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We investigate the second order process of two photons being emitted by a high-energy electron dressed
in the strong background electric field found between the planes in a crystal. The strong crystalline field
combined with ultrarelativistic electrons is one of very few cases where the Schwinger field can be
experimentally achieved in the electron’s rest frame. The radiation being emitted, the so-called channeling
radiation, is a well studied phenomenon. However, only the first order diagram corresponding to emission
of a single photon has been studied so far. We elaborate on how the two-photon emission process should be
understood in terms of a two-step versus a one-step process, i.e., if one can consider one photon being
emitted after the other, or if there is also a contribution where the two photons are emitted “simultaneously.”
From the calculated full probability we see that the two-step contribution is simply the product of
probabilities for single photon emission while the additional one-step terms are, mainly, interferences due
to several possible intermediate virtual states. These terms can contribute significantly when the crystal is
thin. Therefore, in addition, we see how one can, for a thick crystal, calculate multiple photon emissions
quickly by neglecting the one-step terms, which represents a solution of the problem of quantum radiation
reaction in a crystal beyond the usually applied constant field approximation. We explicitly calculate an
example of 180 GeV electrons in a thin silicon crystal and argue why it is, for experimental reasons, more
feasible to see the one-step contribution in a crystal experiment than in a laser experiment.

DOI: 10.1103/PhysRevD.100.036002

I. INTRODUCTION

Strong field QED is the study of physical processes that
take place in a strong background field, and nonlinear
effects of quantum nature arise when the size of the Lorentz
invariant parameter

χ ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFμνpνÞ2

q
=m3 ð1Þ

is on the order of unity, which is the ratio of the
electromagnetic field experienced in the electron’s rest
frame compared to the Schwinger field strength ESch ¼
1.32 × 1018 V=m. Here e is the elementary charge, m the
electron mass, Fμν the electromagnetic field tensor of the
background field, and pν the electron 4-momentum. We
use natural units such that ℏ ¼ c ¼ 1, α ¼ e2. Lindhard
was one of the first to realize that when high-energy
charged particles are aimed close to the direction along
an axis or plane in a crystal, the charged particle can

become transversely trapped [1]. Later it was studied how
this motion leads to radiation emission called channeling
radiation, especially relevant for electrons and positrons.
This is well-studied both experimentally [2–10] and theo-
retically [5,11–15]. Crystal channeling represents one of
the only phenomena where the Schwinger field can be
experimentally achieved in the electron’s rest frame
[6,16–18], with the only other example being the famous
E-144 SLAC experiment on nonlinear Compton scattering
[19] using relativistic electrons colliding with a laser beam.
Crystals with ultrarelativistic electrons or positrons there-
fore present a unique possibility to study physics in such
strong fields. However, a calculation from first principles of

FIG. 1. The Feynman diagrams corresponding to the process
under study. The double fermion lines correspond to positron
solutions of the Dirac equation in the background field of the
interplanar crystal potential.
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emission of more than one photon has not been carried out
for crystal channeling (see Fig. 1). The recent studies of
two-photon emission in the collision of relativistic elec-
trons with a laser pulse [20–23] show that the emission of
two photons is not exactly the product of probabilities for
each emission; however, under certain conditions it is an
acceptable approximation. The experimental verification of
such results are, however, complicated in the case of the
laser pulse colliding with an electron bunch because any
two (or more) emitted photons cannot be known to be
emitted by the same electron. In crystal experiments as in,
e.g., [18], it is standard that each incoming particle is
recorded as a separate event, and therefore the measured
outgoing photons are sure to stem from the single incoming
particle. Therefore, in this paper, we will calculate the
emission of two photons during electron channeling in a
crystal, which could potentially be studied experimentally
in an experiment similar to the one seen in [18]; however,
with a modified setup to allow for the detection of an
additional photon. For the theory of channeling radiation,
in particular, the development of the semiclassical operator
method by Baier et al. [24] stands out and has been
extensively applied to the phenomenon of channeling [25].
This method allowed the inclusion of quantum effects such
as the electron spin and the photon recoil, which are
important when χ is no longer small, while needing only
the classical trajectory of the electron/positron in the
external field. The authors of this method, seeking ana-
lytical results, in most applications to channeling, applied
the approximation of the local constant field, which greatly
simplifies calculations. The constant field approximation
means that while a particle moves in an external field,
which is not constant, one applies the result of the constant
field formula locally, i.e., in a small time step. Effectively
this means neglecting that the radiation emitted before or
after can interfere with this radiation. This is valid only for
certain parameters of fields and particle energies. However,
the semiclassical operator method can be used to calculate
the radiation emission under general circumstances without
much effort, also when the constant field approximation is
no longer valid [26,27], which with modern computing
power makes it one of the most powerful methods to
calculate the radiation emitted by ultrarelativistic electrons
in a general field configuration. There are caveats, however,
which are twofold. First, the notion of a classical trajectory
should make sense. Or, in other words, the quantum
numbers associated with the motion should be large, a
subject recently studied in [28,29]. Second, the derivation
starts out from the first-order diagram of a dressed electron
emitting a single photon. Therefore the emission rate of
two, or more, photons cannot be predicted by this method
without approximations. The emission of a single photon
yields a rate, an emission probability per unit time, and as
such one can construct the probability for emitting several
photons by applying this rate for each consecutive

