authors
observe that the gravity disturbance due to the varying
attraction of seafloor topography is also largely canceled by
isostatic compensation.
The magnitude γð0Þ on the topographic surface of the

Earth, in the spherical approximation, is given by

γð0Þ ≈GM⊕

r2s
; ð45Þ

where M⊕ is the mass of the Earth. In the absence of a
Yukawa force (G ¼ GN) the value of GM⊕ is determined
by means of several types of space measurements, with the
dominant contribution resulting from laser ranging to the
Lageos satellites [33]. In the presence of a Yukawa force,
GM⊕ is different from the measured value due to the effect
of the Yukawa perturbation on the motion of satellites
orbiting around Earth and involved in the measurements
[20]. However, if the Yukawa range λ is much smaller than
the mean distances of such satellites from Earth, then the
above difference is negligible. In this case, the value of
GM⊕ determined by means of space measurements is
GM⊕ ¼ 398600441.5 × 106 m3 s−2 [34].
Formulas up to the second order in polar flattening are

reported in Appendix A, and they give for γð0Þ the
international gravity formula on the ellipsoid [35].

B. Contribution of Yukawa perturbation for λ ≪ R⊕

We compute the contribution to gravitational acceler-
ation due to the Yukawa perturbation under the assumption
λ ≪ R⊕, where R⊕ is the mean radius of the Earth. The
validity of such an assumption has to be verified a poste-
riori. We divide the region below the surface of the ocean
into three subregions:

(i) seawater with mass density ρwðzÞ for 0 < z ≤ zw;

(ii) oceanic crust with mass density ρcðzÞ for
zw < z ≤ zc;

(iii) mantle with mass density ρmðzÞ for zc < z.
In Ref. [1] the seawater density, ρw, varied from 1023.6
near the surface to 1050.5 kgm−3 at 5000 m depth. Layer 1
of the oceanic crust is a sediment layer with mean thickness
of 36 m and it has a negligible effect [1]. The average
seafloor density in the region is 2690 kgm−3 [1], which we
consider as the value of density of layer 2 (typically 1.5 km
thick), composed of extruded basalt affected by circulation
of seawater through pores and cracks [36]. Layer 3 is about
5 km thick with fewer pores and cracks, hence with a larger
mass density, so that the average density of the oceanic
crust is ρ̄c ¼ 2860 kgm−3 [37]. Eventually, the average
mass density of the upper mantle (zc < z≲ 670 km) is
about ρ̄m ¼ 3400 kgm−3 [36].
In order to correct the gravitymeasurements in Ref. [1] for

various effects, the authors include in their computations an
Airy-Heiskanen model of isostatic compensation (see
Ref. [28], Chap. 3) consisting of a crust-mantle interface
buried at a depth of 7000m below the seafloor with the same
density contrast. For our computations we use the values

zw ¼ 5000 m; zc − zw ¼ 7000 m;

ρ̄c ¼ 2860 kgm−3; ρ̄m ¼ 3400 kg m−3: ð46Þ

Under the assumption λ ≪ R⊕, we approximate the con-
tributions to the Yukawa force due to seawater, oceanic crust
and mantle, by the field strength produced by two infinite
slabs having mass density ρw and ρc and a half-space with
density ρm, respectively.We assume that the Yukawa force is
exponentially suppressed beneath the upper mantle (an
assumption that has to be verified a posteriori). Then the
Yukawa potential (17), evaluated in cylindrical coordinates
for 0 ≤ z ≤ zw, is given by

Yðz; λÞ ¼ 2πG
Z þ∞

0

ρlðz0Þdz0
Z þ∞

0

e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þðz−z0Þ2

p
=λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ðz − z0Þ2
p rdr

¼ 2πGλ

�Z
zw

0

ρwðz0Þe−jz−z0j=λdz0 þ
Z

zc

zw

ρcðz0Þeðz−z0Þ=λdz0 þ
Z þ∞

zc

ρmðz0Þeðz−z0Þ=λdz0
�
: ð47Þ

Denoting ρ̄w the average mass density of seawater,
ρ̄w ¼ ð1=zwÞ

R zw
0 ρwðzÞdz, and using Eq. (46), we have

Yðz; λÞ ¼ 2πGλ2½ρ̄wð2 − e−z=λÞ
þ ðρ̄m − ρ̄cÞðe−zw=λ þ e−zc=λÞez=λ�
þ ΔYðz; λÞ; ð48Þ

where ΔYðz; λÞ is a correction which depends on the
inhomogeneity of mass density. In the following we set

Gðz; λÞ ¼ ∂Yðz; λÞ=∂z, so that the magnitude of the gravi-
tational acceleration due to Yukawa force is given by

αðθÞGðz; λÞ; with αðθÞ ¼ 1

3
ð1 − θÞ2: ð49Þ

Using Eq. (34), and taking the derivative with respect to z,
we obtain the contribution of the Yukawa perturbation to
the gravitational acceleration:
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Gðz; λÞ − Gð0; λÞ ¼ 2πGλ½ρ̄wðe−z=λ − 1Þ
þ ðρ̄m − ρ̄cÞðe−zw=λ þ e−zc=λÞðez=λ − 1Þ�
þ Δ½Gðz; λÞ − Gð0; λÞ�; ð50Þ

where Δ½Gðz; λÞ − Gð0; λÞ� is a correction depending on the
inhomogeneity of mass density. Since the contribution of
the Yukawa perturbation has to be small, we neglect
disturbances caused by deviations from planarly layered
mass density. Moreover, the experimental site in the Pacific
ocean was chosen with minimal relief (see Ref. [1] for
details).
At the surface of the ocean, the contribution of the

Yukawa perturbation is given by

Gð0; λÞ ¼ 2πGλ½ρ̄w þ ðρ̄m − ρ̄cÞðe−zw=λ þ e−zc=λÞ�
þ ΔGð0; λÞ; ð51Þ

where ΔGð0; λÞ once again depends on the inhomogeneity
of mass density.

