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The perturbative description of an electron propagating in a plane wave background is developed and
loop corrections analyzed. The ultraviolet divergences and associated renormalization are studied using
the sideband framework within which the multiplicative form of the corrections becomes manifest.
An additional renormalization beyond that usually expected is identified and interpreted as a loop
correction to the background induced mass term. Results for the strong field sector are conjectured.
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I. INTRODUCTION

The Volkov solution [1] for an electron in a plane wave
background is one of the key theoretical building blocks
underpinning our understanding of how matter interacts
with a laser. As quantum effects become significant, strong
field techniques from quantum electrodynamics (QED) are
required. Understanding potential new physics in this high
intensity regime is of clear importance and, in turn, should
influence plans for future facilities and experiments.
The Volkov solution has been extensively studied over

the years and applied to a wide class of problems in both
linearly and circularly polarized backgrounds, see e.g.,
[2–15]. Working in the full elliptic class of polarizations
allows for a much clearer description of these systems
and helps clarify some of their physical content [16].
In particular, this more general approach shows that the
laser induced mass shift is actually independent of the
eccentricity of the background.
Loop corrections in a laser background have been looked

at several times, as e.g., in [17–22]. Unitarity arguments are
often used to directly link loop corrections to effective cross
sections. It has been argued, see e.g., [23], that the laser
background has no impact on the renormalization of the
theory. To have confidence in this result, it is important to
probe the loop structures and associated renormalization of
the theory in a variety of ways. In this paper we will do this
by taking a weak field perspective which has the advantage
that standard perturbative techniques can be directly applied.
The propagation of an electron in a laser background is

often denoted by a double line. This notation represents the
inclusion of multiple interactions with the laser. A physical

way to think of this is that the double line incorporates all
degenerate processes, i.e., the emission and absorption of
photons indistinguishable from the background. This is
reminiscent of the Lee-Nauenberg approach to the infrared
problem [24], see also [25].
We take the double line to mean the two point function

for the Volkov field in the plane wave background, see
Fig. 1. We will, in this paper, make this link precise in terms
of emission into and absorption from the laser. Throughout
this paper, we will distinguish between absorption (dashed
lines coming in from the left) and emission (dashed lines
going out to the right). The incorporation of loops in the
weak field limit will then follow using standard perturba-
tive methods. This will then allow us to better understand
the way in which loops are added to the double line, see
Fig. 2. As we shall see, clarifying the links between these
descriptions of matter propagating in a laser will reveal
important points about the renormalization of such charges.
In this paper we will study the renormalization of the

theory describing an electron propagating in a plane wave
background. This analysis will start in the weak intensity
regime and therewewill calculate the ultraviolet divergences

FIG. 1. Double line representation of an electron propagating in
a background at tree level.

FIG. 2. One-loop correction to the double line representation.
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that arise at one loop. Our loop calculations will be in the
Feynman gauge. Polarization effectswill be clarified through
working with the full elliptic class at all times. As well as the
naively expected ultraviolet structures, which are indepen-
dent of the background, we will identify an additional
correction to the laser induced mass shift. We show through
explicit calculations of higher order laser interactions that
they are renormalized by the same additional correction, and
conjecture that this is universal for this class of backgrounds.
Renormalization is most easily studied within a momentum
space description of the theory, so we conclude with a
discussion on how a consistent momentum space language
can be applied to this systemwhere translation invariance has
been broken by the background field, and conjecture all
orders results.

II. THE PERTURBATIVE SETUP

An electron propagating through a laser can absorb
multiple photons from the background. Additionally, such
an electron can emit photons which are degenerate with,
and indistinguishable from, the background. Both types of
interactions are, as we shall discuss, required for the double
line description. If, however, the electron emits a photon
that is distinguishable from the background then this
corresponds to nonlinear Compton scattering rather than
propagation.
We will argue that summing in a suitable way over all

such degeneracies leads to the Volkov description [1] of an
electron propagating through such a background. What is
more, this will allow for a direct route to the incorporation
of loop corrections in such processes and hence the
renormalization of the theory.
The momentum of an electron in a plane wave back-

ground can be decomposed into some initial momentum p,
along with multiples of the null momentum k character-
izing the background. We denote by Pn the resulting
propagator after n net laser absorptions:

Pn ¼
i

pþ n=k −mþ iϵ
: ð1Þ

Note that in terms of the overall momentum for the
electron, we view an emission as a negative absorption
from the laser. So if there were two absorptions and one
emission, say, then n ¼ 1. This compact notation for the
propagators will provide the building blocks for our
description of both tree and loop corrected propagation.
For example, an additional absorption by the electron is

described by the incoming interaction shown in Fig. 3,
where the absorption factor A between the propagators is
given by