emission. In this way, the probability to emit, e.g., two
photons would be proportional to time, or thickness of the
crystal, squared, and so on. We will call this process the
“cascade” process. Herein lies an approximation, where
interference between different emissions is neglected. We
show that the two-photon emission probability contains the
cascade along with one-step terms that scale linearly with
the crystal thickness. Therefore, for sufficiently thin crys-
tals, these one-step terms will become important. This
phenomenon is also discussed in pair production of
electron/positron pairs from high-energy photons in a
strong field where one also distinguishes between the
two-step and the one-step, or “trident,” process. This has
been investigated in crystals in [17] and has received
renewed interest with the prospect of studying such
phenomena in high-intensity laser fields [30–35]. In this
paper we make quantitative calculations of the angularly
integrated probability, differential in photon energies, of the
emission of two photons by an electron in the planar Doyle-
Turner potential [25,36–38]. We do this by finding numeri-
cal solutions of the Dirac equation by solving the problem
in a basis of plane waves, which is possible due to the
periodicity of the transverse potential in a crystal, as shown
in [28]. Whether the cascade terms are enough to properly
describe the radiation emission is a highly relevant question
as it closely relates to the phenomenon of quantum
radiation reaction, the emission of multiple photons when
χ is large [39], recently studied using channeling radiation
as well as in laser experiments [18,40,41]. In the crystal
experiment it was seen that even for energies as high as
180 GeV positrons, where it could be expected that the
constant field approximation would be acceptable, it was
shown that discrepancies arise due to this, and therefore a
more general theory was called for. The current theory of
quantum radiation reaction in lasers relies on the local
constant field approximation [25,39,42–46], and it is
unknown if one can calculate the emission of many photons
in a way that avoids calculating all the corresponding
higher order diagrams, when going beyond the constant
field approximation. This question will be addressed in the
case of a crystal, in the current paper.
We use the Feynman slash notation such that =a ¼ aμγμ,

where γμ are the Dirac gamma matrices and aμ an arbitrary
four-vector. We adopt the metric tensor ημν ¼ diagðþ1;−1;
−1;−1Þ.

II. FORMALISM

In QED the transition amplitude from a given initial state
jii to a final state jfi is given by

Sfi ¼ hfjUð∞;−∞Þjii; ð2Þ
where U is the time evolution operator, often written as
Uð∞;−∞Þ ¼ T exp ð−i R∞−∞ VðtÞdtÞ where T is the time-
ordering operator and VðtÞ ¼ R eΨ̄=AΨd3x is the quantized
interaction. We then write our quantized fields as

TOBIAS N. WISTISEN PHYS. REV. D 100, 036002 (2019)

036002-2



Ψ ¼
X2
s¼1

Z
d3p
ð2πÞ3 ½b

s
pψ

−
p;sðxÞ þ cs†p ψþ

p;sðxÞ�; ð3Þ

=A ¼
Z

d3k
ð2πÞ3

ffiffiffiffiffiffi
4π

2ω

r X2
r¼1

½ϵrarke−ikx þ ϵ�ra
r†
k e

ikx�; ð4Þ

where ψ−
p;sðxÞ and ψþ

p;sðxÞ are an orthonormal and com-
plete set of electron and positron solutions, respectively, in

the background field.
R d3p

ð2πÞ3 denotes a summation over all

states, and p the relevant quantum numbers that we will
find later. The b, c, and a operators are the annihilation
operators of the electron, positron, and photon fields,
respectively, obeying the relations that the only nonzero
(anti)commutators are fbrp; bs†q g ¼ fcrp; cs†q g ¼ ½arp; as†q � ¼
ð2πÞ3δrsδð3Þðp − qÞ, where the fg brackets denote the
anticommutator and [] the commutator.
In [28,29] we discussed the Dirac equation with the

potential found in the crystal, but we will here repeat the
results we need in order to calculate the emission of two
photons. It was found in [28] that the electron solution can
be written as follows:

ψ−ðxÞ ¼ 1ffiffiffiffiffi
2ε

p eiðpxxþpzz−εtÞUðyÞ; ð5Þ

the positron solutions can then be written as (see the
Appendix A)

ψþðxÞ ¼ 1ffiffiffiffiffi
2ε

p e−iðpxxþpzz−εtÞVðyÞ; ð6Þ

and U and V are given by

UðyÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
εþm

p �
s−

σ·p̃
εþm s

−

�
I−ðyÞ;

VðyÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
εþm

p � σ·p̃
εþm s

þ

sþ

�
IþðyÞ; ð7Þ

where p̃ ¼ ðpx þ qφðyÞ; signðqÞi d
dy ; pzÞ, φðyÞ is the

electrostatic potential, q ¼ �e is the charge, the superscript
on IðyÞ refers to the charge sign, and s is a two component
vector describing the spin, which we can choose as either
ð1 0ÞT or ð0 1ÞT, corresponding to spin-up and spin-down,
respectively, for the electron, and opposite for the positron.
From the choice of the form of the spinors U and V, it is
also clear that ε positive should be used (see Appendix A).
IðyÞ is the solution to the equation�
−

1

2ε

d2

dy2
þ qφðyÞ

�
IðyÞ ¼ ε2 − p2

x − p2
z −m2

2ε
IðyÞ: ð8Þ

For φðyÞ we will use the Doyle-Turner model [25,36–38],
chosen as symmetric around 0. In a crystal this potential
φðyÞ is periodic with the period of the interplanar distance,

which we will denote as dp. Because of this, the solution
(for the electron) can be written as a Bloch wave such that

I−ðyÞ ¼ eik
−
Byu−kBðyÞ; ð9Þ

where u−k−BðyÞ is also periodic with period dp and k−B is the

Bloch momentum, which can be taken to be in the interval
0 ≤ k−B < k0, k0 ¼ 2π

dp
. It then follows from Bloch’s theorem

that these solutions form an orthogonal and complete set of
solutions of Eq. (8). Inserting I−ðyÞ of Eq. (9) into Eq. (8)
gives us the equation governing u−kBðyÞ,
�
−

1

2ε

�
d2

dy2
þ 2ikB

d
dy

− k2B

�
þ qφðyÞ

�
u−kBðyÞ

¼ ε2 − p2
x − p2

z −m2

2ε
u−kBðyÞ: ð10Þ

The periodicity of ukBðyÞ means it can be written as a
Fourier series,

u−kBðyÞ ¼
X
j

cjeijk0y: ð11Þ

To ensure normalization we should have
P

j jcjj2 ¼ 1 (see
Appendix B of Ref. [28]). It is now clear that this is an
eigenvalue problem for each kB where the quantized
eigenvalue is

