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We study the most popular nonminimal Higgs extension of the Standard Model, namely the two-Higgs-
doublet model, extended by a complex triplet scalar 2HDMcT). Such model with a very small vacuum
expectation value, provides a solution to the massive neutrinos through the so-called type-II seesaw
mechanism. We show that the 2HDMcT enlarged parameter space allow for a rich and interesting
phenomenology compatible with current experimental constraints. In this paper the 2HDMcT is subject to a
detailed scrutiny. Indeed, a complete set of tree level unitarity constraints on the coupling parameters of the
potential is determined, and the exact tree-level boundedness from below constraints on these couplings are
generated for all directions. Moreover, we also include in our study: electroweak precision test constraints,
LEP and recents LHC constraints as well as some selected set of lepton flavor violation constraints. We
then perform an extensive parameter scan in the 2HDMCcT parameter space, delimited by the above derived
theoretical constraints as well as by experimental limits. We find that an important triplet admixtures are
still compatible with the Higgs data and investigate which observables will allow us to restrict the triplet
nature most effectively in the next runs of the LHC. Finally, we emphasize new production and decay

channels and their phenomenological relevance and treatment at the LHC.
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I. INTRODUCTION

After the discovery of a Standard-Model-like Higgs
boson at the Large Hadron Collider (LHC) in 2012
[1,2], the Standard Model (SM) of particle physics has
been established as the most successful theory describing
the elementary particles and their interactions. Despite its
success, the SM has several drawbacks that have suggested
theoretical investigations as well as experimental searches
of physics beyond it. As an example, the observed neutrino
oscillation cannot be explained within the SM [3]. Indeed,
although the SM Higgs field is responsible for the gen-
eration of the masses of all known fundamental particles, it
is unable to accommodate the tiny observed neutrino
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masses. Within a renormalizable theory where new heavy
fields are introduced, the neutrino masses are generated via
the dimension-five Weinberg operator [4], this is the so-
called seesaw mechanism. Different realizations of such a
mechanism can be classified into three types: type I [5-9] in
which only right-handed neutrinos coupling to the Higgs
field, type II [10-13] where a new scalar field in the adjoint
representation of SU(2), and type III [14] which involves
two extra fermionic fields. In the above seesaw mecha-
nisms heavy fields are supplemented to the SM spectrum in
such a way the desired neutrino properties are reproduced
once the electroweak symmetry is broken.

In the type-II seesaw model, also dubbed Higgs triplet
models (HTM), [15-20], the SM Lagrangian is augmented
by a SU(2), scalar triplet field A with hypercharge Y, = 2.
In HTM, neutrino masses are proportional to the vacuum
expectation value (vev) of the triplet field. Hence, the small
values of neutrino masses is guaranteed by the smallness of
the triplet vev assumed to be less than 1 GeV and the
nonconservation of lepton number which is explicitly
broken by a trilinear coupling y term in the HTM scalar
potential. The latter, protected by symmetry, is naturally
small, thus ensuring small neutrino masses. The model
spectrum contains several scalar particles, including a pair
of singly charged Higgs boson (H*) and doubly charged
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Higgs boson (H**). In addition, it also predicts a CP-odd
neutral scalar (A°) as well as two CP even neutral scalars, 1
and H. The lightest scalar 2 has essentially the same
couplings to the fermions and vector bosons as the
Higgs boson of the SM within a large region of the
HTM parameter space.

By the new discovery of 125 scalar boson at the LHC, the
phenomenology of two-Higgs-doublet mod (2HDM) has
been investigated broadly in the literature. In the present
work, due to the similarity in mass generation mechanism
between type-II seesaw and the Higgs mechanism, we
extend HTM and focus on the two Higgs double model
extension to the type-II seesaw model, displaying phenom-
enological characteristics notably different from the scalar
sector emerging from the HTM. In this context, we study
several Higgs processes giving rise to the production times
branching ratios of heavy Higgs bosons and focus on. Unlike
most of the earlier studies, we consider here a framework
where both type I and type II seesaw mechanisms are
implemented and contribute to neutrino mass generation.
We consider a high integrated luminosity of LHC collisions
at a center-of-mass energy of 13 TeV.

The content of the paper is laid out as follows. In Sec. II,
we derive some crucial features of the 2HDMCcT, with a
focus on the particle content and the scalar potential of the
model, followed by discussions on the minimization con-
ditions of the scalar potential and the scalar mass spectra.
Besides, in this work we investigate the impact of two new
terms introduced in the model scalar potential. Section 111,
is devoted to the study of the theoretical constraints on the
scalar potential parameters from tree-level vacuum stability
and perturbative unitarity of the scalar sector. In Sec. IV, we
further impose the electroweak precision test constraints,
the LEP and recents LHC constraints associated with the
125 GeV Higgs boson and its signal strength to delimit the
parameter space. Moreover, we also discuss shortly con-
straints from some selected lepton flavor violating observ-
ables such as g — ey and u — eee. Finally, we present
some phenomenological aspects in Sec. V, benchmark
points in Sec. VI and summarise our findings in Sec. VIL

II. GENERAL CONSIDERATIONS
OF 2HDM WITH TRIPLET

A. The Higgs sector

In a model with two Higgs doublets H ,, the two-Higgs-
doublet type-II seesaw model (2HDMcT) contains an
additional SU(2), triplet Higgs field A with hypercharge
Y =2 and lepton number L = -2,

) () -0
H'_<¢? ) U s

(1)

The most general renormalizable and gauge invariant
Lagrangian of the 2HDMCcT scalar sector is given by,

L=(D,H)" (D"H)+Tr(D,A)"(D*A)=V(H,A)+ Lyukawa
(2)

where the scalar potential V(H,A), symmetric under a
group SU(2), x U(1)y, reads as [21]

V(H;,A) =V(H,Hy) +V(A) + Viu(H,, Hy, A) (3)
where:

V(H,,H,) = m}H|H, +m3H}H, —m3(H|H, + H}H)
2 A
+§1(HIH1)2 +?2(H;H2)2 +23H | H\HyH,

yl
+24H\HyH H, +35[(HIH2)2 + (H3Hy )]

(4)

V(A)=miTr(ATA) + 2g(TrATA)? + Ao Tr(ATA)?  (5)

Vii(Hy, Hy, A) = [y HTic> ATH | + u, HYic> ATH,

+u3HTic? ATH, + H.c.]

+ AgHTH\TrATA 4 2, H H, TrATA

+ JgHAATH,| + 2o HIAATH, (6)
In the above, m?, i =1, 2, 3 and m} are mass squared
parameters, 4;, i = 1, ..., 5 are dimensionless couplings not
related to the triplet, /_1,-, i =28, 9 are dimensionless
couplings related to the triplet field, while u;, i =1, 2, 3
with A;, i =6, ..., 9, are dimensionless couplings that mixe
all three Higgs fields. In Eq. (6), Tr denotes the trace over
2 x 2 matrices, where for convenience we have used the
2 x 2 traceless matrix representation for the triplet. Also,
the potential defined in Eq. (6) exhausts all possible gauge
invariant renormalizable operators. For instance, a terms of
the form A H{ATAH, and 1,;H}A"AH, [21], which
would be legitimate to add if A contained a singlet
component, can actually be projected on the 4q; and Ag g
operators appearing in Eq. (6) thanks to the identity
HIATAH; + HIAATH; = H H;Tr(ATA) which is valid
because A is a traceless 2 x 2 matrix.

Subsequently, we will assume that all these parameters
are real valued. Indeed, apart from the y; terms, all the other
operators in V(H;, A) are self-conjugate so that, by
hermicity of the potential, only the real parts of the A’s
and the m?, m3, m% mass parameters are relevant. As for
U;, the only parameters that can pick up a would be CP-
phases, these phases are unphysical and can always be
absorbed in a redefinition of the fields H; and A. One thus
concludes that the 2HDMcT Lagrangian is CP conserving.
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The electroweak symmetry is spontaneously broken when
the neutral components of the Higgs fields acquire vacuum
expectation values v, v,, and v,. Thus we can shift the
Higgs fields in the following way,

v +p1tin

V2

vy +pytin 50l +poting

0__
hi= N V2

. #=
(7)

finding minimization conditions, or tree-level tadpole
equations, given by

Vinear = T1p1 + Tapa + T3pg =0, (8)

where it is safe to take 7; = 0 (i = 1, 2, 3) which leads to,

. 21’)’1%1)2 —+ \/5(2/,{]”] +/l31)2)1)[ — U (117]% +/1345U% + )';81)[2)
1=

9
m . )
m — 2miv; + V2(2uy05 + p301) v, — 02 (4203 + Aagsvi + Agv7) (10)
2 2U2
m2 = V2(p1 07 + 03 (301 + Ho3)) = v, (A0 + 205507 + A3903) (11)
A 20,
[
the terms associated to v; are omitted in Eq. (11), then we 1 v/ V2 ) 2 vy /\/§
can derive a new expression for v, as a function of the 0 0
triplet scalar mass, (A) = < >’ (14)
Ut/\/i 0

HIVT 4 30103 + ppv3
V2(my + 2y v1/2 + A3903/2)

(12)

t~

Furthermore, for m, sufficiently large compared to v; », we

see that the above formula reduces to, v, ~ uv3/v/2m3,
which is referred as type-II seesaw mechanism.