A ¼ −i =A: ð2Þ
Here Aμ is essentially the coupling, e, times the Fourier
component of the classical potential for an elliptically

polarized plane wave. We will expand on this terminology
later, but see also [16] for more details on this formalism
and the connection to the Stokes’ parameter description of
the background.
The associated emission of a photon degenerate with the

background is described by the outgoing process given in
Fig. 4, where the emission factor E is given by

E ¼ −i =A�: ð3Þ

It is helpful here to clarify the notation being used. By
=A� we mean the slashed version of the conjugated field, so
=A� ¼ A�

μγ
μ. This is a useful shorthand for the unambiguous

expression for the dual field,

=̄A ≔ γ0 =A†γ0 ≡A�
μγ

μ: ð4Þ

Note that acting on the propagators we have the duality
relation P̄n ¼ −Pn and on the absorption term Ā ¼ −E. The
duality transformation needs to respect the time ordering
implicit in the iϵ prescription. This means that formally we
should take ϵ̄ ¼ −ϵ. Overall, the processes in Figs. 3 and 4
are (anti)dual to each other in the sense that

Pnþ1APn ¼ −PnEPnþ1: ð5Þ

We now turn to the one-loop corrections to the basic
interactions between the matter and its background. For the
absorption process in Fig. 3 we have, at one loop, the three
diagrams in Fig. 5, and, for the emission process of Fig. 4,
we get the contributions in Fig. 6. Note that the central term
for each row here has the structure of a vertex correction,
while the other terms are self-energies for the external legs.
So it is not immediately clear that grouping them together

FIG. 3. Single absorption from the background.

FIG. 4. Single emission into the background.

FIG. 5. Single absorption with a loop correction.
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in this way leads to a multiplicative renormalization of the
tree level processes in Figs. 3 and 4.
To clarify how renormalization works in this context, we

first need to recall how sideband structures emerge from the
tree level diagrams in Figs. 3 and 4. To that end, we note
that the absorption process of Fig. 3 can be written as the
difference of two propagators:

Pnþ1APn ¼ IPn − Pnþ1I; ð6Þ

where we define the “In” term as

I ¼ 2p ·Aþ =k =A
2p · k

: ð7Þ

The simple identity (6) lies at the heart of the sideband
description of this propagation that was introduced in [2].
At its heart, it is simply a partial fraction expansion which
relates the products of propagators to their sums.
The corresponding emission version of this sideband

identity can be easily deduced by using the duality trans-
formation (5) and (6) to give

PnEPnþ1 ¼ −Pnþ1APn ¼ PnO − OPnþ1; ð8Þ

where the “Out” insertion is given by

O ≔ Ī ¼ 2p ·A� − =k =A�

2p · k
: ð9Þ

The matrix nature of the I and O terms means that we must
be careful with the ordering in (6) and (8). However, due to
the null nature of =k and the fact that it commutes with both
=A and =A�, we find that the In and Out terms commute:

½I;O� ¼ 0: ð10Þ

Having clarified the tree level structures in Figs. 3 and 4, we
can now analyze in much the sameway the loop corrections
of Figs. 5 and 6.
The ultraviolet poles related to the self-energy contri-

butions of Fig. 5 can be readily calculated by using standard
results from QED, see e.g., chapter 18 of [26]. Working in
the Feynman gauge, and using dimensional regularization
in D ¼ 4 − 2ε dimensions, we have for incoming momen-
tum pþ nk the contribution described in Fig. 7. After some
simplifications of the gamma matrices, we have for the
ultraviolet divergent structure

Σn ¼ −e2μ2ε
Z
UV

dDs
ð2πÞD

ð2 −DÞ=sþDm
ðs − ðpþ nkÞÞ2ðs2 −m2Þ ; ð11Þ

where s is the four-momentum of the electron in the loop so
that the photon in the loop has four-momentum pþ nk − s.
Retaining only the ultraviolet pole gives

Σn ¼ ði3mþ P−1n ÞδUV: ð12Þ

The notation here is that, from (1), P−1n ¼ð−iÞðpþn=k−mÞ
while the ultraviolet pole is given by

δUV ¼ −
e2

ð4πÞ2
1

ε
: ð13Þ

Substituting the self-energy expression (12) into Fig. 7
gives the familiar double pole mass term and a single pole.
So the first and third diagrams in Fig. 5 become

Pnþ1Σnþ1Pnþ1APn þ Pnþ1APnΣnPn

¼ IPnΣnPn − Pnþ1Σnþ1Pnþ1Iþ Pnþ1Σnþ1IPn − Pnþ1IΣnPn:

ð14Þ

The first two terms on the right-hand side here are the
sideband structures but the final two include a mixture of
momenta.
The vertex correction term in Fig. 5 is still to be included.

