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We develop further an approach to computing energy-energy correlations (EEC) directly from finite
correlation functions. In this way, one completely avoids infrared divergences. In maximally super-
symmetric Yang-Mills theory (N = 4 sYM), we derive a new, extremely simple formula relating the EEC to
a triple discontinuity of a four-point correlation function. We use this formula to compute the EEC in N = 4
sYM at next-to-next-to-leading order in perturbation theory. Our result is given by a twofold integral
representation that is straightforwardly evaluated numerically. We find that some of the integration kernels
are equivalent to those appearing in sunrise Feynman integrals, which evaluate to elliptic functions. Finally,
we use the new formula to provide the expansion of the EEC in the back-to-back and collinear limits.
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I. INTRODUCTION

The energy-energy correlation (EEC) [1] measures the
energy flow through a pair of detectors separated by an
angle y; see Fig. 1. The EEC has several nice properties and
may help to understand better the nature of jets in quantum
field theory. It is an infrared-safe observable [2,3] that
can be computed perturbatively. Moreover, it has simple
factorization properties in the back-to-back (y — x) [4-8]
and collinear (y — 0) [9,10] limit. This knowledge can be
used to match fixed-order predictions to resummation
calculations [6-8]. On the other hand, the EEC is exper-
imentally measurable, and in particular has been used for
precision tests of QCD and measurement of the strong
coupling constant a, [11-13].

The EEC at leading order (LO) is known since [1], while
the next-to-leading order (NLO) and next-to-next-to-lead-
ing order (NNLO) results were obtained numerically in
Refs. [14-21] and [22,23], respectively. Only very recently,
the NLO result was computed analytically [24]. Analytic
results are important both conceptually and practically, for
example to test numerical codes and to control numerical
instabilities in special kinematic regions.

Although the EEC is infrared finite, the standard
approach to computing involves infrared divergent scatter-
ing amplitudes and phase-space integrals [24,25]. On the
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other hand, it can be defined starting from correlation
functions, which are infrared finite [26-30]. For example,
for e™ + e~ — y* — X, the main ingredient is a four-point
correlation function of two energy-momentum tensors
(representing the two detectors), and two electromagnetic
currents, which create the electron-positron pair from the
vacuum.

To the best of our knowledge, this approach has not yet
been implemented in QCD. On the other hand, these ideas
were applied in A" = 4 super Yang-Mills (sYM) [30-32],
culminating in the first analytic calculation of and EEC at
NLO [33]. The structure of this result, and in particular the
types of polylogarithmic functions appearing in it, foreshad-
owed the structures later found in QCD [24]. Therefore, any
analytic information at NNLO is very desirable.

We show that for an analog of the electromagnetic
current in N' = 4 sYM, the EEC is computed by a new,
extremely simple formula, given by a twofold integral of a
particular triple discontinuity of the four-point correlation
function; see Eq. (7) below.

E(Ma)

FIG. 1. Graphical representation of the energy-energy correla-
tion: particles produced out of the vacuum by the source are
captured by the two detectors located at spatial infinity in the
directions of the unit vectors 7; and 7i,.
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We validate the new formula (7) by reproducing in an
efficient way the known LO and NLO results. We then
compute, for the first time, the EEC at NNLO. The result is
given in terms of an analytic twofold integral representa-
tion. We present plots of the numerically integrated answer.

We also use the integral formula (7) in order to obtain
limits of the energy correlator, namely the small angle and
the back-to-back limits.

II. EEC FROM CORRELATION FUNCTIONS

The detector operator that measures the energy flux in
the direction 7 is given by an integrated stress-energy
tensor 7, [26-30],

r—00

En) = /0o drlimr’n'Ty;(t = 7 + r, rid). (1)

The standard definition for the EEC as a differential
cross-section can then be recast as

EEC(y) = /sz] dQ;; 6(iy - 1y — cos )

J d*xe' (0107 (x)E (7, )€ (7) 0(0)]0)
q°)* [ d*xe'* (0|07 (x) 0(0)|0)

(2)

Here the operators O (source) and O (sink) create the final
state, whose particles are detected by the two calorimeters.
Note that the operators are ordered as written, i.e., Eq. (2)
expresses the EEC in terms of an integrated Wightman
four-point correlation function. The choice of the local
operator O depends on the physical problem. For eTe™
annihilation, O is given by an electromagnetic current.
It is convenient to introduce the variable

N 612(”1 ‘1)
é’_z(Q'nl)(fl‘nzy G)

where the null four-vector n = (1,7) characterizes the
position of the detector. In the rest frame of the source
¢" = (¢°.0), we have ¢ = sin?(y/2). In the same frame,
the averaging over the angles in (2) becomes trivial for a
scalar source.

