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We define the form factors of the quark and gluon symmetric energy-momentum tensor (EMT). The
static EMT is related to the spatial distributions of energy, spin, pressure, and shear forces. They are
obtained in the form of a multipole expansion. The relations between gravitational form factors and the

generalized parton distributions are given.
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I. INTRODUCTION

The gravitational form factors (GFFs) contain the infor-
mation of the spatial distributions of energy, spin, pressure,
and shear forces inside the system [1]. The GFFs are
defined through the matrix elements of the symmetric
energy-momentum tensor (EMT). More details can be
found in the recent papers [2,3]. For spin one particles,
the GFFs, or EMT FFs, have been discussed in the literature
[4-6], but, to our best knowledge, EMT-nonconserving FFs
are either not discussed [4,5] or incomplete [6]. Thus we
introduced a definition for individual quark and gluon EMT
FFs for spin one particles in Sec. II. In the Breit frame, we
find that matrix elements of EMT can be expressed in terms
of the multipole expansion for energy density, pressure, and
shear forces distributions; see Sec. III. By considering the
Mellin moments of the vector generalized parton distribu-
tions (GPDs), the sum rules between the GPDs and EMT
FFs are found in Sec. IV.

The EMT of QCD can be obtained by varying the
action S, of QCD coupled to a weak classical torsionless
gravitational background field with respect to the metric

g (x) of this curved background field according
to [2,7]
R 2 58,
T;w (X) == f ) (1)
V=969" (x)
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where g denotes the determinant of the metric (the signature
of the metric we use is +——-). This procedure yields a
symmetric Belinfante-Rosenfeld EMT. The quark and
gluon contributions to the total EMT operator are given by

1 - - . .
Ty = 1 {y'/q(—iD“y” — iD'y* +iD'y" + Dy )y,

_gﬂbl/_/q <_%5+%5_mq>l//q:|» (23)

1
T = FOmFe, o g FIF,, (2b)
Here D, = 0, + igt"Aj and D, = 0, — igt”Aj, with arrows
indicating which fields are differentiated, Fj, =
9,A% — 0,A% — gf**cALAC, and the SU(3) color group
generators satisfy the algebra [, "] = if*“t and are
normalized as tr(1”) = $6°°. The total EMT is conserved
T, =0, T,=>Th+T. (3)
q

II. DEFINITION OF EMT FORM FACTORS

We use the covariant normalization (p’,¢'|p,o) =
2p°(27)38%) (p' —p)b,, of one-particle states and intro-
duce the kinematic variables P =1(p’+ p) and A =

p' —p, t =A% The EMT form factors of a spin one
particle in QCD we define as'

'We chose the naming of the form factors in line with the
naming used in Refs. [1,2] for spin-0 and spin-1/2 particles.
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TABLE I. The notations of EMT FFs in the literature (the FFs in [9,10] are not exactly EMT FFs) and their values in free theory
obtained by the Proca Lagrangian. In Ref. [4] there is a sign mistake in the term corresponding to our (e,4A, +€,4,)e™ - P in E*(t)’s
coefficient. In Ref. [6], the authors missed one term that should correspond to the ¢{ term here. The result of Ref. [11], which appeared
during the preparation of this paper, coincides with our result.

This work A A, D, D, J E f o |
Free theory 1 0 1+4h 0 1 1 0 0 0
Holstein [4] Fl 4F5 —2F2 8F6 F3 —2F4 s o
Abidin and Carlson [5] A -2F C —8F A+B D . e

Taneja et al. [6] g =26,  -G;  -2G; 3Gs -1Gs 3 g7 =G+ G

Cosyn ef al. [11] G -2G, -Gy =2G, 1Gs -1Gs 1G,  1G,+Gy 20
Cosyn et al. [9] generalized form factors AS, -2C5, —4r5 -8Gj %Bgo DS,  ~ES,

Hoodbhoy et al. [10] reduced matrix elements q, — %dz e ~d,

e*-Pe-P

(%)

<p/,a/\TZy ,0) = [ZPﬂPy <—e/* -€eA§ (1)