C. Contribution of the extra force

In the experiment reported in Ref. [1], gravitational
acceleration at various depths z was measured by using a
gravimeter placed in a submersible. The gravimeter was
able to measure the acceleration due to both the Newtonian
and Yukawa force; however, the contribution of the extra
force could not be directly measured, since the gravimeter
was not immersed in the seawater. Nevertheless, the gravity
measurement is indirectly influenced by the extra force for
the following reason.
The experimental input requires data for the gravitational

accelerations gðzÞ at various depths z below the surface of
the ocean, along with data for local mass density ρwðzÞ of
seawater. Hence, depth z has to be measured jointly with
acceleration and mass density. In Ref. [1] depths z were
determined from pressure, which was measured in the
oceanic water by quartz pressure gauges. Depth is then
determined by resorting to the method of conversion of
pressure to depth of physical oceanography, which is based
on the approximation of hydrostatic equilibrium and the
seawater equation of state. Pressure was measured with an
accuracy better than 7 parts in 105, which corresponds to an
uncertainty of 0.35 m at 5000 m, while the uncertainty
associated with seawater mass density (which enters into
the equation of state) was 0.5 m at the time of the
experiment [1]. The root-sum-square depth uncertainty
was 0.61 m.
The compressibility of seawater ðdρw=dz ≠ 0Þ yields a

nonvanishing extra force. Since the extra force constitutes a
perturbation in the equations (34) of hydrostatic equilib-
rium, this force contributes to the conversion of pressure to
depth, modifying the computed value of the depth, z. In this
section we now compute such a contribution.

The site of measurements in the ocean was chosen in
order to minimize gravity perturbations also from oceanic
currents and fronts [1]. Gravity and pressure measurements
have been taken at depths below 500 m, since velocity
fluctuations in the upper few hundred meters at the
experimental site are substantially larger than those in
deep water [38].
Hydrostatic balance is the dominant balance within the

vertical (perpendicular to the ocean surface) momentum
equation of seawater, as long as the vertical length scales of
motion are much smaller than the horizontal length scales
[39]. Nevertheless, for the purposes of a precision experi-
ment such as the one reported in Ref. [1], the use of the
equation of hydrostatic equilibrium in a dynamic environ-
ment such as the ocean requires a preliminary discussion
(see also Ref. [38]). The following statements have to be
considered valid only for the open ocean and deep water,
which is the case of the experiment in Ref. [1].
Seawater pressure pw is the sum pw ¼ pþ pd of the

hydrostatic equilibrium pressure p plus a perturbation
pressure pd due to dynamic effects [39]. Equilibrium
pressure is simply denoted by p since it will be the most
frequently used. The contribution pd is due to perturbations
among which the main ones are surface gravity waves,
internal gravity waves, geostrophic flow and tides [39].
Instances of surface gravity waves are wind waves and a
swell generated by a distant storm, and their amplitude is
small in comparison with ocean depth zw. In this case,
according to linear wave theory, the contribution of such
waves to pd is exponentially damped with depth [39], and it
is either negligible at depths z below 500 m, where
measurements have been taken in the experiment in
Ref. [1], or it can be filtered out as a noise component
of the measured pressure pw, by computing the spectrum of
perturbation pressure [40,41]. Internal waves occur due to
seawater density gradients [39], their frequency is bounded
from above by the Brunt-Väisälä frequency (1 cycle per
hour or less), and their contribution to pw is either
negligible or can also be filtered out since the time scales
on which internal waves occur are of an hour or more [38].
Geostrophic flow is the result of the balance between the

Coriolis acceleration and the horizontal pressure gradient
[39], and it gives rise to both a stationary contributionHg to
the height of the topographic surface of the ocean above the
geoid, and a stationary contribution to pd given by
ρwð0Þγð0ÞHg. The height Hg is on the order of a few
decimeters, and the contribution to the slope of the ocean
surface is on the order of 1 m per 1000 km for a geostrophic
current of 0.1 ms−1 [42].
Tide-producing forces give rise to a periodic contribution

to pd. In the case of a lunar semidiurnal M2 tide, which is
the largest tidal constituent, the period is 12.4 hours, which
is one half of the lunar day, and the wavelength is half the
circumference of the Earth at the latitude of the exper-
imental site [39]. The periodic contribution Ht of the tidal
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wave to the height of the topographic surface of the ocean
above the geoid has an amplitude on the order of 1 m or less
at the experimental site [38], and the contribution to pd is
given by ρwð0Þγð0ÞHt. By using a simple harmonic model,
the vertical acceleration of seawater imparted by the tide is
a ¼ ω2Ht, where ω is the angular frequency of the tide, so
that a ≈ 2 × 10−8 ms−2 for aM2 tide andHt ¼ 1 m, which
is negligible [38].
The contribution to pd of geostrophic flow and tides,

given by ρwð0Þγð0ÞðHg þHtÞ, can be subtracted from the
measured pressure pw. Similarly, the effect on Newtonian
gravity gðzÞ of the displaced mass of seawater can be
corrected. Since the contribution to the slope of the ocean
surface is small, then a simple and suitable correction consi-
sts in the subtraction of the gravitational attraction of an
infinite Bouguer plate [28] given by 2πGρwð0ÞðHg þHtÞ ≈
6 × 10−7 ms−2 for Hg ¼ 0.5 m and Ht ¼ 1 m [38]. After
implementing the correction we may set H ¼ 0 for the
height of the topographic surface of the ocean above the
geoid, so that we may refer depth z to the geoid. Eventually,
if the perturbation pressure due to gravity waves has also
been filtered out, then hydrostatic equilibrium pressure
p ¼ pw − pd may be used for pressure to depth conversion.

