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The process of photon-photon scattering in vacuum is investigated analytically in the long-wavelength
limit within the framework of the Euler-Heisenberg Lagrangian. In order to solve the nonlinear partial
differential equations (PDEs) obtained from this Lagrangian use is made of the hodograph transformation.
This transformation makes it possible to turn a system of quasilinear PDEs into a system of linear PDEs.
Exact solutions of the equations describing the nonlinear interaction of electromagnetic waves in vacuum in
a one-dimensional configuration are obtained and analyzed.
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I. INTRODUCTION

Perturbation theory has proven to be extremely successful
in obtaining a number of prominent results in quantum field
theories (QFTs) [1–4]. In spite of these achievements, as is
well known, perturbation theory is only valid provided the
interaction is weak and thus it cannot provide a full
description of a QFT [5,6]. For this reason the nonperturba-
tive behavior of QFTs has attracted a great deal of attention
for decades [7]. As examples of physical objects typical for
QFTs and classical mechanics of continuous media whose
theoretical description cannot be obtained within the frame-
work of perturbation theory we may list the breaking of
nonlinear waves, solitons, instantons, etc., [8–12].
In quantum electrodynamics (QED) perturbation

theory breaks in the limit of strong electric fields, when
the electric field E approaches the critical field of quantum
electrodynamics [13,14]

ES ¼ m2
ec3=eℏ ð1Þ

and/or the photon energy becomes substantially large, i.e.,
for αχ2=3γ ≥ 1 [6] where α ¼ e2=ℏc is the fine structure

constant, χγ ¼ ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFμνkμÞ2

q
=mecES is the so called non-

linear quantum parameter (see Refs. [2,6]), Fμν is the
electromagnetic field tensor, and ℏkμ is the four-momentum
of the photon. The electron mass and electric charge are me
and e, respectively, c is the speed of light in vacuum, and ℏ is
the Planck constant. The critical field corresponds to the

electric field that, acting on the electron charge e, would
produce a work equal to the electron rest mass energy mec2

over a distance equal to the Compton wavelength
ƛC ¼ ℏ=mec. Here ℏ is the reduced Planck constant, e
and me are the electron electric charge and mass, and c is
the speed of light in vacuum (see for details Refs. [2,
13–15]). The corresponding wavelength and intensity of
electromagnetic radiation are λS ¼ 2πƛC ≈ 2 × 10−10 cm
and IS ¼ cE2

S=4π ≈ 1029 W=cm2, respectively.
One of the most remarkable effects predicted in QED is

the vacuum polarization connected with light-light scatter-
ing and pair production from vacuum. In classical electro-
dynamics electromagnetic waves do not interact in vacuum.
On the contrary, in QED photon-photon scattering can take
place in vacuum via the generation of virtual electron-
positron pairs. This interaction gives rise to vacuum
polarization and birefringence, to the Lamb shift, to a
modification of the Coulomb field, and to many other
phenomena [2]. Photon-photon scattering was observed in
collisions of heavy ions accelerated in standard particle
accelerators (see review article [16] and the results of the
experiments obtained with the ATLAS detector at the Large
Hadron Collider [17]).
Photon-photon interaction provides a tool for the search

for new physics [16,18]: further studies of this process will
make it possible to test extensions of the Standard Model
in which new particles contribute to the interaction loop
diagrams [19]. Using the Euler-Heisenberg Lagrangian
[14,20], which describes the vacuum polarization and
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electron-positron pair generation by super-strong electro-
magnetic field in vacuum [15,21] also provides one of the
most developed approaches for studying nonperturbative
processes in QFT, when finding exact solutions of non-
linear problems cannot be underestimated.
The increasing availability of high power lasers has

stimulated a growing interest towards the experimental
observation of photon-photon scattering processes [22–24]
and electron positron pair creation [25]. In addition it has
provided strong motivation for their theoretical study in
processes such as the scattering of a laser pulse by a laser
pulse [26–34], the scattering of XFEL emitted photons
[19], and the interaction of relatively long-wavelength, high
intensity, laser light pulses with short-wavelength X-ray
photons [35].
The process of vacuum polarization can be described

within the framework of the approximation using the Euler-
Heisenberg Lagrangian [14,20]. Although this approxima-
tion is valid in the limit of colliding photons with relatively
low energy and of low amplitude electromagnetic pulses,
it allows one to extend consideration over the nonpertur-
bative theory. Its applicability requires the colliding photon
energy to be below the electron rest-mass energy, Eγ ¼
ℏω < mec2, and the electric field of the colliding electro-
magnetic waves to be below the critical field given by
Eq. (1). When writing the condition for the validity of
the long-wavelength approximation given above it was
assumed that the frequencies of the colliding photons are
equal. If the frequencies are different, say ω and Ω with
Ω ≠ ω, the low-frequency approximation requires that

ωΩ < m2
ec4=ℏ2: ð2Þ

In the limit of electromagnetic fields with extremely
large amplitudes approaching the QED critical field ES, the
nonlinear modification of the vacuum refraction index via
the polarization of virtual electron-positron pairs leads to
the decrease of the propagation velocity of counterpropa-
gating electromagnetic waves [36–39] while, on the con-
trary, copropagating waves do not change their propagation
velocity because copropagating photons do not interact,
see, e.g., Ref. [40].
The nonlinear properties of the QED vacuum in the long-

wavelength, low frequency limit can find a counterpart in
those of nonlinear dispersionless media, keeping however
in mind that in QED there is no preferred frame where the
nonlinear medium is at rest. In a material nonlinear medium
with a refraction index that depends on the electromagnetic
field amplitude an electromagnetic wave can evolve into a
configuration with singularities [41,42]. The evolution of a
finite amplitude wave is accompanied by the steepening
of its wave front, by the formation of shocklike waves, i.e.,
it is characterized by a processes leading to gradient
catastrophes [9]. In the case of the quantum vacuum,
corresponding phenomena have been investigated in

Refs. [21,43,44] and [38]. The occurrence of singularities
in the Euler-Heisenberg electrodynamics has been noticed
in Refs. [21,43], indicated in computer simulations pre-
sented in Ref. [44], and thoroughly studied in Ref. [38].
In the present paper, we analyze the interaction of finite

amplitude, counterpropagating electromagnetic (e.m.)
waves in a one dimensional (1-D) configuration. The
interacting waves are assumed to be linearly polarized
and to have the same polarization direction. In such a
configuration the propagation directions of the two collid-
ing plane waves are collinear, and this collinearity is
preserved by Lorentz boosts along the propagation direc-
tion. However, the Euler-Heisenberg Lagrangian is invari-
ant under the full Lorentz group. This makes it possible to
use the solutions that will be derived in the following
sections to construct solutions that describe the interaction
of plane waves colliding at an angle, e.g., by considering
Lorentz boosts in the direction perpendicular to the
direction of the polarization vector of the two colliding
waves. This extension of the results presented below may
be of interest in an experimental setting.
The hodograph transformation [45] is a useful tool in the

study of nonlinear waves as it allows us to obtain a linear
system of second order partial differential equations (PDEs)
instead of a system of second order quasilinear PDEs.
In the case of the e.m. 1-D configuration under study, this
transformation makes the electric and the magnetic fields
play the role of the independent coordinates. The hodo-
graph transform has been adopted for a nondispersive
formulation of the electromagnetic field equations in a
nonlinear material medium, see, e.g., Refs. [46,47] that
focused on determining constitutive relations for which
exact solutions can be derived analytically. It has also been
used in the context of relativistic 1-D magnetohydrody-
namics in Ref. [48] where a linear equation is derived for
a “potential function” χðr; wÞ where r is the relativistic
rapidity and w the proper enthalpy of the cold magnetized
plasma. This equation corresponds to the equation for the
“potential” Φ, function now of the electromagnetic fields,
that will be derived in Sec. IV. In the context of nonlinear
weaves the hodograph transformation has been applied to
the Born-Infeld equation in Ref. [9].
The analysis described in the following sections allows

us to find exact solutions describing the nonlinear inter-
action of electromagnetic waves in vacuum both in the
space-time coordinates and in the hodograph variables, to
formulate a perturbative approach that, in the limit of
monochromatic waves, does not lead to secularities and to
derive the dispersion relation of e.m. waves propagating
in vacuum in the presence of steady and uniform, strong
e.m. fields.
This article is organized as follows. In Sec. II the Euler-

