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In this paper we study the use of machine learning techniques to exploit kinematic information in VH,
the production of a Higgs in association with a massive vector boson. We parametrize the effect of new
physics in terms of the standard model effective field theory (SMEFT) framework. We find that the use of a
shallow neural network allows us to dramatically increase the sensitivity to deviations in VH respect to
previous estimates. We also discuss the relation between the usual measures of performance in machine
learning, such as area under the curve or accuracy, with the more adept measure of Asimov significance.
This relation is particularly relevant when parametrizing systematic uncertainties. Our results show the
potential of incorporating machine learning techniques to the SMEFT studies using the current datasets.
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I. INTRODUCTION

The particle physics community holds high hopes of
discoveries in the Large Hadron Collider (LHC), the
machine colliding protons at the highest energies in an
Earth laboratory. Yet, after years of an intense effort
searching for new phenomena, no clear evidence of new
physics has been found.
To continue the search for new phenomena and improve

the exploitation of the LHC data, we are shifting our focus
from the low-hanging fruit, e.g., resonance searches, into
more subtle (indirect) effects of new physics. A well-
defined approach to develop the interpretation of data in
terms of indirect probes is the framework of effective field
theories [1], and in particular in the context of the standard
model effective field theory (SMEFT) [2].
In a nutshell, the SMEFT is a consistent way of exploring

new theories as deformations from the SM structures,
with a large number of possible SM deviations taken into
account.
As an example, in the SMEFT approach the Higgs

couplings to vector bosons V ¼ W, Z would be modified
in the following way

ημνgmV ⇒ ημνgmV −
2gcHW
mW

pV
μpV

ν þ… ð1Þ

which in terms of Lagrangian terms would be equivalent to
adding to the SM Lagrangian new terms suppressed by a
scale of new physics

LSM ⇒ LSM þ 2igcHW
m2

W
½DμH†T2kDνH�Wk

μν þ… ð2Þ

where H is the Higgs SUð2Þ doublet and Wk is the
electroweak gauge boson triplet.
One could trace the ultimate origin of these deformations

to many different types of new physics, just too heavy to be
discovered directly at the LHC. For example, the defor-
mation (aka Wilson coefficient) cHW could be the mani-
festation of a new set of scalar particles, such as in 2HDMs,
too heavy or too complex to be seen in direct production,
but still felt via virtual effects such as the one-loop
contribution shown in Fig. 1 [3].
These new theories would then manifest themselves in

the LHC environment as subtle deviations in physical
observables, often in kinematic regions where the theo-
retical and experimental understanding is particularly
poor. In contrast with a resonance search in a final state,
SMEFT analyses forces us to deal with the LHC’s inher-
ently complex environment, where the understanding of
extreme kinematic regions is required.
In the context of the SMEFT effects in the Higgs sector,

the LHC analyses have moved from the basic use of total
cross-sections (κ formalism [4]) to understand that pushing
the boundaries of the SMEFT means using kinematic
information [5,6]. Even that frontier is becoming a
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well-trodden path with the Run 2 finished, and searches
for new physics in SMEFT effects now moving towards
identifying even subtler effects by looking at multidimen-
sional information [7] and combining as many channels as
possible [8].
This state of affairs, the need to quickly identify subtle

effects in multidimensional distributions of information,
clearly calls for artificial intelligence methods. Particularly
the use of data mining techniques in machine learning [9].
The amount of information one single channel can provide
is limited, though. Even in a complex final state such as
vector boson fusion (VBF) and all the multidimensional
correlations one can think of in this channel, the amount of
information quickly saturates [7], just a manifestation that
the kinematics of the final state particles (input informa-
tion) satisfies a number of constraints (energy-momentum
conservation, behaviour of parton distribution functions,
experimental selection cuts and resolution), limiting the
usefulness of single channels. In VBF, we showed the
inherent limitations in a Bayesian context [7] and recently
in Refs. [10] the authors pioneered the use of machine
learning to identify SMEFT effects in VBF, including data
augmentation. See also Ref. [11] for a detailed comparison
of the information available in VBF, VH, and on H → 4l.
Despite its importance to understand the electroweak