(A4, gﬂyA2)< -eD{ (1) +

&t e _
+ (6;46;/* + 614*61/ 29;41/) mzfa(t) + g;,w(e/

where a =g,u,d,..., and the polarization vectors
e =¢ (p d), €, =€ (p, 6), and ¢ = +1, 0. There are
nine GFFs for each quark flavor or gluon for a spin one
particle. The six quark and gluon form factors (FFs) A |,
Dg ,, J¢, and E“(t) are individually EMT conserving, and
the other three FFs, f¢ and 6 (1), are not.? As discussed in
Ref. [2], all individual quark and gluon FFs depend on the
renormalization scale, which we do not indicate for brevity.
Because of EMT conservation, Eq. (3), the constraints
> . f4(t) =0and Y, &, (1) = 0 hold, and the total form
factors Ag (1), Do (1), J(t), and E(t) are renormalization
scale invariant where we defined Ay(f) = > ,A{(r) and
analogously for other form factors. Some of the notations
for EMT FFs in the literature are listed in Table 1. The
generalized form factors in [9] and the reduced matrix
elements in [10] are connected with the gravitational form
factors as shown in Table I.

A. EMT form factors in free field theory

+—2A‘1’(t)> +2[P,(e)fe- P +e€,€”
m

e*-Pe-P
ere )

m

-P)+ P,,(e;l*e P+ eﬂe’* - P)]J(1)

1
+ [— (ey€r + €€, )A? — (e A, + €A e P+ (e,A, +€,A,)e" - P—4g,,€" - Pe- P] E“(1)

* -emzég(t) +€'* . Pe- PE‘{(;))] ei(r'=p)x, (4)

|
where A, is a massive vector field and the field tensor is

U,=0,A,-0,A,. (6)
The EMT corresponding to the Proca Lagrangian is given
by

?\(Proca)

W) — _y, U

up — gL+ mzA”AD.

(7)

The action S, can be modified by adding a non-
minimal term for interaction with the gravity:
1, 2
-U U"”+2m A AR+~ hRA

Sy = [ @x= (=4 U
0

Here, R is the Riemann scalar. With this term added, the
EMT in the free field theory becomes

. (P A
In the free field theory, the massive spin one particles are T = ’(wroca) O 9)

described by the Proca Lagrangian, _
with  6,""" = —h(9,0, — gﬂ,ﬁz)A2 (10)

1 1
L==L U U™+ mAA

4V 5)

*For the particle with integer spin J there are (4J + 2)
conserving and (2J + 1) nonconserving EMT FFs [8].

The value of the parameter 4 depends on the physics
problem one is considering. With this improved EMT, one
can obtain the free theory values of the total FFs [4] as
shown in Table I.
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III. THE STATIC EMT AND STRESS TENSOR

Before discussing the components of EMT in Eq. (4), let
us review the spin and quadrupole operators. For particles
with spin § > 1, the quadrupole operator is the (25 + 1) x
(2§ + 1) matrix:

P B N .

Q' = 5 (S’S" + SK§ —§S(S+ 1)5*) (i.j.k=1,2,3),
(11)

which is expressed in terms of the spin operator Si. The spin

operator can be expressed in terms of the SU(2) Clebsch-
Gordan coefficients (in the spherical basis):

§L,=VS(S+1)C3g, (A=0,£l.0,0/=0,....+J). (12)

In the spin one case, it is equivalent to

Qi ijkpriak
Sye = 1€V%E5 €

(i,j,k=1,2,3), (13)
|

(p'. 0 |T(0)|p, o) = 2m>EG(1)5,, + QM AFAIES (1),

(P T (0) p.o) = ieISy, almT* (1)

where €#(0,0) = (0, ¢,) is the rest frame spin one polari-
zation vectors,

1
éi ::F ﬁ(l, :I:l,()),

Applying the boost operator L(p) from the rest frame
k* = (m,0,0,0) to any frame p#(= LYk"), one has [12,13]

€M(p7o-):<p'€ﬂvé +&_’>’ (15)

& =(0,0,1). (14)

m "’ m(m—l—E)p

where 6 = {+,—,0} and m and E = /|p|> + m? are the
rest mass and energy of the state.

In the Breit frame, the initial (final) momentum p* (p*)
has the relation P* = (p* + p*)/2=(E,0,0,0) and

AP = p — pt = (0,A). So p=—p =—A/2 and p° =
p° = E = \/m? — t/4 with t = A?. In this frame, with the
polarization vectors Eq. (15), Eq. (4) can be expressed as

(16a)

(16b)

nii 1 L o A A O . a
(P07 (0)|p.0) = 5 (A'AT = 5TA%)D(1)dy, + (AAKQ™ + ATAFQH — A*QY — 5TAA QM) D4 (1)

o

y 2ot 1 .. A
+ |:6U50Ja <%+E) +6AlAj5(,/o. —2m2Q” —

1

where 0¥ = (S, 0’| QX

t

(AIAT — A7) ARAI QMDA (1)

