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We calculate the transition form factor between vector and pseudoscalar quarkonia in both the timelike
and the spacelike region using light-front dynamics. We investigate the frame dependence of the form
factors for heavy quarkonia with light-front wave functions calculated from the valence Fock sector. This
dependence could serve as a measure for the Lorentz symmetry violation arising from the Fock-space
truncation. We suggest using frames with minimal longitudinal momentum transfer for calculations in the
valence Fock sector, namely, the Drell-Yan frame for the spacelike region and a specific longitudinal frame
for the timelike region; at q2 ¼ 0 these two frames give the same result. We also use the transition form
factor in the timelike region to investigate the electromagnetic Dalitz decay ψA → ψBlþl− (l ¼ e, μ) and
predict the effective mass spectrum of the lepton pair.
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I. INTRODUCTION

The electromagnetic (EM) transition between quarko-
nium states, which occurs via emission of a photon,
ψA → ψBγ, offers insights into the internal structure and
the dynamics of such systems. The magnetic dipole (M1)
transition, which takes place between pseudoscalar and
vector mesons (ψA;ψB ¼ V;P or P;V), has been detected
with strong signals [1] and stimulates various theoretical
investigations [2–6]. Similarly, the EM Dalitz decay [7],
ψA → ψBlþl−, can be treated by coupling a virtual photon
to the final lepton pair. The Dalitz decay, also known as the
leptonic conversion decay, provides additional information
about the meson structure owing to the virtual photon
kinematics. Though widely observed in the light meson
sector, such as ϕ → π0eþe− [8], ϕ → ηeþe− [9,10], and
ω → π0eþe− [11,12], only a few such decays have been
detected in the heavy sector. The observed Dalitz decays
of quarkonium are decays to a light meson plus a lepton
pair, such as J=ψ → ηeþe−, J=ψ → η0eþe− [13], and
ψð3686Þ → η0eþe− [14]. We investigate the M1 EM
Dalitz decay, with initial and final mesons both being
heavy quarkonia, in the hope of providing another probe of
the interaction of quarkonium states with photons.
The roles of the underlying strong dynamics in those

processes are encoded within the q2-dependent transi-
tion form factor Vðq2Þ, which arises from the Lorentz

structure decomposition of the hadron matrix element
hψBðPÞjJμð0ÞjψAðP0 ¼ Pþ qÞi. q2 is the square of the
momentum transfer between ψA and ψB, and is also
the square of the invariant mass of the lepton pair in the
Dalitz decay.
The transition form factor is Lorentz invariant—it should

not depend on the choice of the current components or
the reference frames. In general, in light-front dynamics,
the transition form factor receives two major contributions,
a parton-number-conserving term where the photon cou-
ples to a parton, and a parton-number-nonconserving term
where a quark-antiquark pair from the initial state annihi-
lates into a photon, as illustrated in Fig. 1. Each diagram
could contribute differently when a different current com-
ponent is used or a different frame is chosen [15–18]. In
practical calculations the Fock space is truncated, so we
only have access to part of the contributions. For instance,
if the light-front wave functions of the mesons are solved in
a truncation retaining only the valence Fock sector, con-
tributions like Fig. 1(b) cannot be accessed directly.1 The
transition form factor is evaluated from the available finite
Fock space, and a dependence on the current components
or the frames could arise. In such situations, knowing the
current or frame dependence could help quantify theoretical
uncertainties. One further issue to resolve is whether there
exists a preferred current or a preferred frame such that
the neglected contributions from higher Fock sectors could
be minimized.
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1In principle, evaluation of observables in a truncated Fock
space requires a renormalization of the operator. We omit such a
renormalization in the present work.
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Dependence on current components when extracting the
elastic and transition form factors on the light front has
been studied extensively for various systems and theories
[17,19–21]. The Jþ current has gained the reputation as the
“good current” for the simplicity in evaluating the elastic
form factor in the spacelike region in the Drell-Yan frame.
The covariant formulation of light-front dynamics provides a
procedure to unambiguously extract the transition form
factors in the Drell-Yan frame (see Ref. [19] for a review).
To explore some alternatives, we investigated the M1
transition form factor through different current components
(Jþ and J⊥) and differentmagnetic projections (mj ¼ 0;�1)
of the vector meson [22]. There, we have shown that, at least
in the context of heavy quarkonia with valence Fock sector
light-front wave functions, using the transverse current J⊥
in conjunction with the mj ¼ 0 state of the vector meson is
preferred to other choices. With the transverse current
echoing the three-dimensional current density operator, this
choice employs the dominant spin components of the light-
front wave functions, and connects well with the non-
relativistic limit of the heavy system. While this preference
applies to any choice of frame, the calculation of the final
results was carried out in the Drell-Yan frame [22].