Heisenberg Lagrangian is recalled and in Sec. II A it is
specialized to the case of counterpropagating e.m. waves in
a 1-D configuration and the corresponding nonlinear wave
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equation is derived using the so-called light cone coor-
dinates. As an illustration, higher order terms that depend
on the sixth power of the e.m. fields are included in the
Euler-Heisenberg Lagrangian but, for the sake of algebraic
simplicity, the contribution of these terms is neglected in
some of the formulae in the present text. In Sec. II B the
conservations that arise from the translational and from the
invariance of the 1-D Euler-Heisenberg Lagrangian under
Lorentz boosts along the propagation direction are pre-
sented. In Sec. II C the linear case of noninteracting waves
is briefly described and in Sec. II D perturbative solutions
are obtained in light cone coordinates. In Sec. II E the
derivation of the characteristics of the nonlinear wave
equations is outlined, while in Sec. II F exact self-similar
solutions are derived. In Sec. II G the dispersion equation of
e.m. waves propagating in vacuum perpendicularly to large,
steady and uniform, e.m. fields is presented. In Sec. III the
hodograph transform of the equations of nonlinear electro-
dynamics in vacuum is derived and in Sec. IV it is applied
to the study the nonlinear interaction of electromagnetic
waves in the QED vacuum. In Sec. IVA symmetries and
conservations are reformulated in the hodograph frame-
work, while in Sec. IV B the expression of noninteracting
waves in hodograph variables is shown. In Sec. IV C
perturbative solutions are derived and in Sec. IV D an
exact self-similar solution is obtained. In Sec. IV E the
reduction of the hodograph equations to standard form is
derived. This reduction makes possible the use of well
known expansion techniques for the solution of linear
PDEs with constant coefficients. An explicit inversion of
a hodograph solution is then derived. Finally in Sec. V a
summary of the main results obtained is given, while in the
Appendices extended proofs of some results given in the
main text are provided.

II. EQUATIONS OF NONLINEAR VACUUM
ELECTRODYNAMICS

The Euler–Heisenberg Lagrangian is given by

L ¼ L0 þ L0; ð3Þ

where

L0 ¼ −
1

16π
FμνFμν ð4Þ

is the Lagrangian in classical electrodynamics, Fμν is the
electromagnetic field tensor

Fμν ¼ ∂μAν − ∂νAμ; ð5Þ

with Aμ being the 4-vector of the electromagnetic field and
μ ¼ 0, 1, 2, 3. Here and below a summation over repeating
indices is assumed.

In the Euler–Heisenberg theory, the QED radiation
corrections are described by L0 on the right-hand side of
Eq. (3), which can be written as [2]

L0 ¼ −
m4

8π2

Z
∞

0

exp ð−ηÞ
η3

�
−ðηa cot ηaÞðηb coth ηbÞ

þ 1 −
η2

3
ða2 − b2Þ

�
dη: ð6Þ

Here the invariants a and b can be expressed in terms the
Poincaré invariants

F ¼ FμνFμν and G ¼ FμνF̃μν ð7Þ

as

a¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2þG2

q
þF

r
and b¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2þG2

q
−F

r
; ð8Þ

respectively, where dual tensor F̃μν ¼ εμνρσFρσ contains
εμνρσ being the Levi-Civita symbol in four dimensions.
Here and in the following text, we use the units c ¼ ℏ ¼ 1,
and the electromagnetic field is normalized on the QED
critical field ES.
As explained in Ref. [2] the Euler–Heisenberg

Lagrangian in the form given by Eq. (6) should be used
for obtaining an asymptotic series over the invariant electric
field a assuming its smallness.
In the weak field approximation the Lagrangian L0 is

given by (e.g., see [49])

L0 ¼ κ

4

�
F2 þ 7

4
G2 þ 90

315
F

�
F2 þ 13

16
G2

��
þ � � � ð9Þ

with the constant κ ¼ ðe4=360π2Þm4. In the Lagrangian (9)
the first two terms on the right-hand side and the last
two correspond respectively to four and to six photon
interaction.

A. Counterpropagating electromagnetic waves

In the following we consider the interaction of counter-
propagating electromagnetic waves with the same linear
polarization, in which case the invariant G vanishes
identically. Such a field configuration can be described
in a transverse gauge by a vector potential having a single
component, A ¼ Aez, with ez the unit vector along the
z axis. In terms of the light cone coordinates (see, e.g.,
Ref. [50])

xþ ¼ ðxþ tÞ=
ffiffiffi
2

p
; x− ¼ ðx − tÞ=

ffiffiffi
2

p
; ð10Þ

the vector potential A can be written as

A ¼ aðxþ; x−Þ: ð11Þ
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Here and in the following we use natural units c ¼ 1;ℏ ¼ 1
with the electromagnetic field normalized on the
QED critical field (the so-called Schwinger field) ES ¼
ðm2

ec3Þ=ðℏeÞ and x and t normalized on the Compton
length ƛC ¼ ℏ=ðmecÞ and ƛC=c, respectively. Accordingly,
the potential A is normalized on mec2=e, as is conventional
in the nonquantum case. In these variables the Lagrangian
(3) takes the form

LðaÞ ¼ −
1

4π
½wu − ϵ2ðwuÞ2 − ϵ3ðwuÞ3� ð12Þ

where the field variables u and w are defined as

u ¼ ∂x−a and w ¼ ∂xþa ð13Þ

and are related to the electric field E ¼ −∂tA (along z) and
to the magnetic field B ¼ −∂xA (along y) by

w ¼ −ðEþ BÞ=
ffiffiffi
2

p
; u ¼ ðE − BÞ=

ffiffiffi
2

p
and

uw ¼ ðB2 − E2Þ=2: ð14Þ

The dimensionless parameters ϵ2 and ϵ3 in Eq. (12) are
given by

ϵ2 ¼
2e2

45π
¼ 2

45π
α and ϵ3 ¼

32e2

315π
¼ 32

315π
α; ð15Þ

where α ¼ e2=ℏc ≈ 1=137 is the fine structure constant,
i.e., ϵ2 ≈ 10−4 and ϵ3 ≈ 2 × 10−4, respectively. The field
equations can be found by varying the e.m. action

SðaÞ ¼
Z

dxþ

Z
dx−LðaÞ;

with respect to the vector potential aðxþ; x−Þ which gives

∂x−ð∂uLÞ þ ∂xþð∂wLÞ ¼ 0: ð16Þ

As a result, we obtain the system of equations (see also
Appendix A)

∂x−w ¼ ∂xþu; ð17Þ

∂xþ½uð1 − 2ϵ2uw − 3ϵ3u2w2Þ�
þ ∂x− ½wð1 − 2ϵ2uw − 3ϵ3u2w2Þ� ¼ 0: ð18Þ

Equation (17), is simply a consequence of the symmetry of
the second derivatives, ∂x−xþa ¼ ∂xþx−a and it expresses
the vanishing of the 4-divergence of the dual e.m. tensor
F̃μν. By rearranging terms and by inserting Eqs. (13), (17),
Eq. (18) can be rewritten in the form of a second order
partial differential equation for the potential aðxþ; x−Þ:

½1 − uwð4ϵ2 þ 9ϵ3uwÞ�∂x−xþa

¼ w2ðϵ2 þ 3ϵ3uwÞ∂x−x−aþ u2ðϵ2 þ 3ϵ3uwÞ∂xþxþa;

ð19Þ

where uðxþ; x−Þ and wðxþ; x−Þ are defined by Eq. (13).