1. Pressure to depth conversion

Gravity measurements in the experiment of Ref. [1] have
been corrected for tides and other dynamical effects (see
Ref. [38] for a discussion of the various corrections). Then,
on the basis of the previous discussion, the equations (34)
of hydrostatic equilibrium for pressure p can be used. Since
seawater mass density exhibits no significant lateral changes
across the experimental site [1], we have ρw ¼ ρwðzÞ. Thus
the vertical component of Eq. (34) is given by

1

ρw

∂p
∂z ¼ ∂U

∂z þ ω2

2

∂
∂z ðr cosϕÞ

2 þ 1

3
ð1 − θÞ2 dY

dz

−
4

3
πGλ2θ2

dρw
dz

; ð52Þ

where r ≈ rs − z. By integration along the vertical direction
we obtain

Z
p

ps

dp0

ρw
¼

Z
z

0

gðz0Þdz0 þ αðθÞ½Yðz; λÞ − Yð0; λÞ�

−
4

3
πGλ2θ2½ρwðzÞ − ρwð0Þ�; ð53Þ

wherep is pressure at depth z below the surface of the ocean,
and ps ≈ 101325 Pa is the pressure at the surface (atmos-
pheric pressure).
Since mass density is discontinuous across the atmos-

phere-seawater and seawater-crust interfaces, then the
derivative of density that enters into the expression of

the extra force is taken outside of the discontinuity surfaces,
so that the derivative is defined everywhere except at
interfaces. It then follows that pressure is continuous across
such interfaces.
In the sequel we give the main formulas, while technical

details of the computations are reported in Appendix B.
Evaluation of g in Eq. (53) yields

gðzÞ ¼ γð0Þ þ βðzÞzþ δgðzÞ; ð54Þ

where βðzÞ is given by Eq. (43),

βðzÞ ≈ 2
γð0Þ
rs

− 4πGρ̄wðzÞ; ð55Þ

and ρ̄wðzÞ denotes the average value of ρwðz0Þ over ð0; zÞ.
An expression for βðzÞ which accounts for the Earth’s
ellipticity is reported in Appendix B.
Note that the function βðzÞ in Eq. (55) is denoted by γðzÞ

in oceanography; however, we have denoted γ the gravity
computed by means of the layered mass density model. The
function βðzÞ depends weakly on z through the mean value
ρ̄wðzÞ. Thus, following the practice used in physical
oceanography, we consider β constant and we replace
ρ̄wðzÞ by ρ̄wðzwÞ ¼ ρ̄w. If G ¼ GN (absence of the Yukawa
force), approximating rs ≈ R⊕, then the value used in
oceanography is βN ¼ 2.226 × 10−6 s−2.
The density ρw of seawater is a function ρw ¼ ρwðS; t; pÞ

of salinity S, in situ temperature t and pressure p [26] (for
the various definitions of salinity see Ref. [26]). In the
following we denote by t the in situ temperature, according
to the notation in physical oceanography [26], since there
will be no possibility of confusion with the time variable.
By using the international equation of state of seawater

[26], the integral of specific volume 1=ρw with respect to
pressure, in Eq. (53), has the following expression:

Z
p

ps

dp0

ρw
¼ QðpÞ þ ΨðS; t; pÞ; ð56Þ

where QðpÞ is a polynomial and Ψ is a small quantity,
called the dynamic height anomaly, which takes account of
the deviation of the physical state of seawater from the
standard ocean (characterized by S ¼ 35 and t ¼ 0° C). The
main terms of the polynomial QðpÞ are the following [26]:

QðpÞ¼9.72661ðp−psÞ−2.2530×10−5ðp−psÞ2
þ2.377×10−10ðp−psÞ3
−1.66×10−15ðp−psÞ4þ…; ð57Þ

whereQ is measured in m2 s−2 and ðp − psÞ is measured in
decibars.
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Let us consider the third term in the right-hand
side of Eq. (53) which involves the extra force. In
Ref. [1] depth z is a derived quantity and not a measured
quantity, while the measured quantities are electrical
conductivity of seawater, temperature, and pressure.
Thus, we express the contribution of the extra force
in Eq. (53) as a function of salinity (which is closely
related to measured conductivity), temperature and
pressure:

−
4

3
πGλ2θ2½ρwðS; t; pÞ − ρwðSs; ts; psÞ�; ð58Þ

where, as previously, the subscript s denotes surface values.
Following the method used in physical oceanography

[26,43], we solve approximately Eq. (53) with respect to z
as a function of S, t, p. The result is the following formula
for the pressure to depth conversion, which takes into
account the effect of the extra force:

zðS; t; pÞ ≈
�
γð0Þ þ 1

2
β
QðpÞ
γð0Þ

�
−1
�
QðpÞ þ ΨðS; t; pÞ − δðS; t; pÞ − αðθÞ½YðzNðS; t; pÞ; λÞ − Yð0; λÞ�

þ 4

3
πGλ2θ2½ρwðS; t; pÞ − ρwðSs; ts; psÞ�

�
; ð59Þ

where δðS; t; pÞ represents the contribution of the gravity
disturbance δg, and

zNðS; t; pÞ ≈
QðpÞ þ ΨðS; t; pÞ
γð0Þ þ 1

2
βN

QðpÞ
γð0Þ

ð60Þ

is the conversion formula in the case of Newtonian gravity
with G ¼ GN , hence, the absence of the Yukawa force.
The effect of the sole Yukawa force on the pressure to

depth conversion gives a difference with respect to the
Newtonian value zN of order of centimeters at 5,000 m for a
value of αðθÞ of order 10−3, which is the order of magnitude
of the upper bound on α estimated in [1], and for all
λ ≪ R⊕. Hence, we consider zN ¼ zNðS; t; pÞ as the depth
function computed from S, t, p in Ref. [1].
Formula (59) will be used in the next section to constrain

the parameters of the NMC gravity model by using the
results of the experiment of Ref. [1].