sector, the measurement of Higgs production in VBF is
not a reality yet, hence studies are based on future
prospects. On the other hand, the production of the
Higgs in association with a massive vector boson, or
VH, is already firmly established [12,13]. As quality
kinematic information in WH and ZH, better statistics
and experimental understanding, will occur before VBF
production is understood, we believe the approach of this
paper would be the first step to push the boundaries of our
understanding of SMEFT effects on Higgs LHC data,
complemented later on with VBF information.
In this paper, we will illustrate the use of machine

learning techniques in VH by switching on a single
SMEFT effect on WH and ZH. In the past few months,
we have witnessed an explosion works by the HEP
community on the use of Machine Learning techniques,
e.g., Refs. [14], and the analyses have quickly become
more and more sophisticated. Although in this paper we use
state-of-the-art techniques, we expect our results in VH will
be surpassed by other works in the near future.

This paper is organized as follows. In Sec. II, we describe
the current status of the SMEFT analyses and the exper-
imental understanding of the VH channel. In Sec. III,
we then move to describe the sort of kinematic information
one could use in VH. The machine learning analysis, in
particular the use of a shallow neural network is described
in Sec. IV and Appendix A, where we provide a simple
glossary of terms used in this paper. We present our results
in Sec. V, and discuss possible new directions in Sec. VI.

II. CURRENT STATUS: LIMITS ON THE SMEFT
AND THE VH AT THE LHC

We are going to illustrate the techniques using a particular
deformation, the operator in Eq. (2) with Wilson coefficient
cHW. It is currently constrained to values in the range [8]
(individual constraint)

cHW ¼ 0.002� 0.014: ð3Þ

In this paper we will often illustrate points using a bench-
mark within the 2σ region:

cHW ¼ 0.03: ð4Þ

The limits on SMEFT operators were obtained by perform-
ing a global fit including kinematic information on VH [15]
and electroweak WW production at LEP2 and LHC [16]
but only 40 fb−1 of data, half of the total Run2 dataset. A
more recent global analysis was done by the groups in
Refs. [17,18], but their analysis did not substantially change
the limit on cHW. On the other hand, sensitivity studies of
future colliders such as HL-LHC show that these limits will
be pushed to a few times smaller than the current limit [19].
On the experimental side, the ATLAS [12] and CMS [13]

collaborations have marked yet another milestone in their
quest to understand electroweak symmetry breaking: the
observation of the Higgs decaying into two b-quarks. This
measurement has been done by combining a challenging
set of channels collectively denoted by VH, which corre-
sponds to the Higgs produced in association with a massive
vector boson V ¼ Z or W�. The final states are classified
as 0L (Z → νν̄), 1L (W → lν) and 2L (Z → lþl−). The
combination of all the channels can be summarized as the
ratio of the observed cross section by the SM expectation,
μVH. For example, the ATLAS measurement reads

μVHðATLASÞ ¼ 1.01þ 0.12ðstatÞþ0.6
0.15 ðsystÞ ð5Þ

which, given the dependence of μ with the parameter
cHW naively would indicate a two-sigma exclusion
jcHWj < 0.02.

FIG. 1. An example of how operators like cHW could arise from
new theories. H1;2 denotes the light (heavy) Higgs.
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III. KINEMATIC INFORMATION IN VH

Right after the discovery of the Higgs boson in the
summer of 2012, the VH channel was identified as an
important source of information to search for anomalous
behaviour of the Higgs. In particular, the distribution of
transverse momentum of the vector boson, pV

T was iden-
tified as very sensitive to new physics, even to the point of
reviving TeVatron searches which had failed to unveil the
Higgs boson [5].
When Run1 LHC data started to place limits on the VH

channel, the nonobservation of deviations in the high-pT
regions was also used to inform our global understanding of
SMEFT theories [15,16] and theCP properties of the Higgs
[20]. Moreover, the understanding and classification of the
pV
T distributions was crucial for Run2 collaborations to

achieve a measurement [12,13].
As mentioned in the Introduction, the VH channel would

seem qualitatively less interesting than the VBF channel,
where the forward jets enrich the overall kinematic infor-
mation. Nonetheless, VH with its slightly different three
channels also offers interesting kinematic information,
see in Fig. 2 a few examples of distributions we will use
later in our analysis.
Moreover, progress is made at stages and the exper-

imental understanding of the VBF channel is nowhere close
to VH. In VH, huge SM reducible backgrounds, such as a
Z and heavy flavor (Zþ HF) production, had been studied
and kept under control thanks to the tremendous ingenuity
of the experimental collaborations. The recent observation
of the Higgs sets then a new stage for the VH channel,
where new physics can be searched and tensioned against
SM-Higgs production.