B. Symmetries and conservations

The Lagrangian (12), and thus Eq. (19), are invariant
under time reversal i.e., under the discrete transformation
xþ ↔ x− that interchanges u and w. The Lagrangian (12) is
also invariant under translations along x and t and under
Lorentz boosts along x. In fact the four-vector potential
component a is transverse to the boost and the field product
uv is proportional to the Lorentz invariantF. In terms of the
light cone coordinates the corresponding infinitesimal
transformations can be written with obvious notation as
(see also Ref. [50])

xþ → xþ þ δþ; x− → x− þ δ−;

xþ → ð1 − βÞxþ and x− → ð1þ βÞx−; ð20Þ

and the product xþx− is invariant under Lorentz boosts
along x. According to Noether’s theorem these continuous
symmetries imply the local conservation of the electro-
magnetic energy momentum tensor and of the “barycenter”
(center of the energy-momentum distribution) which in
light cone coordinates takes the form

∂xþTww þ ∂x−Tuw ¼ 0; ∂xþTwu þ ∂x−Tuu ¼ 0

∂xþðTwwxþ − Twux−Þ þ ∂x−ðTuwxþ − Tuux−Þ ¼ 0; ð21Þ

where

Tij ¼
∂L

∂ð∂iaÞ
ð∂jaÞ − δijL; i; j ¼ �; and

Tþþ ≡ Tww; Tþ− ≡ Twu; etc: ð22Þ

Neglecting for simplicity the ϵ3 term, from L ¼ −ðuw −
ϵ2u2w2Þ=4π we have

Tww ¼ Tuu ¼ ϵ2u2w2=4π;

Twu ¼ −u2ð1 − 2ϵ2uwÞ=4π;
Tuw ¼ −w2ð1 − 2ϵ2uwÞ=4π; ð23Þ

where the trace and the determinant are Lorentz invariants.
The corresponding expression for the energy momentum
tensor in x, t coordinates is given in Appendix B and
expressed in terms of the fields E and B. Note that,
independently of the chosen coordinates, the trace of the
energy momentum tensor of counterpropagating beams
does not vanish, as would instead be the case for the e.m.
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fields in vacuum in the linear limit. This is consistent with
the fact that the propagation velocities of interacting
counterpropagating beams is smaller than the speed of
light in vacuum, see Eq. (33) below.

C. Linear approximation and noninteracting waves

In linear approximation where the Euler-Heisenberg
correction L0 to the e.m. Lagrangian in Eq. (3) is neglected,
Eqs. (18) and (19) take the form

∂xþu ¼ −∂x−w; ∂x−xþa ¼ 0; ð24Þ
where Eq. (19) has reduced to the standard linear wave
equation in the light cone coordinates.
The first of Eqs. (24), together with Eq. (17), leads to the

general solution u ¼ fðx−Þ and w ¼ gðxþÞ with f and g
arbitrary functions that are determined by the initial
conditions. For these solutions the vector potential
aðxþ; x−Þ takes the factorized form aðxþ; x−Þ ¼ aþðxþÞ þ
a−ðx−Þ with u ¼ ∂x−a and w ¼ ∂xþa. These solutions
describe noninteracting electromagnetic waves propagating
toward positive and negative directions along the x axis,
respectively.
Equations (17), (18)allowforparticular solutions forwhich

either u ¼ 0 or w ¼ 0, in which case w (or u) is an arbitrary
function depending on the light cone variable xþ (or x−).
These solutions describe finite amplitude electromagnetic
waves propagating along x from right to left (from left to
right) with propagation velocity equal to the speed of light in
vacuum. Their shape does not change in time and the electric
and magnetic field components are equal E ¼ B ¼ −w=

ffiffiffi
2

p
and Twu¼−w2=ð4πÞ¼−E2=ð2πÞ, or equal and opposite
E¼−B¼u=

ffiffiffi
2

p
and Tuw¼−u2=ð4πÞ¼−E2=ð2πÞ.

D. Perturbative solutions

In the case of small but finite field amplitudes u, w
we can solve Eqs. (17) and (18) [or equivalently Eq. (19)]
perturbatively by expanding in powers of the field
amplitudes, seeking solutions of the form uðx−; xþÞ ¼
u0ðx−Þ þ u1ðx−; xþÞ, wðx−; xþÞ ¼ w0ðxþÞ þ w1ðxþ; x−Þ
(or equivalently of the form aðxþ; x−Þ ¼ a0−ðx−Þ þ
a0þðxþÞ þ a1ðx−; xþÞ). Keeping only cubic terms in the
fields we obtain

u1ðx−; xþÞ ¼ ϵ2u20ðx−Þw0ðxþÞ

þ ϵ2½∂x−u0ðx−Þ�
Z

xþ
dx0þw2

0ðx0þÞ;

w1ðxþ; x−Þ ¼ ϵ2w2
0ðxþÞu0ðx−Þ

þ ϵ2½∂xþw0ðxþÞ�
Z

x−
dx0−u20ðx0−Þ; ð25Þ

where the two integral terms give the net effect of the
interaction between two finite length counterpropagating
waves after the end of the interaction. Note that the lower

limits in the integrals in Eq. (25) need not be stated
explicitly since a change in the lower limits simply amounts
to a redefinition of the zero order solution where u depends
only on x− andw on xþ. The lower integration limits will be
determined when assigning the initial condition on ao in the
full wave equation.
Corresponding results can be obtained by integrating

directly the wave equation for a1ðxþx−Þ up to cubic terms

∂x−xþa1ðxþ; x−Þ ¼ ϵ2½ð∂xþa0þÞ2∂x−x−a0−

þ ð∂x−a0−Þ2∂xþxþa0þ�: ð26Þ

1. Phase shift induced by the interaction
with a localized pulse

Taking as an example a monochromatic wave u0ðx−Þ ¼
U0 cos kðx − tÞ interacting with a localized counterpropa-
gating pulse w0, such that w0ðxþÞ ¼ 0 both for xþ > L and
for xþ < −L, we find

uðx−; xþ < −LÞ ¼ u0ðx−Þ ¼ U0 cos kðx− tÞ; and

uðx−; xþ > LÞ ¼ u0ðx−Þ þ ϵ2½∂x−u0ðx−Þ�
Z

L

−L
dx0þw2

0ðx0þÞ

¼ U0

�
cosðkx− tÞ − kϵ2 sin kðx− tÞ

×
Z

L

−L
dx0þw2

0ðx0þÞ
�

ð27Þ

which, to the considered expansion order, corresponds to a
phase shift [51].

2. Interaction between monochromatic waves
and propagation velocity

In the case of two interacting monochromatic waves
(independently of their relative frequencies) Eqs. (25)
would lead to a secular behavior due to the quadratic
terms in the integrands Eqs. (25). In order to cancel such a
secular behavior, we may uplift an ϵ2 term in the expansion
of the vector potential aðxþ; x−Þ and define the zeroth order
solution as

āþ0ðxþþϵ2sþðxþ;x−ÞÞ; ā−0ðx−þϵ2s−ðxþ;x−ÞÞ: ð28Þ

To leading order we recover Eq. (24), while two counter-
terms are added to Eq. (26) that is changed into

∂2a1ðxþ;x−Þ
∂xþ∂x− ¼ ϵ2½ð∂xþ ā0þÞ2∂x−x− ā0−þð∂x− ā0−Þ2∂xþxþ ā0þ�:

−ϵ2
∂

∂xþ
�
ð∂xþ ā0þÞ

∂sþðxþ;x−Þ
∂x−

�

−ϵ2
∂

∂x−
�
ð∂x− ā0−Þ

∂s−ðxþ;x−Þ
∂xþ

�
: ð29Þ

HODOGRAPH SOLUTIONS OF THE WAVE EQUATION OF … PHYS. REV. D 100, 036004 (2019)

036004-5



Neglecting higher order terms in ϵ2 we have

∂2a1ðxþ; x−Þ
∂xþ∂x−
¼ ϵ2

∂
∂xþ

�
ð∂xþ ā0þÞ

�
ð∂x− ā0−Þ2 −

∂sþðxþ; x−Þ
∂x−

��

þ ϵ2
∂

∂x−
�
ð∂x− ā0−Þ

�
ð∂xþ ā0þÞ2 −

∂s−ðxþ; x−Þ
∂xþ

��

ð30Þ

where we take

sþðxþ; x−Þ ¼
Z

x−
dx0−ð∂x0− ā0−Þ2 ∼

Z
x−
dx0−ð∂x0−a0−Þ2;

→ sþðxþ; x−Þ ∼ sþðx−Þ

s−ðxþ; x−Þ ¼
Z

xþ
dx0þð∂x0þ ā0þÞ2 ∼

Z
xþ
dx0þð∂x0þa0þÞ2;

→ s−ðxþ; x−Þ ∼ s−ðxþÞ
ð31Þ

where in the expression of s� only the leading coordinate
dependence is retained and, without loss of generality, we
can set a1 ¼ 0. Then to first order in ϵ2 the renormalized
solutions read

aðxþ; x−Þ ¼ aþ

�
xþ þ ϵ2

Z
x−
dx0−ð∂x0−a0−Þ2

�

þ a−

�
x− þ ϵ2

Z
xþ
dx0þð∂ 0

xþa0þÞ2
�
: ð32Þ

The integrals in the arguments lead to two amplitude
dependent, inhomogeneous, propagation velocities with
absolute values smaller than the speed of light [52]

v−ðxþÞ ¼ 1− ϵ2ð∂xþa0þÞ2; vþðx−Þ ¼ 1− ϵ2ð∂x−a0−Þ2;
ð33Þ

and, for localized pulses, to a phase shift at the end of
the interaction in agreement with Eq. (27). This amplitude
dependent slowing of the wave propagation velocity may
lead to self-lensing and wave collapse of two counter-
propagating pulses [27,53].