The 2HDMcT model has altogether 24 degrees of
freedom: 21 parameters originating from the scalar poten-
tial given by Eq. (3) and tree vacuum expectation values of
the Higgs doublets and triplet fields. However, thanks to the
three minimization conditions, the W gauge boson mass
and the correct electroweak scales, the parameters m?, m3,
m3 and v can be eliminated.

B. Higgs masses and mixing angles

In what follows, we will use Egs. (9), (10), and (11) to
trade the mass parameters m?,, m3,, and m% for the rest of
parameters given in the potential. Thus, the 14 x 14
squared mass matrix is given by,

M2_182V

Lo (13)
2.0} | 1= () a=()

by denoting the corresponding VEV’s

'In the absence of yy, p», and s the m% becomes negative
leading to a spontaneous violation of lepton number. The
resulting Higgs spectrum contains a massless triplet scalar, called
Majoron J. This model was excluded by LEP.

Eq. (3) can be recast in a block diagonal form of one
doubly degenerate eigenvalue méﬁ and three 3 x3
matrices denoted in the following by M2, M%podd, and

Mépmn. The bilinear part of the Higgs potential is then

given by:
1 P1
2

ny,),Hz.,A - §(P1,ﬂ2»50)M(2?7’even P
Po

1 m

+ 5(7]1,’727 No )Mép«wdd (e

o
by
+(¢7. 45,67 )M ¢y
5+

FOTMELT "

at tree-level. The elements of these mass matrices are
explicitly presented below.

1. Mass of the doubly charged field

The double eigenvalue mzﬁ, corresponding to the
doubly charged eigenstate 5%+, can simply be determined
by collecting all the coefficients of §t"6~~ in the scalar

potential. It is given by
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s V20 + V230105 + V20303 — Agviv, — dgvdv, — 2490}

= 16
L o (16)
2. Mass of the simply charged field

The mass-squared matrix for the simply charged field in the (¢7,¢; .6 ) basis reads as:
M 3 (Agsv10y =2m3) 1 (01A = 2u30,)
Mi = %(Usvlvz - 2’”%) Mzz %(7)23 = 2u30;) (17)
i (A =2u3v5) (028 = 2u30y) M,
where A = /2430, — 4u;, B = /2490, — 4y, and the diagonal terms are given by,
ME — 2m3vy + v1v,(2v2u1 — Agv,) + V2u3v00, — Ajsv1 v}
11 21)1
Mi _ 2m§vl =+ 1)2’[],(2\/5/12 - Ag’U,) + \/§ﬂ31}1’0t —/12_51)%1)2
22 2,02
%(2\/5/41 — 3v;) + ”%(2\/5/12 —Aov,) + 2\/§ﬂ3”21}1 — 240}
Ma = o . (18)
t

Among the three eigenvalues of this matrix, one is zero and corresponds to the charged Goldstone bosons G*, while the two
others correspond to the singly charged Higgs bosons denoted by m? 1 and m glven by,

1
mﬁlfz = yrem [—vo(vo(2Mi5espsesn, + &) + 2202 (Mizesy + Mizses)) F csysesv/Y) (19)

where ¢, s,, cs,, se, stand for the cos(x), sin(x), csc(x), sec(x), respectively, while vy = /7 + v3, v = \/v] + v3 + 207,
Kk = V2vo(Mizcp + Maysy) and

Y = 03 ((vo(kepsy + 2Mi50,) + 2V20H(Mayep + Mifsp))? — 4025550, (k M5 + 2MEMa30,)) (20)
The above symmetric squared matrix M3 is diagonalized via C as:

CMACT = diag(m? m?,.) (21)

+ + +
G*’ H’ H;

where the C rotation matrix is described by three mixing angles 65, 65, and 65, and the corresponding expressions for the C
elements are give in the Appendix A as a function of the parameters inputs of our model.

3. Mass of the neutral pseudoscalar field

As to the mass-squared matrix for the neutral CP,yy pseudoscalar field in the basis (171, 72, 1), it is expressed as:

Modd —2m3+V2p30,4245v1 03 2wty
11 2 V2
Mg = | 2B 2 M s (22)
2 2
_ 2mvi sy _ 2pvatpsvy Modd
V2 V2

the diagonal terms are given by,
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odd _ 2m3vy +4v2u, 010, + V23030, — 22501}

Mll 21}]
Modd — 2m3vy + 4V 25050, + V2u3v10, — 225030,
2 =
21}2

2 2
odd _ MV T 3020 + Hp V3

M =
33 \/ivt

(23)

here, M2, ,, has three eigenvalues, one is zero correspond-
O

ing to the neutral Goldstone boson G° while the two others
are the physical states CP,qq A and A,, by setting,

0=Mcs+ MS$%s,
F=M{$cs+ M33s,
X = [0§((v§Fepss+2M93 v, + 4007 )
— 48550, (407 + 05) M MG v, + M§S0F))]  (24)

their masses read as,

1
my,, = 2o, [~ vo(2cspsepv, (M5 0o + 200,) + vF)
oVt
F cspsepV A (25)

while the diagonalization of such matrix is done in this case
by the introduction of an unitary matrix O described by
three mixing angles f3;, f,, and 3 whose expressions can
be found in the Appendix A as,

OMzp, O = diag(mg,, mj ,my3) (26)

4. Mass of the neutral scalar field

In the basis (p;, p,, po) the neutral scalar mass matrix
reads:

2 2 2
Myipr Mpypy My,
2 _ 2 2 2
Mcpeven = Mooy Mpypy, Mpgpy (27)
m2 2 2

piro Moapy  Mpgpg

Its diagonal terms are,

m2 =+ UZ(\/Emg +u30,)
P1P1 1 \/51)]

m2 _/12”2+U1(\/§m§+/‘31/t)
P2 2

\/Evz

2 4(2g +20) v} + V2 (uy v} + 300 + ppv3)
mﬂo/’o - 2'Ut

(28)

while the off-diagonal terms are given by,

1
m/2’2/’1 = mlz)ll)z = % (\/EUI 1)2’1345 - \/Em% _ﬂ3’U,)

1
m/%o/)] =m}, = —(\/5017):(/16 +Ag) = (2ui vy +u3v))

PiPo \/z

1
m/%oﬂz = m%z/’o = % (\/50201(17 +49) = (2205 + p3vy))

(29)

The mass matrix can be diagonalized by an orthogonal
matrix £ which we parametrize as

Cq Ca, Sa, Cap Sa,

E=| —(ca;SeSas T50,Cas)  Ca,Cay =Sa,SarSas  CaySas

—CoqSa,Cay =+ Sa;Say _(cal Say + SaySay Cary ) Ca,Cay

(30)

where the mixing angles «;, @,, and a3 can be chosen in the
range

T

——<a35%. 31
7S %2355 (31)

the rotation between the two basis (p;, p,, po) and

(hy, h,, h3) diagonalizes the mass matrix M%P ., as,

gM(zj’PevengT = diag(m%ll ’ m%lz ’ m%lS) (32)

and leads to three mass eigenstates, ordered by ascending
mass as:

mp, < mp <mj . (33)

One choice of input parameters implemented in 2HDMcT
consistes to use the following hybrid parametrization,

P ={ay, 2, a3, My My, My, M, A1, A3, Ay, A, A3, Ag,

Ao, 11, v,, tan B} (34)

in which tan# = v, /v, = tan6; = tanf3,.

In Appendix B, we discuss the second choice of input
parameters in the physical basis 2HDMcT. Using the
Egs. (32) and (16), one can easily express the reset of
Lagrangian parameters in terms of those given by (34).
These are given by
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—Bej + vgey + (Eymy, + Eymy, + Em; )s)

2

2
3]
2 (B - /1341)05/;)% Awgey B (511512’";1 +521522mh +531532mh )sp
5T voc/,sﬂ
—Agvgcy + 2F = 2m7,. = 2(225 + 30) 07
o vzs2
0°p
P UO(ACﬁ + MSﬁ) + Ut( /161)0Cﬂ 2F + 2mHﬁ + 2(2&8 + 319)1}1)
T 1}2 2/U
0S5t
i cp(2A + vocy(V2uy — 24450,))
: \/EU().S%
- V2(—Avges + 55 (Adgvr — V2uy) + v,(E my + Eymy + Eymy = 2247))
# UOCﬂSﬂ
2 Av, + UOC/J(B v (g, 68Vt — \/_Ml)) - /1171(3)02
msy = (35)
UOSﬁ

where vy =

/% + 03 and

A = 5115131’}1%1 + 5215231’71%2 + 53]5337)1%,3

B = 5%1’"%,1 + 5%1’”%,2 + 5%1”"%,3

F= 5%3’”%1 + 5%3’”%,2 + 5%3”1%,3

M= 5124‘:13”"%1 + 522523’”%2 + 532533’"%,3 (36)
the remaining 10 parameters consist of the 6 charged and
CP,yq sectors mixing angles given respectively by 67
(i = 1’ 23 3)3

0y =sin™'(Cy3)

1(Cyy/ cos 65)
05 = cos™!(Cs3/ cos 05) (37)

07 = cos”

andﬂj (.]: la 2’ 3)

po = sin™!(Oy3)
p1 = cos™H(Oy/ cos p,)
p3 = cos™(Os3/ cos ) (38)

and 4 Higgs bosons masses, two of them correspond to the
charged states Hi, masses, while the two others are
matched to CPqq states A, as discussed previously.