IV. USING A SHALLOW NEURAL NETWORK

In this section we will describe the methodology we
developed to study the SMEFT in VH using machine
learning, in particular a shallow neural network.1 To help
the novice reader, in Appendix A we have collected a
glossary of terms alongside brief explanation of their
meaning. We simulate parton level (signal) events in the
SMEFT framework and for an irreducible background, i.e.,
SM Higgs production. In the following whenever we talk

about the background we mean the SM Higgs background,
except when explicitly discussing the reducible SM back-
ground Z þ heavy flavor.
To extract the maximum amount of information from the

kinematic features, one needs to combine multidimensional
information such as shown in Fig. 2 in 0D, 1D, 2D and even
higher dimensionalities. The objective is to maximize our
ability to detect new phenomena, which in HEP means
maximizing the significance of an observation. Given a
number of signal events s, where signal here represents SM
plus a deviation like cHW. For this study we consider as
signal the effects of the dim-6 operators up to quadratic
terms, while for further studies one might want to consider
the inclusion of terms from the dim-8 operators which
could compete at the same quadratic level [21]. We also
evaluate a number of background events b which in our
analysis correspond to the SM-only hypothesis.
One can use the Asimov estimate of significance [22]

as a measure the algorithm needs to maximise, see
Appendix A. Our problem then consists on building a
function, inverse of the Asimov significance, and find the
minimum value inside a multi-dimensional parameter space
by including information from a diverse set of observables.
The main difference from other loss function seen in the
literature (cross-entropy) is that this specific loss function
gives more priority to the correct classification of the
signal, whereas in the case of cross-entropy equal weight is
given to the correct classification of both categories.
Similarly to the procedure described in Ref. [23], we use

a shallow neural network (NN) built from one hidden layer
with number of neurons equal to the number of kinematic
observables we consider.2 The classification layer consists
on a single unit (or neuron) with a softmax activation
function. The softmax function forces the output to be in a
range from 0 to 1, so the score of the classification layer can
be interpreted as the probability of a given event to be a
signal (SMþ cHW) or background (SM only). Note that
we consider a balanced data set for the signal and back-
ground process. To set the best hyperparameters, instead of
performing a brute-force grid search as in [23], we make
use of evolutionary algorithms in Python (DEAP) [24], in
addition to the Scikit-Learn library. As activation function,
we found a rectifier function [maxðx; 0Þ] to perform better
than the typical sigmoid and other common logistic
regression options. For optimization, we found Adam
was best performing. Other minor adjustments were done
to the batch size and the dropout options, see Appendix A.
We then fed the algorithm with a large number of

simulated events, both signal and background. The events
had a number of characteristics, including pT of the objects
(b-jets, leptons, missing energy) and combinations of differ-
ent objects. The identity of the event (signal or background)

1Shallow NNs with the modified loss functions are very
suitable for this task. We believe the physical reason for this
behavior is related to the level of abstraction of our chosen
variables. Kinematic variables, made up from combinations of
measurements in the LHC detectors are already at a higher level
of abstraction than other, more raw, measurements like hits on
calorimeters, or lengths of displacement from the interaction
vertex. If we had chosen to search for new physics using this
lower-level features, we may have to increase the complexity of
our NN. The deep NN might have ended up selecting, at a later
stage in the NN evolution, specific combinations of the intensity
of calorimeter hits and positions from the interaction points
similar to our invariant mass or momenta.