The corresponding Feynman rule for this is given in Fig. 8.
From this we have

Σin ¼ −e2μ2ε
Z
UV

dDs
ð2πÞD

γρð=sþ =kþmÞ =Að=sþmÞγτ
ððsþ kÞ2 −m2Þðs2 −m2Þ

×
gρτ

ðs − ðpþ nkÞÞ2 : ð15Þ

Retaining only the ultraviolet divergent structures, which
can easily be recognized by power counting, we find

Σin ¼ i =AδUV ¼ −AδUV: ð16Þ

Here we recognize the tree level absorption factor of Fig. 3
multiplied by the above ultraviolet pole. We emphasise

FIG. 6. Single emission with a loop correction.
FIG. 7. One-loop self-energy correction to the propagator.

FIG. 8. The one-loop absorption vertex correction to the
propagator.
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that, in the last step, the e2 factor from the loop is in the δUV
term, while the background coupling factor of e has been
absorbed into the definitions of =A and A.
This simple relation for the ultraviolet structure of this

vertex term means that we can exploit the sideband relation
(6) to rewrite

Σin ¼ IðδUVP−1n Þ − ðδUVP−1nþ1ÞI;
¼ IΣn − Σnþ1I: ð17Þ

Note that the scalar mass terms canceled in the last step.
The second diagram in Fig. 5 can thus be written as

Pnþ1ΣinPn ¼ Pnþ1IΣnPn − Pnþ1Σnþ1IPn: ð18Þ

We can now write the sum of the three diagrams in
Fig. 5 as

Pnþ1Σnþ1Pnþ1APn þ Pnþ1ΣinPn þ Pnþ1APnΣnPn

¼ IPnΣnPn − Pnþ1Σnþ1Pnþ1I: ð19Þ

Note that all of the nonsideband structures cancel. What
remains has exactly the same structure as the sideband
description of the tree level result (6), but with the expected
self-energy corrections to the sideband propagators. We
thus see the attractive result that the loop corrections to (6)
generate the normal one-loop propagator corrections to the
tree level propagators in the sidebands:

IðPn þ PnΣnPnÞ − ðPnþ1 þ Pnþ1Σnþ1Pnþ1ÞI: ð20Þ

The interpretation of this result is then direct: it will lead to
the sidebands requiring the standard mass and wave
function renormalizations.
The emission process of Fig. 4, and its loop corrections

in Fig. 6, then lead to the sidebands described in (8) being
renormalized in a similar way. The key out-going vertex
identity, dual to (18), is that

PnΣoutPnþ1 ¼ PnΣnOPnþ1 − PnOΣnþ1Pnþ1; ð21Þ

where we have used Σ̄in ¼ −Σout and Σ̄n ¼ −Σn. This then
results in the loop corrections to the sidebands (8) being
given by

ðPn þ PnΣnPnÞO − OðPnþ1 þ Pnþ1Σnþ1Pnþ1Þ: ð22Þ

This we see is precisely (minus) the dual of (20) as we
would naively expect from the tree level relation (5). Again,
the standard mass and wave-function renormalizations will
suffice.

III. HIGHER ORDER BACKGROUND
CORRECTIONS

Having understood the structure of the loop correction to
a single absorption or emission of a laser photon by the
electron, we now want to calculate the ultraviolet diver-
gences when multiple photons are absorbed or emitted. We
shall consider the case of both absorption and emission in
the following section.
The first thing to note is that loops spanning more than

one laser absorption or emission, as depicted in Fig. 9, are
all finite in the ultraviolet regime by simple power counting.
This means that when, e.g., we consider the tree level

double absorption process, where the incoming propagator
Pn absorbs two additional laser photons, as in Fig. 10, then
we need only to consider the loop corrections straddling
no more than one background vertex, as shown in Fig. 11.
In this we again see a mixture of self-energy and single
vertex corrections.
In order to understand and interpret these corrections, we

need to first identify the sideband structures in the tree level
term shown in Fig. 10. To that end, we write this as

Pnþ2APnþ1APn ¼ Pnþ2APnþ1P−1nþ1Pnþ1APn: ð23Þ

This allows us to use the absorption relation (6) twice,
resulting in four terms:

Pnþ2APnþ1APn ¼ Pnþ2I2 − IPnþ1Iþ I2Pn − Pnþ2IP−1nþ1IPn:

ð24Þ

A key identity needed here, which is straightforward to
show, is that

FIG. 9. Loop spanning multiple laser interactions.

FIG. 10. Tree level double absorption process.