3. Perturbed light cone variables

Referring to Eq. (32), we note that the variables

Xþ ¼ xþ þ ϵ2

Z
x−
dx0−ð∂x0−a0−Þ2;

X− ¼ x− þ ϵ2

Z
xþ
dx0þð∂x0þa0þÞ2 ð34Þ

are “gauge invariant” and transform properly under 1-D
Lorentz transformations, see the second line in Eqs. (20).
Thus the condition XþX− ¼ 0 defines a Lorentz invariant
perturbed light cone. It is interesting to notice that the
causal cone of a wave event is “shrunk” by its interaction
with a counterpropagating wave.

E. Full solutions

The characteristics x� ¼ ξ�ðsÞ of Eq. (19), neglecting
for the sake of notational simplicity the ϵ3 term, are given
by the quadratic equation

ϵ2u2ðsÞ
�
dξþ
ds

�
2

þ ϵ2w2ðsÞ
�
dξ−
ds

�
2

þ ½1 − 4ϵ2uðsÞwðsÞ�
�
dξþ
ds

��
dξ−
ds

�
¼ 0; ð35Þ

and are used in Ref. [43] in order to construct “simple
wave” solutions of Eq. (19) and to prove that it admits the
formation of discontinuities.
In the following instead we will seek for self-similar

(scale invariant) solutions of Eq. (19) by reducing it to an
ordinary nonlinear differential equation.

F. Lorentz invariant solutions

We look for solutions of the form aðxþ; x−Þ ¼ aðρÞ, with
ρ≡ xþx− i.e., for solutions that are constant along the
curves xþx− ¼ const which are invariant under Lorentz
boosts along x. Then, from Eq. (19) we obtain

�
1 − 4ϵ2ρ

�
da
dρ

�
2
�
d
dρ

�
ρ
da
dρ

�
¼ 2ϵ2ρ

2

�
da
dρ

�
2 d2a
dρ2

;

ð36Þ

which can be rewritten as

d
dρ

�
ρ
da
dρ

�
¼ 2ϵ2

d
dρ

�
ρ2
�
da
dρ

�
3
�

ð37Þ

and yields the algebraic equation

da
dρ

− 2ϵ2ρ

�
da
dρ

�
3

¼ C2

ρ
: ð38Þ

In the limit ϵ2 → 0 we obtain (with C1, C2 arbitrary
constants)

a ¼ C1 þ C2 ln jρj; w ¼ C2=xþ; u ¼ C2=x−

ð39Þ

In these solutions the electric and the magnetic fields
“cumulate” at the light cone x ¼ �t where their
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amplitude diverges. The renormalization approach of
Eq. (28) gives

a ¼ C1 þ C2 ln jρ̄j; with

ρ̄ ¼ XþX− ¼ xþx− þ ϵ2C2
2ðxþ=xþ0 þ x−=x−0 − 2Þ: ð40Þ

which amounts to an amplitude dependent shift in the
cumulation coordinates with

w ¼ C2ðx− þ ϵ2C2
2=xþ0Þ

xþx− þ ϵ2C2
2ðxþ=xþ0 þ x−=x−0 − 2Þ ;

u ¼ C2ðxþ þ ϵ2C2
2=x−0Þ

xþx− þ ϵ2C2
2ðxþ=xþ0 þ x−=x−0 − 2Þ : ð41Þ

Here xþ0 and x−0 are the lower integration limits in the
integrals in Eq. (25) and are determined by the initial
condition on ao. These Lorentz invariant solutions re-
present a special case of solutions obtained in the
hyperbolic coordinates

ρ ¼ xþx−; ψ ¼ ð1=2Þ ln ðxþ=x−Þ ð42Þ

that are briefly discussed in Appendix D.

G. Waves in finite amplitude, uniform electric
and magnetic fields in vacuum

Let us set

aðxþ; x−Þ ¼ W0xþ þ U0x− þ ãðxþ; x−Þ ð43Þ

with W0, U0 uniform background fields and assume the a
finite amplitude field ordering

Ŵ0 ¼ ϵ1=22 W0 ∼ Û0 ¼ ϵ1=22 U0 ∼Oð1Þ;
W0; U0 ≫ ∂xþ ãðxþ; x−Þ; ∂x− ãðxþ; x−Þ: ð44Þ

Then Eq. (19) (with ϵ3 ¼ 0 for the sake of simplicity)
becomes

ð1 − 4Û0Ŵ0Þ∂x−xþ ã ¼ Ŵ2
0∂x−x− ãþ Û2

0∂xþxþ ã; ð45Þ

which is hyperbolic, and thus describes waves, for
ð1 − 4Û0Ŵ0Þ2 > 4U2

0W
2
0, i.e., for Û0Ŵ0 < 1=6 and for

Û0Ŵ0 > 1=2. Taking for the sake of simplicity

ã ¼ ã0 exp ½iðkþxþ þ k−x−Þ� ¼ ã0 exp ½iðkx − ωtÞ�; ð46Þ

with k ¼ ðkþ þ k−Þ=
ffiffiffi
2

p
and ω ¼ −ðkþ − k−Þ=

ffiffiffi
2

p
, we

obtain the dispersion equation

ð1 − 4Û0Ŵ0Þkþk− ¼ Ŵ2
0k

2
− þ Û2

0k
2þ; i:e:

ð1 − 4Û0Ŵ0 þ Ŵ2
0 þ Û2

0Þω2

¼ ð1 − 4Û0Ŵ0 − Ŵ2
0 − Û2

0Þk2 − 2ðŴ2
0 − Û2

0Þωk;
ð47Þ

In the two interesting limits of a purely electric (W0¼−U0,
E ¼ ffiffiffi

2
p

W0) and purely magnetic (W0¼U0, B ¼ −
ffiffiffi
2

p
W0)

background fields we obtain

ω2
e ¼ ½ð1þ ϵ2E2Þ=ð1þ 3ϵ2E2Þ�k2e

ω2
b ¼ ½ð1 − 3ϵ2B2Þ=ð1 − ϵ2B2Þ�k2b; for ϵ2B2 < 1=3;

ð48Þ

that correspond to phase velocities smaller than the speed of
light in vacuum (see reviews [37,54] and references
therein). Note that when both E and B do not vanish the
dispersion relation depends on the sign of ω=k, i.e., it
differs for propagation in the positive and in the negative x
directions. This can be interpreted as a special limit of
copropagation and counterpropagation of e.m. fields.

III. HODOGRAPH TRANSFORM OF THE
EQUATIONS OF NONLINEAR

ELECTRODYNAMICS IN VACUUM

A system of quasilinear partial differential equations,
i.e., a system linear with respect to the highest order terms
in the partial derivatives ∂x− and ∂xþ with coefficients
nonlinearly dependent on variables u and w, admits the
hodograph transformation [45]. Assuming that both u and
w are not constant, we perform the hodograph trans-
formation by treating them as coordinates, i.e., we consider
x− and xþ as functions of u and w:

x− ¼ x−ðu; wÞ and xþ ¼ xþðu; wÞ: ð49Þ

To transform the system of Eqs. (17) and (18) to the new
coordinates u and w we need to express the partial
derivatives with respect to x− and xþ in terms of derivatives
with respect to u and w. For a functionϒðx−; xþÞ, using the
chain rule, we have

∂uϒ ¼ ∂x−ϒ∂ux− þ ∂xþϒ∂uxþ;

∂wϒ ¼ ∂x−ϒ∂wx− þ ∂xþϒ∂wxþ: ð50Þ

Solving this system of equations with respect to ∂x−ϒ and
∂xþϒ we obtain

∂x−ϒ ¼ J−1ð∂uϒ∂wxþ − ∂wϒ∂uxþÞ;
∂xþϒ ¼ J−1ð∂wϒ∂ux− − ∂uϒ∂wx−Þ: ð51Þ
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Here J ¼ ð∂ux−∂wxþ − ∂wx−∂uxþÞ is the Jacobian of the
coordinate transformation, which is assumed not to vanish.
Taking ϒ equal either u or w we find

∂x−u ¼ J−1∂wxþ; ∂xþu ¼ −J−1∂wx−;

∂x−w ¼ −J−1∂uxþ; ∂xþw ¼ J−1∂uxþ: ð52Þ

Substitution of these relationships to Eqs. (17) and (18)
yields

∂uxþ ¼ ∂wx−; ð53Þ

½1 − uwð4ϵ2 þ 9ϵ3uwÞ�∂wx−

¼ −w2ðϵ2 þ 3ϵ3uwÞ∂wxþ − u2ðϵ2 þ 3ϵ3uwÞ∂uxþ:

ð54Þ

From the system (17) and (18) with coefficients nonlinearly
dependent on u and w we have obtained a system of linear
equations for x− and xþ. Equations (53), (54) are the
hodograph transform of Eqs. (17) and (18). As is well
known the nonlinearity of the original system is shifted
from the field equation to the coordinate transformation.
Note that J−1 vanishes for purely copropagating solutions
when either u ¼ 0 or w ¼ 0.