2Code repository can be found at: https://github.com/FFFrei-
tas/Exploring-SMEFT-in-VH-with-Machine-Learning
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was used by the algorithm as part of the training, as we
are dealing with a supervised machine learning problem.
Before tackling minimization of the Asimov loss function,
we performed a pretraining set of runs for 5 epochs, along
the lines suggested in Ref. [23] using a steeper loss function.
The pretraining phase speeds up the optimization algorithm

to minimize the Asimov loss function. Indeed, we found that
training the NN for 5 epochs with ls=

ffiffiffiffiffiffi
sþb

p was sufficient for
the optimization algorithm to minimize that simpler loss
function. A longer run, with about 20-30 epochs was then
carried on with the lAsimov, the Asimov significance does not
increase after 30 epochs.

FIG. 2. Few illustrative 1D and 2D feature plots for inclusive 0L, 1L and 2L SM-Higgs production. Red dots correspond to
background (SM Higgs production) and green dots to signal (Higgs SMEFT). Note the broader kinematic reach of the signal.
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The outcome of these runs was the ability to classify
events as signal or background, and to assign a Asimov
significance estimate to a particular choice of cHW coef-
ficient (the strength of the deviation) and luminosity (the
amount of available data).
In Fig. 3 we show the effect of pretraining in separating

signal over background. The plots show the distribution of
the signal benchmark-point with cHW ¼ 0.03 (red) and
background (blue) events as a function of the classifier
output. The left plot is the outcome of performing an initial
pretraining run with 5 epochs. The middle and right plots
shows the final distribution after a longer run was per-
formed. In all the plots, the solid distribution correspond to
the outcomes on the training sample (70% of the sample),
whereas the dots correspond to the test sample. The fact
that the solid distribution (train) and dots (test) distributions
are similar is an indication that the algorithm is not
overfitting. The middle plot compares BSM with SM
Higgs production. The right plot is the separation between
BSM and a reducible background, Z þ HF, where a cut on
the mbb variable in the Higgs mass window was done. By

comparing the middle and right plot, one sees that the
reducible background is easier to remove than the genuine
SM Higgs background, as expected.

V. RESULTS

The goodness of our procedure can be first evaluated by
looking at the ROC curve in Fig. 4, where we show the
signal efficiency and background rejection curves. We
present two examples of SMEFT effects, our benchmark
value cHW ¼ 0.03 and a very small value 0.001 which
approaches the SM case. As expected, larger values of cHW
present a better AUC and higher significance.
Perhaps a more intuitive way to understand this ROC

curve is to compute the predicted identity of events. In the
right panel of Fig. 4, we show a kinematic distribution of
true signal events, separated by their predicted identity.
Unsurprisingly, events with high energy are easier to
distinguish from the SM backgrounds. This can be traced
back to the Feynman rule in Eq. (1), where the SMEFT
effects are momentum dependent and tend to lead to higher
kinematic reach than SM interactions.

Pretraining with steep loss function

SM Higgs background Z+HF background

FIG. 3. Distribution of the 0L signal benchmark-point with cHW ¼ 0.03 (red) and background (blue) events as a function of the
classifier output. The left plot is the outcome of performing an initial pretraining run with 5 epochs. The middle (SM Higgs) and right
(Zþ HF) plots show the final distribution after a more precise, longer run is done. The solid distribution correspond to the outcomes on
the training sample (70% of the sample), whereas the dots correspond to the test sample.

FIG. 4. Left: ROC curve for two values of the SMEFT coefficient in the 0L channel. Right: Classification of true signal events for
cHW ¼ 0.03 and their mapping to kinematic features.
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Nevertheless, quantities like the ROC curve and its AUC
do not provide the answers we need in particle physics.
We are interested in understanding beyond acceptance and
rejection, but also the dependence with increasing lumi-
nosity and the effect of systematic uncertainties which are
often disregarded in machine learning studies. In the right
panel of Fig. 5 we show the Asimov significance in the 0L
channel, for a choice of systematic uncertainty at 50%, as a
function of luminosity for various choices of the SMEFT
coefficient. The bands correspond to 2σ ranges. In contrast
with the results from global fits, we obtain that values
much below the 0.03 benchmark may be excluded by the
Run2 data. The extent of this current exclusion cannot be
obtained in a reliable fashion from our analysis, as we did
perform an simplistic leading-order partonþ shower analy-
sis. Nevertheless, one would infer that sensitivity to value
of cHW around 0.001 could be obtained using the CMS and
ATLAS combined Run 2 data.
As one can see from the left panel of Fig. 4, cHW ¼ 0.001