FIG. 11. Double absorption process with a loop correction.
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IP−1nþ1I ¼
�
1

2
I2 þ 1

2
v

�
P−1n þ P−1nþ2

�
1

2
I2 −

1

2
v

�
; ð25Þ

where

v ≔
A ·A
2p · k

: ð26Þ

Using this identity in (24), we see that the sidebands for the
double absorption process depicted in Fig. 10 are given by

Pnþ2APnþ1APn ¼
�
1

2
I2 −

1

2
v

�
Pn − IPnþ1I

þ Pnþ2

�
1

2
I2 þ 1

2
v

�
: ð27Þ

We will now show that the one-loop diagrams in Fig. 11
generate the expected, ultraviolet one-loop corrections to
these three sidebands.
The loop correction can be evaluated by recognizing in

the diagrams of Fig. 11 a connection to the earlier loop
processes evaluated in the previous section. The first three
diagrams represent an initial absorption process followed
by the loop corrections of Fig. 5, with shifted initial
momentum. In a similar way, the final three diagrams in
Fig. 11 can be interpreted as the loop corrections of Fig. 5,
followed immediately by an absorption process. These two
simplifications double count the middle process, Fig. 11c,
so this needs to be subtracted from the combined sum.
Following this reduction prescription, the diagrams in

Fig. 11 can then be evaluated using the loop results (20) and
the sideband identity (6). This results in terms containing
combinations of the form IΣnI which, from the self-energy
extension to (25), can be evaluated by using the identity

IΣnþ1I ¼
�
1

2
I2 þ 1

2
v

�
Σn þ Σnþ2

�
1

2
I2 −

1

2
v

�
: ð28Þ

From this we rapidly arrive at the sideband structure of the
one-loop corrections of Fig. 11 to the double absorption
process shown in Fig. 10. Combined with the tree level
result, this yields
�
1

2
I2 −

1

2
v

�
ðPn þ PnΣnPnÞ − IðPnþ1 þ Pnþ1Σnþ1Pnþ1ÞI

þ ðPnþ2 þ Pnþ2Σnþ2Pnþ2Þ
�
1

2
I2 þ 1

2
v

�
: ð29Þ

Again we see that the sidebands pick up the expected loop
corrections.
The double emission process can be evaluated in a

similar fashion, or more directly by taking the dual of the
double absorption process. The result is that the loop
corrections to the double emission processes described
in Fig. 12 are given by the sideband terms:

ðPnþPnΣnPnÞ
�
1

2
O2−

1

2
v�
�
−OðPnþ1þPnþ1Σnþ1Pnþ1ÞO

þ
�
1

2
O2þ1

2
v�
�
ðPnþ2þPnþ2Σnþ2Pnþ2Þ; ð30Þ

where now

v� ≔
A� ·A�

2p · k
: ð31Þ

An important point to note here is that the terms v and v�
induced by the background do not acquire loop corrections
and hence are not renormalized at one loop. We also note
that both v and v� are polarization dependent and vanish for
a circularly polarized laser, see [16].

IV. ABSORPTION AND EMISSION FROM
THE BACKGROUND

It is well known that the laser induced mass shift is only
generated by processes where there is both emission and
absorption from the laser. This is understood at all orders in
the background field and is known to be polarization
independent, see [16] and references therein. Here we will
calculate the one-loop corrections to this important process
and see the necessity for a new renormalization.
There are two contributions to the mixed absorption and

emission process at the lowest order in the background
interactions, as summarized in Fig. 13. We expect from [14]
that these diagrams will generate three sidebands and the
central one will involve a double pole corresponding to the
laser induced mass shift.
If the incoming momentum is again pþ nk, then these

diagrams are given by

PnEPnþ1APn þ PnAPn−1EPn: ð32Þ

Note that each of these contributions is unchanged (up to a
sign) by the duality transformations introduced earlier.
The terms in (32) can be evaluated by again inserting

appropriate inverse propagators so that both the absorption
and emission identities, (6) and (8), can be used. From this
we quickly find that

FIG. 13. Tree level absorption and emission corrections.

FIG. 12. Tree level double emission process.
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PnEPnþ1APn þ PnAPn−1EPn

¼ IPn−1O − 2OIPn − Pn2OIþ OPnþ1I

þ PnðOP−1nþ1Iþ IP−1n−1OÞPn: ð33Þ

The first four terms in this involve the expected sidebands
for these processes, but the coefficients are not as expected.
The final term needs more work to be interpreted, but
should correct these coefficients.
The structure in the brackets in the last equation is

analogous to the double absorption contribution seen
earlier in (25). The key identity now is that

OP−1nþ1Iþ IP−1n−1O ¼ OIP−1n þ P−1n OI − i =M; ð34Þ

where we define the important quantity

Mμ ≔ −
A� ·A
p · k

kμ: ð35Þ

Note that =M ¼ =̄M.
Using (34) we find that the sidebands for this process are

given at this order by

PnEPnþ1APn þ PnAPn−1EPn

¼ IPn−1O − OIPn − PnOI − Pni =MPn þ OPnþ1I: ð36Þ

Here we recognize the expected three sidebands, Pn, Pn�1,
and the double pole. These terms must be interpreted as
corrections, induced by the laser, to the free propagator in
the central sideband, Pn.
Since =M is in the double pole term for the central

sideband, we can relate it to the more familiar polarization
independent effective mass, m�, induced by the back-
ground. Following the discussion in [16], we can write
at this order in the laser background, Pn − Pni =MPn as

i
pþ n=k −mþ iϵ

þ 1

pþ n=k −mþ iϵ
=M

i
pþ n=k −mþ iϵ

≈
i

pþ n=k − ðmþ =MÞ þ iϵ
;