It is the purpose of this work to further investigate the
frame dependence of transition form factors. Studies in the
literature have revealed that the elastic and transition form
factors could have different results when evaluated in
different reference frames [17,18,23–25]. Such frame
dependence is closely related to the Fock-space truncation
that omits the nonvalence contributions. In this work,
instead of looking into a few selective frames, we sample
all frames with the same q2.
In particular, we sample various frames by allowing the

transferred momentum q2 to be apportioned between the
longitudinal direction and the transverse direction. For
example, in the Drell-Yan frame (qþ ¼ 0), all the trans-
ferred momentum is in the transverse direction and none in
the longitudinal, providing one limit to our frame selection.
The other limit is referred to as the longitudinal frame, where
q2 is solely in the longitudinal direction. We decompose q2

into two boost invariants [see Eq. (4)]. Due to the boost
invariance in light-front dynamics, each of these frames
represents infinitely many frames related by light-front
boosts. Our work explores the full range of frame depend-
ence that is implicit in the adopted light-front model for the
systems investigated here.
By analyzing the light-front wave function representa-

tion of the hadron matrix elements, we find that frames with
minimal longitudinal momentum transfer could suppress
nonvalence contributions, and are thus preferred for
calculations in the valence Fock sector. Those are
the Drell-Yan frame in the spacelike region and the
longitudinal-II frame in the timelike region, as defined
in Sec. II. Our suggested frames agree with the study by
Bakker and collaborators on the semileptonic decay [18]. In
their work, the transition form factor in the timelike region
obtained from one specific frame in the valence Fock sector
is closest to the full solution that also includes nonvalence
contributions. This specific frame is defined as q⃗⊥ ¼ 0with
negative recoil, which resembles the longitudinal-II frame
in this work.
As in our previous study on the radiative decays [22],

here we employ the light-front wave functions of the heavy
quarkonia from the basis light-front quantization (BLFQ)
approach [26]. The effective Hamiltonian is based on light-
front holographic QCD and the one-gluon exchange light-
front QCD interaction [27,28]. We find that the frame
dependence of the transition form factor can be charac-
terized as ranging between two limiting cases, similar to the
dependence shown for the elastic form factor of (pseudo-)
scalar mesons [25]. The spread of this frame dependence
could serve as a measure for the violation of the Lorentz
symmetry due to Fock-space truncation.
The layout of this paper is as follows. In Sec. II, we

introduce the formalism and methods to calculate the M1
transition form factor with general frames on the light front.
We then apply the formalism to heavy quarkonia in the
BLFQ approach in Sec. III and there we present the results

(a)

(b)

FIG. 1. The two dominant contributions to the transition
ψA → ψBγ

ð�Þ on the light front: (a) the parton-number-conserving
term, and (b) the parton-number-nonconserving term. Diagrams
are light-front time ordered. Light-front time flows from the left
to the right.
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of the transition form factors from different frames and the
effective mass spectrum for the resulting lepton pair in the
Dalitz decay. We summarize our paper in Sec. IV.

II. TRANSITIONS ON THE LIGHT FRONT

A. The decay width

The Lorentz covariant decomposition of the electromag-
netic transition matrix element between a vector meson (V)
and a pseudoscalar (P) is [29]

hPðPÞjJμð0ÞjVðP0; mjÞi ¼
2Vðq2Þ
mP þmV

ϵμαβσPαP0
βeσðP0; mjÞ;

ð1Þ

where qμ ¼ P0μ − Pμ represents the momentum transfer
between the initial and final mesons. On the light front,
μ ¼ þ;−; x; y (v� ¼ v0 � vz, we use the same conventions
of the light-front coordinate as in Ref. [22]). Vðq2Þ is the
transition form factor. mP and mV are the masses of the
pseudoscalar and the vector, respectively. eσ is the polari-
zation vector of the vector meson, with mjð¼ 0;�1Þ being
the magnetic projection.
In the process of ψA → ψBγ, (ψA;ψB ¼ V;P or P;V),

q2 ¼ 0, the decay width in the rest frame of the initial particle
could be derived from the transition matrix element [22],

ΓðψA → ψBγÞ ¼
ðm2

A −m2
BÞ3

ð2mAÞ3ðmA þmBÞ2
jVð0Þj2

ð2JA þ 1Þπ : ð2Þ

JA is the angular momentum of the initial meson ψA.
For the Dalitz decay ψA → ψBlþl−, the physical region

of interest is 4m2
l ≤ q2 ≤ ðmA −mBÞ2. The effective mass

spectrum of the lepton pair could be derived as [30]

dΓðψA → ψBlþl−Þ
dq2 · ΓðψA → ψBγÞ

¼ α

3π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
l

q2

s �
1þ 2m2

l

q2

�
1

q2

×

��
1þ q2

m2
A −m2

B

�
2

−
4m2

Aq
2

ðm2
A −m2

BÞ2
�
3=2

����Vðq
2Þ

Vð0Þ
����
2

:

ð3Þ

B. Frames and kinematics

Considering the transition ψAðP0Þ → ψBðPÞγð�Þðq ¼
P0 − PÞ, the Lorentz invariant momentum transfer q2 can
be written as a function of two boost invariants [25]
according to four-momentum conservation q2 ¼ ðP0 − PÞ2,

q2 ¼ zm2
A −

z
1 − z

m2
B −

1

1 − z
Δ⃗2⊥; ð4Þ

where

z≡ ðP0þ − PþÞ=P0þ; Δ⃗⊥ ≡ q⃗⊥ − zP⃗0⊥:

z can be interpreted as the relative momentum transfer in the
longitudinal direction, and Δ⃗⊥ describes the momentum
transfer in the transverse direction. Note that z is restricted to
0 ≤ z < 1 by definition. For each possible value of q2, the
values of the pair ðz; Δ⃗⊥Þ are not unique, and those different
choices correspond to different reference frames (up to
longitudinal and transverse light-front boost transforma-
tions). Figure 2 should help visualize the functional form
of q2ðz; Δ⃗⊥Þ. Since q2 is relevant to the magnitude of Δ⃗⊥ but
not its angle, we plot it in the arg Δ⃗⊥ ¼ 0; π plane. Transition
form factors evaluated at different ðz; Δ⃗⊥Þ but at the same q2

could reveal the frame dependence. In particular, we
introduce two special frames for detailed consideration.
(1) Drell-Yan frame (z ¼ 0): qþ ¼ 0, Δ⃗⊥ ¼ q⃗⊥, and

q2 ¼ −Δ⃗2⊥. This frame is shown as a single thick
solid line in each panel of Fig. 2. The Drell-Yan
frame is conventionally used together with the
plus current Jþ to calculate the electromagnetic
form factors. This choice, on the one hand, avoids
spurious effects related to the orientation of the null
hyperplane where the light-front wave function is
defined and, on the other hand, it suppresses the
contributions from the often-neglected pair creation
process, at least for pseudoscalar mesons [17,19–
21,31]. For the transition form factor, this is only
true if zero-mode contributions are neglected. The
transition form factor obtained in the Drell-Yan
frame is significantly restricted in the spacelike
region, i.e., q2 ≤ 0. Although one could analytically
continuate the form factor to the timelike region by
changing q⃗⊥ to iq⃗⊥ [18,32,33], we elect to calculate
transition form factors directly from wave functions.

(2) Longitudinal frame (Δ⃗⊥ ¼ 0): q2 ¼ zm2
A − zm2

B=
ð1 − zÞ. Note that we use the same definition for
the longitudinal frame as in Ref. [25], which is
different from those in the literature where q⃗⊥ ¼ 0 is
called the longitudinal frame [15,17,18,34]. In this
frame, we have access to the kinematic region up to
q2max ¼ ðmA −mBÞ2, the point where the final meson
does not recoil. This maximal value occurs at
z ¼ 1 −mB=mA ≡ zturn. For a given q2, there are
two solutions for z, corresponding to either positive
or negative recoil direction of the final meson
relative to the initial meson, namely,
(a) longitudinal-I: z ¼ ½m2

A −m2
B þ q2þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm2
A −m2

B þ q2Þ2 − 4m2
Aq

2
p

�=ð2m2
AÞ. zturn ≤

z < 1. This branch joins the second branch at
q2 ¼ q2max with z ¼ zturn; Δ⃗⊥ ¼ 0. The timelike
region is accessed at zturn ≤ z < znode, and the
spacelike region is at znode ≤ z < 1, where
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znode ≡ 1 −m2
B=m

2
A. The longitudinal-I frame is

shown as thick dotted lines in Fig. 2.
(b) longitudinal-II: z ¼ ½m2

A −m2
B þ q2 −ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm2
A −m2

B þ q2Þ2 − 4m2
Aq

2
p

�=ð2m2
AÞ. 0 ≤ z ≤

zturn. This second branch only exists in the
timelike region, and it joins the Drell-Yan frame
at q2 ¼ 0 with z ¼ 0; Δ⃗⊥ ¼ 0. The longitudinal-
II frame is shown as thick dashed lines in Fig. 2.