IV. NONLINEAR INTERACTION OF
ELECTROMAGNETIC WAVES IN QED VACUUM

Equation (53) makes it possible to define a potential
function Φðu; wÞ such that the functions x− and xþ are
given by

x− ¼ ∂uΦ; and xþ ¼ ∂wΦ: ð55Þ

Thus we can write Eq. (54) in the form

½1 − uwð4ϵ2 þ 9ϵ3uwÞ�∂uwΦ

¼ −w2ðϵ2 þ 3ϵ3uwÞ∂wwΦ − u2ðϵ2 þ 3ϵ3uwÞ∂uuΦ:

ð56Þ

In Appendix C an equivalent derivation of Eq. (56)
involving the momenta of the Lagrangian L is presented.
The potential Φ is invariant under Lorentz boosts along x.

A. Symmetries and conservations
in the hodograph representation

When applying the hodograph transformation x�¼
x�ðu;wÞ a conservation equation of the form

∂xþAþðxþ; x−Þ þ ∂x−A−ðxþ; x−Þ ¼ 0; ð57Þ

becomes (see Appendix C)

fAþðu; wÞ; x−gu;w ¼ fA−ðu; wÞ; xþgu;w; ð58Þ

where A�ðu; wÞ ¼ A�ðxþðu; wÞ; xþðu; wÞÞ, and

fX; Ygu;w ¼ ð∂X=∂uÞð∂Y=∂wÞ − ð∂Y=∂uÞð∂X=∂wÞ;

denotes Poisson brackets with respect to u and w. Inserting
the potential Φðu; wÞ, Eq. (58) can be rewritten as

fAþðu; wÞ; ∂uΦgu;w ¼ fA−ðu; wÞ; ∂wΦgu;w: ð59Þ

Taking either Aþðu; wÞ ¼ Tww and A−ðu; wÞ ¼ Tuw or
Aðu; wÞ ¼ Twu and Bðu; wÞ ¼ Tuu as given by the expres-
sion of the energy-momentum tensor in Eqs. (23) we
recover Eq. (56), here for the sake of simplicity we have
set ϵ3 ¼ 0. Finally we note that Eq. (59) can be rewritten as
a conservation law in u, w space as

∂w½ð∂uAþÞð∂uΦÞ − ð∂uA−Þð∂wΦÞ�
þ ∂u½ð∂wA−Þð∂wΦÞ − ð∂wAþÞð∂uΦÞ� ¼ 0: ð60Þ

The conservation equation obtained by inserting the com-
ponents of the energy-momentum tensor in Eqs. (23) into
Eq. (60) is related to the invariance of Eq. (56) under the
transformation

Φðu; wÞ → Φðu; wÞ þ δþwþ δ−u; ð61Þ

which is the hodograph counterpart of the coordinate
translations in Eq. (20). Inserting again either Aþðu; wÞ ¼
Tww and A−ðu; wÞ ¼ Tuw or Aðu; wÞ ¼ Twu and Bðu; wÞ ¼
Tuu into Eq. (60) we see that the hodograph equation (56)
can be written as a conservation equation in u − w space.
A similar procedure shows that the hodograph counterpart
of the conservation of the “barycenter” that is given in
Eq. (21) and that arises from the Lorentz invariance under
boosts along x, yields a conserved quantity that is quadratic
in ∂uΦ; ∂uΦ, see later Eq. (82).

B. Hodograph transformation in the linear limit

In the linear limit, ϵ2, ϵ3 → 0, Eq. (56) reduces to

∂2Φðu; wÞ
∂u∂w ¼ 0; i:e:; Φðu; wÞ ¼ UðuÞ þWðwÞ: ð62Þ

Here UðuÞ and WðwÞ correspond to counterpropagating
noninteracting electromagnetic waves with

x− ¼ ∂Φðw; uÞ
∂u ¼ ∂UðuÞ

∂u ; xþ ¼ ∂Φðw; uÞ
∂w ¼ ∂WðwÞ

∂w :

ð63Þ
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The choice that corresponds to counterpropagating
monochromatic waves is

UkuðuÞ ¼
Z

u

0

du0½−ψu þ arcsin ðu0=AuÞ�=ku þ const;

WkwðwÞ ¼
Z

w

0

dw0½−ψw þ arcsin ðw0=AwÞ�=kw þ const;

ð64Þ

where Aw;u are amplitudes, ku;w “frequencies”, ψu;w are
phases and

Z
y

0

dy0 arcsinðy0Þ ¼ y arcsin yþ ð1 − y2Þ1=2 − 1:

The definition domain is limited by ju=Auj; jw=Awj ≤ 1.
By properly extending the image domain of the arcsin
function, Eqs. (64) can be inverted as

uðx−Þ ¼ Au sin ðkux− þ ψuÞ;
wðxþÞ ¼ Aw sin ðkwxþ þ ψwÞ; ð65Þ

where the expressions inside each oscillation half-periods
have been joined smoothly so as to cross over the points
where the Jacobian of the hodograph transformation
vanishes. By redefining the origin of x� we can set ψu ¼
ψw ¼ 0 in agreement with Eq. (61).

C. Perturbative hodograph solutions

In analogy to the perturbative approach in (xþ − x−)
space we can search for solutions of Eq. (56) in the form
of power series Φ ¼ Φ0 þΦ1 þ � � �, where Φ0 satisfies
Eq. (62). To the first order to small parameters ϵ2 and ϵ3 we
obtain

∂uwΦ1 ¼ −w2ðϵ2 þ 3ϵ3uwÞ∂wwWðwÞ
− u2ðϵ2 þ 3ϵ3uwÞ∂uuUðuÞ; ð66Þ

which yields

Φ1 ¼ −ϵ2u
Z

w
ðw0Þ2∂w0w0Wðw0Þdw0

−
3

2
ϵ3u2

Z
wðw0Þ3∂w0w0Wðw0Þdw0

− ϵ2w
Z

uðu0Þ2∂u0u0Uðu0Þdu0

−
3

2
ϵ3w2

Z
u
ðu0Þ3∂u0u0Uðu0Þdu0: ð67Þ

For the choice ofWðwÞ and UðuÞ in Eq. (64) we obtain (for
ϵ3 ¼ 0)

Φ1 ¼ −ϵ2
uA2

w

2kw
P
�

w
Aw

�
− ϵ2

wA2
u

2ku
P
�

u
Au

�
þ const; ð68Þ

where PðyÞ ¼ arcsinðyÞ − yð1 − y2Þ1=2. Inserting the zero-
order solutions given in Eq. (65) into Eq. (68) and inverting
the hodograph transformation we can obtain explicit
expressions for uðxþ; x−Þ and wðxþ; x−Þ. However, as
noted above for the corresponding perturbative solutions
in Eqs. (27) and (25), these expressions include a term that
exhibits a secular dependence on the xþ, x− coordinates.
A procedure analogous to the one adopted in Eq. (28) can
be used to remove this secular behavior as sketched in
Appendix E.