In V' = 4 sYM, we may choose the source and sink to be
scalar operators that are the bottom component of the
supermultiplet of conserved currents. As such, they are
natural analogs of the electromagnetic current and have
fixed conformal weight two. Moreover, the correlation
function (0/0T,,T,,0|0) can be obtained from the all-
scalar correlation function (0|O0O0O0|0) by superconfor-
mal transformations. In this way, we can express the EEC in
terms of the four-point correlation function of scalar
operators [32,34,35].

Let us describe this relation in detail. We define the
Euclidean correlation function

G(z.zZ
(010(1)0(x2) 0(e3) 0|0 = S=E
(x13x34)
13424
depending on the conformal cross-ratios
2 .2 2 .2
u=zz="123 =(l-2)(1-2) =245 (5)
X13424 X13X24

The analytic continuation from the Euclidean to the
Wightman function is easily obtained, for example, by
using the Mellin transform of G(u,v) [31-33,36].
Alternatively, we can convert the detector time integration
in (1) to integration of certain discontinuities of G(u, v)
[31]. This approach is further improved by exploiting a
different double discontinuity, first proposed in [37]; see
also [38,39]. The latter is defined by

dDisc,,_,,, g(w) = g(w) — %Q(WO) - %Q(Wb)v (6)

where w® and w® refer to the mappings of the branch point
w = w, to the two adjacent Riemann sheets. For example,
dDisc,,_ow* = 2sin(za)w?. In addition, in four dimen-
sions and for a source of conformal weight two, the Fourier
transform in (2) is equivalent to another discontinuity [31].
Putting all this together (for a detailed derivation see [40]),
we arrive at the triple discontinuity formula for the EEC,

dz/ dt =3 (1 —0)z
z)ge(z,z)], (7)

BEC(E) = 4713@'2 ll—{%

x dDisc._; Disc,_g[(z —
where 0 < { < 1 [41]. After taking the discontinuities, the

variable z is treated as a function of the two integration
variables,

§i(1=2)
(¢-2)+(1-0z

(8)

Z:

The following comments are in order. In order to apply
dDisc to power singularities, we employ an analytic
regulator for the poles in 1 — Z,

Ge(z.2) = (1 -2)G(z.2). 9)
Instead of first computing the integrals in (7) and taking the
regulator € — 0T at the end, it is much more efficient to
treat the integrand as a singular distribution [42] of the “plus”
type, wi' T =18(w) + wi' + e[w™ ' Inw], + O(?). This
allows us to drop many irrelevant terms, as illustrated in the
one-loop example below. Moreover, it allows us to automate
the calculation at higher loops.

036010-2



ENERGY-ENERGY CORRELATION IN ...

PHYS. REV. D 100, 036010 (2019)

For convenience, we define
2zzZ®0=(1-2)(1-2)(z-2)G, (10)
and

F({) = 4¢*(1 = )EEC(Z). (11)

The correlation function G has the perturbative expansion
G =3 150a"GY in the ‘t Hooft coupling a = N g%/
(47%). Tt was computed to two loops in [43,44] and at three
loops in [45,46]. Note that to obtain the EEC at N¥LO,
one needs G at (k + 1) loops. For any ¢ € (0, 1), we write
the expansion

F({a) = aFyo + a*Fyio + @ Fanio + O(a). (12)

III. EEC AT LO

At Born level ®© ~ z — 7, and our triple discontinuity
formula (7) gives 0, which is the expected answer (up to
contact terms). Let us now apply Eq. (7) to the leading
order (or one-loop) EEC, for which [47]

11 1 /1-2 .
d) = ELIQ(Z) —§L12(z) +Zln(1 — Z) In(zz). (13)

The discontinuity at z = 0 is

Discz_o[ o) }fln(l—z)—ln(l—z)' 14

RO R (T

The following operation dDisc-_ is carried out keeping in
mind the singular character of the distribution w='*¢,

dDisc,,_ow™1*¢ = 2sin? (ze) F(;V) + 0(60)] . (15)

This expression vanishes in the limit € — 0. A nontrivial
result is obtained due to the logarithms, with the help of the
identity

dDisc[w™ ! In"w]|In"w

=g [Zsinz(ﬂe)ag’ (@ + ; Z—f [w—llnkwhﬂ . (16)

One such logarithm is already present in Eq. (14). The
t-integration in (7) gives Aln(1 — z) + B with coefficients
A, B analytic at 7 = 1. At LO we apply (16) with m,n < 1.
The operation dDisc produces 5(1 —Z), i.e., we observe a
transcendental weight drop of three. The 7 integral in (7) is
removed and we obtain, in accord with [48],

Fro(¢) = =In(1 =) (17)

IV. EEC AT NLO AND NNLO

The example above shows the way to higher perturbative
orders.