C. Light-front wave function representation
of the M1 transition form factor

The meson state vector hψhðP; j;mjÞi can be expanded
in the light-front Fock space. The coefficients of the Fock

expansion are the complete set of n-particle light-front

wave functions (LFWFs), fψ ðmjÞ
n=h ðxi; k⃗i⊥; siÞg. xi ≡ κþi =P

þ

is the longitudinal momentum fraction of the ith parton, and
k⃗i⊥ ≡ κ⃗i⊥ − xP⃗⊥ is the relative transverse momenta, with κi
being the momenta of the corresponding parton. s is the
spin of the parton.
The transition amplitude ψA → ψBγ

ð�Þ is given by the
sum of the diagonal n → n and off-diagonal nþ 2 → n
transitions, as shown in Fig. 1. For the n → n term, as in
Fig. 1(a), the external photon is coupled to a quark or an
antiquark; thus the electromagnetic current matrix element
takes the form

hψBðP; j;mjÞjJμð0ÞjψAðP0; j0; m0
jÞin→n

¼
X
n

f2n
Yn
i¼1

X
s0i;s1;l

0
i

Z
1

z

dx01
2x01

Z
1

0

dx0iði≠1Þ
2x0i

Z
d2k0i⊥
ð2πÞ3 2ð2πÞ

3δ

�Xn
i¼1

x0i − 1

�
δð2Þ

�Xn
i¼1

k⃗0i⊥
�

× ψ
ðmjÞ�
n=B ðfxi; k⃗i⊥; sigÞjμs1;s01ψ

ðm0
jÞ

n=A ðfx0i; k⃗0i⊥; s0igÞ; ð5Þ

where the EM current jμs1;s01
¼ ūs0

1
ðκ01Þγμus1ðκ1Þ if the struck parton is a quark, and jμs1;s01

¼ v̄s1ðκ1Þγμvs01ðκ01Þ if the struck
parton is an antiquark. li is the color index of the ith parton and fn is the color factor for the n-parton sector. The relative
coordinates and constraint conditions of partons are

�
x01 ¼ x1 þ zð1 − x1Þ; k⃗01⊥ ¼ k⃗1⊥ þ ð1 − x1ÞΔ⃗⊥; l1 ¼ l01; for the struck parton ði ¼ 1Þ
x0i ¼ xið1 − zÞ; k⃗0i⊥ ¼ k⃗i⊥ − xiΔ⃗⊥; li ¼ l0i; si ¼ s0i; for the spectators ði ¼ 2;…; nÞ:

ð6Þ

In Sec. II B, we have shown that different choices of ðz; Δ⃗⊥Þ for the same q2 could characterize different frames. Consider
the zwhich is the lower bound of the range of x01 for the n → n matrix element in Eq. (5). As a consequence, increasing the

(a) (b)

FIG. 2. Visualization of the Lorentz invariant momentum transfer squared q2 as a function of z and Δ⃗⊥ at arg Δ⃗⊥ ¼ 0; π. (a) Regional
plot of q2. The timelike region (q2 > 0) is the orange oval shape, bounded by Δnode ¼ ðm2

A −m2
BÞ=2mA and znode ¼ 1 −m2

B=m
2
A. The

spacelike region (q2 < 0) is in light gray. Contour lines of q2 are indicated with thin dashed curves. The maximal value q2max ¼
ðmA −mBÞ2 occurs at ðzturn ¼ 1 −mB=mA;Δ⊥ ¼ 0Þ. (b) Three-dimensional plot of q2 showing a convex shape in the ðz;Δ⊥Þ
representation. The blue flat plane is the reference plane of q2 ¼ 0. In each figure, the Drell-Yan frame is shown as a thick solid line, and
the longitudinal I and II frames are shown as thick dotted and thick dashed lines, respectively.
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value of z would reduce the overlap region of the two wave
functions in the longitudinal direction. We illustrate this
effect in Fig. 3 by visualizing the convoluted valence wave
functions [28] at different ðz; Δ⃗⊥Þ with the same q2 for the
transition J=ψ → ηc þ γð�Þ. In the valence Fock sector, the
light-front wave function can be written in the form of