V. CONSTRAINTS ON THE NMC
GRAVITY PARAMETERS

In this section we find constraints on parameters λ and θ
of the NMC model of gravity by using the result of the
measurement of the Newtonian gravitational constant given
in Ref. [1]. The main purpose of this section is to find an
upper bound on the Yukawa range, λ, by exploiting
the influence of the extra force on the pressure to depth
conversion.
Using Eqs. (43) and (55), the layered mass density model

yields the following difference in Newtonian gravitational
acceleration between a point at depth z in seawater and a
point at the ocean surface:

γðzÞ − γð0Þ ¼ βz; ð61Þ

where z has to be expressed in terms of measured quantities
S, t, p according to the conversion formula (59). Using

Eq. (49), the contribution of the Yukawa force to the gravity
difference is given by

αðθÞ½Gðz; λÞ − Gð0; λÞ�: ð62Þ

In the case of Newtonian gravity with G equal to the
laboratory value GN (hence, in the absence of the Yukawa
force), the gravity difference is βNzN , with zN given
by Eq. (60).
Then we define the modeled gravity residual [20,29],

which is the excess of total gravity [the sum of (61) plus
(62)] over the Newtonian value with G ¼ GN :

Δgmðz; zNÞ ¼ βz − βNzN þ αðθÞ½Gðz; λÞ − Gð0; λÞ�; ð63Þ

which, expressed as a function of measured quantities S, t,
p and parameters θ, λ, reads as follows:

ΔgmðS; t; p; θ; λÞ ¼ βzðS; t; pÞ − βNzNðS; t; pÞ
þ αðθÞ½GðzNðS; t; pÞ; λÞ − Gð0; λÞ�;

ð64Þ

where, in the small quantity αðθÞGðz; λÞ, z has been
evaluated using zNðS; t; pÞ according to formula (60). In
the next section we will obtain an expression for the
modeled gravity residual Δgm.

A. Evaluation of the modeled gravity residual

In this section we express the modeled gravity residual
Δgm as a function of measured quantities that characterize
the physical state of seawater. We use the following relation
between the Newtonian gravitational constant G at dis-
tances r ≫ λ (see the end of Sec. III A) and the laboratory
value GN ([20], Appendix B):
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G ¼ GN

1þ αðθÞΦðλÞ ; ð65Þ

where Φ is a positive, increasing function such that
ΦðλÞ ≪ 1 for λ ≤ 1 cm, andΦðλÞ ≈ 1 for λ ≥ 10 m. We set

Yðz; λÞ ¼ 2πGVðz; λÞ; Gðz; λÞ ¼ 2πGF ðz; λÞ: ð66Þ

We define the constant

c0 ¼ βN þ 4πGN ρ̄w; ð67Þ

and the following functions of pressure:

c1ðpÞ ¼ γð0Þ þ 1

2
βN

QðpÞ
γð0Þ ;

c2ðpÞ ¼ c1ðpÞ þ 2πGN ρ̄w
QðpÞ
γð0Þ : ð68Þ

By using Eq. (59) with δ ¼ 0 for zðS; t; pÞ [we model
gravity using the layered mass density model, so that
δgðzÞ ¼ 0], Eq. (60) for zNðS; t; pÞ, and substituting in the
expression (64) of the gravity residual, we find

ΔgmðS; t; p; θ; λÞ ¼
2πGN

1þ αðθÞΦðλÞ
�
NðS; t; p; θ; λÞ
Dðp; θ; λÞ þ αðθÞ½F ðzNðS; t; pÞ; λÞ − F ð0; λÞ�

�
: ð69Þ

The numerator NðS; t; p; θ; λÞ is given by

NðS; t; p; θ; λÞ ¼ Aðθ; λÞ½QðpÞ þ ΨðS; t; pÞ� þ c1ðpÞ½βN þ c0αðθÞΦðλÞ�

·
�
−αðθÞ½VðzNðS; t; pÞ; λÞ − Vð0; λÞ� þ 2

3
λ2θ2½ρwðS; t; pÞ − ρwðSs; ts; psÞ�

�
;

Aðθ; λÞ ¼ 2αðθÞΦðλÞð1þ αðθÞΦðλÞÞρ̄wγð0Þ: ð70Þ

The denominator Dðp; θ; λÞ is given by

Dðp; θ; λÞ ¼ c1ðpÞ½c1ðpÞ þ αðθÞΦðλÞc2ðpÞ�: ð71Þ

B. Constraint inequalities

In Ref. [1] the gravitational acceleration was measured,
together with S, t, p, along vertical tracks in seawater using
a gravimeter on a submersible. Four continuous vertical
gravity profiles have been measured for depths zN ¼
zNðS; t; pÞ in the range zN;1 ≤ zN ≤ zN;2, with zN;1 ¼
500 m and zN;2 ¼ 4800 m.
Since all the gravity measurements are relative, we

consider gravity differences along a vertical track between
a point at depth zN and the point at depth zN;1. Now we
introduce the observed gravity residual by means of the
corrected gravity differences

gcðzNÞ − gcðzN;1Þ; ð72Þ

which are defined as the differences between raw gravim-
eter measurements corrected for an instrumental drift and
for (see [1] for further details)

(i) temporal variations: Eötvös effect, Earth and ocean
tides, vertical acceleration of the submersible;

(ii) gravity disturbances δgðzNÞ: isostatically compen-
sated local seafloor topography, regional inhomo-

geneities of mass density in the soil beneath
the ocean.