En ¼
ε2 − p2

x − p2
z −m2

2ε
; ð12Þ

where n is the quantum number corresponding to the value
of this energy in ascending order and where 0 is the ground
state. This equation leads to a quantization of, e.g., px. The
coefficients cj are found by solving the matrix eigenvalue
problem obtained by inserting Eq. (11) into Eq. (10),
multiplying with 1

dp
e−ilk0y, and integrating over y from 0

to dp to exploit orthogonality

X
j

1

2ε
½jk0 þ kB�2δj;lcj

þ
X
j

cj
1

dp

Z
qφðyÞeiðj−lÞk0ydy

¼
X
j

ε2 − p2
x − p2

z −m2

2ε
δj;lcj: ð13Þ

This was done with the electron function I−ðyÞ in mind, but
the positron coefficients can be obtained just by changing
q. With these things taken into consideration, we now see
that we can write the UðyÞ and VðyÞ functions in terms of
the coefficients cj such that
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UðyÞ ¼
X
j

c−j S
−
j e

iðjk0þkBÞy; ð14Þ

VðyÞ ¼
X
j

cþj S
þ
j e

−iðjk0þkBÞy; ð15Þ

where

S−j ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
εþm

p �
s−

σ·pj
εþm s

−

�
; ð16Þ

Sþj ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
εþm

p � σ·pj
εþm s

þ

sþ

�
; ð17Þ

where pj ¼ ðpx þ En −
ðjk0þkBÞ2

2ε ; jk0 þ kB; pzÞ. For the
calculation of radiation emission from electrons we will
need the quantity S̄−f =ϵ

�S−i , where we have put labels for the
initial state i and final state f; however, these still each
depend on the index j. This quantity can then be written as

S̄−f =ϵ
�S−i ¼ −sTf ½ϵ · Aþ iB · σ�si; ð18Þ

where

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εf þm

εi þm

s
pi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εi þm
εf þm

s
pf; ð19Þ

B ¼ ϵ� ×

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εf þm

εi þm

s
pi −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εi þm
εf þm

s
pf

!
: ð20Þ

Now since we have an orthonormal complete set of
solutions, we can write the propagator in terms of these
states as [47]

Gðx2; x1Þ ¼
Z

d3p
ð2πÞ3

X
n;s

þ θðt2 − t1Þe−iεðt2−t1Þψ−
p;n;sðx2Þψ̄−

p;n;sðx1Þ
− θðt1 − t2Þeiεðt2−t1Þψþ

p;n;sðx2Þψ̄þ
p;n;sðx1Þ: ð21Þ

This expression can be simplified due to the simple
expression for the wave functions in all coordinates but
the y coordinate. However, we will not carry this out, as it is
easier to see how the cascade part of the radiation emission
arises by starting from the above expression.

III. SINGLE PHOTON EMISSION AND CASCADE

We will now briefly mention some results obtained in
[28] on the single photon emission probability which is
relevant to build the expected cascade contribution. We
found that the rate of emission is given by

dWð1Þ
i→f ¼

1

ð2πÞ2 jMi→fj2δðεf þ ω − εiÞd3k; ð22Þ

where we defined

Mi→f ¼ e

ffiffiffiffiffiffi
4π

2ω

r
1

2
ffiffiffiffiffiffiffiffi
εfεi

p
X
j

c�nBþj;fcj;iS̄
−
nBþj;f=ϵ

�S−j;i; ð23Þ

where nB is the integer such that 0 ≤ kB;f < k0, where
kB;f ¼ kB;i − ky − nBk0, Sj;i corresponds to the initial state,
and cj;i is a coefficient with index j corresponding to the
initial state i. See the Appendix of [28] for the details on
why M reduces to a single sum over j. As shown in [28]
there are large terms in εf þ ω − εi that cancel, leaving
behind the relevant small terms, because the relevant
transverse energies En, comparable to the potential depth,
are much smaller than the whole particle energy, i.e.,
eV versus GeV. We could rewrite the content of the delta
function as

fðθÞ ¼ εf þ ω − εi

≃ Enf − Eni þ
m2

2εf
−
m2

2εi
þ ωθ2

2

�
1þ ωsin2φ

εf

�
: ð24Þ

Now we may use that δðεf þ ω − εiÞ ¼ 1
jf0ðθ0Þj δðθ − θ0Þ

where θ0 is the positive solution to fðθÞ ¼ 0. From the
formula for single photon emission, Eq. (22), we can
construct the cascade contribution to two-photon emission.
We wish to know the probability of finding a photon in the
momentum interval d3k1 around k1 while also finding a
photon within another interval d3k2 around k2. This can
happen in two ways, either the particle emits k1 while
transitioning from the initial state, and then subsequently k2
or vice versa. We are, however, interested in the angular

integrated spectrum, that is dPðcascadeÞ
i→f =dω1dω2, and there-

fore an additional factor of 1
2
must be added due to counting

the same point in phase space twice [48]; and so we obtain

dPðcascadeÞ
i→f

dω1dω2

¼ T2

2

X
v

1

2

�
dWð1Þ

i→v

dω
ðω1Þ

dWð1Þ
v→f

dω
ðω2Þ

þ dWð1Þ
i→v

dω
ðω2Þ

dWð1Þ
v→f

dω
ðω1Þ

�
: ð25Þ

IV. TWO-PHOTON EMISSION

Expanding the time evolution operator to second order,
allowing for two-photon emission we have that the
S-matrix element is

Sð2Þi→f ¼ −hfj 1
2

ZZ
∞

−∞
T V̂ðt2ÞV̂ðt1Þdt1dt2jii: ð26Þ

When specifying the final state as hpf; k1; k2j, an electron,
two photons, and the initial state as just an electron,
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jpi; 0; 0i, Sð2Þfi can be rewritten in terms of the wave
functions and the propagator. In [47] this is done for the
Compton scattering matrix element, which is the same
diagram as here, except that an incoming photon is instead
outgoing. The matrix element is therefore