ψ
ðmjÞ
ss̄=hðk⃗⊥; xÞ where ðx; k⃗⊥Þ is the relative coordinates of the

quark. s represents the fermion spin projection in the x−

direction. Both the initial and final wave functions are

plotted in the same ðx; k⃗⊥Þ space, where the initial state
wave function would appear as being reshaped due to
momentum transfer. We can see that the information from
the wave function in the longitudinal direction is preserved
most at minimal z.
For the nþ 2 → n term, as in Fig. 1(b), a quark and

an antiquark from the initial state annihilate into a photon;
thus the electromagnetic current matrix element takes
the form

hψBðP; j;mjÞjJμjψAðP0; j0; m0
jÞinþ2→n

¼
X
n

fnfnþ2

Ynþ2

i¼1

X
s0i;l

0
i

Z
z

0

dx01
2x01

Z
1

0

dx0iði≠1;2Þ
2x0i

Z
d2k0i⊥
ð2πÞ3 2ð2πÞ

3δ

�Xnþ2

i¼1

x0i − 1

�
δð2Þ

�Xnþ2

i¼1

k⃗0i⊥
�

× ψ
ðmjÞ�
n=B ðfxi; k⃗i⊥; sigÞjμs1 0;s2 0ψ

ðm0
jÞ

nþ2=Aðfx0i; k⃗0i⊥; s0igÞ; ð7Þ

where the EM current is jμs0
1
;s0
2
¼ v̄s0

1
ðκ02Þγμus02ðκ01Þ and the parton coordinates/constraints are

8>><
>>:

x01; k⃗
0
1; for the struck quark

x02 ¼ z − x01; k⃗
0
2 ¼ −k⃗01 þ Δ⃗⊥; l02 ¼ l01; for the struck antiquark

x0iþ2 ¼ xið1 − zÞ; k⃗0iþ2⊥ ¼ k⃗i⊥ − xiΔ⃗⊥; li ¼ l0iþ2; si ¼ s0iþ2; for the spectators ði ¼ 1;…; nÞ:
ð8Þ

The frame parameter z is now the upper bound of the range
of x01, suggesting that decreasing the value of z might
reduce the contribution of the nþ 2 → n transition to the
full transition form factor. However, even at z ¼ 0, this
parton-number-nonconserving term may yield a nonzero
value, by generating zero-mode δðxÞ terms [17,35,36]. In
the spacelike region, the Drell-Yan frame always has
the minimal z ¼ 0. In the timelike region, it is the

longitudinal-II frame that takes the smallest z. When the
nþ 2 → n contribution is not accessible, which happens
when the light-front wave functions are solved in a
truncated Fock space, using those minimal-z frames seems
advantageous in suppressing the parton-number-noncon-
serving contribution. This observation suggests optimal
frames for our meson systems solved from light-front
Hamiltonian in the valence Fock sector.

FIG. 3. The valence light-front wave functions of mesons as they contribute [see Eq. (5)] to the convolution in the transition
J=ψ → ηc þ γð�Þ at q2 ¼ −3 GeV2 in different frames. According to Eq. (5), in this 2 → 2 parton-number-conserving term, the initial
state wave function of J=ψ would appear shifted and stretched to overlap with the final state wave function of ηc, when plotted on the
ðx; k⃗⊥Þ space. Shown in (a), the wave function of J=ψ is shaped differently at different ðz; Δ⃗⊥Þ, i.e., in different frames. The longitudinal
dimension is preserved most in the Drell-Yan frame where z ¼ 0. At larger z, the information in the longitudinal region is reduced, and
the transverse shift becomes smaller. The largest z is achieved when Δ⊥ ¼ 0 in the longitudinal frame, in this case, z ¼ 0.45. Plotted in
(b) is the wave function of ηc. All light-front wave functions that we employ are calculated by Ref. [28] and here we only plot the
dominant spin components for the purpose of illustration.
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In the valence Fock sector, the transition amplitude of
ψA → ψB with the current operator JμðxÞ ¼ ψ̄ðxÞγμψðxÞ
now contains only two contributions, one from the photon
coupling to the quark and the other from the photon
coupling to the antiquark. For quarkonia, the two terms
are equal by charge conjugation. For convenience, in
calculating the transition form factor, we only consider
the photon coupling to the quark and the charge is not
included. That is, we compute V̂ðq2Þ which is related to
Vðq2Þ by V̂ðq2Þ ¼ Vðq2Þ=ð2eQfÞ where Qf is the dimen-
sionless fractional charge of the quark.
In our previous work [22], we have shown that for

calculations with light-front wave functions in the valence

Fock sector, using the transverse current JRð≡Jx þ iJyÞ
with the mj ¼ 0 state of the vector meson is preferred for
the transition form factor Vðq2Þ, as in Eq. (9). We adopt this
choice for the purpose of studying the frame dependence in
this work. Therefore, we employ

hPðPÞjJRð0ÞjVðP0; mjÞi ¼
2Vðq2Þ
mP þmV

imVPþ
�
PR

Pþ −
P0R

P0þ

�
:

ð9Þ
The light-front wave function representation of the

transition form factor V̂ðq2Þ, extracted according to the
expression in Eq. (9), follows as

V̂ðq2Þ ¼ −i
mV þmP

2mVΔR

X
s̄

Z
1

0

dx
2xð1 − xÞ

Z
d2k⃗⊥
ð2πÞ3 ×

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − zÞ½xþ zð1 − xÞ�3

p h
ψ�
↑s̄=Pðk⃗⊥; xÞψ

ðmj¼0Þ
↑s̄=V ðk⃗0⊥; x0Þ

× ðzkR − xΔRÞ þ ψ�
↓s̄=Pðk⃗⊥; xÞψ

ðmj¼0Þ
↑s̄=V ðk⃗0⊥; x0Þmqz

i
: ð10Þ

We numerically probe the frame dependence of the
transition form factor through a dense sampling of kine-
matically available frames within ðz; Δ⃗⊥Þ for any given q2.