- AiAk"kj AjAk"ki
Sm o E) AT AT

4= S — AN AkAlel }*a(t)
4 2(m+E)?
. t 1 N
ij L — 2 —AkAl kl
+6{[5m<6 m>+2 0

S, o) are the matrix elements of the quadrupole operator and

]ag(t) +% (1 —ﬁ) G% + AkA’Q“) aﬂ;(r)}, (16¢)

E8(0) = A1) + 37°(0) = 560) + 15 | ~SAY(0) -+ 3DG(E) + 47°() = 260) + AT() + 30 + (1) + 300
2 3
- #m“ {—Ag(z) + D§ (1) +2J°(t) — 2E°(1) + A{(1) + %D‘f(z) + %E‘{(r)] + @ [A{ (1) + D{(1)], (17a)
£5(1) = ~Ag(0) + 20°() = E“() + 5AL(0) + 3 F(0) + 526(0) + 3 24()
2
- [—Ag(r) D) +207(0) = 2E°(0) + AL + 5 DY) + E‘l’(t)] A9 + DY), (17b)
T = J9(0) + 5 74(0) = 5oz (72(0) = E4(2), (170
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t

4
Di(1) = -D(r) + 3 E*(1) + -

3
Di(1) = —E*(1).

D§(1) =3 2D§(0) = 2B°(1) + D] -

The details for obtaining Eqgs. (16) and (17) are shown in
the Appendix.

Because of the constraint >, f%(¢)=0 and
3. €6, (1) =0, the total quark + gluon EMT drops f*
and ¢, () terms, and so do & ,, J, and D, 5(¢). The free
theory values of the total EMT FFs are listed in Table II.
The D-term is defined as

D = Dy(0) :%—411. (18)

Following Ref. [1], the static EMT T#(7,¢’, 5) of the
spin one particle is defined by Fourier transforming the

EMT in Egs. (16a)—(16¢) with respect to A as
A

11(e0) = [ Srmee AT Ol (19

where r = |F|.

A. T%: Energy density

Because of the presence of the EMT-nonconserving
terms f“ and ¢ |, the energy density 7%(7, ¢’, 5) can only
be defined for the total system. The multipole expansion of
the energy density is defined as [14]

. AN i .
1°7.0.0) = [ S5 S TO)lpe) (20)
= 80(r)56’6+€2(r)Qin§j’ (21)
where
- dld -
eo(r) = 2m250(r)7 &(r) = —VE;E&(W (22)

d*A
2E(2x)?

with £, (r) = / e—i&?go,z(t) (23)

TABLE II. The free theory values of the total EMT FFs.
EMTFFs  &() &) J() Do) Do) Di(o)
Free theory 1 0 1 1—4h -1 0

2

2D (1) = 2E°(1) + D3 (1)) = 25— D (0). (174)
(17e)
L _pa. (176)

[the definition of Eq. (23) is used for other FFs in the
following], and the irreducible (symmetric and traceless)
tensor of nth rank is [14]

(1) o
yhizrtn — N 77 ntlgi c Q=
" Qn—1)1" r
o A
ie,Yy=1, Yi=—, Yk=_"g __5k etc. (24
0 1 r 2 r2 3 ( )
Note there are obvious relations &Y """ —( and
[dQyi =o.

In Ref. [14], more general tensor quantities are intro-
duced for a particle of arbitrary spin,

M’:ll"'kn :/dSI.’.nY/;ll'“knTOO(;;)7 (25)

which corresponds to 2" multipoles of the energy distri-
bution. Here T%(7) = T% (¥, 6, 6). Note that only even n
are allowed by the P-parity conservation. Obviously,

MO = on(O) =m, (26)
which gives the normalization

Ag(0) = Ad(t) = 1. (27)

The function &,(r) gives the quadrupole distribution of
the energy inside the particles and describes the deviation
of the hadron’s shape from the spherical one for the hadrons
with spin larger than 1/2. Obviously, it satisfies the
condition [ d*re,(r) =0. For a free spin one particle
one obtains (see Table II) that the quadrupole energy
distribution is zero, intuitively a clear result.