The uncertainties in the various corrections are listed
in Ref. [1].
Then the observed gravity residual ΔgobsðzNÞ is

defined as the excess of the corrected gravity diffe-
rences over the Newtonian values computed with
G ¼ GN :

ΔgobsðzNÞ ¼ gcðzNÞ − gcðzN;1Þ − βNðzN − zN;1Þ: ð73Þ

In the range ðzN;1; zN;2Þ the fit to the average of the slopes of
Δgobs in the four profiles is [1]

dΔgobs
dzN

¼ −0.060� 0.172; ð74Þ

with slope measured in mGal km−1, where 1 mGal ¼
10−3 cm s−2.
Moreover, the average of four individual values of Δgobs

obtained on the bottom, at the average depth zN ¼ 5000 m,
differs from the average of the values of Δgobs measured in
the water column by less than 0.05 mGal [1]. Using
Eq. (74) it follows

CONSTRAINING A NONMINIMALLY COUPLED CURVATURE- … PHYS. REV. D 100, 042002 (2019)

042002-11



−0.232 × 10−8ðzN − zN;1Þ ≤ ΔgobsðzNÞ
≤ 0.112 × 10−8ðzN − zN;1Þ;

ð75Þ

with the gradient of the gravity residual measured in s−2.
The expression for the modeled gravity residual Δgm

requires the knowledge of seawater density ρw and dynamic
height anomaly Ψ as functions of measured quantities S, t,
p. The seawater density ρw ¼ ρwðS; t; pÞ was computed in
Ref. [1] along the vertical profiles by using the equation of
state of seawater available at the time of the experiment
[27]. In Ref. [1], computed values of density ρw are
reported for the values of depth zN ≈ 0 at the ocean surface
and zN ¼ zw ¼ 5000 m at the bottom.
By using the data available at Ref. [1], in order to obtain

a constraint on NMC gravity parameters θ, λ, we have two
possibilities:

(i) we compute seawater density for the standard ocean;
hence, we set ρw ¼ ρwð35; 0; pÞ, by using the
equation of state of seawater, which corresponds
to neglect ΨðS; t; pÞ;

(ii) we use the values of ρw reported in Ref. [1] for
zN ¼ 0 and zN ¼ zw, computed by using the full
equation of state of seawater with ΨðS; t; pÞ, and
we apply the estimate (74) of the gradient of
the observed gravity residual to the range of depths
ð0; zwÞ.

Here we adopt the approach (ii), but see also the discussion
in the sequel. Then, expanding the interval of depths
from ðzN−1; zNÞ to ð0; zwÞ in the inequalities (75), and
replacing the observed gravity residual Δgobs with the
modeled gravity residual Δgm expressed as the function
(64) of measured quantities S, t, p and parameters θ, λ,
we achieve the following constraint on NMC gravity
parameters:

−0.232 × 10−8zw ≤ ΔgmðSw; tw; pw; θ; λÞ
≤ 0.112 × 10−8zw; ð76Þ

where Sw, tw, pw are the measured values at the bottom of
the ocean from which depth zw has been computed.
In order to compute ΔgmðSw; tw; pw; θ; λÞ we note that

Sw, tw enter only in the quantities ΨðSw; tw; pwÞ and
ρwðSw; tw; pwÞ, while pressure pw enters separately in the
expression (57) forQðpÞ. A good starting point for pressure
pw is found by inverting the quadratic approximation, given
in Ref. [44] for the standard ocean, to the Newtonian
formula (60):

pw ≈ ps þ
1

2a2
f1 − a1ðϕgÞ − ½ð1 − a1ðϕgÞÞ2 − 4a2zw�1=2g;

ð77Þ

where ϕg ¼ 35°130N is the geographic latitude of the
experimental site, and

a1ðϕgÞ ¼ ð5.92þ 5.25sin2ϕgÞ × 10−3 mdb−1;

a2 ¼ 2.21 × 10−6 mdb−2; ð78Þ
where db denotes decibar. A more accurate solution would
require the knowledge of the dynamic height anomaly Ψ
[26], but in the present paper we limit ourselves to the
above approximation.
Using the values of seawater density reported in Ref. [1],

and quoted in Sec. IV B, we have

ρwðSw; tw; pwÞ − ρwðSs; ts; psÞ ¼ 1050.5 − 1023.6

¼ 26.9 kgm−3: ð79Þ

For the mean value ρ̄w of density in the range of depths
ð0; zwÞ we have ρ̄w ∈ ð1023.6; 1050.5Þ, and approximating
the density profile by a linear profile, we have ρ̄w ¼
1037.05 kgm−3. The density for different values of pres-
sure, although with no knowledge of salinity and temper-
ature, can be computed by using the equation of state of
seawater for the standard ocean (S ¼ 35 and t ¼ 0° C).
For instance, using the equation of state of Ref. [27],
at a pressure of 5000 decibars (corresponding to zN ¼
4908.56 m at latitude 30° [43]), the computed value of
density is ρwð35; 0; 5000Þ ¼ 1050.68 kgm−3 which is
close to the value measured in Ref. [1] at depth zw.
Hence, a density profile, computed at large enough depths
by resorting to the standard ocean, together with the value
of density measured at the ocean surface, which is available
in Ref. [1], could still be used in set constraints on the NMC
gravity parameters at a suitable order of magnitude. In the
following, we exploit the values of density measured in
Ref. [1] which are suitable for our purposes.
The dynamic height anomaly Ψ is a small quantity that

generally increases with pressure and gives a contribution
to zNðS; t; pÞ which varies regionally from 0 to 4 m at a
pressure of 5000 decibars [26,44]. A climatological cor-
rection should be employed in order to estimate Ψ
accurately. For our purposes, using Eq. (60), we let
ΨðSw; tw; pwÞ vary in the range