We also try to see if our suggested frames, those with
minimal z, provide better results than other frames, when
compared with available experimental data.

FIG. 4. The transition form factor of the transition VðnSÞ → PðnSÞγ of charmonia (blue curves/shades) and bottomonia (red curves/
shades), calculated with light-front wave functions at Nmax ¼ Lmax ¼ 32 basis truncation. Meson masses are taken from experimental
data [1] in defining the frames according to Eq. (4). The solid curves represent the Drell-Yan frame while the other curves represent the
longitudinal I (dotted lines) and II (dashed lines) frames. The shaded areas represent the results from all other frames. The left panel
shows the transition form factor at a larger scale of q2, and the right panel focuses on the small q2 region.
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III. RESULTS: THE M1 TRANSITIONS
IN HEAVY QUARKONIA

We adopt light-front wave functions of heavy quarkonia
from recent works [27,28] in the BLFQ approach [26]. The
effective Hamiltonian extends the holographic QCD [37]
by introducing the one-gluon exchange interaction with a
running coupling, the constituent masses for the quarks and
a longitudinal confining interaction [38]. The obtained
light-front wave functions have been used to produce
several observables and are in reasonable agreement
with experiments and with other theoretical approaches
[25,39–42]. We have also used these light-front wave
functions to address radiative transitions in a previous
work [22]. The previous work studied the transition form
factor in the spacelike region in the Drell-Yan frame, and
suggested a preferred current component for practical
calculations. The present work extends the calculation to
the full kinematic region and all possible frame choices.
In this model, the light-front wave functions are solved in

the valence Fock sector using a basis function representa-
tion, where the truncations in the Fock space and the basis
space could introduce a violation of Lorentz symmetry.
However, such a violation turned out to be very small in
terms of the meson mass spread at different magnetic
projections, as well as in the elastic form factors for mesons

at different frames [25]. It is thereforeworthwhile to examine
how the transition form factors exhibit Lorentz symmetry
violation as measured by their frame dependence.
The light-front wave function in a basis function repre-

sentation reads

ψ
ðmjÞ
ss̄=hðk⃗⊥; xÞ ¼

X
n;m;l

ψhðn;m; l; s; s̄Þϕnm

�
k⃗⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1− xÞp
�
χlðxÞ:

ð11Þ

In the transverse direction, the two-dimensional harmonic
oscillator function ϕnm is adopted as the basis. In the
longitudinal direction, we use the modified Jacobi poly-
nomial χl as the basis. m is the orbital angular momentum
projection, related to the total angular momentum projec-
tion as mj ¼ mþ sþ s̄, which is conserved by the
Hamiltonian. The basis space is truncated by their reference
energies in dimensionless units: 2nþ jmj þ 1 ≤ Nmax and
0 ≤ l ≤ Lmax. As such, the Nmax-truncation provides a
natural pair of UV and IR cutoffs: Λ⊥;UV ≃ κ

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
,

λ⊥;IR ≃ κ=
ffiffiffiffiffiffiffiffiffiffi
Nmax

p
, where κ is the oscillator basis energy

scale parameter as well as the confining strength parameter.
Lmax represents the resolution of the basis in the longi-
tudinal direction Δx ≈ L−1

max. It also provides a pair of UV

FIG. 5. The transition form factor of the transition ψAð2SÞ → ψBð1SÞγ (ψA;ψB ¼ V;P or P;V) of charmonia (blue curves/shades)
and bottomonia (red curves/shades), calculated with light-front wave functions atNmax ¼ Lmax ¼ 32 basis truncation. Meson masses are
taken from experimental data [1] for defining the frames according to Eq. (4). The solid curves represent the Drell-Yan frame while the
other curves represent the longitudinal I (dotted lines) and II (dashed lines) frames. The shaded areas represent the results from all other
frames. The left panel shows the transition form factor at a larger scale of q2, and the right panel focuses on the small q2 region.
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and IR cutoffs according to Eq. (4): Λz;UV ≃mh
ffiffiffiffiffiffiffiffiffiffi
Lmax

p
,

λz;IR ≃mh=
ffiffiffiffiffiffiffiffiffiffi
Lmax

p
(mh ≈mA;mB). See Ref. [28] for details

on basis functions and parameter values. The light-front
wave functions are calculated at Nmax ¼ Lmax ¼ 8, 16, 24
and 32. For our purposes, we mainly concentrate on results
obtained at Nmax ¼ Lmax ¼ 32. In this basis, the largest
supported jq2j is 31 GeV2ð44 GeV2Þ for charmonia

(bottomonia), and beyond these cutoffs, the LFWFs are
dominated by the asymptotics of the basis.