Sð2Þi→f ¼ −ie2
ffiffiffiffiffiffiffiffi
4π

2ω1

s ffiffiffiffiffiffiffiffi
4π

2ω2

s ZZ
d4x2d4x1

× ψ̄−
f ðx2Þ=ϵ�2eik2x2Gðx2; x1Þ=ϵ�1eik1x1ψ−

i ðx1Þ
þ ðϵ1; k1Þ ↔ ðϵ2; k2Þ: ð27Þ

Now we define

M−
i→v ¼ e

ffiffiffiffiffiffiffiffi
4π

2ω1

s Z
d3xψ̄−

v ðxÞ=ϵ�1e−ik1·xψ−
i ðxÞ

¼ ð2πÞ3δðpx;i − px;v − kxÞδðpz;i − kz;1 − pz;vÞ

× δðkB;i − ky;1 − kB;v − nB;1k0Þe
ffiffiffiffiffiffiffiffi
4π

2ω1

s
1

2
ffiffiffiffiffiffiffiffi
εiεv

p

×
X
j

c�nBþj;vcj;iS̄
−
nBþj;v=ϵ

�
1S

−
j;i

¼ ð2πÞ3δðpx;i − px;v − kxÞδðpz;i − kz;1 − pz;vÞ
× δðkB;i − ky;1 − kB;v − nB;1k0Þ ×M−

i→vðk1; ϵ1Þ;
ð28Þ

whereM is defined as in Eq. (23) where v is used to denote
the virtual state from the propagator and is shorthand for the
dependence on px;v, kB;v, pz;v, nv, and sv. The superscript
− on M− and M− denotes that the virtual state is the
electron state ψ−

v , and Mþ, Mþ is the same but with the
positron virtual state. The matrix element may then be
written as

Sð2Þfi ¼ i
ZZ

dt2dt1
X
nv;sv

Z
d3pv

ð2πÞ3

− θðt2 − t1Þeiðω1þεv−εiÞt1eiðω2þεf−εvÞt2M−
i→vM

−
v→f

þ θðt1 − t2Þeiðω1−εi−εvÞt1eiðω2þεfþεvÞt2Mþ
i→vM

þ
v→f:

ð29Þ

Therefore the term in the second line is seen as the electron
first emits a photon with momentum k1 at t1 and then
propagates to a later time t2 and emits a second photon with
momentum k2. The term in the third line is then the electron
emitting the photon with momentum k1 at a time t1 turning
the electron into a positron going into the past and emitting
the photon with momentum k2 at the earlier time t2. This
last term is heavily suppressed in our case, which we
can see as follows. Denote a ¼ εv þ ω1 − εi and b ¼
εf þ ω2 − εv, then we may use that

θðt1 − t2Þ ¼
i
2π

Z
∞

−∞

1

εV þ iϵ
eiðt2−t1ÞεVdεV; ð30Þ

where ϵ is a small real number for which one in the end
should take the limit ϵ → 0 and therefore we have

ZZ
∞

−∞
dt2dt1θðt1 − t2Þeiat2eibt1

¼ 2πiδðaþ bÞ 1

−aþ iϵ

¼ 2πiδðεf þ ω1 þ ω2 − εiÞ
1

εi − εv − ω1 þ iϵ
: ð31Þ

We have also that −θðt2 − t1Þ ¼ i
2π

R
1

εV−iϵ
eiðt2−t1ÞεVdεV , and

therefore we have the term from the third line of Eq. (29)
that carries the factor of

2πiδðεf þ ω1 þ ω2 − εiÞ
1

εi þ εv − ω1 − iϵ
: ð32Þ

Therefore this term will always be very far off-shell, as the
virtual particle on-shell condition can never be met as it
corresponds to the spontaneous production of an electron,
positron, and photon from the crystal field, where the
produced positron is subsequently annihilated with the
incoming electron to emit another photon. Having carried
out the integrations over time we obtain that

Sð2Þfi ¼ −
X
nv;sv

Z
d3pv

ð2πÞ3 2πδðεf þ ω1 þ ω2 − εiÞ

×

�
M−

i→vM
−
v→f

εi − εv1 − ω1 − iϵ
þ Mþ

i→vM
þ
v→f

εi þ εv1 − ω1 þ iϵ

þ ðϵ1; k1Þ ↔ ðϵ2; k2Þ
�
: ð33Þ

Now we may integrate over pv to obtain

Sð2Þfi ¼ −
X
nv;sv

�
M−

i→v1
M−

v1→f

εi − εv1 − ω1 − iϵ
þ Mþ

i→v1
Mþ

v1→f

εi þ εv1 − ω1 þ iϵ

�

× ð2πÞ4δðεf þ ω1 þ ω2 − εiÞ
× δðpx;i − kx;1 − kx;2 − px;fÞ
× δðpz;i − kz;1 − kz;2 − pz;fÞ
× δðkB;i − ky;1 − ky;2 − kB;f − ðnB;1 þ nB;2Þk0Þ
þ ðϵ1; k1Þ ↔ ðϵ2; k2Þ; ð34Þ

and then v1 denotes the virtual state with momentum given
by px;v1 ¼ px;i − kx;1, pz;v1 ¼ pz;i − kz;1 and k−B;v1 ¼ k−B;i −
ky;1 − n−B;1k0 and −kþB;v1 ¼ k−B;i − ky;1 − nþB;1k0, i.e., that
photon with label 1 is emitted at the vertex connected
with the initial particle. From the amplitude we get the
transition probability according to
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dPð2Þ ¼ 1

2

Z X
nf;sf

jSð2Þfi j2
dpx;fdkB;fdpz;f

ð2πÞ3
d3k1
ð2πÞ3

d3k2
ð2πÞ3

¼
X
nf;sf

����X
nv;sv

M−
i→v1

M−
v1→f

εi − εv1 − ω1 − iϵ

þ Mþ
i→v1

Mþ
v1→f

εi þ εv1 − ω1 þ iϵ
þ ðϵ1; k1Þ ↔ ðϵ2; k2Þ

����2

×
T

ð2πÞ5 δðεf þ ω1 þ ω2 − εiÞd3k1d3k2; ð35Þ

where we have added a factor of 1=2 in front due to
identical particles in the final state that we in the end want
to integrate over all angles and would therefore, again, be
counting double [48]. From this full result, it is seen that the
result can diverge when ϵ → 0 because εi − εv − ω1 ¼ 0 is
possible. The nature of the divergence is, however, different
for some of the terms, namely the ones that are the norm
square of each term underneath the sum, jM−

i→v1
M−

v1→f=
ðεi − εv1 − ω1 − iϵÞj2, where the limit of ϵ → 0 will yield
an infinite result, even after integration over one of the
angles θ1 or θ2. On the other hand, while the remaining
terms, of the interference type, still diverge, they can be
integrated over θ1 or θ2 to yield a convergent result. To
learn the meaning of this divergence due to the denominator
(see also [49]), we may write