0 ≤ ΨðSw; tw; pwÞ ≤ 4

�
γð0Þ þ 1

2
βN

QðpwÞ
γð0Þ

�
m2 s−2: ð80Þ

Since ΨðSw; tw; pwÞ ≪ QðpwÞ, and ðQþ ΨÞ is multiplied
in (70) by a factor proportional to αðθÞ, then the impact of
Ψ on the constraints on NMC gravity parameters turns out
to be negligible.
For the evaluation of the Yukawa terms V and F in the

expression (69) of the modeled gravity residual, we neglect
the terms ΔY and ΔG depending on the inhomogeneity of
mass density in Eqs. (48) and (50). Then, using Eqs. (66),
(48), and (50), we have
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Vðzw; λÞ − Vð0; λÞ ¼ λ2½ρ̄wð1 − e−zw=λÞ − ðρ̄m − ρ̄cÞð1 − ezw=λÞðe−zw=λ þ e−zc=λÞ�;
F ðzw; λÞ − F ð0; λÞ ¼ λ½ρ̄wðe−zw=λ − 1Þ − ðρ̄m − ρ̄cÞð1 − ezw=λÞðe−zw=λ þ e−zc=λÞ�: ð81Þ

Now, substituting in the expression (69) of the modeled
gravity residual, a value for γð0Þ (we use the gravity
formula given in Appendix A with h ¼ 0), the expression
(77) of pw, the expressions (81) of the Yukawa terms V and
F , and the values (79) of seawater density, and substituting
the resulting expression of the modeled gravity residual as a
function of parameters θ, λ in the inequalities (76), we
obtain a constraint on the NMC gravity parameters.
Our results are graphically reported in Figs. 1–3, in the

case ΨðSw; tw; pwÞ ¼ 0. The admissible regions for the
parameters of the NMC gravity model are plotted in white,
while the excluded regions are plotted in grey. Figure 1
shows the admissible region in the plane of parameters with
coordinates ðλ; θÞ, Fig. 2 in the plane ðλ; αÞ, and Fig. 3 in
the plane ða2; q1Þ (we recall that θ ¼ q1=a2 and λ2 ¼ 6a2).
The plots clearly show an upper bound on the Yukawa

range λ which is located at λmax ¼ 57.4 km, so that the
condition λ ≪ R⊕ is satisfied for λ ≤ λmax. The existence of

such an upper bound is a consequence of the presence of
the extra force and it is missing in the usual exclusion plots
for the Yukawa perturbation where such an extra force is
not considered. Figure 2 shows that in the range 1 m <
λ < 104 m the upper bound on the strength α of the
Yukawa force is consistent with the constraint α < 0.002
found in Ref. [1].
We have found that, in the range 1 m < λ < λmax, the

contribution from the Yukawa force to pressure to depth
conversion is less than 1 cm, and the contribution from the
extra force is increasing and less than 2.51 m. This last
upper bound is smaller than depth uncertainty reported in
Ref. [45] for a multibeam echo sounder, which turned out to
be between 0.1% and 0.2% of mean water depth, corre-
sponding to 5–10 m at a depth of 5000 m.
Eventually, all these results illustrate that the ocean

experiment of Ref. [1] can yield interesting results for
the nonrelativistic limit of the nonminimally coupled
curvature-matter theory of gravity.

C. Relation with astronomical tests

In this section we discuss the relation between the
constraints on NMC gravity parameters obtained by means
of the ocean experiment and constraints resulting from
astronomical data, particularly from the observation of
Mercury’s perihelion precession and lunar geodetic pre-
cession. In the sequel, constraints from astronomical data

FIG. 1. Constraint of Eq. (76) on the parameter plane λ, θ.

FIG. 2. Values of αðθÞ as a function of λ constrained by
Eq. (76). FIG. 3. Values of q1 as a function of a2 constrained by Eq. (76).
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are achieved by requiring that the Yukawa precession rate
(40) is consistent with observations of Mercury’s and the
Moon’s orbits.
Recent observations of Mercury, including data from

the NASA orbiter MESSENGER (Mercury Surface,
Space Environment, Geochemistry and Ranging) space
craft, provide a supplementary advance in Mercury peri-
helion [46,47] that constrains the Yukawa force and,
consequently, the NMC parameters a2, q1. The estimated
supplementary advance (criterion 1 in the table reported in
[47]) is (0.0� 3.1) milliarc seconds × cyr−1 (mas × cyr−1).
Expressing then the precession rate (40) as a function of
parameters θ, λ, we obtain the constraint

δϕPðθ; λÞ < 6.2TM 4.848 × 10−11; ð82Þ

where TM ¼ 0.241 yr is the orbital period of Mercury, the
conversion milliarc seconds to radians yields a factor
4.848 × 10−9, and the conversion from cyr−1 to yr−1 yields
a further factor 10−2. The values L ¼ 5.546 × 1010 m, e ¼
0.206 for the semilatus rectum and the eccentricity of
Mercury’s orbit, respectively, and RS ¼ 6.957 × 108 m for
the radius of the Sun, have to be used in formula (40).
The estimate of geodetic precession of the Moon’s

perigee by means of Lunar Laser Ranging (LLR) is [48]
ð1þ KgpÞ × 19.2 mas · yr−1, with Kgp ¼ −0.0019�
0.0064 (Kgp ¼ 0 for GR). This estimate yields the follow-
ing LLR constraint:

δϕPðθ; λÞ < 0.0128 · 19.2Ts4.848 × 10−9; ð83Þ

where Ts ¼ 0.075 yr is the sidereal period of the Moon,
and the values L ¼ 3.832 × 108 m, e ¼ 0.0549 for the
semilatus rectum and the eccentricity of the Moon’s orbit,
respectively, and RS ¼ R⊕ ¼ 6.371 × 106 m for the radius
of the Earth, have to be used in formula (40).
The results are graphically reported in Figs. 4 and 5

which show both the constraint from the ocean experiment
and the constraints from astronomical tests.