At NLO, ®? is given by so-called two-loop ladder and
one-loop box squared integrals [43,44], expressed in terms
of weight-four harmonic polylogarithms (HPLs) [49] in z
and z. The HPL shuffle algebra allows us to extract all
singular terms as z — 0 and z — 1. This is conveniently
implemented in the MATHEMATICA package HPL [50].
In this way, we obtain powers of In z and In(1 — ), whose
coefficients are HPLs that are analytic at z =0 and Z = 1.
The triple discontinuity of the logarithms lowers the
transcendental weight by three. We are left with a twofold
integration in ¢ and Z. We find that the integrand is linearly
reducible [51-54]. (In the case of the one-loop box squared,
we first change variables to achieve this.) As a conse-
quence, we can carry out all integrals algorithmically
[55,56]. This is conveniently done using the MAPLE
program HyperInt [56]. The final result for the EEC can
be converted to classical polylogarithms and fully agrees
with [33]. The symbol alphabet [57] is

{c,l—c,;ﬁ}. (18)

At NNLO, the integral formula (7) exhibits some new
algebraic features, due to the leading singularities (alge-
braic prefactors) of the three-loop integrals appearing in
®0) and their symbol alphabet [46].

The set of integrals are three-loop ladders, products of
one- and two-loop boxes, as well as the so-called easy
and hard integrals that come in three different orientations.
A new feature compared to two loops is that the hard
integral is given in terms of a class of Goncharov poly-
logarithms (GPL) [57], whose symbol contains an entry
7z —Z. We implement the GPL shuffle relations to extract
the singularities at z =0 and Z =1 and take the triple
discontinuity. We find that all except two terms are linearly
reducible and can be integrated, giving HPL with tran-
scendental weight ranging from two to five. The symbol
alphabet of these terms is the same as at NLO.

For certain orientations, the easy and hard integrals
have leading singularities that introduce a rational factor
1/(1 —u) or u/(u — v). These terms do not admit a change
of integration variables that allows the twofold integration
in (7) to be automated in HyperInt. We present our final
three-loop result as a sum of polylogarithms fyp;, plus a
twofold finite integral,

Fasol€) = fun () + [ az [ S
X [R(z,2)P1(2,2) + Ry(z,2) P2(z, 7)),

(19)
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Energy—energy correlation in N=4 sYM
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FIG. 2. EEC in N/ =4 sYM. We display separately the
contributions from FLO’ FNLO’ and FNNLO to EEC(Z)

where

¥4 2’z
Ry l-z-7' = (1-2)%(1-22)° (20)
and z is given by Eq. (8). P, P, are HPL in z, 7 of weight
three. We provide their explicit expressions, as well as the
polylogarithm function fyp ({) with symbol alphabet (18),
in the ancillary files.
After partial fractioning, R;, R, decompose into a sum of
linearly reducible terms and irreducible kernels K, K,,

d(1-27)¢-1)

K, = , (21
-1 -2)z+l(t-2)(1—1-72) D)
1 t Z
K, = K , . 22
T -02(1-2)72 1<t—1 Z—l) (22)
Remarkably, upon the replacements { — m’;’i o= X+ 1,

7 — X,, the denominator of K; becomes the Symanzik
polynomial of the equal mass sunrise integral [58-61]. The
features of the integrand that we observe here is evidence
that the integral is elliptic.

We evaluate numerically the twofold integrals in (19) in
MATHEMATICA for 50 different values of { with precision
O(1077). In Fig. 2, we plot the EEC shape at the first three
perturbative orders.

V. BACK-TO-BACK AND COLLINEAR
EXPANSION

The EEC is logarithmically enhanced in the extreme
kinematic situations where the two detectors are back-to-
back ({ — 1) or are close to each other ({ — 0). We extract
analytically the contribution of the twofold integral in (19)
in both limits.