C. Yukawa and gauge bosons textures

Lyukawa contains all the Yukawa sector of the SM plus
one extra Yukawa term that leads after spontaneous

symmetry breaking to (Majorana) mass terms for the
neutrinos m;; = 2h;;(6°), without requiring right-handed
neutrino states,

—Lyuawa 2 =Y, LTC ® ic>AL + H.c. (39)

where L denotes SU(2); doublets of left-handed leptons,
Y, denotes neutrino Yukawa couplings, C the charge
conjugation operator and h;;(i,j = e,u,7) is a complex
and symmetric coupling. The Z, symmetry is imposed in
order to avoid tree-level FCNCs. Furthermore, and in terms
of the various @; which appear in the expressions of &;;
matrix elements, we list in Table I, all the CPy, h; (i = 1,
2, 3) Yukawa couplings for both type-I and type-II in
the model.

On the other hand, expanding the covariant derivative
D, and performing the usual transformations on the gauge
and scalar fields to obtain the physical fields, one can
identify the Higgs couplings H; to the massive gauge
bosons V = W, Z as given in Table II. Note that in our
model, The triplet field A does directly couple to the SM
particles, so a new contribution will be appears, and the two

TABLE 1. Normalized Yukawa couplings coefficients of the
neutral Higgs bosons #; to the up-quarks, down-quarks (u, d) in
2HDMCcT.

h hy hy hy I3 hy
CU CD CU CD CU CD

Type-1 & En &n En & &
sp g Sp sy sp Sp

Type-1I i am &n & Exn &
sp cp sp cp s cp
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TABLE II. The normalized couplings of the neutral CP.., H;
Higgs bosons to the massive gauge bosons V =W, Z in
2HDMCcT.

ch cy
hy LE A 2Ey 25 Ey LEN H2Ey +450ES
hy BER+2Ep +220E5, UEL+2EH +4LE,
hs LE+2Ey; + 25085, BER 2 45285

couplings C(l," (V = W, Z) differs from one to another by a
factor 2 associated to v,.

III. THEORETICAL CONSTRAINTS

A. Unitarity

Physics beyond the Standard Model (BSM) refers to the
theoretical developments needed to explain the deficiencies
of the SM, and any SM extension might tend to reproduce
the entirety of current phenomena. Here the question
usually addressed is which theory BSM is the right one,
can only be settled via experiments. In our paper, we will
globally scrutinise the 2HDMcT model, looking for the
space of parameters allowed by all the theoretical con-
straints as well as experimental ones. In this subsection, we
apply perturbative unitarity to a complex triplet field A
coupled to the two Higgs doublet field of 2HDM, and as
usual we consider the elastic 2 — 2 scattering processes for
this purpose. The explicit formulas for all the eigenvalues
are given by,

1
ar §</11 FhE ) (A =4)* +443,

1
af =5 (h o [~ 2iaiy +i3+422)
a3i:/13:|:l4, di::/bj:jﬁ, Clgt:/13+2},4:|:315,
ag=2Ae, a7=47, az=2g

3
ag=A¢+4g, ajn=~A7+4o, a; =4 +§/18,

1 3
Cllzz%—iﬂga 6113:/17+§/19

1 _ _ _ _
6114:/17—5/19, a;s=2(g+4), aig=2M+4 (40)

in addition with three other a,7 15 19 eigenvalues originating
from the cubic polynomial equation,

X3 = (A + A+ 24g +429) x>
+ (Mg = A2 = 23 + 221 A + 2Ax Mg — A2+ 421 g + 40l x
+ (A2 = 20 Apdg + 24328 — 204 dgho + A1 23
— 4 dadg +42309) =0 (41)

for which the solutions have been extensively detailed in
Appendix C, Eq. (C8). To ensure the unitarity constraints,
the absolute value of the above eigenvalues must be
bounded from above as [22,23],

la;| 0.5 i=1,...,19 (42)
In Appendix C, we describe in more detail the scattering

matrix of all the two-body processes in the scalar sector of
the 2HDMCcT model.

B. Boundedness from below (BFB)

In order to derive the BFB constraints, we require that the
vacuum is stable at tree level. Generically, this means that
the scalar potential has to be bounded from below at large
scalar field values in any directions of the field space. Thus,
the potential is asymptotically dominated by the quartic
terms,

V@ (H|, Hy, A)
_ A

. 2
=3 (HiH,)? +52(H§H2)2 +)3H H H}H,

. As . .
+A4H\HyH H, +§5[(H1H2)2 + (H3H, )

+ AgH H  TrAYA + 2, HIH, TrATA + AsHAATH

+ AH}AATH, 4 7g(TrATA)? - o Tr(ATA)2. (43)

Therefore, to obtain in this model the full set of BFB
conditions valid for all directions, it is suitable to only
consider VW (H |, H,,A) than to study the full scalar
potential. As an illustration, consider for instance the case
where there is no coupling between doublets H; and triplet A
Higgsbosons,i.e., A3 =1y = As =g =43 = g = 19 = 0.
Obviously, one can see that,

/11>0&)“2>0&/_18>0&/_19>0 (44)

Given this, all the other necessary and sufficient conditions
for stability listed in Appendix D can be read as,

Qompm U Q1 U Q, U Q3 U Qy U Qs (45)
with
QZHDM
={A. > 0. 254+ /Ay > 0,434 Ay — |As| + /2 4, > 0}
(46)

the corresponding 2HDM BFB constraints well known in
the literature, whereas the Q; (i = 1, ..., 5) stand for the new
constraints added as follows,

035031-7
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- - )
Q = {46,47 >0, + g > 0,47 + dg > 0,45 + g > o,zg+39> 0}

{ﬂg\/ﬁ>|zg| 18“9) or (2/16+/18+\/(41,29—1§)<1+21—8>>}
{/19\/5>|/19| Ag+19> or (2/17+/19+\/(41219—13)(1”%—8))}
=1
s={

besides other are mentioned in Appendix D.

C. Bounds from theoretical constraints

In order to validate our rough analytical understanding
and to further explore the impact of the unitarity and BFB
constraints we use the numerical machinery. There are
many possibilities what to use as input parameters. Naively
using the initial Lagrangian parameters will hardly produce
points which are in agreement with the Higgs measure-
ments. Therefore, we trade hybrid parameterization. With
that choice, the full set of parameters is given by Eq. (34).
As first step, we show in Fig. 1, all generated points in the
planes Ag Vs Ag, A7 Vs Ag and g vs Jo.

In the 2HDMCT, the presence of the triplet field implies a
new scalar couplings A¢ ;7 g ¢ et 28,9 and the vacuum stability
condition requires that not only 4,, > 0 but also ;5 >0
with the conditions in Eq. (47). By varying 4, 5 in
[-87:87], we show in Fig. 1, the allowed domains on
A¢.789 and /_18,9 plans without conflicting with the theoreti-
cal constraints. We assume that the seesaw mechanism at
the TeV scale that we consider here, is a “low-energy”
effective phenomenological manifestation at high energy
scale. We therefore assume that the couplings remain
perturbative up to GUT scale.

Ao + /221 (g +Jo) > 0,46 + Ag + /241 (g + Jo) > }
Ay +1/220 (s + Jo) > 0,29 + Ao + 1/ 220 (g + 7o) > }

(47)

IV. LIMITS FROM EXPERIMENTAL
CONSTRAINTS

In this section we will review the experimental con-
straints subject to our model. We discuss first the electro-
weak precision test observables EWPT S, T, and U and
present the analytical expressions for S and T. Second we
comment on some lepton flavor violation observables
(LFV) and discuss the effect of the doubly charged
Higgs boson on such observables. At the end we review
the collider constraints such as LHC and LEP constraints.

A. Oblique parameters

Strong indirect probe of physics beyond SM is provided
by the oblique parameters S, T, and U. More than that, the
calculations of several observables check their dependences
on those oblique parameters, for example, and not as a
limitation, the p parameter [24], i.e., p = m%,/m%c3,. In the
SM, this parameter is equal to 1 at tree level. In the
THDMCcT, the new triplet contributions to W and Z masses
readily form Eq. (14) and the kinetic terms in Eq. (2) leads
us to write,

gz(v% + v% +40?)
4cos’Oy,

m} = (48)

20 20

10

7.5

2.5
0.0

A9

=25

—5.0

=75

<0 <0
-10 —10
—20 -20
-15 =10 -5 0 5 10 15 —-15 -10 -5
A
FIG. 1.

BFB (grey) constraints.