D. Lorentz invariant solutions

Equation (56) admits self-similar solution when the
function Φ depends only on the variable ξ ¼ uw which
is invariant under Lorentz boosts along x. These solutions
are the hodograph counterpart of the solutions described by
Eqs. (37), (40), and (41) in xþ, x− space. For the function
ΦðξÞ we obtain

ð1 − 4ϵ2ξ − 9ϵ3ξ
2ÞðΦ0 þ ξΦ00Þ ¼ −ð2ϵ2ξ2 − 6ϵ3ξ

3ÞΦ00;

ð69Þ

where Φ0 ¼ dΦ=dξ. Introducing the function UðξÞ ¼ Φ0
Eq. (69) reduces to

U0 þ 1 − 4ϵ2ξ − 9ϵ3ξ
2

ξð1 − 2ϵ2ξ − 3ϵ3ξ
2ÞU ¼ 0: ð70Þ

Integration of this equation yields

UðuwÞ ¼ C
uwð1 − 2ϵ2uw − 3ϵ3u2w2Þ : ð71Þ

For coordinates x− ¼ wU and xþ ¼ uU we have

x− ¼ C
uð1 − 2ϵ2uw − 3ϵ3u2w2Þ and

xþ ¼ C
wð1 − 2ϵ2uw − 3ϵ3u2w2Þ ; ð72Þ

which in the limit ϵ2 ¼ ϵ3 ¼ 0 coincide with Eq. (37). They
can be rewritten as

x ¼ 2CB
ðE2 − B2Þ½1þ ϵ2ðE2 − B2Þ − 3ϵ3ðE2 − B2Þ2=4� ð73Þ

and

t ¼ 2CE
ðE2 − B2Þ½1þ ϵ2ðE2 − B2Þ − 3ϵ3ðE2 − B2Þ2=4� ð74Þ
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The solution given by Eq. (71) describes two counter-
propagating electromagnetic pulses with the electric and
magnetic fields “cumulating” at the light cone x2 − t2 ¼ 0
where the electric and magnetic fields formally tend to
infinity. Note that the position where the cumulation occurs
can be shifted by exploiting the translational invariance
of the Lagrangian (3), i.e., by looking for solutions [see
Eq. (61)] of the form ΦðξÞ þ δþwþ δ−u. In the derivation
of Eqs. (73) and (74) the renormalization procedure
adopted for the corresponding solution in Sec. II F, which
amounts to an amplitude dependent shift of the cumulation
coordinates, has not been included.
For all these solutions the Poincaré invariant F ¼

FμνFμν ¼ uw does not vanish for finite x and t. In the
case of solutions (73), (74) the dependence F on t and x is
given by

x2 − t2 ¼ −4C2

Fð1þ ϵ2F − 3ϵ3F2=4Þ2 : ð75Þ

In the vicinity of the lines given by condition x2 − t2 ¼ 0
in the ðx; tÞ plane the expression (75) cannot be used
because here the electromagnetic field amplitude exceeds
the critical QED field ES.
The Lorentz invariant solutions derived above

represent a special case of solutions obtained by using
the hyperbolic coordinates in hodograph space ξ ¼ uw
and φ ¼ ð1=2Þ ln ðu=wÞ. These solutions are briefly dis-
cussed in Appendix D.

E. Standard form of the hodograph
wave equation

The second order linear hyperbolic PDE given by
Eq. (56) can be set in the standard form (see, e.g., Ref. [55])

∂2Φ
∂ζ∂θ þ RðΦÞ ¼ 0; ð76Þ

by an appropriate redefinition of the independent variables
u andw. Here RðΦÞ denotes terms linear inΦ containing up
to first order derivatives. For the sake of simplicity in the
following this transformation will be performed up to linear
terms in ϵ2 and for ϵ3 ¼ 0. We define the new independent
variables

ζ ¼ uð1 − ϵ2uwÞ; θ ¼ wð1 − ϵ2uwÞ;
u ¼ ζð1þ ϵ2ζθÞ; w ¼ θð1þ ϵ2ζθÞ; ð77Þ

and obtain (as stated above here and in the following only
linear terms in ϵ2 are retained)

∂2Φ
∂ζ∂θ ¼ 2ϵ2

�
ζ
∂Φ
∂ζ þ θ

∂Φ
∂θ

�
ð1 − 8ϵ2ζθÞ−1

∼ 2ϵ2

�
ζ
∂Φ
∂ζ þ θ

∂Φ
∂θ

�
: ð78Þ

Note that the field variables
ffiffiffi
2

p
ζ ¼ ðE − BÞ½1 − ϵ2ðB2 −

E2Þ� and ffiffiffi
2

p
θ ¼ −ðEþ BÞ½1 − ϵ2ðB2 − E2Þ� are directly

related to the perturbed light cone variables Xþ; X− defined
in Eq. (34) since

θ ¼ ∂a
∂Xþ

and ζ ¼ ∂a
∂X−

: ð79Þ

Setting now Φðζ; θÞ ¼ Φoðζ; θÞð1þ 2ϵ2ζθÞ we obtain (to
first order) the constant coefficient hyperbolic PDE

∂2Φoðζ; θÞ
∂ζ∂θ ¼ 2ϵ2Φoðζ; θÞ; ð80Þ

which is isomorphic to the equation for linear transverse
e.m. waves in a uniform plasma.
The solutions of Eq. (80) can be written in the general

superposition form

Φoðζ; θÞ ¼
1

2π

Z þ∞

−∞

Z þ∞

−∞
dkζdkθδðkζkθ þ 2ϵ2Þ

× Φ̃oðkζ; kθÞ exp ½þiðkζζ þ kθθÞ� þ CC; ð81Þ

where the condition δðkζkθ þ 2ϵ2Þ accounts for the
“dispersion” in Eq. (80) and CC denotes complex con-
jugate. This dispersion in the hodograph equation can be
traced back to the nonlinearity of the wave equation in
(xþ − x−) space.

1. Conservation equation

If we add the two equations that we derive by multi-
plying Eq. (80) by ∂Φoðζ; θÞ=∂ζ and by ∂Φoðζ; θÞ=∂θ
respectively, we obtain the following conservation equation

∂
∂θ

�
1

2

�∂Φo

∂ζ
�

2

− ϵ2Φ2
o

�
þ ∂
∂ζ

�
1

2

�∂Φo

∂θ
�

2

− ϵ2Φ2
o

�
¼ 0;

ð82Þ

which is quadratic in the functionΦ0ðζ; θÞ, and is related to
the Lorentz invariance of the Lagrangian L, see remark
below Eq. (61).

2. An explicit inversion of the
hodograph transformation

Here we consider a special class of solutions of
Eq. (80) that can be written as a superposition of
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“quasi-ζ” modes (kθ ¼ −2ϵ2=kζ) and “quasi-θ” modes
(kζ ¼ −2ϵ2=kθ) as

Φðζ; θÞ ¼ ð1þ 2ϵ2ζθÞ½Φo;ζðζ; ϵ2θÞ þΦo;θðθ; ϵ2ζÞ�; ð83Þ

where Φðζ; θÞ ¼ Φoðζ; θÞð1þ 2ϵ2ζθÞ has been used with
Φoðζ; θÞ ¼ Φoζðζ; ϵ2θÞ þΦoθðθ; ϵ2ζÞ and

Φoζðζ; ϵ2θÞ ¼
1

ð2πÞ1=2
Z þ∞

−∞
dkζΦ̃oζðkζÞ exp½þiðkζζ

− 2ϵ2θ=kζÞ� þ CC; ð84Þ

Φoθðθ; ϵ2ζÞ ¼
1

ð2πÞ1=2
Z þ∞

−∞
dkθΦ̃oθðkθÞ exp½þiðkθθ

− 2ϵ2ζ=kθÞ� þ CC: ð85Þ

Here CC denotes complex conjugate. In order to be able to
perform the hodograph transformation in an explicit
analytical form we consider as an example the “standing
wave”-type combination with amplitude AΦ

Φðζ; θÞ ¼ AΦð1þ 2ϵ2ζθÞ½cos ðkζ − 2ϵ2θ=kÞ
þ cos ðkθ − 2ϵ2ζ=kÞ�; ð86Þ

which in terms of u and w reads as

Φðu; wÞ ¼ AΦð1þ 2ϵ2uwÞfcos½kuð1 − ϵ2uwÞ − 2ϵ2w=k�
þ cos ½kwð1 − ϵ2uwÞ − 2ϵ2u=k�g: ð87Þ

Using Eq. (55), from Eq. (87) we obtain an explicit
expression for x� ¼ x�ðu; wÞ that can be inverted in a
recursive form by keeping only leading order terms in ϵ2
in the amplitudes. Setting for the sake of algebraic
simplicity k ¼ 1, we obtain

w ¼ − arcsinfxþ=AΦ − 2ϵ2u½cos ðu − ϵ2wðu2 þ 2ÞÞ
þ cos ½w − ϵ2uðw2 þ 2Þ�
þ ϵ2ðu2 þ 2Þ sin ðu − ϵ2wðu2 þ 2ÞÞg
− ϵ2ðarcsin x−=AΦÞ½ðarcsin xþ=AΦÞ2 þ 2�; ð88Þ

u ¼ − arcsinfx−=AΦ − 2ϵ2w½cos ðw − ϵ2uðw2 þ 2ÞÞ
þ cos ½u − ϵ2wðu2 þ 2Þ�
þ ϵ2ðw2 þ 2Þ sin ðw − ϵ2uðw2 þ 2ÞÞg
− ϵ2ðarcsin xþ=AΦÞ½ðarcsin x−=AΦÞ2 þ 2�; ð89Þ

where the u, w terms proportional to ϵ2 in the trigono-
metric terms on the right-hand side (r.h.s.) of Eqs. (87)
and (89) have to be treated recursively and give rise to
“harmonic-type” terms, as is characteristic of nonlinear
inversions.