���� 1

b − iϵ

����2 ¼ 1

b2 þ ϵ2
; ð36Þ

and note that

lim
ϵ→0

ϵ

b2 þ ϵ2
¼ πδðbÞ: ð37Þ

If we evaluate the integrals ofM−
i→v1

M−
v1→f with the factor

δðaþ bÞδðbÞ, we get well defined results, as this just
amounts to the product of two first order emissions. It is
therefore useful to write

���� 1

b − iϵ

����2 ¼ 1

ϵ

ϵ

b2 þ ϵ2
; ð38Þ

where then the factor ϵ=ðb2 þ ϵ2Þ acts as a delta function
for small enough ϵ, yielding a finite value when we perform
the integrals in Eq. (35), and then it is clear that this is
divergent as ϵ → 0 due to the factor of 1=ϵ. However, this
should be understood in terms of an additional factor of T
for this term. To see this, consider the origin of this
expression from Eq. (31), but consider instead that we
had a finite time, and integrate over a and b,

Z ����
Z Z

T

0

θðt1 − t2Þeiat2eibt1dt1dt2
����2dadb

¼ ð2πÞ2
Z

T

0

θðt1 − t2Þdt1dt2 ¼ ð2πÞ2 T
2

2
; ð39Þ

and we also have that

Z ����2πiδðaþ bÞ 1

b − iϵ

����2dadb ¼ 2πT
π

ϵ
: ð40Þ

So we see that we must replace j 1
b−iϵ j2 → πTδðbÞ, and

therefore these terms turn out to give us the cascade
contribution. To see how the probability from Eq. (35) splits
up into this cascade along with additional terms, we will
denote the quantity underneath the norm square as R− ¼P

nvJ
−
1 ðnvÞ þ J−2 ðnvÞ corresponding to the terms with the

virtual electron and similarly Rþ ¼PnvJ
þ
1 ðnvÞ þ Jþ2 ðnvÞ,

where

J−1 ðnvÞ ¼
X
sv

M−
i→v1

M−
v1→f

εi − εv1 − ω1 − iϵ
; ð41Þ

Jþ1 ðnvÞ ¼
X
sv

Mþ
i→v1

Mþ
v1→f

εi þ εv1 − ω1 þ iϵ
; ð42Þ

and J2 is J1 with ðϵ1; k1Þ ↔ ðϵ2; k2Þ; we then define R ¼
Rþ þ R−. The quantity we want is then jRj2 ¼ jRþj2þ
jR−j2 þ 2Re½RþðR−Þ��. In the Rþ term, it is never possible
for the denominator to become 0, and therefore it can be
directly calculated (see Appendix B). For

jR−j2 ¼
�X

nv

J−1 ðnvÞ þ J−2 ðnvÞ
�

×
�X

n0v
J−1 ðn0vÞ þ J−2 ðn0vÞ

��
; ð43Þ

the product of the terms with the same subscript and where
nv ¼ n0v are the cascade process that are the only problem-
atic terms and so need special attention as described above.
Therefore it is useful to employ that

jR−j2 ¼
X
nv

½J−1 ðnvÞðR− − J−1 ðnvÞÞ�

þ J−2 ðnvÞðR− − J−2 ðnvÞÞ�
þjJ−1 ðnvÞj2 þ jJ−2 ðnvÞj2�; ð44Þ

and so the terms in the first two lines are convergent
contributions to the one-step process and the terms in the
last line are the cascade terms, except that the spin sum is still
underneath the norm square. In Appendix C we show that
the interference due to spin will be 0 when the photon
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polarization can be taken as real and that either the sum over
initial or final spins (we will do both) is carried out. And so
we can write the differential probability of emission, with a
given initial state, as

dPð2Þ ¼ 1

2

T
ð2πÞ5 δðεf þ ω1 þ ω2 − εiÞd3k1d3k2

×
X
nf

�
jRþj2 þ 2Re½RþðR−Þ��

þ
X
nv

�X
sv

½jM−
i→v1

M−
v1→fj2πTδðbÞ�

þ J−1 ðnvÞðR− − J−1 ðnvÞÞ�

þðϵ1; k1Þ ↔ ðϵ2; k2Þ
	�

: ð45Þ

For the sake of clarity, we can write this as

dPð2Þ ¼ dPðcascadeÞ þ dPð1-stepÞ; ð46Þ

where the cascade contribution proportional to T2 is
given by

dPðcascadeÞ ¼ 1

2

T2

ð2πÞ5 δðεf þ ω1 þ ω2 − εiÞd3k1d3k2

×
X
nf

X
nv

�X
sv

½jM−
i→v1

M−
v1→fj2πδðbÞ�

þðϵ1; k1Þ ↔ ðϵ2; k2Þ
	
; ð47Þ

which is equivalent to Eq. (25) and where the one-step
contribution, proportional to T, is given by

dPð1-stepÞ ¼ 1

2

T
ð2πÞ5 δðεf þ ω1 þ ω2 − εiÞd3k1d3k2

×
X
nf

�
jRþj2 þ 2Re½RþðR−Þ��

þ
X
nv

fJ−1 ðnvÞðR− − J−1 ðnvÞÞ�

þðϵ1; k1Þ ↔ ðϵ2; k2Þg
�
: ð48Þ

V. CHOICE OF REGULARIZATION

Above we chose a certain way to regularize the diver-
gence, by recognizing that the divergent terms correspond to
the cascade terms. In taking the time limit from �∞, some
information about the duration of interactionwas lost, which
we put back in, in a way that is correct when T is large
enough, i.e., larger than the photon formation length roughly
estimated by lf ¼ 2γ2ð1 − ω=εÞ=ω [25],which in our case is

roughly γ=m ∼ 0.8 μm, because ω is on the order of ε.
Another way often found in literature [50–54] is to say that
the virtual state is unstable and therefore replace the energy
of the virtual particle according to εv → εv − iΓv=2 where
Γv ¼