B. TY: Spin distribution

The 0k components of the EMT are related to the spatial
distribution of the spin. The angular momentum operator in
QCD is defined according to the generators of the Lorentz
transformation [15],

1 .
Ji= el / A3 xMOk, (28)

where M/ is the angular momentum density, expressible
in terms of the energy-momentum tensor 7+ through
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M@ = Tt — T, (29)

From Eq. (16b), one gets

) 3A
TOJ(?,o",a):/ d

_4 8 AT ', '?gj

o). (30)

According to Eq. (28), define the individual contribu-
tions of quarks and gluons to the particle spin (J = 1) as
[2,15,16]

Ji(7.6,0) = e rT (7, ¢, ). (31)

Inserting expression (30) [with Eq. (16b)] into Eq. (31)

yields
Ji(F.o o) =58, / (i& K T+ dt(z))
<A A= 3A 5”) %atm} (32)

with 74(r) = " 7°(t). The equation above has a form very
similar to that for a spin-1/2 particle [2,16]. Note that the
form factor J“(¢) contains the EMT nonconserving form
factor f“(¢). In the case of spin-0 and spin-1/2 the
nonconserving form factors do not enter the spatial spin
distribution.

Summing over quarks and gluons and integrating over
the space yields

Z/dwl 7.o,0) =38, J(0) =8, (33)

where the individual contributions J%(0) add up to
> . J4(0) = J(0) which satisfies the normalization con-
dition J(0) =J = 1. Obviously, the free theory value
Jiree theory (1) — 1 in Table I satisfies this relation.

C. TV stress tensor

In the spirit of Ref. [14], the stress tensor defined by the
ij components of EMT in Eq. (16c) can be written
generically to the quadrupole order as

3
Ti(f.o0) = | —L2 ol | 7(0)|p.o)
7 2By S\ P

= pO(r)éijérf’a + SO(F)Y;jéﬁ’a + pZ(r)Qij
+ 25, (P)[Q7PYY + QYD — 51 QPayh]

1 A .. i
-?leakal{m(r)au +s3(r)Y5],  (34)

where the (quadrupole) pressure and shear forces

function,

1 - 1 dl1d -
po(r)=§821>o(r>, So(’):—i E;erO(r)’ (35a)
1, 1 dld -
Pz(”)*ga Dy(r),  s2(r) ) E;EDZU)’ (35b)
| 1 dld -
P3(”):§3ZD3(F)7 s3(r)=— ) dr;;D.%( ), (35¢)
where 9% = L5424 is the radial part of the three-

dimensional (3D) Laplace operator.

Comparing with Ref. [14], we get two additional terms
of quadrupole order n =2, which are p;(r) and s3(r)
terms. The EMT conservation, GMT’”’(x) = 0, implies the
equilibrium equation for the static stress tensor

0;,TV(¥,¢',0) = 0. (36)

For each of the first two quadrupole orders, it is easy
to check that Egs. (35a)-(35c) satisfy the differential
equations

sh(r)+2 "£r>+p;(r) =0, with n=0,2.3, (37)

3

which guarantee the general stability condition of Eq. (36).
Another three obvious relations,

1
/d3rpn(r)—g/d3r82D,,(r)—O, with n=0,2,3, (38)

which shows how the internal forces balance inside
a composed particle. It is a consequence of the EMT
conservation, known as the von Laue condition [2,3]. We
also note that the multipole pressure and shear forces
distributions [p, (r), s,(r)] satisfy the same stability equa-
tion (37) as the distributions in the spherically symmetric
case of spin-0 and spin-1/2 particles. Therefore all stability
relations discussed in [2,3] are valid also for the nonspheri-
cal case of particles with higher spins.

D. EMT-nonconserving terms

The EMT-nonconserving terms in Eq. (4) violate the
EMT conservation 9*T,,(x) = 0 as

(p'.0|0"T},(x)| p. o)

=it (p'.o'| T,

,0)

- €
= je!™* [(e A€ + € A, —

. e ~
S, )mge(n

+ A, (" - em?c§(t) + €* - Pe - PE?(I))} . (39)

In the Breit frame, the O component of Eq. (39) is

036003-5
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(p'. 010" Ty (x)|p.o) =

and the j component of Eq. (39) is

E

(p',d'|0"T%(x)|p.o) = ie™™ Ks A€l + € - Ae; — ¢ 5

. . fo(t
= ie’Ax{A«’ﬁa/(,mz [6( ) —co(r) +

— 2mENI QU Fa(1) + A AAI QN [5 o(r) +5ci(t) +

The stability equation for the quark part of the stress tensor
has the form

oT? (r ,
817];15) + fi(r) =0. (42)
This equation can be interpreted (see, e.g., the discussion in
[17]) as the equilibrium equation for quark internal stress
and external force (per unit of the volume) f?(r) acting on
the quark subsystem from the side of the gluons. From
Eq. (41) one sees that the corresponding force depends on
the polarization of the spin one particle through the
quadrupole spin operators Q.