75 -50 -25 00 25 50 75

As

> o

The allowed ranges of (14, Ag) (left), (47, A9 ) (middle) and (4g, A¢) (right) by imposing unitarity (green), combined unitarity and
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2( 22 2 22 2,2
m%V:g(Ul+ZZ+ vt):gf (49)

the modified form of the p parameter reads

v(2)+2vt2 v?
=2~ =2-
vy +4v; Vg

=14+ #0. (50)
The impact of a 2HDMCcT in the so-called electroweak
precision requires that p to be close to its SM value: p =
1.000475-5503 [25]. Then, one gets an upper bound for
v; < 5 GeV. Furthermore, the major contribution to the
T-parameter comes from the loops involving the scalar
triplet when v, equal to zero or less. Also, since deviations
from the Standard Model expectations in U are negligible
[26], then we will assume the latter to be zero and consider
only S and 7. We compute their 3, contribution through,

— (§—Sbest T —best) (0.0085 0.0063> -1 (S_Sbest>

0.0063 0.0057/ \T—TPest
(51)

For U = 0,the electroweak fit gives the values.

Tbest

sbest — 0,06, 0.097 (52)

The contribution of the scalar triplet to S and 7T reads
as [27]

T= T2HDMCT

- ﬁ [ZF(m?H, m2)+ Y F(m3, m%)} (53)

WL+ +.0

S = Soupmer
)
-2 ) ot e )

where, m,, =mpy:r, m, = My, My, and my = My, , My,
while s,, stands for the sinus of the Weinberg angle 6,,. The
functions &(x,y) and F(x,y) are defined by,

x+y Xy X
F — _ n(*
() =572 n(?) (55)
4 5 1 S N PP | 3 ¥y x 1
2 - Sl e R R S ni-—da 56
6lr3) =5~ g9+ gm0 4 [ =5 =oP = - ) (59
—2y/d(x,y) [arctan%— arctan \x/:iy(x;;)} for d(x,y) > 0
flx,y)=¢0 for d(x,y) =0 (57)
— X4y—14++/—d(x.y)
d(x,y)In {7”)7_1_\/%] for d(x,y) <0
d(x,y) ==1+2(x+y) - (x—y) (58)

B. Direct LHC and LEP constraints

The HiggsBounds code [28] is used to test a model against
experimental data from LEP, Tevatron and the LHC. In our
analysis we use part function of HiggsBounds version
5.2.0beta with the latest constraints for heavy Higgs
bosons. The required input for HiggsBounds program are
masses for all the scalar, the effective Higgs couplings, the
total decay widths for all scalar and the branching ratios.
The exclusion test at 20 is then performed on the five
physical scalars of our model. HiggsBounds returns a binary
result indicating if the specific model point has been
excluded at 95% C.L. or not.

Both experiments ATLAS and CMS at LHC reported the
discovery of a scalar particle with mass around 125.09 GeV
[29]. Meanwhile, this has been strengthen further by
ATLAS and CMS with the first 13 TeV results. In our
model, we identify the Higgs field H; with the observed
SM-like Higgs boson with a mass:

my, = 125.09 £ 0.4 GeV (59)
We include both the measured signal rates from the ATLAS

and CMS Run I and Run II and their combinations in our
study via the public code HiggsSignals-2.2.1beta [30].
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TABLE III. Best-fit parameters that enter in the neutrino mass
mixing according to [3]. The neutrino masses in the IH scenario
are given by m3 = m? + Am3,, m3 = m3 — Am3;, whereas in

22 2 2 2 2
NH case are m; = my + Ams|, m5 = my + Amj,.

Parameter Best-fit Hierarachy
Am3, 7.37 x 1075 eV? Any
Am3, 2.56 x 1073 eV? Normal
Am3, 2.56 x 1073 eV? Inverted
Sin2 912 0.297 Any
sin? 0,5 0.425 Normal
sin® 63 0.589 Inverted
sin® 6,5 0.0215 Normal
sin” 6,5 0.0216 Inverted
The global y-square is defined by:
2(8 Tev 2(13 TeV
P=rhs tams )+ (60)

we then determine the minimal »? value over the scanned
parameter space, 2. , and keep the allowed parameter space
that features a y* value within Ay? = y* — y2. < 2.3,5.99,

11.8 (which corresponds respectively to 68% CL, 95.5% CL
and 99.7% CL.)

C. Lepton flavor violation

One of the open problem in particle physics is lepton
flavor violation and its origin. LFV if present would allow
in the Lagrangian a couplings that violate lepton flavor.
Therefore, these couplings would contribute to LFV decays
of leptons such as: ¢ — éee and p — ey. Note that such
final states for muon decay are very clean and have been
searched by various experiments. From the negative
searches, several stringent experimental upper bounds have
been derived.

mps: = mpe =mpe =1 TeV, NH, (1, p2)=(m.)

0.10
v, =8 eV

v o — o v =TeV
T T ——resal
— w

0.08 1

0.06
00 mmm—n
—— —_-_- \-

b o ammamese e @ D

mg (eV)

0.02 1

0.00 T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

§/m

In our model 2HDMCcT, lepton number violation is
introduced by the Yukawa term given by Eq. (39), where
Y, is a complex 3 x 3 matrix. After electroweak symmetry
breaking one generate neutrino masses as well as lepton
number violating decays of the Higgs bosons such as
H > el*ej and HT — ei*yj (e; = e, u, 7).

In the framework of 2HDMCcT, we limit ourself to the
following processes: y — eee and yu — ey. The first proc-
ess u — eee, would receive a tree level contribution from
doubly charged Higgs while the loop mediated one u — ey
would receive contribution both from singly and doubly
charged Higgs. Therefore, these 2 processes can set
constraints on the parameter space of the neutrino mass
matrix (which is proportional to »,). Such processes, along
with the H** effect have been studied in [31-33]. The
branching ratio for y — eee is given by: [34]

_ e Pl

= 2 3
4GFmHii

BR(u — eee) BR(u — etv), (61)

where BR(u — eiw) ~ 100%. h;; can be expressed in terms
of the Pontecorvo-Maki-Nakagawa-Sakata matrix, Vpyns
[3] and the triplet vev v, as follows [35]:

ij \/il)t

E—[VPMNSdiag(mlvm2eiwl’m3eiw2>VIT’MNS]ij (62)

V2,

h

The branching ratio for y — ey is given by: [34]

BR(u — e7) = 384x>(| A + |4, 2).

My = mys =mys =1 TeV, H, (¢1, p2)=(m,7)

0.10
v, =8eV

o v=TeV
0.08 4 « v=5eV
| N

0.06 | ——— S S
e ~——

mg (eV)
i

0.04 4

e / " \.___

0.00 T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

§/m

FIG.2. The allowed area (in dashed) for various values of v, in the (m, d) plane in the framework of 2HDMCcT type-II. Left side stands

for the IH and the right for NH.
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Mpts = My = Mys = 1TeV,IH, m =006eV,d=m
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FIG. 3.
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1.50
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1.25 . v=55eV
e w=5eV
1.00 v deV
v=2eV
0.75—{\
[} o
0501 ¢ / > [
0.25 / / 1 I
R SR S A B R |
000 025 050 075 100 125 150 175  2.00
w1/m

The allowed area (in dashed) for various values of v, in the (¢;, ¢,) plane in the framework of 2HDMcT type-II, setting
my = 0.06 eV. Left side stands for the IH and the right for NH.
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FIG. 4. The largest (4, Ag) (left), (17, 4g) (center) and (Ag,A9) (right) domain allowed by C; (gray) and C, (red).
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FIG.5. The allowed regions in (sgn(C}‘l,') sin(a; — #/2), tan f) after imposing C, and C, constraints, where the left and right panels

represent the allowed values in type-1I(left), type-I(right), respectively. The errors for y-square fit are 99.7% CL (red), 95.5% CL (blue)
and 68% CL (yellow).
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FIG. 6. Allowed mass ranges in 2HDMCcT type-II (left column) and type-I (right column) taking into account all theoretical and
experimental constraints.
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where Ag ; that correspond to u — eg ;7 [36] are given in
the 2HDMCcT as [37],

C33 1

, %,) (64

AR —
2 2
8mHIi SmHZi m

_ qe(h+h)eﬂ ( C23
48\ 272G

A, =0. (65)

A key point here is that the electron mass in the final state
and all lepton masses in the loop are neglected. g, and C;;
stand for the electron charge and C is the rotation matrix
elements, respectively. It is worth noting that experimental
data put an upper limits for BR (4 — eee) < 1 x 10712 [38]
and BR(u — ey) < 4.2 x 10713 [39].

In our study, we consider the two scenarios of neutrino
masses hierarchy: (i) normal hierarchy (NH) where
Am3, = m3 —m3 > 0and (ii) m; < m, < m; and inverted
hierarchy (IH) where m3; < m; < m,. The best-fit param-
eters that enter in the neutrino mass mixing according to [3]
are summarized in Table III.

0.68
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FIG. 7.

We illustrate in Fig. 2 the lightest neutrino mass m,
dependence on v, taking into account best fit values for
neutrinos masses parameters. We plot m, mass as a
function of 6 for four values of triplet vev both for NH
and IH scenarios.