Figure 4 shows the constraints in the plane ðλ; θÞ: the
admissible region is plotted in white, while the box on the
right shows the constraints from LLR and Mercury using a
different range of values for parameter θ. Regions inside the
box which are plotted in medium grey are excluded from
LLR and Mercury constraints, while regions inside the box
which are plotted in light grey are admissible for the
astronomical tests, but excluded from the ocean experiment.
Figure 5 shows the constraints in the plane ða2; q1Þ: the

box on the top right shows the constraints from LLR and
Mercury using a different range of values for both param-
eters a2 and q1. The meaning of the regions plotted in
medium grey and light grey inside the box is the same as
in Fig. 4.
Because of the upper bound on λ at the geophysical scale

from the ocean experiment, it turns out that excluded
regions in parameter planes, resulting from astronomical
tests, are strictly contained in the excluded regions resulting
from the ocean experiment.

VI. CONCLUSIONS

In this work we have shown that the ocean experiment of
Ref. [1], whose original purpose was searching for the
deviations of the Yukawa type on the Newton’s inverse
square law, can be used to set up limits on the Yukawa
potential arising in the nonrelativistic limit of the non-
minimally coupled curvature-matter gravity theory pro-
posed in Ref. [2]. This is a rather surprising result as, until
this contribution, the specific features of the NMC theory
were believed to arise in astronomical [12,17] or cosmo-
logical [7–11] contexts.

FIG. 5. Values of q1 as a function of a2 constrained by Eqs. (76),
(82), and (83).

FIG. 4. Constraint of Eqs. (76), (82), and (83) on the parameter
plane λ, θ.
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In this work we have shown that the bounds arising from
Ref. [1] are sufficiently detailed for estimating the range λ
and the strength α of the Yukawa potential of the non-
relativistic limit of the NMC theory. We find an upper
bound on the range, λmax ¼ 57.4 km and, in the interval
1 m < λ < λmax, we find an upper bound on α consistent
with the constraint α < 0.002 found in [1], as it is shown
in Fig. 2.
The upper bound on λ is the consequence of the presence

of an extra force, specific to the NMC gravity model, which
depends itself on λ and has an effect in an environment with
a gradient of mass density, like seawater in the ocean. Thus,
the experiment of Ref. [1] allows us to obtain an upper
bound on λ at the geophysical scale. For sure, improve-
ments can be expected both on the experimental and on the
theoretical fronts.
Experiments inspired by the one of Ref. [1] can be

repeated and considered in other contexts. On the more
theoretical side, we can hope for further constraints on the
functions f1ðRÞ and f2ðRÞ arising from astrophysical and
cosmological arguments so that more specific forms of
them can be studied in the nonrelativistic limit of these
gravity models.
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APPENDIX A

In this Appendix we give the formulas of the contribu-
tion to the gravitational acceleration on Earth from
Newtonian gravity plus the centrifugal force. The ellipsoi-
dally layered model, which takes into account the effects of
Earth’s rotation, yields the following expression of the
gravity difference [29,30]:

γðzÞ − γð0Þ ¼ VðzÞ − 4πGXðzÞ; ðA1Þ

where

VðzÞ ¼ 2
γð0Þ
rs

z

�
1þ 3

2

z
rs

−
3

2
J2ð3sin2ϕs − 1Þ

�

þ 3ω2zcos2ϕs; ðA2Þ

and

XðzÞ ¼ d
a

�
1þ 2

z
rs

þ 1

2

�
1 −

d2

a2

��Z
z

0

ρlðz0Þdz0

−
2

rs

Z
z

0

ρlðz0Þz0dz0: ðA3Þ

In the above formulas, rs is the distance of Q to the center
of Earth, ϕs is the geocentric latitude of Q (subscripts s
denote surface values), J2 ¼ 0.001082635 is the quadru-
pole moment of the Earth, ω is the angular velocity of the
Earth, a and d are the semimajor and semiminor axes of a
reference ellipsoid which globally approximates the geoid
[28], a ¼ 6378137 m and ð1 − d2=a2Þ ¼ 0.0066944, and
ρl is the model layered mass density of the Earth.
Neglecting the terms with J2 and ω2, which depend on

Earth’s rotation, and neglecting terms of second order in
z=rs, we get the approximation (43), which is sufficient for
the purpose of constraining NMC gravity, in the sense that
the further corrections here reported have a very small
impact (not visible in the exclusion plots) on the
constraints.
The distance of Q from the center of Earth, to first order

in polar flattening, is given by

rs ¼ a

�
1 −

1

2

�
a2

d2
− 1

�
sin2ϕs

�
þ h; ðA4Þ

where h is the height of Q above the reference ellipsoid. In
the following we also need the geographic latitude ϕg,
defined as follows:

tanϕg ¼
a2

d2
tanϕs; sin2ϕs ≈ sin2ϕg −

a − d
a

sin22ϕg:

ðA5Þ

The magnitude γð0Þ on the topographic surface of the
Earth, to first order in polar flattening, is given by [30]

γð0Þ ¼ GM⊕

r2s

�
1 −

3

2
J2ð3sin2ϕs − 1Þ

�
− ω2rscos2ϕs;

ðA6Þ

where M⊕ is the mass of the Earth. Using the value of
GM⊕ determined by means of space measurements, the
addition of second-order terms to Eq. (A6) gives for γð0Þ
the international gravity formula on the ellipsoid [35], plus
a height correction dependent on h:

γð0Þ¼978.0327ð1þ0.0053024sin2ϕg−0.0000058sin22ϕgÞ
þΔðhÞcms−2; ðA7Þ

where the height correction ΔðhÞ is given by
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ΔðhÞ ¼ −ð0.30877 − 0.00045sin2ϕgÞhþ 0.000072h2;

ðA8Þ

with h measured in kilometers [28]. The signed distance of
a point on the geoid from the reference ellipsoid is the
geoidal undulation N. The values of N are of the order of
tens of meters and usually do not exceed�100 m anywhere
in the world. The heightH of the topographic surface of the
ocean above the geoid is smaller and the maximum
amplitude is roughly �1 m [42]. If Q is a point on the
surface of the ocean, then we have h ¼ H þ N.
Eventually, the value of geographic latitude of the

experimental site in the northeast Pacific ocean reported
in Ref. [1] is ϕg ¼ 35°130N.