In the back-to-back limit, we observe that as { — 1 the
integrand as a function of ¢ and Z is suppressed everywhere

Back—to—back Limit at Three Loop Collinear Limit at Three Loop

e NNLO 40 - NNLO

100 —— asymptotic 30 —— asymptotic

F()

03 04 05 06
{=Sin"2(x/2)

0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2
¢=Sinr2(x/2)

FIG. 3. Behavior of Fynio({) and its asymptotics in the back-
to-back and collinear limits.

in the integration domain; hence, the integral in (19) only
contributes subleading powers of y = 1 —{. The leading
asymptotic behavior of Fynpo() is determined by fyp (£).
At leading power in y,

-1 1 71'2 11
Faneo(8) ™~ —§1n5y—gln3y—1§3ln2y
61 , 7> 7
———a"Iny——_{; —=(s. 23
72077 ny 3 {3 2§5 ( )

On the other hand, the £ — 1 behavior of the EECin N = 4
sYM is analogous to that in QCD. The Sudakov logarithms
can be resummed to all loop orders [4],

1 00
FQ) =y H(@) [ dbbiy(peFonto-T0L, (24

Here L = In(e*£b?/4y); J, is a Bessel function; Ieys,(a)
and T'(a) = =3(a” + (30,85 +3¢5)a@’ + O(a?) are the
cusp and collinear anomalous dimensions [62,63].

We verify that our expression (23) agrees with the
resummation formula (24) expanded to three-loop order.
The coefficient of the single logarithm term allows us to
determine the hard function up to NNLO, H(a) =1 -
$ra + 58,a% [64].

Remarkably, Eq. (23) has homogeneous transcendental
weight, and so do the ingredients of the resummation
formula. In fact, in the back-to-back limit, we anticipate
that V' =4 sYM describes the maximally transcendental
part of the QCD asymptotics [33]. This is confirmed by
comparing with the recent QCD result [8] upon the
substitution Cr, C4, — N..

In the collinear limit, the elliptic integral in (19) is not
suppressed. We extract its leading contribution by expand-
ing in powers of { at the integrand level and integrating the
leading term, which comes solely from the R; x P, piece.
Combining with fyp () in the { — 0 limit, we obtain the
three-loop small-angle asymptotics

~o,[1 2
Frawo(6)'2% [5 % + (—5 +5- Cs) In¢
47 574 3
HT-—=--0 +m+§§5]~ (25)
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A very nontrivial confirmation of our result is the agreement
with the prediction of the light-ray OPE approach [65].

In Fig. 3, we show the comparison between the leading
power asymptotics and the numerical evaluation of (19).

VI. DISCUSSION AND OUTLOOK

Our main formula (7) expresses the EEC in terms of a
four-point function, a central object in any conformal field
theory (CFT). This represents a major conceptual advance.
The derivation of (7), to be given in [40], relied on the
fact that the operator O has fixed scaling dimension two.
It would be interesting to see if a similar triple discontinuity
formula exists in a generic CFT, where the source and sink
are replaced by a conserved current. In this way, there is
potential to apply our formula to QCD at a conformal fixed
point, e.g., by tuning the number of quark flavors to nullify
the beta function.

An important advantage of our analytic result over
numerics is having full control over special kinematic
regions. We extracted the leading power asymptotics in
the collinear and back-to-back limits at NNLO. These data
have been confirmed recently in Refs. [65-67]. We wish to
emphasize that our result (19) contains information about
subleading powers as well. The latter constitute useful data
for resummations of large logarithms at subleading power
[68—79]. Moreover, thanks to Eq. (7) it may be possible to
understand these limits, at arbitrary coupling, in terms of
properties of the four-point correlation function.

In NV = 4 sYM, the integrand of the four-point function
G is known to ten loops [45,80]. Once the integrated four-
loop result becomes available [81-86], our formula (7) can
be used to obtain the EEC at N3LO.

We provided evidence that the EEC at NNLO contains
elliptic functions. It suggests that the same type of function
might also appear in QCD. It would be interesting to fully
work out the remaining integrals in (19), using multiple
elliptic polylogarithms [87-93]. The information we pro-
vide on the function space previews important aspects of
the QCD answer. It may make it possible to bootstrap the
latter, along the lines of [94].

Finally, it would be interesting to apply our infrared
finite approach to energy correlators with more than two
detectors (cf. [95-97] for related generalizations of energy
correlations), which are hard to obtain in QCD using
traditional methods. This may be important for the theo-
retical understanding of jet observables [98-103]. We
provide four Supplemental Material [104], which contain
explicit results of our calculation.
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