In the case of NH (left panel), as one can see, for
@12 = mand 1 TeV mass for H* and H**, large triplet vev
requires large m . The dashed area between ¢ axis and the
solid curve is allowed. Note also that for NH, with
v; = 1 eV, my is constrained to be less than 0.01 eV while
for v, = 8 eV my should be less than ~0.08 eV.

In the opposite case of IH, for v, = 4.5 eV, neutrino
mass becomes tachyonic for 6 < 0.6z and 6 > 1.4z. For
6 € [0.67, 1.47], mq is constrained to be less than 0.01 eV.
While for smaller triplet vev v, < 4.5 eV, neutrino mass
becomes tachyonic.

Assuming a situation where m; = 0.06 eV and 1 TeV
mass for H* and H** and setting the Dirac phase 6§ = z,
we display in Fig. 3 the allowed space for the Majorana
phases 0 < ¢, ¢, < 27 regarding the experimental limits
on BR(u — eee) and BR(u — ey). In the case of IH, and
for v; = 5.5 eV, both processes could be observed almost

3.0 4

5) x 1073

BR(hy — »

0.16 0.18 0.20 0.22 0.24 0.26 0.28

Av) x 1073

BR(hy —

0.0650 0.0675 00700 00725 0.0750 0.0775  0.0800
BR(hy — mt77)

Correlation plots between the BRs of (a) h; — WW vs h; = 7y, (b) hy = WW vs hy — bb, (¢) h; = 77 vs h; — yy and

(d) hy = yy vs hy = h; — Zy in 2HDMCcT type-II by considering the BRs of the lightest /2; boson consistent within 95.5% CL (blue)

and 68% CL (yellow).

035031-13



B. AIT OUAZGHOUR et al.

PHYS. REV. D 100, 035031 (2019)

all over the allowed space except for a narrow area where
¢, = 7, ¢, ~0[2zx]. For v,5 eV, one can see that for all
values of ¢, only ¢, € [0.5x, 1.57] is allowed. This range is
getting larger for v, = 4 and 2 eV. In the opposite case of
NH with v, = 5 eV, one can see that the excluded region
for ¢, , is extended with respect to IH case. A wide region
for ¢, € [0.7x,1.37] is excluded for ¢, € [0,0.6z] and
¢, € [1.47,2x|. For smaller v, values we have similar
picture as for the IH case.

V. LIGHT AND HEAVY HIGGS
PHENOMENOLOGY

In this section we study the influence of the constraints
presented in the previous section (indirect, LEP, Tevatron
and LHC constraints) on the free parameters. For this
purpose we generate a set of 10° points randomly for each
of the two different types of model defined in Tables I and
II with random values for each of the free parameters. The
available ranges used in our simulation are,

103
(a) —— ATLAS 13 TeV (36.1fb1) — ligq Obs
—— ATLAS13 TeV (36.1fb™Y) — llvw Obs
10! ATLAS 13 TeV/ (36.1/b~1) — 4/ Obs

o(pp = hy = ZZ) (pb)

1000

—— ATLAS13 TeV (13.2b1) — lvqq Obs

—— ATLAS 13 TeV (13.2fb71) — lvlv Obs
X
g Y

~

a(pp = b = WHW~) (pb)
3

900

400 500 600
my, (GeV)

1000

FIG. 8.

my, <my, <my <1TeV, 80GeV <my+- <1TeV,
%ﬂSal’msglstanﬁgélO, —102<p; <10%, v,=1GeV,

W ~0.15, Ja~1.6, Ju~1.6 (66)

M, 43, and 44 are set respectively to the values 0.15, 1.6,
and 1.6 for the sake of simplification. The ranges for ¢, 45,
Ags 49, Zg, and 29 resulted from the unitarity and bounded-
ness constraints as can be seen from Fig. 4. For simplicity,
let us classify the dimensionless parameters in the scalar
potential into two different sets according to the following
two types of constraints:

(1) First set of constraints includes the unitarity, vacuum
stability and BFB constraints as well as nonta-
chyonic masses. We refer to this set as Cj.

(i) The second set of constraints contains C; and con-
straints from Higgs data. We refer to this set as C,.

In Fig. 4, all the generated points are plotted in the planes
A6 VS Ag, A7 VS Ao, and Ag Vs Ao, as we can see C, set of

103
(b) —— ATLAS 13 TeV (36.1fb71) — liqq Obs
—— ATLAS13 TeV (36.1b1) — llvw Obs
10" ATLAS 13 TeV (36.1fb™1) — 4/ Obs
I
s
o~ 10—1 4
N
T
2
T 10—3 4
S
b
1075 4
107
100
10t (d) —— ATLAS13TeV (13.2fb™1) — lvqq Obs

—— ATLAS 13 TeV (13.2fb7) — lvlv Obs

a(pp = hs = WHW~) (pb)
[ary
o
&

105
o®
é ° 0 ® $
107 ° ° i
% °
[ ]
[ )
10~ 1— . , . . . . .
200 300 400 500 600 700 800 900 1000

my, (GeV)

Scatter plot for 6(pp — hy3) x Br(hy3 — ZZ,WW) as a function m,,, , after imposing C; and C, constraints assuming

99.7% CL (red), 95.5% CL (blue), and 68% CL (yellow) in 2HDMCcT type-II.
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constraints reduce the above domain of Ag, A7, Ag, 4o, As,
and Zo.

Looking now at the plane Jg vs 1y are not very much
restricted by C, constraint due to the fact that Ag and Ay are
always dependent of the vev of scalar triplet.

In Fig. 5, we present the allowed points in the
(sign(Cl) sin(a; — 7/2),tan ) plane, that passes all con-
straints in type-II (left) and type-I (right) at 1o, 20 and 36.
In type-1I, one can appreciate that the mixing angle «;
seems more constrained than in type-I. Results are shown
by imposing the conditions C; and C,. The latter has a
strong impact on how the mixing angles are constrained.
Fig. 5(left) displays wrong-sign Yukawa couplings scenario
at 2o.

In Fig. 6, the allowed ranges are plotted in the planes
my,, My, My, and My vs m HE- The left-columns panels
corresponds to type-II, the right-column to the type-I, all
points passed the constraints mentioned above at lo
(yellow), 26 (blue) and 30 (red). As can be seeing most
of the masses can be light in type-I less than 300 GeV.

10°

—— ATLAS13 TeV (15.4/b~)Obs Limit

1072

1074

10-6 ¥

a(pp = h = v7) (pb)

1078

10-10 T T T T T T T
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107!

1073

1075

1077 +

o(pp — A1 = 7v) (pb)
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Looking only at the yellow points, those which pass
the C, constraint, we can see that the m,, My, My,

and mpy:= masses are bounded in type-II where we
find that most of the yellow points lie in the ranges
MU 1 AL Ay iy iy 5 € [200, 1000] GeV.

The sensitivity of the Higgs couplings of &, at the LHC
is not appreciably better than 20%, leaving thus a signifi-
cant window of opportunity for new physics. Here we
investigate the correlations among relevant couplings
within the C1 and C, constraints. In Fig 7, we show these
correlations which are consistent within the BRs of m;, =
125 GeV within 1o (yellow) and 26 (blue). This is related
to the fact that the central values of some Higgs couplings
deviate from the SM, which strongly restrict the range of
deviations from the SM. While the decay h; — Zy is not
yet observed at the LHC, the correlation between the
hy — WW,yy and h — bb couplings can now be measured
by the experiments. The ratio of the BR of WW to
that yy can be measured with an accuracy better than
5% and an integrated luminosity that is expected to be

10°

—— ATLAS13 TeV (15.4fb)Obs Limit

10—2 4

10—4 4
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108
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FIG. 9. Scatter plot in the my-[o x Br(¢p — yy)] (¢ = hy5 or A, 3) planes after imposing C; constraints at \/s = 13 TeV. The errors
for y-square fit are 99.7% CL (red), 95.5% CL (blue), and 68% CL (yellow) in 2HDMCcT type-II.
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accumulated by the High Luminosity LHC. In the follow-
ing, we will scrutinize the impact of the searches for heavy
Higgs particles in 2HDMCcT ordered by their decay prod-
ucts. First we will address the bosonic decays to VV
(V=y,Z, W) and fermionic mode 777" branching
ratios of the neutral Higgs (h,, h3, A; and A,) using both
CMS and ATLAS Higgs data for 8 TeV [40-42] and
13 TeV [43-47]. After that, we will turn towards the pair
production of /;h;. The narrow width approximation will
be applied throughout this section, we will comment on its
validity at the end of the text section. We define the cross
section as,

U (pp — §) =kgo™M(pp = §),  d=hyz or Aj,

(67)
where 6°M(gg — ¢) is the cross section for Higgs
production in gluon fusion in the SM, and k; =
Donpmer(¢ = 99)/Tsm(¢ = 99), with Doppyer( — g9)
and Tgy(¢ — gg) are the partial decay rates in 2HDMcT
and SM, respectively.
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A. h2’3 — 77 and wWw

We use Sushi v1.6.0 public code [48,49] at NNLO QCD to
perform the calculation of the cross sections for Higgs
production in gluon fusion (ggF) and bottom-quark anni-
hilation in the SM at 13 TeV. The relative coupling of /4, 5
to the two vector bosons ZZ and WW is universal and type
independent. However, the production of the h, 5 differs
between the types. In Fig. 8 we plot the production cross
sections in proton proton fusion times ZZ and WW
branching ratios of h,; Higgs after imposing C; and C,
constrains within 99.7% CL (red), 95.5% CL (blue), and
68% CL(yellow) of the Higgs data. It is well seeing from
Fig. 8 that hy3 - WW/ZZ rates are compared to what
would be expected at Run-II LHC. The colored lines in
Fig. 8 denote the observed limits in ZZ/WW final
states from 13 TeV ATLAS data [50-53]. The direct
LHC searches for this channels yield a strong suppression
of 6 x BR. For ZZ searches the m,,, <250 GeV region is
constrained by Run-I data whereas Run-II data determine
the dominant limits for the rest of the mass region.
For the WW searches, Run-I data dictate the limit until
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FIG. 10. The same as Fig. 9 but for 7z pair production at /s = 13 TeV in 2HDMCcT type-II.
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350 GeV and the high mass range is dominated by
Run-II data.