P
f Wv→f is the total decay width of the virtual state

from all processes. This is equivalent to adding the effect of
the linewidth in atomic Raman scattering [55]. Effectively
this corresponds to replacing the ϵ in the denominator with
−Γv=2, which lifts the divergence.However, one can see that
with this substitution [see Eq. (38)], one would obtain that���� 1

bþ iΓv=2

����2 ¼ 2π

Γv
fðbÞ; ð49Þ

where fðbÞ is a function peaked around b ¼ 0 that obeysR
fðbÞdb ¼ 1 and therefore resembles the delta function

δðbÞ but with a nonzero width Γv. If we then again calculate
the cascade part according to this, we would obtain

dPðcascadeÞ� ¼ 1

2

1

ð2πÞ5 Td
3k1d3k2

×
X
nf

X
nv;sv

jM−
i→v1

M−
v1→fj2δðaþ bÞ 2π

Γv1

fðbÞ

þ ðϵ1; k1Þ ↔ ðϵ2; k2Þ: ð50Þ

If we assume that the dominant contribution to the decay
width is due to radiation emission, we have that the total
width is

Γv ¼
X
f

Z
1

ð2πÞ2 jMv→fj2δðεf þ ω − εvÞd3k: ð51Þ

Therefore if we approximate fðbÞ ≃ δðbÞ, integrate over
d3k2, and sumover nf, wewill obtain a factor of the total rate
Γv1 , which cancels out, and so we have that

dPðcascadeÞ� ¼ 1

2

1

ð2πÞ2 Td
3k1
X
nv;sv

jM−
i→v1

j2δðaÞ

þ ðϵ1; k1Þ ↔ ðϵ2; k2Þ; ð52Þ

which is just the single photon emission probability.
Therefore this approach leads to the prediction that it is
just as likely to emit two photons as it is one. This is not a
meaningful result and the reason is that the integration over
time has been carried out over all times; i.e., it is assumed
that T ≫ 1=Γv, which means it is guaranteed that the virtual
state decays. However, in that case not only two-photon
emission is likely but also a larger number of photons, which
we do not take into account. For Raman scattering the
approach is reasonable when T ≫ 1=Γv such that it is
guaranteed that an excited state will decay before the
observation is made. However, if the interaction time is
very short, T ≪ 1=Γv, it is also expected that Raman
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scattering should have a dependence as T2, as each sub-
process, excitation, and decay is characterized by a rate, and
the probability is therefore the product of ðWexciteTÞ×
ðWdecayTÞ. The substitution εv → εv − iΓv=2 therefore cor-
responds to the replacement WdecayT → 1 and then com-
bines the processes corresponding to the first order diagrams
of excitation first, and subsequently decay, with the second
order diagram, which allows for off-resonant excitation and
decay. We are interested in the case when T < 1=Γv such
that two-photon emission is unlikely compared to one-
photon emission, and therefore a higher number of photon
emissions can be neglected. In this case one can also think of
the previously obtained result for the cascade contribution,
as the contribution of the finite crystal length to the

linewidth, which corresponds to setting Γv=2 ¼ 1=T, which
will be the dominant contribution to the linewidth when
T ≪ 1=Γv.

VI. DISCUSSION OF RESULTS

In the figures in this paper we show the calculations made
for a 180GeVelectron in theDoyle-Turner potential [25,36–
38] for the (110) planes in silicon and for the state n ¼ 25.
This is a quite low lying state which for electrons will have a
high radiation power [28]. Electrons were chosen for this
reason as it is not as numerically heavy when the quantum
numbers are relatively small, as opposed to the positron case,
which would require large quantum numbers to obtain an
appreciable value of the quantum nonlinearity parameter χ,
whichmeans that quantum effects such as spin and recoil are
important in the emission process. To compare with an
experiment one should average over the distribution of the
initial states, which depends on the particle beam angular
mean and divergence. In Eq. (45) the integrals over φ and θ
are carried out numerically over the intervals 0 < φ < 2π
and 0 < θ < 1.5

γ × ð1þ ξÞ, and therefore include nearly all
emitted radiation. From the result of Eq. (45) we see that the
part scaling with T2 is the cascade, obtained by simple
multiplication of probabilities, and will dominate unless the
crystal is very thin, due to the remaining terms being
proportional to T. Therefore, if one made a Monte Carlo
approach using the single photon emission rate using the
quantum numbers of the current state, instead of using
the constant field approximationwith the current value of the
field, onewould obtain the dominant (cascade) contribution,
which will be accurate also when the constant field approxi-
mation is no longer valid. In Fig. 2 we show the result from
the cascade process. In Fig. 3 we show the one-step terms,

FIG. 3. The differential emission probability of two photons
with energy ω1 and ω2 integrated over angles for the one-step
contribution of Eq. (48) divided by T and multiplied by ω1ω2, for
the case mentioned in the text and as in Fig. 2.

FIG. 2. The differential emission probability of two photons
with energy ω1 and ω2 integrated over angles for the cascade
contribution of Eq. (47) divided by T2 and multiplied by ω1ω2 for
the case mentioned in the text.