¼ iðpþ n=kþm − =MÞ
ðpþ nkÞ2 −m2� þ iϵ

; ð37Þ

where

m2� ¼ m2 þ p =Mþ =Mp ¼ m2 − 2A� ·A: ð38Þ

Note that the last result is often rewritten as m2� ¼ m2 −
e2a2 where −a2 > 0 is the amplitude squared of the
background.
We now want to calculate the ultraviolet loop corrections

to these processes. They are given by the five diagrams in
Fig. 14 and the corresponding terms in Fig. 15. Again we

stress that since we are only calculating the ultraviolet
divergences, loops straddling two laser linesmay be ignored.
The strategy for evaluating these diagrams mirrors that

seen before: we can identify subterms that have already
been evaluated, then use the loop generalization of the
identity (34), which is

OΣnþ1Iþ IΣn−1O ¼ OIΣn þ ΣnOIþ i=ΣM; ð39Þ

where we have defined the loop correction to the final term
in (34):

=ΣM ¼ e2

ð4πÞ2
1

ε
=M: ð40Þ

From this we find that the loop corrections to the central
sidebands (36) are given by (ignoring higher order terms in
the coupling)

IðPn−1 þ Pn−1Σn−1Pn−1ÞO
− OIðPn þ PnΣnPnÞ − ðPn þ PnΣnPnÞOI
− ðPn þ PnΣnPnÞið =Mþ =ΣMÞðPn þ PnΣnPnÞ
þ OðPnþ1 þ Pnþ1Σnþ1Pnþ1ÞI: ð41Þ

We have written it in this way to bring out the multiplicative
structure of these corrections at this order. Terms without a
Σ are tree level, terms with one Σ are our one-loop results,
while terms with products of two or more Σ factors remain
to be verified in further work as the calculations reported
here are only to one loop.
Written in this way, we see a new structure in the third

line of the loop corrections: Pnð−i=ΣMÞPn. This, as we will
discuss in more detail later, corresponds to a new renorm-
alization being needed in this theory. This will be a
renormalization of the laser induced mass shift, =M.
This last result is unexpected and requires further testing.

To do this we now consider a process that is higher order in
the background interaction and that also generates a laser
induced mass shift at tree level. To be concrete, we will
consider two absorptions and one emission.
This is an interesting process as the mixture of absorp-

tions and an emission will induce both A� ·A and A ·A

FIG. 14. Absorption then emission with a loop correction.

FIG. 15. Emission then absorption with a loop correction.
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terms, and it is not a priori clear if there will be interference
between loop corrections. The tree level process of interest
in this respect is thus given by the three processes in
Fig. 16.
We now expect four sidebands with propagators Pnþ2,

Pnþ1, Pn and Pn−1. There will also be a mixture of the v
term seen in Fig. 10 and the mass term found in the central

band of Fig. 13. The ultraviolet loop corrections will now
generate 21 graphs. The strategy for evaluating these is
again to group terms so that we get a mixture of previously
evaluated subterms and absorption or emission factors
analogous to (28) and (34). The end result of this gives
the loop corrections summarized within the full (tree level
and loop) sideband structures:

�
1

2
I2 −

1

2
v

�
ðPn−1 þ Pn−1Σn−1Pn−1ÞO − O

�
1

2
I2 −

1

2
v

�
ðPn þ PnΣnPnÞ − IðPn þ PnΣnPnÞOI

− IðPn þ PnΣnPnÞið =Mþ =ΣMÞðPn þ PnΣnPnÞ þ ðPnþ1 þ Pnþ1Σnþ1Pnþ1ÞO
�
1

2
I2 þ 1

2
v

�

þ OIðPnþ1 þ Pnþ1Σnþ1Pnþ1ÞIþ ðPnþ1 þ Pnþ1Σnþ1Pnþ1Þið =Mþ =ΣMÞðPnþ1 þ Pnþ1Σnþ1Pnþ1ÞI

− OðPnþ2 þ Pnþ2Σnþ2Pnþ2Þ
�
1

2
I2 þ 1

2
v

�
: ð42Þ

Here we see clearly the same structures in these loop
corrections as encountered earlier in (20), (22), (29), (30)
and (41). From this result we can immediately deduce the
corresponding dual process involving two emissions and
just one absorption from the background. We see that there
is no interference between the mass terms and the v�
insertions.
To summarize, these detailed perturbative investigations

show that the loop corrections to the propagation of an
electron in a plane wave background preserve the sideband
structures and, through that, induce the expected one-loop
corrections to the normalization of the propagators, includ-
ing the vacuummass shift. Unexpectedly, we have seen that
the laser induced mass also has an ultraviolet correction.
Having exposed and isolated these loop structures, we now
address the (minimal) renormalization needed for the
extraction of finite, physical results.