B. hy3.A,, =7y

Direct searches for a heavy Higgs decaying to two
photons constrain ¢ X BR by roughly one magnitude
compared the ATLAS limit in CP-even decay modes
(see Fig. 9). The searches in the diphoton decay channel
of a pseudoscalar Higgs yield a suppression of ¢ X BR one
to three orders of magnitude compared to the ATLAS limit
for my , <400 GeV certain intermediate ¢ X BR regions
for low m,, , are disfavoured by the prior.

In Fig. 10 we plot the production cross section in
proton proton fusion times 7z branching ration after
imposing C; constrains. The errors for y-square fit are
99.7% CL (red), 95.5% CL (blue), and 68% CL (yellow).
The red (green) solid line in Fig. 10 is the upper limit on the
cross section times branching ration from the ATLAS

10—3 4
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13 TeV results [54] (CMS 13 TeV results [55]). The
colored lines in Fig. 9 denote the observed limits from
13 TeV ATLAS data [56].

C. hy3 — h;hj with (i) =(1,2)

Finally, in Fig. 11 we present a sample of points
generated for Higgs pair production in the scenario
where the observed Higgs boson is the lightest scalar /;
(top panels) and the next-to-lightest scalar (bottom panels).
We present cross sections as a function of the masses of the
two new scalars that can be involved in the chain decay
contributions. We overlay three layers of point for which
the total cross section is within 3¢ (red), 20 (blue), and 1o
respectively at the LHC Run-2. In the upper plots, where
chain decays become possible above 250 GeV. In Fig. 11 at
nearly my, ~ m,,, which means that some opening decay
channels contribute to chain decay hy — h; + hy, hy + hy
and h, + h,. This means that imposing a constraint on the
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FIG. 11. The same as Fig. 9 but for 4;h; pair production at /s = 13 TeV in 2HDMCcT type-IL.
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parameter space with including the chain decay contribu-
tion would be too strong at the LHC Run-2. Overall, the
shape of the three different o regions in the various panels is
the results of an interplay between the kinematics and the

TABLE IV. Benchmark points for LHC Run-2 in 2HDMCcT. The cross sections are for /s = 13 TeV.

applied constraints. To a certain extent the structure can be
directly related to the exclusion curves from the collider
searches imposed by HiggsBounds. The strong increase at
my,, = 250 GeV in the lower left panel is due the opening

BP1 BP2 BP3 BP4 BP5
my; (GeV) 125.1 125.1 12.75 77.27 21.8
my, (GeV) 415.46 354.18 125.1 125.1 101.7
my,, (GeV) 426.17 937.02 155.96 448.59 125.1
my, (GeV) 258.76 311.72 152.46 174.34 104
my, (GeV) 417.81 936.06 270.28 457 327
my: (GeV) 270.22 267.60 147.13 232.8 143
myz: (GeV) 386.35 906.42 164.24 434.7 174.87
myz: (GeV) 352.06 875.54 161.01 397.2 174.89
a —-1.26 —-1.25 —0.46 -0.58 —-0.08
a —0.011 —0.086 —0.16 0.45 —0.06
as —1.08 —0.12 —-0.13 —0.08 —-1.25
v, (GeV) 1 1 1 1 1
e 5.56 0.89 6.24 4.17 5.92
y 1.13 0.69 5.52 4.57 7.08
g 2.75 1.54 -2.92 1.5 —4.64
Ao 1.50 3.36 0.90 —1.04 —-0.6
tan 8 2.57 2.53 1.7 1.07 8.83
m 26.22 16.42 —21.49 -36 56.69
Uy 11.9 263.7 6.19 —451 1.19
Us —28.95 —615.2 3.41 525.42 —14.69
Hn, 0.88 0.86 0.043 0.069 0.78

o1 =0(g9 = ) 132.9 [pb] 131.7 [pb] 10003.81 [pb] 175.45 [pb] 423.9 [pb]
o1 x BR(h —» WW) 11.69 [pb] 10.70 [pb] 0 [fb] 0 [fb] 0 [pb]

61 xBR(h, = ZZ7) 1.73 x 10% [fb] 1.59 x 10° [fb] 0 [fb] 0 [fb] 0 [pb]

o1 x BR(h; = bb) 35.1 [pb] 35.96 [pb] 4811 [pb] 71.62 [pb] 177.45 [pb]
61 X BR(h| — 17) 4.24 [pb] 4.35 [pb] 452 x 103 [fb] 7.8 x 103 [fb] 17.7 x 10° [fb]
o1 x BR(h; = 7y) 0.12 x 10% [fb] 0.12 x 10 [fb] 7 [tb] 8.4 [fb] 0.34 [fb]
H, 0.03 0.095 0.78 0.6 0.01

6, =0(g9 = hy) 0.53 [pb] 4.74 [pb] 106.18 [pb] 94.83 [pb] 18.31 [pb]
6, X BR(hy, » WW) 0.11 [pb] 0.56 [pb] 9.55 x 10° [fb] 11.4 x 10° [fb] 4.98 x 1073 [pb]
6, x BR(hy = ZZ) 52 [fb] 260 [fb] 1.41 x 10° [fb] 1.69 x 10° [fb] 9.66 x 1075 [pb]
6, x BR(hy — bb) 6.2 x 107 [pb] 4.1 x 1073 [pb] 19.06 [pb] 23.12 [pb] 0.35 [pb]

6, X BR(hy — 77) 9.38 x 107 [pb] 6.1 x 10~ [pb] 2.3 x 107 [fb] 2.79 x 103 [fb] 0.041 x 103 [fb]
6, x BR(hy = 7y) 7.401 x 1074 [fb] 7.86 x 1073 [fb] 0.1 x 10° [fb] 0.08 x 103 [fb] 1.86 [fb]
BR(hy — hyhy)% 5.1 x 1072 1.6 x 1072 25.69 0 94.68

H, 0.11 0.0003 4.69 x 1075 0.51 1.07

o3 =0(gg = hs3) 1.43 [pb] 4.6 x 10~* [pb] 0.15 [pb] 2.79 [pb] 93.87 [pb]
03 X BR(h3 — WW) 0.35 [pb] 1.52 x 107° [pb] 7 [fb] 2.4 [fb] 8.86 [pb]
03 x BR(h3 = Z27) 1.6 x 102 [fb] 1.52 x 1073 [fb] 0.8 [fb] 2.2 [fb] 1.32 [pb]
63 X BR(h;y — bb) 1.8 x 1073 [pb] 2.7 x 1078 [pb] 0.004 [pb] 4.2 x 107 [pb] 19.14 [pb]
03 x BR(h;y = 77) 2.7 x 107 [pb] 4.6 x 107 [pb] 0.56 [fb] 6.46 x 1072 [fb] 2.31 [fb]
63 X BR(h3 = 77) 2.027 x 1073 [fb] 2.25 x 1078 [fb] 1.54 x 1073 [fb] 5.05 x 1073 [fb] 0.14 [fb]
BR(h3 = Y1 ,hih;)% 6.9 x 1072 6.1 x 1072 81.3 0.79 18.42
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of the decay h; — h, + h, and the decrease in the number
of points for large values of my, is due the S and T
parameters.

VI. BENCHMARK POINTS FOR THE
LHC RUN-2 IN 2HDMCT

Benchmark points. In this section we provide a set of
benchmark points in 2HDMCcT. There are chosen
to cover various physical situations. From a phenomeno-
logical perspective we are interested in maximizing various
visibility of the new scalars in the LHC Run-2 and in
covering, simultaneously, many kinematically different
possibilities. In particular, we are interested in scenarios
where hgyy = hy, hgmq = hy and hgy = h3 while preserving
consistency with LHC Run-2 measurements. Thus, in
many of the points presented below we have tried to
maximize the cross section for the cross sections. At the
same time we required the rates of the SM-like Higgs
within 26 from the global signal strength provided by
the ATLAS and CMS data from LHC Run-2. Table 1V,
contains the parameters that define the chosen benchmark
points and the production rate of the lightest as well as next-
to-lightest Higgs bosons h, and hs3 in the various final
states.