seems a limiting case for our algorithm in the 0L channel,
as the AUC is very close to 0.5. We have chosen the 0L
channel as it generally provides the best sensitivity to
SMEFT [15], but one would wonder whether one could
improve the sensitivity to this difficult point by combining
with the other two channels (1L and 2L). The right panel in
Fig. 5 shows the increase of sensitivity due to combination.
For the small SMEFT deviation cHW ¼ 0.001 and 50%
systematics, the improvement is within the error bars of the
Asimov significance. A better handle on systematics could
make the combination much more effective.

VI. OUTLOOK

With the increasing experimental understanding of the
LHC data, new ways to search for new physics open up. In
particular, the use of detailed kinematic information is the
next frontier in terms of LHC data characterisation. More
capabilities come with more ambitions, particularly in
terms of the complexity of new phenomena one can hope
to tackle. We have identified one channel (VH) which is
both relatively well understood and broad in terms of its

kinematic reach, and a set of machine learning techniques
which could allow us to detect new physics in the behavior
of the Higgs boson. We chose the SMEFT as a template of
the kind of deviations one could expect in the Higgs via
virtual effects of new particles.
Within the framework of our analysis, we found the 0L

channel to be dominant, which was expected. We obtained
a limit in the SMEFT coefficient cHW of 0.001, about 30
times better than the current constraint from a global
analysis [8] with the Run 2 data. This result shows the
potential of incorporating these techniques to the SMEFT
studies.
Our analysis could be improved in a number of ways.

First and foremost, a more realistic simulation could be
performed by the experiments, including NLO SMEFT
effects [25]. A study including full simulation as well a
more thorough understanding of the systematic uncertain-
ties should be carried out, hopefully by the experimental
collaborations. The aim of this paper was to show the
potential of this method using a shallow NN and a new
choice of Asimov significance, explain the work-flow and
point out the importance of including systematic effects in
the NN.
Second, although we found that deep layers led to

overfitting, and a shallow NN was more suitable, new
algorithms could be explored to increase sensitivity. In
particular, one could use outlier detection without super-
vision. Third, we should understand the effect of switching
on more than one deviation along the lines described in
Ref. [10]. This should be the stepping stone to a more
global use of machine learning techniques in the area of
global fits to SMEFT properties.
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APPENDIX A: GLOSSARY OF TERMS

True positive rate (tpr≡ ϵS): ratio of true positive count
and total signal events. The true positive counts are the
number of signal events correctly identified by the algo-
rithm. It also corresponds to the usual notion of signal
acceptance.
False positive rate (fpr≡ ϵB): ratio of false positive

counts and total number of background events. The false
positive counts are the background events, predicted as
signal events by the algorithm. It also corresponds to the
usual notion of background selection.
Receiver operating characteristic (ROC): plot of tpr as a

function of fpr for each value of the classifier threshold
between 0 and 1.
Area under the curve (AUC): area under the ROC curve

and a typical measure of the algorithm performance.
Accuracy: ratio of the correctly identified signal and

background events versus total number of signal and
background events.
Learning curve: curve with shows the performance of

the algorithm with iterative runs, i.e., behavior of the loss
function with iterations.
Batch: data is divided into small sets, called batches, to

save time and computation efforts.
Hidden layers: intermediate layers between the input and

output layers.
Asimov significance: Defined as a function of signal and

background events and the uncertainty associated with the
background (σb)

ZA ¼
�
2ððsþ bÞ ln

�ðsþ bÞðbþ σ2bÞ
b2 þ ðsþ bÞσ2b

�

−
b2

σ2b
ln

�
1þ σ2bs

bðbþ σ2bÞ
���

1=2

: ðA1Þ

Loss function: the function which the algorithm searches
to minimize. In our analysis, we used the following loss
function designed to maximize the discovery significance:

ls=
ffiffiffiffiffiffi
sþb

p ¼ ðsþ bÞ=s2; ðA2Þ

lAsimov ¼ 1=ZA ðA3Þ

Epochs: The period between initialization of the search
for the minimum and when the batches pass the NN.
Basically, number of epochs is an iteration counter of how
many times complete data set is explored by the algorithm,
such that learning parameters are optimized.
Dropout: mechanism to avoid the model overfitting,

whereby the NN could drop few of the units (neurons) at
the time of training.
Pretraining: Quick prerun with smaller number of epochs

and steeper loss functions. The longer training is initialised
by the pretraining hyperparameters.