FIG. 4. The ratio of differential emission probabilities of two
photons with energyω1 and ω2 integrated over angles for the one-
step contribution of Eq. (48) to the cascade contribution of
Eq. (47) when T ¼ 20 μm, for the case mentioned in the text and
as in Fig. 2. This ratio therefore scales as 1=T.
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and finally in Fig. 4we show the ratio of these one-step terms
to the cascade terms for T ¼ 20 μm. From this figure we see
that the one-step terms can become significant compared to
the cascade terms for short crystals. This ratio scales as 1=T.
Therefore one needs a thin crystal for the one-step con-
tribution to be significant, so thin that the probability to emit
more than one photon becomes small. One may rightfully
ask based on these figures, if one picks a very small value of
T, could the total probability seemingly become negative?
However, the results shown are valid only when T ≫ lf ∼
0.8 μmas estimated earlier. For the 180GeV case calculated
here, the probability to emit a photon with energy above
1GeV from a 20 μmcrystal is roughly 7%, and therefore the
probability corresponding to the cascade for two-photon
emission above this photon energy is 0.25%, and as can be
seen in Fig. 4 the spectrum in the region where the radiation
is most abundant, the ratio is around �20%. This number
serves as an upper limit to the size of the effect, because
under experimental conditions onewould obtain the average
from a population of many different levels with different
quantum numbers n, and this averaging would likely reduce
the size of the effect. If we assume the size of the effect to be
this upper limit, onewould need enough events such that one
would have enough statistics to see an effect of such a size
from only 0.25% of the events. If this setup was realized by
adding a calorimeter to a setup as the one used in [18],we can
estimate the number of particles required to see this. Making
a histogram of 20 bins in each direction of ω1 and ω2 and
assuming 100 counts on average in each bin, onewould need
roughly 3.2 × 108 electrons; assuming an electron rate of
104=min, this translates into roughly 22 days of measuring
time. This would therefore be a challenging experiment, and
having in mind that there would likely also be systematic
uncertainties, the realistic outcome of such an experiment
would be to put a constraint on the size of such one-step
terms, rather than their direct observation.

VII. CONCLUSION

In conclusion, we have shown how to accurately
calculate the two-photon emission rate for a high-energy
electron (or positron) channeled in a crystal. This calcu-
lation shows that the full probability contains what is
known as the cascade, which could have been obtained by
multiplying probabilities of single photon emissions, as
well as additional interference terms, called the one-step
contribution. The one-step contribution scales only linearly
with the crystal length, and therefore one needs a thin
crystal to see the effect of these terms. We have calculated
the size of all contributions to the emission probability for
180 GeV electrons in silicon and found that with a long
measuring time, the one-step contribution could possibly be
seen. Since these effects are, however, small, we also see
how to solve the problem of the quantum radiation reaction
under general circumstances, in a crystal, by using the

single photon emission rate in consecutive emissions,
corresponding to the particle’s current state.
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APPENDIX A: POSITRON WAVE FUNCTION

The general (unnormalized) solution to the Dirac equa-
tion with potential energy VðrÞ ¼ −eφðrÞ can be written as

ψðr; tÞ ¼ e−iεt
�
ϕðrÞ
χðrÞ

�
: ðA1Þ

The Dirac equation then becomes

ðεþ eφ −mÞϕðrÞ ¼ σ · p̂χðrÞ; ðA2Þ

ðεþ eφþmÞχðrÞ ¼ σ · p̂ϕðrÞ: ðA3Þ

The electron solution is then (see Ref. [28])

ψ−ðr; tÞ ¼ e−iεt
� ϕðrÞ

σ·p̂
εþeφðrÞþmϕðrÞ

�
: ðA4Þ

We then obtained an equation for ϕðrÞ by isolating χðrÞ in
Eq. (A3) and inserting it in Eq. (A2). This solution has the
property that it is well defined when ε ¼ m. Another solution
can be found by isolating ϕðrÞ in Eq. (A2) and inserting it in
(A3). However, this solution is not well defined when ε ¼ m,
and therefore one must use the negative energy solution
ε ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
¼ −εp. Therefore we have

ψðr; tÞ ¼ eiεpt
�− σ·p̂

εp−eφðrÞþm χðrÞ
χðrÞ

�
; ðA5Þ

where εp is the positive energy of the positron. The equation
for χ can now be obtained by using

ðεþ eφþmÞχðrÞ ¼ σ · p̂
1

εþ eφ −m
σ · p̂χðrÞ; ðA6Þ

which is equivalent to

ðεp − eφ −mÞχðrÞ ¼ σ · p̂
1

εp − eφþm
σ · p̂χðrÞ: ðA7Þ
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This is the same equation as the one we obtained for ϕðrÞ,
except with the sign of e changed such that, after making the
same approximations as we did in [28,29],

½p̂2 þ 2εpeφðrÞ − ðε2p −m2Þ�χðrÞ ¼ 0: ðA8Þ

We therefore make the ansatz in line with the usual approach
(the sign on the momenta is changed):

χðrÞ ¼ sIþðyÞe−iðpxxþpzzÞ; ðA9Þ

IþðyÞ ¼ e−ikBy
X
j

cje−ijk0y: ðA10Þ

Then

ψðr; tÞ ¼ eið−pxx−pzzþεptÞ
� σ·p

εpþm sI
þðyÞ

sIþðyÞ

�
; ðA11Þ

with p ¼ ðpx þ qφðrÞ; i d
dy ; pzÞ. Inserting IþðyÞ, this be-

comes

ψðr;tÞ¼eið−pxx−pzzþεptÞ
X
j

cje−iðkBþjk0Þy
� σ·p

εpþms

s

�
; ðA12Þ

with p ¼ ðpx þ En −
ðjk0þkBÞ2

2ε ; jk0 þ kB; pzÞ.

APPENDIX B: POSITRON MATRIX ELEMENT

Even though we consider the radiation from elec-
trons, the propagator contains terms from the positron
ψþ
p;n;sðx2Þψ̄þ

p;n;sðx1Þ. Therefore we will need to calculate

Mþ
i→v ¼ e

ffiffiffiffiffiffi
4π

2ω

r
1

2
ffiffiffiffiffiffiffiffi
εvεi

p
X
j;l

c�l;vcj;iS̄
þ
l;v=ϵ

�S−j;i ðB1Þ

and Mþ
v→f so we need

−
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

εi þm
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εv þm
p S̄þv =ϵ�S−i

¼
��

sTv
σ·pv
εvþm sTv

��
0 σ · ϵ�

σ · ϵ� 0

�� si
σ·pi
εiþm si

��

¼
��

sTv
σ·pv
εvþm sTv

��
σ · ϵ� σ·pi

εiþm si

σ · ϵ�si

��

¼ sTv

�
σ · pv
εv þm

σ · ϵ�
σ · pi
εi þm

þ σ · ϵ�
�
si

¼ sTv

�
1

ðεi þmÞðεv þmÞ ðσ · pvÞðσ · ϵ�Þðσ · piÞ þ σ · ϵ�
�
si

¼ sTv

�
1

ðεi þmÞðεv þmÞ ðσ · pvÞðϵ� · pi þ iσ · ½ϵ� × pi�Þ þ σ · ϵ�
�
si

¼ sTv

�
1

ðεi þmÞðεv þmÞ fðσ · pvÞðϵ� · piÞ þ iðσ · pvÞσ · ½ϵ� × pi�g þ σ · ϵ�
�
si

¼ sTv

�
1

ðεi þmÞðεv þmÞ fðσ · pvÞðϵ� · piÞ þ i½pv · ðϵ� × piÞ þ iσ · ðpv × ðϵ� × piÞÞ�g þ σ · ϵ�
�
si