We also give the signal rates p;, (i = 1, 2, 3) we have
chosen: two points where the SM-like Higgs is the lightest
Higgs boson (BP1 and BP2) two points where it is the next-
to-lightest Higgs boson (BP3 and BP4) and one point
where it is the heaviest (BP5).

Most points were chosen such that the cross sections for
the indirect decay channels of the new scalars can compete
with the direct decays. In particular we have tried to
maximize hs — hy + h, where all decays scalars could be
observed at once. We have furthermore chosen points with
large cross sections for the new scalars, so that they can be
detected directly in their decays. In BP1, the lightest Higgs
boson is &; and decay channel h; — h, + h, is eventually
closed. The presented point has a maximum cross section
so that all new scalars can be expected to be observed. In
BP2, the SM Higgs-like still /#; but we allow iy — hy + hy
now is open with a large possible branching ratio. For the
BP3 where h, is the SM-like Higgs boson and
my, < my, /2, all kinematic situations for the scalar decays
are available while the spectrum remains light. So that
Higgs-Higgs decays present an interesting discovery
option for the heavy Higgs states. Furthermore, large
production cross sections have been required for the
new light scalar /s, so it will be visible in direct
decays in addition to chain production from heavier
scalars. With BP4, the situation is different from the
previous one, so that the channel i, — h; + h; is kine-
matically closed. At the same time the direct /| production
rates are increased. Lastly, in BPS benchmark the spectrum
is very light. So that the production of A, is possible

through hy — h; + hy or hy — h; + h,. This benchmark
point has been required to have large branching ratios for
hihy and hh,, however the direct production rates of the
heavier &, are expected to be small, but still accessible at
the LHC Run-2.

VII. SUMMARY

In this paper we presented a comprehensive analysis of
the scalar sector in 2HDMcT, when the bosons mix with
arbitrary angle a; (i = 1, 2, 3). Of the bare states in the
model, one is usual neutral component of the SM Higgs
doublet. We started by presenting the model and the
theoretical constraints that were imposed. Indeed we have
discussed the questions of unitarity and vacuum stability in
this model and showed the allowed parameter ranges. We
have shown that, in the case of vanishing new extra
parameters, the spectrum of the scalar Higgs is reduced
to HTM. Later on we studied the phenomenological aspects
of the scalar sector by imposing both theoretical and
experimental constraints from combined LHC results by
identifying the lighter of them with the 125 Higgs boson of
standard model. In the numerical analysis, we first inves-
tigated how important the contributions from Higgs to
gauge bosons decays can be compared to its direct
production and decay. Depending on the mixing angles
and the scenarios, the production rates can attain a
maximum values ranging between 0.1 fb~! and 100 fb~!
while remaining compatible with the Higgs signal mea-
surements within 2¢. We have tested the main chain decays
of heavy Higgs bosons scenario where the power to
discriminate them from other extended models like
2HDM depends critically on differentiating their couplings
and decays.
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APPENDIX A: DIAGONALIZATION MATRICES

The rotation between the physical and nonphysical states
are given by:

G* 4"1i G° m
Hf | =C| ¢35 | and | A |=0|m | (Al)
Hzi 5i Az No

The matrices elements for each sector are shown below.
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1. Charged sector

In terms of the mixing angles 67

Cii Cpn Cis CorCos SorCox Soy
C = C2] C22 C23 g —<C91i562is‘93i + SQfC9§) Ca]iCe}i - SQ]iSHZiSb}i ngiS93i (Az)
Cyi Cxn Css —CySgCo + SgeSg:  —(CorSgr + 592595 Co)  CoiCot

where in the hybrid parametrization P;, these elements are given by,

v v v
Ci :71, 012:?2, C13:\/§j (A3)
X X 1
Co = \/—IN Cn= \/—ZN Cy = TN (Ad)
C31 = C21 [m?{li - mézi}, C32 = 622 [m?lli - m%_lzi]v C33 - C23 [méli - milzi] (AS)
where vy = \/v? + v3 and
Uoc/i(UO(MTz(Mﬁcﬁ + M%sﬂ) + Mﬁmi,]isﬂ) + \/EM?%M%U:) (A6)
X1 =
\/Evovl(mi,]i (Mazcp+ Missg) + M5 (Mizes + Massg)) + v%mzf(cﬁmzlisﬁ + M$) + 2MEM?
Uosﬂ(Mzi3(”0Cﬂm12L11i + \/§M1i3”t) + MTz”O(MﬁCﬂ + M2i3sﬂ)) (A7)
Xy =
\/Evovt(mé,li (M3zc5+ Mizsp) + ME(Mies + M3sp)) + v%mzf(cﬁmélﬁsﬂ + M%) + 2MEM50?
N =/14+x}+x3 (A8)
Furthermore
C C C
tan 0F =~ = ke tan0F = B, tan OF = -2 (A9)
Cll (%1 C12 ! CB3

2. CPyqq sector

For the terms of odd sector, the rotation matrix O can be expressed in terms of the mixing angles f; as,

On Op O € Cp, Sp1Cp Sp,
O=10y 0n Oy |= _(Cﬁ] Sp,Spy T Sox Cﬁs) CCpy — SpiSpSpy CpSps (AIO)
O35 On, Os —CpSp,Cps + 5B, Sps _(Cﬂlsﬂ3 + Sﬁlsﬁzcﬂ3> Cp,Cps
v v v
On=—, Op=-2  Op=v2- (A11)
v v v
M1 Y2 1
021 - s 022 - ’ 023 =7 (Alz)
VN, VN, VN,
O; = Ozl[mil - miz], O3 = Ozz[mfle - miz], O3 = Ozs[mfx, - miz] (A13)

with vy = /v} + v3 and,
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vocﬁ(vO(M‘l’gdmA sp+ MPSIMSes + M3§sp)) + 2 MM,

Al4
I S, (M3 + M) + M MRy + M3s,) & 13, (2 cpsp + Mol + argintggir A1

. vo85(MS35* (vom ¢+ 2 M550 0,) + Mo (M50 ey + M33%sp))
2 2000, (mG, (M350 cp + M§lsp) + MG (MEley + MSS0sp)) + vgmy (m3G cpsp + MEST) +AMGI M 07

Ni=/1+y}+3 (A16)

and

(A15)

O3 023
= = =—=953, tan Al17
On U1 Oy, h ch 033 ( )

APPENDIX B: SETTING THE MODEL PARAMETERS

There are currently two choices of input parameters implemented in 2HDMCcT. To ease export formalities for second set, a
simplified approximations should be adopted for such purpose. Indeed, the C;;(i,j = 1,2,3) and O;;(i,j = 1,2,3) are
nearly the same as v; < vy, which involves

0 =, =0 (B1)

Sin0F = sinf, = -2 = sin (B2)
Yo

cos0f = cosff; = - cos (B3)
Yo

Using the Egs. (B1)—(B3), the matrices C and O become,

C/} Sﬂ 0 Cﬂ Sﬂ 0
C = —SﬁC93i CﬂC93i Sg}i s 0= —SﬂCﬂ3 CﬂCﬁ3 Sﬂ3 (B4)
SﬂSggt —CﬂS93i C93i Sﬂsﬂ3 _Cﬂ5ﬁ3 Cﬂ3

using again Egs. (16), (21), (26), (32), and (B4), the nonphysical parameters can be expressed through the masses, mixing
angles, y; and m?,. The input set becomes:

Pu = {u1. v 123,05, f3. tan j, M hyhys MA Ay TS HE S Mypes }. (B5)

One can then provide the following expressions for the nonphysical parameters,

I SC/%(—mﬁzsﬁS§3(sﬁ + 1) +2¢2 (cfhmﬁ1 + s?,{z(c(z,}nft%3 + mﬁzs?,}))
=
211(2)
252 (c%@m%l2 + m%} s2,) + (m%l2 - m%lg)smlso,zsza,3 —2mi,t5 + 27/ 2uyv,) (86)
203 '

1

Ay = P (csﬁ( mf,zcﬂ(c/; + l)s/213 + 2c§] (c‘§,3m%l2 + misi) + 2s§,l (cgzmﬁl + sf,,z(cf,Sm%3 + m§2s§3))
- 2mi,cty + Zﬂulct%,v, + (m%h - m%b)sza,1 Say52a;)) (B7)
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1