Classifier output: set of predictions for test sample.
Our analysis is a binary classification problem, so with
the predecided (user-decided) classification threshold, the
events will either belong to signal or background class.

APPENDIX B: ANALYSIS SETUP

We generate parton level 100K events for WH
and ZH processes, with

ffiffiffi
s

p ¼ 14 TeV, using MC@NLO
madgraph6.3.2 and the Higgs effective theory feynrules [26]
model available in the literature [27]. We consider the new
physics effects up to quadratic level. Note that in VH, the
typical difference between 13 TeV and 14 TeV in terms of
cross section is less than 10%.
We use Pythia6 [28] to read the lhe events files

but without doing the showering and hadronization.
Considering leptonic decay channels of gauge boson and
bb̄ from Higgs decay, we have the following three final
states

(i) 0-lepton (0L):

pp → HZ; ðH → bb̄; Z → νν̄Þ
(ii) 1 lepton (1L):

pp → HW; ðH → bb̄;W → lvlÞ

(iii) 2 lepton (2L):

pp → HZ; ðH → bb̄; Z → lþl−Þ
The events are generated according to the ATLAS search
strategy[12] categorized as “inclusive.” The cuts applied are
given in Table I for all the channels. We consider the two
main background processes, i.e., SM associated Higgs
production with vector bosons and Vþ heavy flavor
(Vþ HF). The SM associated Higgs production with
vector bosons background is also generated importing
the same model with CHW ¼ 0.
We consider the following observables as data features:
(i) pb1

T transverse momentum of the leading b-jet.

(ii) pb2
T transverse momentum of the sub leading b-jet.

(iii) pVH
T transverse momentum of the VH pair.

TABLE I. Cuts applied at event generation level for both signal
and background process. In case of Z þ HF we apply an
additional cut on mbb̄, i.e., 115 < mbb̄ < 135 GeV.

Channel Inclusive

0L =ET > 150 GeV
1L pl

T > 25 GeV, jηlj < 2.7
=ET > 30 GeV, pV

T > 150 GeV
2L pl

T > 7 GeV, jηlj < 2.7, pV
T > 75 GeV

Leading lepton pT > 27 GeV

0L, 1L, 2L pb
T > 20 GeV , jηbj < 2.5,

Leading b-jet pT > 45 GeV
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(iv) MVH
T transverse mass of the VH pair.

(v) pW=Z
T transverse momentum of gauge boson.

(vi) pH
T transverse momentum of the reconstructed

Higgs boson.
(vii) ηH pseudorapidity of the reconstructed Higgs boson.
(viii) ϕH azimuthal angle of the reconstructed Higgs

boson.
which are common for all 3-channels and channel

specific ones are:
(1) 0L channel:

(a) =ET missing transverse energy
(b) Δϕb1=ET

azimuthal angular separation between
leading
b-jet and =ET

(2) 1L channel:
(a) MW

T transverse mass of the W�
(b) pl

T transverse momentum of lepton

(c) =ET missing transverse energy
(d) ΔRwl separation between lepton andW boson in

the η-ϕ plane
(e) Δϕb1l azimuthal angular separation between

leading
b-jet and lepton

(f) Δϕl=ET
azimuthal angular separation between

lepton and =ET
(3) 2L channel:

(a) pl1
T transverse momentum of the leading lepton

(b) pl2
T transverse momentum of subleading lepton

(c) ΔRll separation between two lepton in the
η-ϕ plane

(d) Δϕb1l1 azimuthal angular separation between
leading b-jet and leading lepton

(e) Δϕb2l1 azimuthal angular separation between
subleading b-jet and leading lepton
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