V. RENORMALIZATION

We have seen, through multiple examples, that the
sideband structure of the theory is preserved when loop
corrections are included. To understand the renormalization
of the theory, let us consider the lth sideband. For this
sideband we have seen that the loop corrections induce a
replacement,

Pl → Pl þ PlΣlPl; ð43Þ

together with an additional correction to the background
induced, mass shift

−i =M → −ið =Mþ =ΣMÞ: ð44Þ

The ultraviolet divergences in Σl and =ΣM, see (12) and
(40), signal the need for renormalization. This we now
introduce by shifting from bare to renormalized quantities.
It is useful here to refine our notation, introduced in

Eq. (1), for the sideband propagator to include both normal
and induced mass terms, as in (37). We thus define

Plðm;MÞ ≔ i
pþ l=k − ðmþ =MÞ þ iϵ

: ð45Þ

Then the loop corrections, (43) and (44), can be written
more succinctly as

Plðm;MÞ→Plðm;MÞþPlðm;MÞðΣl− i=ΣMÞPlðm;MÞ:
ð46Þ

To now renormalize this sector of the theory, we follow the
usual prescription whereby we first interpret these results as
arising from working with the bare Volkov fields and
masses: ψB

V, m
B and MB

μ . Then we define the physical,
renormalized quantities ψV, m and Mμ by

ψB
V ≔ μ−ε

ffiffiffiffiffi
Z2

p
ψV ¼ μ−ε

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p
ψV; ð47Þ

mB ≔ Zmm ¼ ð1þ δmÞm ð48Þ

and

FIG. 16. Two absorptions and one emission at tree level.
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MB
μ ≔ ZMMμ ¼ ð1þ δMÞMμ: ð49Þ

These counterterms are then determined by the requirement
that when we work with renormalized quantities, we obtain
finite results. Note that the mass scale μ−ε in the wave
function renormalization factor can be neglected in the
leading order analysis presented here.
The full, renormalized sideband propagator at this order

is then, from (46),

Z−1
2 PlðmB;MBÞ þ Plðm;MÞðΣl − i=ΣMÞPlðm;MÞ:

ð50Þ

In the second term of this expression the presence of the
loop corrections means that renormalized quantities can be
immediately used when working with the leading order
loop corrections. In the first term, though, we are still
explicitly working with the bare fields.
These bare quantities can be expanded to give

Z−1
2 PlðmB;MBÞ
¼ ð1 − δ2ÞPlðð1þ δmÞm; ð1þ δMÞMÞ
¼ Plðm;MÞ þ Plðm;MÞ
× ð−P−1l δ2 − iðmδm þ =MδMÞÞPlðm;MÞ: ð51Þ

Thus the renormalized sideband propagator, (50), becomes

Plðm;MÞ þ Plðm;MÞΣR
lPlðm;MÞ; ð52Þ

where

ΣR
l ¼ Σl − P−1l δ2 − iðmδm þ =ΣM þ =MδMÞ: ð53Þ

From this, and Eqs. (12) and (40), we see that, inde-
pendent of the sideband being considered, the minimal
renormalization prescription corresponds to the familiar
results that

δ2 ¼ δUV and δm ¼ 3δUV; ð54Þ

along with the additional requirement that

δM ¼ δUV; ð55Þ

where δUV was defined in Eq. (13). Our higher order
calculations, in terms of absorptions and emissions, support
the expectation that the renormalization prescriptions (54)
and (55) hold also in the strong field sector. We will now
recall how the sideband formulation can be extended to all
such orders and, through this, conjecture the form of the one-
loop corrections to the full Volkov description of an electron
propagating through a plane wave, laser background.

VI. THE FULL VOLKOV DESCRIPTION
AT ONE LOOP

The importance of the Volkov solution for the tree level
results is that the sideband description, discussed above in
the perturbative framework, is known to all orders in the
background interaction for this wide class of polarizations,
see [16]. We now want to develop the link between the
perturbative loop structures presented here and that all
orders formalism. In doing so we shall see that the
perturbative results actually motivate a significant simpli-
fication to the all orders description. Armed with that result,
we shall be able to conjecture a compact expression for the
leading one-loop corrections at all orders in the intensity of
the background.
The exact tree level solution for the two point function

describing an electron propagating in an elliptically polar-
ized background can be written [see Eq. (44) in [16] and
discussions therein] as the usual momentum space inte-
gration factors times the double sum over r and s of the
following sideband structures:

eirk·x
�
JτsþrðpÞþ

=k =A
2p ·k

Jτsþrþ1ðpÞþ
=k=A�
2p ·k

Jτsþr−1ðpÞ
�

×Psðm;MÞ
�
Jτ�s ðpÞ−

=k=A�
2p ·k

Jτ�sþ1ðpÞ−
=k =A
2p ·k

Jτ�s−1ðpÞ
�
:

ð56Þ

Unpicking (56) we see that, as we sum over s, the
sideband propagator Psðm;MÞ is sandwiched between
factors built out of (generalized) Bessel functions, JτlðpÞ,
where the parameter l can be various combinations of the
summation parameters r and s. These Bessel functions are
also labeled by the eccentricity parameter τ characterizing
the polarization of the background in the elliptic class. The
precise definition of these Bessel functions is that

JτlðpÞ ≔ Jlðω1; v;ω2Þ

¼ 1

2π

Z
π

−π
dθeiðω1 sin θþv sin 2θþω2 cos θÞe−ilθ; ð57Þ

where the eccentricity information is now encoded in the
real parameters ω1, v and ω2. The connection with the
complex vector parametersA andA�, introduced in (2) and
(3), is seen in Eq. (26) for v, and the definitions

ω1 ¼ −
�
p ·A
p · k

þ p ·A�

p · k

�
and

ω2 ¼ −i
�
p ·A
p · k

−
p ·A�

p · k

�
: ð58Þ

The fact that v is real is perhaps surprising and seems at
odds with our effort, as in (31), to distinguish typographi-
cally between v and v�. However, this was a useful
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bookkeeping device to keep track of the duality structures
seen earlier, and one that we will return to below.
From the perturbative perspective, one of the most

striking and immediate things to note about the all orders
result (56) is the absence of the variables that were the
building blocks in the description developed in this paper.
In particular, the In and Out terms, (7) and (9), seem to be
absent.
Give the central role played by these terms in our

perturbative analysis, it seems logical to try to rewrite
the all orders result in terms of them. To this end, we make
the change of variables ω1 → Ω1 and ω2 → Ω2, with

Ω1 ¼ ω1 −
=k =A − =k=A�
2p · k

¼ −ðIþ OÞ ð59Þ

and

Ω2 ¼ ω2 − i
=k =Aþ =k=A�
2p · k

¼ −iðI − OÞ: ð60Þ

Note that the reality requirements on ω1 and ω2 are now
replaced by the duality result that Ω̄1 ¼ Ω1 and Ω̄2 ¼ Ω2.
The trivial commutativity of ω1 and ω2 is now the non-
trivial matrix result that Ω1Ω2 ¼ Ω2Ω1, which is ensured
by the null properties of the background field.
These commutativity and duality relations enable us to

extend the domain of the Bessel functions defined in (57)
so that we can unambiguously write

JlðΩ1; v;Ω2Þ ≔
1

2π

Z
π

−π
dθeiðΩ1 sin θþv sin 2θþΩ2 cos θÞe−ilθ:

ð61Þ

To understand the connection between these extended
functions and the complicated pre- and postfactors in the
two point function (56), we note that the null property of
the vector k means that

eiΩ1 sin θ ¼ eiω1 sin θ

�
1 − i

=k =A − =k=A�
2p · k

sin θ

�
ð62Þ

and

eiΩ2 cos θ ¼ eiω2 cos θ

�
1þ =k =Aþ =k=A�

2p · k
cos θ

�
: ð63Þ

Hence we quickly see that

JlðΩ1; v;Ω2Þ ¼ Jlðω1; v;ω2Þ þ Jlþ1ðω1; v;ω2Þ
=k =A

2p · k

þ Jl−1ðω1; v;ω2Þ
=k =A�

2p · k
ð64Þ

and

J̄lðΩ1; v;Ω2Þ ¼ J�lðω1; v;ω2Þ − J�lþ1ðω1; v;ω2Þ
=k =A�

2p · k

− J�l−1ðω1; v;ω2Þ
=k =A

2p · k
: ð65Þ

We can thus write the two point function (56) in a much
more compact way as the sum of all terms of the form

eirk·xJsþrðΩ1; v;Ω2ÞPsðm;MÞJ̄sðΩ1; v;Ω2Þ: ð66Þ

To link this with our perturbative results, it is instructive
to consider the r ¼ −1 terms in this double sum with s
ranging from −1 to 2. Expanding the Bessel functions (61)
in terms of the In and Out representations, (59) and (60),
gives for this part of (66) the explicit sum:

e−ik·x
��

1

2
I2 −

1

2
v

�
P−1ðm;MÞO

− O
�
1

2
I2 −

1

2
v
�
P0ðm;MÞ þ IP0ðm;MÞð1 − IOÞ

þ P1ðm;MÞO
�
1

2
I2 þ 1

2
v

�
− ð1 − IOÞP1ðm;MÞI

− OP2ðm;MÞ
�
1

2
I2 þ 1

2
v

��
: ð67Þ

These terms are precisely the sum of the sidebands derived
in (6) and the tree level part of (42), both with n ¼ 0.
This identification of the momentum dependence in (67)