APPENDIX B

In this Appendix we provide the details of the compu-
tations leading to the formulas reported in Sec. IV C 1.
Gravity g in Eq. (53) is given by

gðzÞ ¼ ∂U
∂z þ ω2

2

∂
∂z ðr cosϕÞ

2: ðB1Þ

Since in the ocean z ≤ zw ¼ 5000 m, we have z=rs ≪ 1
and we use the following approximations of the terms VðzÞ
and XðzÞ in the gravity difference given in Appendix A:

VðzÞ ¼ 2
γð0Þ
rs

z

�
1 −

3

2
J2ð3sin2ϕs − 1Þ

�
þ 3ω2zcos2ϕs;

ðB2Þ

XðzÞ ¼ð1 − εÞ
Z

z

0

ρwðz0Þdz0; ðB3Þ

where

1 − ε ¼ d
a

�
1þ 1

2

�
1 −

d2

a2

��
: ðB4Þ

Using Eqs. (B2), (B3), and (44), we find formula (54) with

βðzÞ ¼ 2
γð0Þ
rs

�
1 −

3

2
J2ð3sin2ϕs − 1Þ

�
þ 3ω2cos2ϕs

− 4πGð1 − εÞρ̄wðzÞ; ðB5Þ

where ρ̄wðzÞ is the average value of ρwðz0Þ over ð0; zÞ,
and 1 − ε ¼ 0.99998316.
In the spherical approximation the expression of βðzÞ is

approximated by means of Eq. (55), which is sufficient for
the purpose of constraining NMC gravity.

Integration of Eq. (54) then yields

Z
z

0

gðz0Þdz0 ¼ γð0Þzþ 1

2
βz2 þ

Z
z

0

δgðz0Þdz0: ðB6Þ

Using Eq. (48), the contribution of the Yukawa potential to
Eq. (53) is given by

αðθÞ½Yðz; λÞ − Yð0; λÞ�
¼ 2αðθÞπGλ2½ρ̄wð1 − e−z=λÞ − ðρ̄m − ρ̄cÞ
× ðe−zw=λ þ e−zc=λÞð1 − ez=λÞ�
þ αðθÞ½ΔYðz; λÞ − ΔYð0; λÞ�: ðB7Þ

Collecting Eqs. (53), (56), (58), and (B6), then we have

�
γð0Þ þ 1

2
βz

�
z ¼ QðpÞ þΨðS; t; pÞ −

Z
z

0

δgðz0Þdz0

− αðθÞ½Yðz; λÞ − Yð0; λÞ�

þ 4

3
πGλ2θ2½ρwðS; t; pÞ − ρwðSs; ts; psÞ�:

ðB8Þ

If we consider only the contribution from Newtonian
gravity and we neglect the integral of the gravity disturb-
ance δg, then Eq. (B8) becomes

�
γð0Þ þ 1

2
βz

�
z ¼ QðpÞ þ ΨðS; t; pÞ: ðB9Þ

Following the method used in physical oceanography [26],
Eq. (B9) is solved using the standard quadratic solution
equation, but for z−1. The solution zo used in oceanography
is then given by

zoðS; t; pÞ ¼
2½QðpÞ þ ΨðS; t; pÞ�

γð0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ð0Þ þ 2β½QðpÞ þΨðS; t; pÞ�

p

≈
QðpÞ þ ΨðS; t; pÞ
γð0Þ þ 1

2
β QðpÞ

γð0Þ
; ðB10Þ

where the square root has been expanded up to first order
taking into account that jΨj ≪ Q and βQðpÞ=γð0Þ ≪ γð0Þ.
Note that, since the coefficient β=2 of z2 in Eq. (B9) is
small, then the same approximation of the square root in the
solution for z (not z−1) of the quadratic equation (B9) yields
a solution zo independent of β, which is less accurate, since
it corresponds to neglecting the variation of γðzÞ with z.
If G ¼ GN (absence of the Yukawa force), then β ¼ βN

and the approximate conversion formula (B10) becomes
Eq. (60). With the further approximation βNQðpÞ=γð0Þ≈
β0Nðp − psÞ, where ðp − psÞ is measured in decibars and
β0N has the same numerical value of βN , but measured in
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ms−2 decibar−1, Eq. (60) yields the formula for pressure to
depth conversion which was used together with the sea-
water equation of state available at the time of the experi-
ment [43,49]. Then it is known that the approximation of
the square root plus this further approximation give an error
in zNðS; t; pÞ of less than 10 cm at 10,000 m [43,49].
Considering now also the contributions from the Yukawa

force and the extra force, in Eq. (B8), in the small terms
involving Y and δg we replace z with zNðS; t; pÞ. Then we
solve the quadratic equation (B8) for z−1 and given
zNðS; t; pÞ (S, t, p being measured quantities), we expand

again the square root at first order retaining only the
dominant term QðpÞ, and we obtain formula (59) for the
pressure to depth conversion, where the term involving
the Yukawa potential Y has to be evaluated by using
Eq. (B7).
An a posteriori evaluation of the upper bounds on the

Yukawa force and extra force show that, for λ > 10 cm, the
approximations made in the expansion of the square root
give an error in z of order of centimeters at 10,000 m. Such
an error turns out to be negligible for the purpose of
constraining the extra force.
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