l/dz
2 2w

12m

. 1 1
wEE (! U’|l//q<—51>7 l//q(z )

e (e Aef + € - Aeg)m*fe(t) = 0, (40)

€A,~> m2fa(t) + A; (€ - em®ei(t) + €* - Pe - PZ"I‘(I))}

3270+ 260) + (0] - 3100
1 r t o,
1 mf (1) ~Tem? ! (f)} } (41)

[
IV. SUM RULES: GPD AND GFF

By considering the Mellin moments of the vector GPDs
[18], the sum rules between the GPDs and EMT FFs are
found in Refs. [5,6]. The sum rules in Ref. [5] contain only
conserving EMT FFs (six out of a total of nine FFs). In a
recent paper [9], the polynomiality sum rules for all
leading-twist quark and gluon generalized parton distribu-
tions of spin one targets are given. The generalized form
factors in the polynomiality condition for GPDs of spin one
particles in [9] are connected to the gravitational form
factors as shown in Table I.

The quark and gluon vector GPDs are introduced in
Ref. [18] for deuteron as

,0)

77=0,z, =0
et (€*-P)+e*(e-P) 2(e- P)(¢™ - P)
— o Hy - i,
P+ M2 3
-+ /% P _ Ixt . P + x4+ 1
L€ (¢ P) +€ (e )HZ"‘ et (e e bal, (43a)
P (PT)? 3
1 dz” t,'cPJr /| b, + 1 b, + 1
F/ € (p' o Fo 2° F 2% >z+:0,zL:0
et (e -P)+ e (e-P) 2(e- P)(e™* - P)
=—(¢"-e)H + HY - HY
P+ M2 3
e (€*-P)—€*T(e- P) et 1,
+ P Hj+{M*—— P +§(€/ -€) pHY, (43b)

where ¢ = u,d, s, ....
current for a spin one particle,

Integrating over x of Eq. (43a), one gets the conventional form factor decomposition of the vector

Pe- P
(P01, Oy, (0)]p.0) = =2 < - €GY(1) +2G4(: )e) P OGH((e Py e P (44)
N m

So, for the quark GPDs, one has [18]

/1 dxH!(x, & 1)
-1

/l dxH!(x,& 1) =
-1

=G (i=123),

(45a)

(i =4,5). (45b)
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The charge, magnetic, and quadrupole form factors can
be expressed in terms of G; = Zq Gl as (n = —t/4m?)

Gelt) = Gi (1) + 3nGol0), (462
Gult) = Galt) (460)
Golt) = G1(1) = Galt) + (1 + mGa).  (460)

dz= . o | 1
T;ﬁL(O) = (PJF)Z/XdX/gelxp < |:l//q<—§Z

Ix P P
= [2(P+)2 (—e’* -eAd (1) + SERLESLY

LAt

normalized by the charge Gc(0) =1, magnetic
moment G, (0) = ps—,/(2m), and quadrupole moment
GQ(O) = QS=1/m2-

The ++ components of Eq. (2) are

+4PT (" e P+ eTe™ - P)J9(t) + [ete* T A2 — 2" ATe- P+ 2T Ate” - P|EY(1)

+2et e T m?fa(1),
dz= , pi.- 1
Tj+(0) = P+/dx‘/ge Pz |:Fb’+rl(_§Z>

where 7/ (0) is similar with T/ (0). Compare Egs. (48)
with (43), and we get the polynomiality property of vector
GPDs as

/1 xdxH{(x,&,1) = Al (1) - ED{(1) —|—L2Eq(t) +%]_”q(t),

1 6m
(49a)
/ CdxH (x, £, 1) = 2J9(1), (49b)
/_ : xdxHY(x,&,1) = —% [AY(r) + &D(1))]. (49¢)
/ dxH (x, £, 1) = ~2EE9(1), (49d)
1
/_ 1 xdxHi(x,& 1) = 2—’;2 E9(t) + f4(1), (49e)

for the quark parts and

1 1-
/_ | dxH (x,&,1) = AY(1) — EDY(1) +6—,;2Eq(t) +3/70),

(50a)

/ L dxH(x, £ 1) = 2J9(1), (50b)