This will be particularly evident when considering a
superposition of different solutions of Eq. (79), e.g., a
discrete or a continuous superposition of solutions of the
form given by Eq. (87) over a range of values of k. When
inverted recursively, these solutions will make it possible to
describe the effects of the vacuum nonlinearities on multi-
scale, electromagnetic counterpropagating waves.

V. CONCLUSIONS AND DISCUSSIONS

In this article we have analyzed the main features of the
interaction of counterpropagating electromagnetic fields in
the quantum vacuum within the framework of the Euler-
Heisenberg Lagrangian. We have restricted our analysis to
the case of fields with the same transverse linear polari-
zation in which case the invariant G ¼ FμνF̃μν vanishes
(i.e., the term proportional to E · B drops from the Euler-
Heisenberg Lagrangian).
The results described in this article have been obtained

by adopting a combination of analytical methods that
involve the direct search for particular solutions of the
nonlinear Euler-Heisenberg wave equation in space-time
light cone coordinates, the renormalization of perturbative
solutions exhibiting a secular behavior and the use of the so
called hodograph transformation. This transformation has
been adopted in the literature in order to turn a system of
quasilinear partial differential equations into a system of
linear equations by interchanging the role of dependent
and independent variables: see, e.g., Ref. [56] for the case
of one-dimensional, compressional hydrodynamics or
Ref. [57] for the case of nonlinear time evolution of the
filamentation (Weibel) instability. In the case of Quantum
Electrodynamics this transformation has been used in
Ref. [9] for the study of the so called Born-Infeld equation
[58]. When applying the hodograph transformation the
Euler-Heisenberg wave equation turns out to be a linear
hyperbolic equation to which standard solution methods
can be applied. We have shown that when brought to
standard form this equation is isomorphic (to leading order
in the parameter ϵ2) to the wave equation of a linear
electromagnetic wave in a homogeneous plasma with 2ϵ2
playing the role of the square of the plasma frequency. This
indicates that the dependence of the propagation velocity of
the counterpropagating e.m. pulses in the x, t coordinates
on their amplitudes is turned into a standard dispersion
phenomenon when the wave equation is expressed in
terms of E, B coordinates. While the hodograph solutions
expressed in terms of E and B can be superimposed so as to
construct new solutions, the inversion to x, t coordinates is
nonlinear: in other words the nonlinearity of the Euler-
Heisenberg Lagrangian is shifted from the wane equation to
the transformation itself. This latter may be algebraically
involved and may require an iterative procedure. We have
provided an explicit example of this inversion and shown
that the inversion leads to the generation of “harmonic-type
terms” as is characteristic of nonlinear inversions.
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The relationship between the properties of the solu-
tions of the Euler-Heisenberg wave equation obtained in
the x − t coordinates and of its hodograph transform in
the E − B coordinates has been discussed with special
attention to the different form assumed in the two
formulations by conservation laws and conserved quan-
tities. These conservations arise from the translational
invariance and from the Lorentz invariance of the Euler-
Heisenberg Lagrangian. We have stressed in particular
the effect of the Euler-Heisenberg correction to the e.m.
Lagrangian on the energy momentum tensor and have
shown that its trace does not vanish as would be the case
in the linear limit.
We have also shown that, in accordance with previous

results in the literature, the interaction of two counter-
propagating pulses leads asymptotically only to a cumu-
lative phase shift, a result that can be understood in terms of
the energy and momentum conservation of massless
particles in a head-on collision. On the contrary, during
the interaction of two counterpropagating waves, the
propagation velocity of each of them is reduced by a term
that depends quadratically on the amplitude of the opposite
propagating wave, as is consistent with the fact that the
trace of the energy momentum tensor does not vanish.
The phase velocity of linear waves propagating in

vacuum in the presence of large, steady and uniform
electromagnetic fields (orthogonal to the direction of
propagation along x) has been derived and shown to be
smaller than the speed of light in vacuum by a term that, to
leading order, depends on the square of the amplitudes of
the steady electromagnetic fields. In the case where both the
steady electric and magnetic fields do not vanish these
phase velocities depend on whether the waves are propa-
gating in the positive or in the negative x direction.
Finally we observe that the determinant of the Hessian

matrix consisting of the second order partial derivatives of
Φwith respect to u and w that appear in Eq. (56) is negative
as long as Eq. (56) remains hyperbolic. This property,
which is automatically satisfied in the limit where we
neglect the quantum vacuum terms, corresponds to sol-
utions describing the propagation of waves. From Eq. (55)
we see that the determinant of the Hessian coincides with
the inverse of the Jacobian of the hodograph transformation
from the xþ; x− coordinates to u and w. Thus the use of
the hodograph transformation (see, e.g., the treatment in
Ref. [59] for the case of the nonlinear Schrödinger
equation) will allow us to characterize (without any
expansion in powers of the field amplitudes) the behavior
of the electromagnetic fields in the neighborhood of
singular curves (or points) in the u, w plane where the
Hessian determinant vanishes. On these curves the hodo-
graph transformation breaks as u, w cease to be single-
valued functions of xþ; x−, leading to a behavior that can be
described within the framework of the so-called gradient
catastrophe phenomena (see, e.g., [60]).

ACKNOWLEDGMENTS

We thank Drs. G. Korn and N. N. Rosanov for fruitful
discussions. Supported by the project High Field Initiative
(CZ.02.1.01/0.0/0.0/15_003/0000449) from European
Regional Development Fund. F. P. thanks the ELI–
Beamlines project for its hospitality in September 2018.

APPENDIX A: MOMENTUM VARIABLES OF
THE EULER-HEISENBERG LAGRANGIAN

We define the field momenta Πu, Πw in the standard way
in terms of the Lagrangian L as

Πu ¼
∂L

∂ð∂a=∂x−Þ ¼
∂L
∂u ; Πw ¼ ∂L

∂ð∂a=∂xþÞ ¼
∂L
∂w ;

ðA1Þ

and find

Πu ¼ −
w
4π

ð1 − 2ϵ2uw − 3ϵ3u2w2Þ;

Πw ¼ −
u
4π

ð1 − 2ϵ2uw − 3ϵ3u2w2Þ: ðA2Þ

The equations of motion (16) take the form

∂xþΠw þ ∂x−Πu ¼ 0; ðA3Þ

which leads to Eq. (18) in the main text.