A. The transition form factors in different frames

Figures 4 and 5 show numerical results for selected
pseudoscalar-vector transition form factors for charmonia
and bottomonia below their respective open-flavor thresh-
olds. Those lowest states are the primary focii of several
investigations [3,43–47]. They have been measured in
experiments [1], and their transitions are more readily
detected with good statistics than higher excited states.
Moreover, with their experimental masses, we have an
entire landscape of frames in the ðz; Δ⃗⊥Þ parameter space
according to Eq. (4). The solid curve represents the Drell-
Yan frame; the dotted and the dashed curves represent the
two branches of the longitudinal frame, longitudinal I and
longitudinal II, respectively. The shaded areas represent
all other frames with different z and Δ⊥. We also compare
V̂ð0Þ obtained in different frames with available exper-
imental data from the Particle Data Group (PDG) [1] in
Table I.
For the transition form factor of the allowed transition,

i.e., ψAðnSÞ → ψBðnSÞγ, (ψA;ψB ¼ V;P or P;V), as in
Fig. 4, there are no crossings between the curves of the
longitudinal frame and the Drell-Yan frame. In these cases,
the results from all other frames are represented by the

TABLE I. Comparison of V̂ð0Þ from available experimental
data and the BLFQ calculations in the limiting frames. Values
from PDG [1] are converted from their decay widths according to
Eq. (2). The BLFQ results are calculated using meson wave
functions obtained at Nmax ¼ Lmax ¼ 32. The Drell-Yan/longi-
tudinal II is the preferred result, and the difference between it and
the longitudinal I quantifies the uncertainty resulting from frame
dependence.

BLFQ

V̂ð0Þ PDG [1] Drell-Yan/long-II long-I

J=ψð1SÞ → ηcð1SÞγ 1.56(19) 2.02 2.12
ηcð2SÞ → J=ψð1SÞγ � � � −0.019 0.29
ψð2SÞ → ηcð1SÞγ 0.100(8) 0.29 0.46
ψð2SÞ → ηcð2SÞγ 2.52(91) 2.09 2.14
ϒð1SÞ → ηbð1SÞγ � � � 2.01 2.03
ηbð2SÞ → ϒð1SÞγ � � � −0.052 0.20
ϒð2SÞ → ηbð1SÞγ 0.070(14) 0.13 0.35
ϒð2SÞ → ηbð2SÞγ � � � 2.02 2.03

FIG. 6. The transition form factors for charmonia (left panels) and bottomonia (right panels) with different basis truncations. Meson
masses are taken from experimental data [1] in defining the frames according to Eq. (4). The solid curves represent the Drell-Yan frame
while the other curves represent the longitudinal I (dotted lines) and II (dashed lines) frames. The shaded areas represent the results from
all other frames.
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enclosed shaded area. The frame dependence is relatively
small, no more than a 5% spread at q2 ¼ 0, as in Table I.
For the transition form factor of the hindered transitions,
i.e., ψAðnSÞ→ψBðn0SÞγðn0≠nÞ, (ψA;ψB ¼ V;P or P;V),
as in Fig. 5, the curves of the longitudinal frame and the
Drell-Yan frame cross each other, and their joined lower
bound forms the lower bound for the results from all other

frames. The upper bound, however, envelops the Drell-Yan
and the longitudinal results. The frame dependence of
these hindered transitions is very strong, indicating major
sensitivity to the Lorentz symmetry breaking. This sensi-
tivity seems understandable since these weaker transitions
result from cancellations coming from different regions of
integration.