¼ sTv

�
1

ðεi þmÞðεv þmÞ fðσ · pvÞðϵ� · piÞ þ ipv · ðϵ� × piÞ − σ · ðpv × ðϵ� × piÞÞg þ σ · ϵ�
�
si

¼ sTv ½iCþ σ · D�si: ðB2Þ
Then

C ¼ pv · ðϵ� × piÞ
ðεi þmÞðεv þmÞ ¼

ϵ� · ðpi × pvÞ
ðεi þmÞðεv þmÞ ; ðB3Þ

D ¼ ðϵ� · piÞpv − pv × ðϵ� × piÞ
ðεi þmÞðεv þmÞ þ ϵ�: ðB4Þ

Here we may use that pv × ðϵ� × piÞ ¼ ϵ�ðpi · pvÞ − piðpv · ϵ�Þ, and so
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D ¼ ðϵ� · piÞpv þ piðpv · ϵ�Þ
ðεi þmÞðεv þmÞ þ ϵ�

�
1 −

pi · pv
ðεi þmÞðεv þmÞ

�
: ðB5Þ

Now consider the other part for Mþ
v→fðk; ϵÞ,

−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εf þm
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εv þm
p S̄−f =ϵ

�Sþv ¼
�


sTf sTf
σ·pf
εfþm

�� 0 σ · ϵ�

σ · ϵ� 0

�� σ·pv
εvþm sv
sv

��

¼
�


sTf sTf
σ·pf
εfþm

�� σ · ϵ�sv
σ · ϵ� σ·pv

εvþm sv

��

¼ sTf

�
σ · ϵ� þ σ · pf

εf þm
σ · ϵ�

σ · pv
εv þm

�
sv: ðB6Þ

This is the same as before except with i → v and v → f. And now we want the quantity

X
j;l

c�l;vcj;iS̄
þ
l;v=ϵ

�S−j;ie
iðkB;vþkB;i−kyÞyeiðjþlÞk0y

¼ 2πδðkB;v þ kB;i − ky − nþB;1k0Þ
X
j

c�−ðnþB;1þjÞ;vcj;iS̄
þ
−ðnþB;1þjÞ;v=ϵ

�S−j;i; ðB7Þ

where now nþB;1 is chosen such that kB;v ¼ ky − kB;i þ
nþB;1k0 is in the first brillouin zone. Note that −kB;v ¼
kB;i − ky − nþB;1k0 for which we already have the solution,
called k−B;v ¼ kB;i − ky − n−B;1k0, and therefore

kB;v ¼ −k−B;v þ k0 ¼ −kB;i þ ky þ ðn−B;1 þ 1Þk0; ðB8Þ

therefore nþB;1 ¼ n−B;1 þ 1. For the Mþ
v→f term one obtains

that kB;f ¼ −kB;v − ky − nþB;2k0, and for this term one has
that nþB;2 ¼ n−B;2 − 1, in terms of the n−B;2 value for the
corresponding electron term in the propagator. The l index
is given by l ¼ nþB;2 − j.

APPENDIX C: SPIN INTERFERENCE

We need to consider jPsv M2M1j2; in particular we
would like to show that Reð½M2;↑M1;↑�½M2;↓M1;↓�†Þ is 0,
where the arrows denote the spin state of the virtual
particle. This we may rearrange and consider therefore
the product M†

2;↓M2;↑. Now we may use that M can be
written as

M2 ¼ e

ffiffiffiffiffiffi
4π

2ω

r
1

2
ffiffiffiffiffiffiffiffi
εfεi

p
X
j

c�nB;2þj;fcj;vS̄nB;2þj;f=ϵ�Sj;v

¼ −e
ffiffiffiffiffiffi
4π

2ω

r
1

2
ffiffiffiffiffiffiffiffi
εfεi

p
X
j

c�nB;2þj;fcj;vs
†
f

× ½ϵ� · AnB;2þj;j þ iBnB;2þj;j · σ�sv: ðC1Þ

Now for simplicity we define

Ã ¼ −e
ffiffiffiffiffiffi
4π

2ω

r
1

2
ffiffiffiffiffiffiffiffi
εfεi

p
X
j

c�nB;2þj;fcj;vAnB;2þj;j; ðC2Þ

B̃ ¼ −e
ffiffiffiffiffiffi
4π

2ω

r
1

2
ffiffiffiffiffiffiffiffi
εfεi

p
X
j

c�nB;2þj;fcj;vBnB;2þj;j; ðC3Þ

and then we have that

M2 ¼ s†f½ϵ� · Ãþ iB̃ · σ�sv: ðC4Þ
Therefore

M†
2;↓M2;↑ ¼ s†↓½ϵ� · Ãþ iB̃ · σ�†sfs†f½ϵ� · Ãþ iB̃ · σ�s↑:

ðC5Þ
We assume that ϵ� ¼ ϵ, which is possible if we choose
linear polarization as our basis, and we will perform the
summation of final spins. Therefore sfs

†
f is the identity

M†
2;↓M2;↑ ¼ s†↓½ϵ · Ã − iB̃ · σ�½ϵ · Ãþ iB̃ · σ�s↑

¼ s†↓½ðϵ · ÃÞ2 þ B̃2�s↑
¼ 0; ðC6Þ

where we used that B̃ is a real vector. For the other term,
M1;↑M

†
1;↓, the same can be done, and here the argument

hinges upon summation over initial spins. Therefore, if a
summation is carried out over either initial or final spins,
the spin interference terms will be 0.
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