APPENDIX B: EULER-HEISENBERG ENERGY
MOMENTUM TENSOR IN x, t COORDINATES

In light cone coordinates the energy momentum tensor,
see Eq. (23), has the form

T ¼ 1

4π

�
ϵ2u2w2 −u2ð1 − 2ϵ2uwÞ

−w2ð1 − 2ϵ2uwÞ ϵ2u2w2

�
: ðB1Þ

In x, t coordinate the corresponding mixed index tensor
T i

j; i; j ¼ x, t is given by

T ¼ MTM ðB2Þ

where

M ¼ M−1 ¼ 1ffiffiffi
2

p
�
1 1

1 −1

�
; such that

�
xþ
x−

�
¼ 1ffiffiffi

2
p

�
1 1

1 −1

��
x

t

�
: ðB3Þ

This leads to
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T ¼ 1

8π

�
−ðu2 þ w2Þð1 − 2ϵ2uwÞ þ 2ϵ2u2w2; ðu2 − w2Þð1 − 2ϵ2uwÞ;

−ðu2 − w2Þð1 − 2ϵ2uwÞ; ðu2 þ w2Þð1 − 2ϵ2uwÞ þ 2ϵ2u2w2

�
ðB4Þ

and in terms of E, B by

T ¼ 1

8π

�
−ðE2 þ B2Þ þ ϵ2ð3B4=2 − E4=2 − B2E2Þ; −2EBþ ϵ2ð2EB3 − 2E3BÞ;

2EB − ϵ2ð2EB3 − 2E3BÞ ðE2 þ B2Þ þ ϵ2ð3E4=2 − B4=2 − B2E2Þ

�
: ðB5Þ

Note that the trace of the energy momentum tensor
(TrðT Þ ¼ TrðTÞ) does no longer vanish and is proportional
to ϵ2ðE2 − B2Þ2. Note in addition that, at a perfectly
conducing boundary where E ¼ 0, both the energy density
(T t

t) component and the radiation pressure T x
x stress

component are reduced with respect to the linear, non-
interacting limit.

APPENDIX C: THE HODOGRAPH
TRANSFORMATION IN DIFFERENTIAL FORM

AND EULER-HEISENBERG MOMENTA

Equations (17), (18), or equivalently Eqs. (17), (A3) can
be written in the 2-form formalism as

ð∂xþuÞdxþ ∧ dx− − ð∂x−wÞdxþ ∧ dx−

¼ du ∧ dx− þ dw ∧ dxþ ¼ 0; ðC1Þ

ð∂xþΠwÞdxþ ∧ dx− þ ð∂x−ΠuÞdxþ ∧ dx−

¼ dΠw ∧ dx− − dΠw ∧ dxþ ¼ 0; ðC2Þ

where the symbol∧ denotes exterior product [61]. Taking u
and w as independent variables in Eq. (C1) (assuming as in
Sec. III) that the Jacobian of the transformation is different
from zero) we obtain

ð∂wx−Þdu ∧ dw − ð∂uxþÞdu ∧ dw ¼ 0;

→ ∂wx− ¼ ∂uxþ; ðC3Þ

i.e., Eq. (53). Similarly, using Πu, Πw as the independent
variables in Eq. (C2) we obtain

∂xþ
∂Πw

þ ∂x−
∂Πu

¼ 0; ðC4Þ

which leads to Eq. (54), after Πu, Πw are expressed in terms
of u, w through Eq. (A2). Conversely, we can express u, w
in terms of Πu, Πw and write the whole system of the
hodograph equations in terms of the momenta Πu, Πw.
Note that the hodograph transformation procedure

described above is also applicable to the more general
case with vector potential Az ¼ Aðx; y; tÞ. In this case
however it would lead to nonlinear equations as can be

easily seen, e.g., by appropriately reformulating Eq. (C1) as
a 3-form (dx ∧ dt → dx ∧ dy ∧ dt).

1. Conservations and Poisson brackets

We can rewrite the conservation equation (58) in the
differential form

ð∂xþAþÞdxþ ∧ dx− þ ð∂x−A−Þdxþ ∧ dx− ¼ 0

→ dAþ ∧ dx− ¼ dA− ∧ dxþ ðC5Þ

and, imposing the hodograph transformation, we obtain

½ð∂uAþÞð∂wx−Þ − ð∂ux−Þð∂wAþÞ�du ∧ dw

¼ ½ð∂uA−Þð∂wxþÞ − ð∂uxþÞð∂wA−Þ�du ∧ dw

→ fAþðu; wÞ; x−gu;w ¼ fA−ðu; wÞ; xþgu;w: ðC6Þ

APPENDIX D: HYPERBOLIC COORDINATES

Instead of xþ and x− we can use the hyperbolic
coordinates

ρ ¼ xþx− ¼ x2 − t2;

ψ ¼ ð1=2Þ ln ðxþ=x−Þ ¼
1

2
ln
1þ t=x
1 − t=x

¼ arctan hðt=xÞ:

ðD1Þ

Under an infinitesimal (finite) Lorentz boost along x [see
Eq. (20)] we have

ρ → ρ; ψ → ψ þ β;�
ψ → ψ þ 1

2
ln
1þ β

1 − β
¼ ψ þ arctan hðβÞ

�
: ðD2Þ

1. Lagrangian in hyperbolic coordinates

Since the Euler-Heisenberg Lagrangian (12) is Lorentz
invariant, when expressed in hyperbolic coordinates, it
cannot depend explicitly on ψ . Starting from the Action
SðaÞ in xþ; x− variables, bringing it to ρ, ψ variables ad
using the fact that the Jacobian of the transformation is
equal to one, the new Lagrangian (with ϵ3 ¼ 0) reads:
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ð−4πÞLLðρ;ψÞ ¼ ρ

�∂a
∂ρ

�
2

þ 1

4ρ

�∂a
∂ψ

�
2

− ϵ2

�
ρ

�∂a
∂ρ

�
2

þ 1

4ρ

�∂a
∂ψ

�
2
�
2

: ðD3Þ

The self-similar solution Eq. (36) corresponds to
∂a=∂ψ ¼ 0 and can be derived directly from the
Lagrangian LLðρ;ψÞ in the convenient form given by
Eq. (37). In the linear limit ϵ2 ¼ 0 the Lagrangian
LLðρ;ψÞ can be expanded into “ψ -harmonics” and leads
to power-law solutions. For ϵ2 ≠ 0 these harmonics are
coupled.

2. Hodograph equation in hyperbolic coordinates

In terms of the variables ξ ¼ uw and φ ¼ ð1=2Þ ln ðu=wÞ
Eq. (56) (with ϵ3 ¼ 0) becomes

ð1 − 4ϵ2ξÞ
� ∂
∂ξ

�
ξ
∂Φ
∂ξ

�
−

1

4ξ

∂2Φ
∂φ2

�

þ ϵ2

�
2ξ2

∂2Φ
∂ξ2 þ 1

2

∂2Φ
∂φ2

�
¼ 0: ðD4Þ

Since Eq. (D4) is linear and its coefficients are independent
of φ, its solutions can be decomposed into a two sided
Poisson expansion, i.e., in cosh ðαφÞ and sinh ðαφÞ terms
with α a real number. We obtain a family of ordinary
differential equations that, with self-evident notation, can
be written as

ð1 − 4ϵ2ξÞ
� ∂
∂ξ

�
ξ
∂Φα

∂ξ
�
−
α2

4ξ
Φα

�

þ ϵ2

�
2ξ2

∂2Φα

∂ξ2 þ α2

2
Φα

�
¼ 0: ðD5Þ

In the linear limit (ϵ2 ¼ 0) the solutions of Eq. (D5) are
of the form Φ ¼ C1wα þ C2uα and, for positive integer
values of α, can be used as a polynomial basis in the
noninteraction limit.

APPENDIX E: RENORMALIZED HODOGRAPH
SOLUTIONS FOR INTERACTING WAVES

In view of Eq. (28) we can rewrite Eq. (64) as

Ukuðu − ϵ2u2w; ϵ2wÞ

¼
Z

u−ϵ2u2w

0

du0=ku
1 − 2ϵ2u0w

�
arcsin

�
u0 þ ϵ2u02w

Au

�

− ϵ2Su

�
arcsin

�
u0

Au

�
; arcsin

�
w
Aw

���
þ const;

Wkwðw − ϵ2w2u; ϵ2uÞ

¼
Z

w−ϵ2uw2

0

dw0=kw
1 − 2ϵ2uw0

�
arcsin

�
w0 þ ϵ2w02u

Aw

�

− ϵ2Sw

�
arcsin

�
u
Au

�
; arcsin

�
w0

Aw

���
þ const ðE1Þ

Equation (E1) can be inverted (to first order in ϵ2) as

uðx−; ϵ2xþÞ
¼ Au sin ðkux− þ ϵ2Suðarcsin ðu=AuÞ; arcsin ðw=AwÞÞ
¼ Au sin ðkux− þ ϵ2Suðkux−; kwxþÞÞ;

wðxþ; ϵ2x−Þ
¼ Aw sin ðkwxþ þ ϵ2Swðarcsin ðu=AuÞ; arcsin ðw=AwÞÞ
¼ Aw sin ðkwxþ þ ϵ2Swðkux−; kwxþÞÞ: ðE2Þ
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