1

T ) = (- D (). (@7a)
Tyt (x) = FomFb *(x), (47b)
or
1
) }/+Wq (z Z):| zv=0,z, =0
1 . Pe- P
> + 5 (A+)2 (6/* . €Dg(f) + 611’126D{11(t))
(48a)
b 1
Fb,* (— zﬂ , (48b)
2 77=0,z, =0
[
[ sty e.0) = =3 4100 + £D1(0), (50¢)
-1
/ L dxHI (x, £, 1) = —2EE9(1), (50d)
-1
/ CdeH (v, E.1) =~ E9(r) + Fo(0), (50¢)
-1 2m

for the gluon part. Equations (49b) and (50b) give the spin
one version of the X. Ji sum rule [5,11,15]. Note that in
H{ s (HY) it contains the EMT-nonconserving GFFs f4

(f9). Thus it is useful to rewrite them as

/ ' xdx {H?(x,o, N —%Hg(x,O, z)} _AlD,  (5la)
1

/_ " v [Hs;(x, 0.7) _%Hé’(x,o, t)} = Ag(). (51b)

1

In the GPD approach, the normalization for A, in Eq. (27)
is the energy-momentum sum rule,

1
/ dx {ZxH‘l’ (x,0,0) + HY(x,0,0)
- q

1

_% <zq:ng (x,0,0) + HY(x,0, 0))] =1 (52)
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and the normalization for J in Eq. (33) gives the sum rule,

l/ldx[ZxH"(x 0,0) + HY(x.0,0)| = 1.  (53)
2 4 - 2 2

As discussed in Ref. [18], the forward limit (§ =t = 0)
of GPDs H; and Hs can give the parton distribution
functions (PDFs), and therefore H,s are, respectively,
related to the deep inelastic scattering structure functions
F(x) and by (x), which are worked out by Hoodbhoy et al.
[10] for spin one targets. Thus, in terms of PDFs, the
normalization for A, in Eq. (52) corresponds to the energy-
momentum conservation sum rule of PDFs, and, in the
forward limit, the sum rule for Hs in Eq. (45) recovers the
parton model sum rule [ b;(x)dx =0 [19].

V. SUMMARY

In this paper, we formulate the EMT form factors for spin
one hadrons. The energy density, spin distribution, and
stress tensor are given. The pressure and shear forces
functions are found in terms of multipole expansion as the
spin one particle is not spherically symmetric. The sum
rules between the GFFs and GPDs are derived.
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factors for spin one particles were also considered.

APPENDIX: BREIT FRAME FORMULAS

The matrix elements of the spin one quadrupole operator
in Eq. (11),

"~ 1 4 .
;ka (Slsk+sksl _§61k>

1 1

= 300000 =5 Etn +EpEe) (AL
where ¢ = {+, —,0}, and
SIS — §/87 = jelik Sk, (A2)

In the Breit frame, the initial (final) momentum p* (p™*)
has the relation P* = (p*+ p')/2 = (E,0,0,0) and

A = p — p# = (0,A). So p=—p' =—A/2 and p° =
p° =E = +/m?>—1t/4 with t = A%, So initial and final
polarization vectors are

A-g -
K(p,o)=|— Z. &, A, A3
¢"(p.0) ( 2m € +4m(m+E) ) (A3)

&'éa/ A
6”(17',6/):( 7m0 T

(A4)
So one can get the following useful relations [here Qy; =
Q[’jfd is the matrix element and ¢** = ¢}’ = e (p',0’),

e = ey = e*(p,o); note t = A?]:

=855 — QA (ASa)

t 1 .
€y €= (W_ 1) 50’0+2—szk1AkAlv (A5Db)

. t 1,
€060 = Tlnzéa’a + a2 Oy, (ASc)
E -
e A=——2 A, (A5d)
m
E -
€, A=——¢ A, (A5e)
m
E2
(€ 8)er-8) == 25 ($00, 4 Qua'a’). (5D
m?
; E kAl
€y .06 A= m P 3 500 + leA A (Asg)
€506y " A = —€, 6, A, (A5h)
€ €0 A=y jeh A= —Ake"flSoJ : (AS5i)
i A .
60,06:—’,1‘ + 62/,066,/' “om AkSkﬂSg’m (A5))

2 1 N
Gg’ié‘:’j‘&'e;/.iedj: (3511 +6 2A1A1>50J0-—2Q”

1 A N
- (A.A 4L AA .
Zm(m—i—E)( i kaj + Jj ](le)

1

——— 5 AAAA
8m2(m+E) k le

(A5K)
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