with perturbative structures is gratifying and hints at the
underlying logic of how to group the perturbative terms
together.
In the perturbative formulation developed here we have

not yet incorporated the fact that the laser background
breaks translational invariance. This means that our
momentum space description, where we have presented
a direct way to calculate loop corrections for the sidebands,
requires modification.
From the exact solution (56) we see that the modification

is very simple. In addition to the standard momentum space
factor e−ip·ðx−yÞ which multiplies (56), we see an eirk·x

factor which explicitly violates translation invariance. This,
though, can be exploited to organize the perturbative
discussion and will allow us to group terms consistently.
The key observation to note is that all the terms in (67)

share a common homogeneity in the absorption and
emission fields. Indeed, they all include either an absorp-
tion and no emissions, or two absorptions and one
emission. From this simple observation it follows that if
we multiply each absorption term by a factor of e−ik·x and
each emission term by eik·x, then we obtain the overall
phase factor seen in (67). In a similar way, the terms in
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Fig. 10, say, would be accompanied by a factor of e−i2k·x,
while Fig. 12 would pick up a factor of ei2k·x.
This motivates the following redefinition of the funda-

mental absorption vertex (2) by including the exponential
factor:

A ¼ −i =A → −ie−ik·x =A: ð68Þ
Similarly, we have the associated dual redefinition
E ≔ −Ā → −ieik·x =A�. Hence from (26) we see that v →
e−i2k·xv while, from (31), v� → ei2k·xv�. In terms of these
redefinitions, v and v� are not the same, so the notational
convenience used earlier now becomes a genuine distinc-
tion. It is also clear now how to combine the perturbative
terms in a physically correct manner in terms of commen-
surate powers of absorption minus emission. Note that the
mass term =M picks up no spatial dependence under this
redefinition.
Armed with this reformulation of the theory, we now

conjecture how the double line description Fig. 1 and its one-
loop corrections symbolized by Fig. 2 should be defined in
terms of the renormalized fields (47)–(49), within the
minimal subtraction scheme defined by (54) and (55). Our
conjecture is that, in terms of the renormalized masses
introduced in this paper, we have the identification summa-
rized in Fig. 17, where we have introduced the condensed
notation that JsðI∶v∶OÞ ¼ Jsð−ðIþ OÞ; v;−iðI − OÞÞ.
This result holds at the tree level to all orders, and we

have seen in this paper that, at one loop in Feynman gauge,
it also holds for the ultraviolet poles in several different
sidebands.

VII. CONCLUSIONS

In this paper we have developed a perturbative descrip-
tion of the propagation of an electron in a plane wave
background. There are two expansions here: one in the
interactions with the background and an expansion up to
one loop in perturbation theory. Each interaction with the
background generates sideband structures. We have seen
that the loop corrections maintain these sidebands. This
means that a multiplicative renormalization of the theory

can be carried out in this formulation. We have worked in
Feynman gauge and the background chosen was the full
elliptic class of polarizations to bring out any polarization
dependence.
The tree level sideband approach to charge propagation

in a laser has the advantage that, at its heart, it identifies
with each sideband a standard propagator, with momentum
shifted by some multiple of the background momentum.
These propagators are then multiplied by well-defined
terms characterizing the laser. We have carried out a weak
field expansion and explicitly calculated leading contribu-
tions to various sidebands.
Using dimensional regularization, we have calculated the

one-loop, ultraviolet divergent poles in these sideband
structures. They included multiple absorptions, multiple
emissions, and, importantly, contributions from a mixture
of absorptions and emissions. These last structures are
responsible for the background induced electron mass shift.
Our calculations have revealed that the loop corrections

to the sidebands replace the propagators by their equivalent
standard one-loop corrections. This is a minimal require-
ment for multiplicative renormalization. However, we also
found one additional ultraviolet divergent correction. This
pole is a correction to the laser induced mass shift. As this
was unexpected, we have verified that the same correction
occurs in different sidebands in the Volkov propagator.
We have seen how to renormalize these divergences in

terms of the usual one-loop renormalization without a
background, plus an additional multiplicative renormaliza-
tion of the laser induced mass shift. Inspired by the all
orders tree level description, we have been able to con-
jecture an all orders expression for the full one-loop
corrections in this class of backgrounds.
To complete this conjecture for the pole structure

requires a proof that it holds to all orders in emissions
and absorptions from the laser. A stronger form of the
conjecture involves showing that the ultraviolet finite loop
corrections, and any infrared divergences [25], are also
compatible with this structure. Finally, it is important to
study these results in other gauges.
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