FIG. 7. The effective mass spectrum of the lepton pairs in the Dalitz decays for charmonia (left panels) and bottomonia (right panels).
The dashed and solid curves represent the longitudinal I and II frames, respectively. The shaded areas represent the results from all other
frames. Δm2 ¼ ðmA −mBÞ2 is the square of the mass difference between the initial and the final mesons. Meson masses are taken from
experimental data [1].
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We also compare charmonia and bottomonia at corre-
sponding transition modes in Figs. 4 and 5. Such compar-
isons suggest that the frame dependence tends to be
reduced for heavier systems, presumably due to the overall
reduction in relativistic effects.
It is natural to ask how frame dependence may be

sensitive to the BLFQ basis truncation applied to these
valence Fock space calculations. For this purpose, we
present transition form factors from different basis trunca-
tions in Fig. 6. A trend towards convergence with increas-
ing basis cutoff is observed in both the Drell-Yan and the
longitudinal frames. The frame dependence indicated by
the shaded regions is shrinking slightly with increasing
basis cutoff but Lorentz symmetry breaking effects remain
visible even at the highest basis cutoffs.
From those results, we observe that the frame depend-

ence of the transition form factor can be characterized by
the two limits, the Drell-Yan and the longitudinal frames.
Transitions with excitations in the lighter system [e.g.,
ηcð2SÞ → J=ψð1SÞγ] admit the largest frame dependence,
implying a stronger sensitivity to the Fock sector trunca-
tion. Our suggested frames for the calculation in the valence
Fock sector, the Drell-Yan and the longitudinal-II frames,
provide values of V̂ð0Þ that are closer to the experimental
data, as seen in Table I.

B. The electromagnetic Dalitz decay

The effective mass spectrum of the lepton pair in the
Dalitz decay can be obtained from the corresponding
transition form factor according to Eqs. (2) and (3). The
results of dΓðψA → ψBlþl−Þ=dq2 for eight selected decays
are shown in Fig. 7. The frame dependence is barely visible
in the allowed transitions as in the top four panels, but
very substantial in the hindered transitions as in the bottom
four panels. Such different sensitivities to frames can be
expected in light of the sensitivities observed for the
transition form factors in the timelike region. The allowed
transitions are between states with similar spatial wave
functions [e.g., J=ψð1SÞ → ηcð1SÞeþe−], whereas the
hindered transitions are between states with nearly orthogo-
nal spatial parts [e.g., ψð2SÞ → ηcð1SÞeþe−]. Therefore in
the latter cases, the transition form factors and thus the
leptonic widths would admit strong cancellations between
positive and negative contributions, and thus become more
sensitive to the finer details of light-front wave functions.

IV. SUMMARY AND OUTLOOK

We have introduced the M1 transition form factor on
the light front in a general frame. We analyzed the
contributions from the parton-number-conserving term
(n → n) and the nonconserving term (nþ 2 → n) in
different frames, and suggested that frames with minimal
z values could suppress the latter. Therefore, the minimal-
z frames, i.e., the Drell-Yan and the longitudinal-II

frames, are preferred for calculating transition form
factors in the valence Fock sector.
We then looked into the heavy quarkonia system and

showed that, using light-front wave functions from the
valence Fock sector, the transition form factor admits
moderate frame dependence in the case of allowed tran-
sitions. For the case of hindered transitions, we find that the
frame dependence is more severe. Our results from differ-
ent frames fall between the two special frames, the Drell-
Yan and the longitudinal frames, a pattern also observed in
the study of elastic form factors [25]. In the spacelike
region, the Drell-Yan and the longitudinal-I frames form
two limits, while in the timelike region, the limits become
the two branches of the longitudinal frame (referred as
longitudinal I and II). We employed the difference of results
in the Drell-Yan and the longitudinal frames as a metric for
the violation of the Lorentz symmetry due to Fock space
truncation.
With the transition form factor in the timelike region, we

obtained the decay widths of the associated Dalitz decay
and use the frame difference as an uncertainty for the
result. We hope that the comparison of our predictions with
future experiments could help justify our choice of the
preferred frames for valence Fock sector calculations. By
exhibiting frame dependence in these form factors and
decay widths, we motivate solving quarkonia systems in
higher Fock sectors [48,49] and providing a more complete
description with increasingly precise treatments of the
Lorentz symmetry.
We expect that by considering contributions from higher

Fock sectors, this frame dependence will eventually vanish.
As we have discussed in Sec. II, in terms of the transition
form factor, the contribution from the valence sector and
that from the higher sectors are different in different frames,
but the full result (the summation of the two) should be
invariant. The comparison of the future full transition form
factor to the valence result in different frames, as presented
here, could verify our deduction on the suggested frames.
In practical calculations, if taking into account the higher
Fock sector contribution does not resolve all the frame
dependence, the residue is likely caused by approximations
in modeling the Hamiltonian and numerical uncertainties.
Checking the frame dependence could still provide a
measurement on the violation of the Lorentz symmetry
for the phenomenological model of the system.
It should be noted that though we take heavy quarkonia

as a concrete study object in this paper, the formalism of the
transition form factors in different frames also applies to
light mesons and could be extended to other systems such
as baryons.
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