A3 = 302 (mfhs%,}(scﬁ +1)+ csﬁscﬁ(cgl (m%3 — m%lz)sazsza3 + 52, (cgzm%] + c’(2,3(111%l33(2,2 - m%lz)) - 2’"%2) + 4c(iimil
2 _
+ 2052[)’((’%%12 - m%z3)s(zzs2a3s(21] + S2a, S(213 (mizsrzlz - mi)) - 2\/5/4105%}1]1 - 4m%2s§3i SC/})’ (Bg)
2m3 cj —my 55 (scp—1) = 4c§;£mi1 + 2mi,cspscs — Zﬂulcsévt + 4m§,2s§$scﬁ
Ay = ] 2,2 - (BQ)
Vo
=2mj e+ m3,sp (sep — 1) 4 2miyespscy + 23/ 2 espo,
Js = 22 (B10)
Vo
; SCﬂ(Svocgsg(mizczm - m/zaz - 4C293im%2 + 4’”’1%,2) + Ca1s2azvt<C2a3(m%l2 - m%;)
6= 411011t2
zm%] B mlzzz - mi) + 2Ca2(m}213 - mﬁz)sal $2a, Ut) B11
x 41)01}t2 ( )
2”005(”’&2 Copy — m.glz - 402493i mﬁz + 4’”%2) + Csﬁ”r(sa152a2 (Cza3 (m%lz - m%,S)
Ay = . (B12)
Vo Uy
2m%l1 - m%z - mi) + 2¢q, c,,,z(m%2 - m%z)s%) B13
doan? (B13)
Vo Vs
sp(sp =+ tp) (m3, s, — 2m3 55.)
Ag = ") (B14)
t
02 (—ep,) + 2, + 2esgmi, = 2m)
Jo = . (B15)
Ui
B 2U%Cgs§(miz(1 — Cap,) + (Beggs — 8)my ) + ca,vi (camy, +mj, s5.) + vf (mj, 55, +2m7,..)
Js = o (B16)
Uy
) 2v%cgs§(mizczﬂ3 - miz - 4c293im%,2 + 4m%,2) - m%lﬁ v?
Jy = . (B17)
Uy
2 2.2
mj ssS
M2 :ﬁ‘ﬂhﬁﬁ (B18)
t
2 2
m4 (cp+ 1)szs —2\/§ ctyv
[y — 4, (cp + 1)spsp, H1Ctp U (B19)

V2o,

with t, = tan x, ct, = 1/tanx, ¢, = cosx, s, = sinx, S, = sin2x, c¢s, = 1/cosx, se, = 1/sinx

APPENDIX C: UNITARITY
CONSTRAINTS MATRICES

The unitarity constraints are derived in the basis
of unrotated states, corresponding to the fields before

electroweak symmetry breaking. The quartic scalar vertices
have in this case a much simpler form than the complicated
functions of 4;, a;, O;;, and C;; obtained in the physical
basis (H**, HY, Hy, G*, H,, Hy, H3, A}, A,, and G°) of
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mass eigenstate fields. The S-matrix for the physical fields
is related by a unitary transformation to the S-matrix for the
unrotated fields.

Close inspection shows that the full set of 2-body scalar
scattering processes leads to a 40 x 40 S-matrix which can
be decomposed into 7 block submatrices corresponding to
mutually unmixed sets of channels with definite charge and
CP states. One has the following submatrix dimensions,
structured in terms of net electric charge in the initial/final
states: SV (18 x 18), S (10 x 10) and S®)(3 x 3), corre-
sponding to O-charge channels, S™ (21 x 21) correspond-
ing to the 1-charge channels, S®)(12 x 12) corresponding

3-charge channels and finally S(7)(1 x 1) corresponding to
the 4-charge channels.

The first submatrix M corresponds to scattering whose
initial and final states are one of the following: (¢} 57,

SYPT, 367, 5Ty, o b5, D3 T, pinos patios P112s POMIS

PoN2s P21 M1M0s M2M0s N1M25> P1P0s P2P0s P1P2)- With the help
of Mathematica one finds,
) (1)

e

MI'(TxT) | MP(Tx11)
ME(11x7) | MP(11x 11)

to the 2-charge channels, S (3 x 3) corresponding to the  with,
|
Jos 0 0 0 0 0 —i;—%
0 s O 0 0 0 +i2‘—\j§
0 0 1y 0 0 0 0
MM (TxT)=1| o 0 0 Jy 0 0 0
0 0 0 0 i, 25 0
0 0 0 0 2 5, 0
tigs =i 000 0 0 2
My 00 0 0 O 0 O 0 0 0
0 4 0 0 A 0 0 0 0 0 0
0 0 s 0 0 0 0 0 0 0 0
00 0 A% 0 0 0 0 0 0 0
0 4 0 0 4 0 0 0 0 0 0
M2(11x1)= 0 0 0 0 0 A 0 0 0 0 0
00 0 0 0 0 i, 0 0 0 0
0 0 0 0 0 0 0 Ay 0 0 s
00 0 0 0 0 0 0 a5 0 0
00 0 0 0 0 0 0 0 2, 0
0 0 0 0 0 0 0 A 0 0 s
. A A A
0 0 +ij% 0 0 # 0 0 5 0 0
. A A
0 0 —ifs 0 0 £ 0 0 5 0 0
. A A A A
—ifs 0 0 +if% 0 0 f% 0 0 S5 0
M7 x11) = | o _jdo Jo_ Jo_
17(7x 11) ifs 0 0 iz 0 0 5 0 0 00
0 -is o0 0 +i% 0 0 & o0 o0 %
0 +i%® 0 0 - 0 o0 & o0 o
0 0 0 0 O 0 0 0 0 0 0

MPALxT) = (MP(7x 11))*

(C2)

where Aijk = j’i ‘I’ﬂ] +j’k’ ;11] = /li +%], ﬂi = A’i :l:ﬂ], and /IL = )@ +/14 —15.
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The second submatrix M, corresponds to scattering with one of the following initial and final states: (p17;, P2112, Pollo)-
One finds that M3 given by:

M A5 0
M2 - 15 /12 0 . (C3)
0 0 27

The third submatrix M; corresponds to scattering with one of the following initial and final states: (¢ ¢7, ¢3¢, 5757,
++S5—— MM MM Moo PPy PPy Polo i i i isti i i
676, A e A ﬁ)’ where the v/2 accounts for identical particle statistics. One finds that M, is
given by:

n R S A R RS
I R R, S, S, B,

+ N R S )
G A R B, S, S

7 7 3 ~L8 79 g @ 7o 2
Aes A9 Algg  2Ag9 v A V2g9 A V2g9

+ 7 do A le o A 2

Ay Ao o My B E V2 5 TE V2

A A e Jo 3 s e Ao A e

2 V2 2 V2 2 2 2 2 2

M= 0 4 hy 4 ks 3 A 4 b A (C4)

2 V2 V2 V2 2 2 2 2 2

6 Vil 7+ 7 s A 7+ dx Ay 7+

2 V2 \/2’189 V2 3 T My T 7 g9

A Ak e I T TR Y Y

2 V2 V2 V2 2 2 2 2 2 2

b bk Ay ks 3 Ay

2 V2 ) V2 2 2 2 2 2

6 i) 7+ 7 e 7+ A A3 7+

V2 V2 \/5’189 \/5’18 2 2 Ag9 22 M

despite its apparently complicated structure, six eigenvalues for M5 come from a very long two polynomial equations of
order 3. In order to solve these matrices, we use the Jacobi method.
The fourth submatrix M, corresponds to scattering with initial and final states being one of the following 21 sates:

(:0045?_’ Pld’?_, P2¢T, ’7045_1'_9 77145?—’ ’12¢T’ /00453_’ P1¢;—, /7245;_, ’10¢3_’ ’71¢3_9 ’72¢;_’ p05+’ /)15+’ /725+, ’705+a ’115+9 7725+a 5++5—a
5Ty, 67 ¢5). It reads that:

MINTxT) | MPETx11) | MP(7x11)
My=| MPTxT7) | MP(Tx11) | MP(Tx11) (C5)
MNTxT) | MPITx11) | MP(Tx11)

with,
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6 0 0 0 0 0 O 40 0 ? 0
024 0 0 0 0 0 0 4 0 3 0
0 0 4 0 0 0 0 0 0 4 0 0 0 0
MU(IxT)=]10 0 0 2 0 0 0], M2Ix7)=|0 0 4 0 0 0
0 0 0 0 24 0 0 0 0 0 4 if%5 0
0 0 0 0 s ; do pjE
800801031 Daa 0 A e O
7 0 0 0 0 O 0 g
dy 00 0 0 0o -%
0 2l 0 0 =-iv2ly O
0 0 Jdg O 0 —i% 0
MB3TxT)=| 0 0 0 Iy 0 0 -i% (C6)
0 V2 0 0 21§ 0 0
0 0 ik 0 0 M0
-2 0 0 i o0 0 1
and
A
0 00 0 0 35 0 0 % 0 0 00
s A )
0 5 00 5 5 0 0 —i 0 0 -4 00
% 0 0% 0 0 0 0O 0 0 0 0 00
MPIxT)=l 0 0 0 0 0 0 -ife| MPIx7)=]0 55 0 0 00
_ 4 A . }
0 %0 0 & ik o0 0 57 0 0 =300
- - o 0 0 0 0 00
iz 00 00 L0 0 i 0 00
0 0 0 0 0 w2 22
0 0O 00 0 00
A A
0 —if% 0 0 =% 0 0
—iys 00 S5 0 0 0
MPB(IxT)=| 0 0 0 0 0 0 0 (C7)
J )
0 % 00 -i% 0 0
0 0 0 0 —2i 0 0
0 0 00 0 -%20

while the other off-diagonal lower elements in Eq. (C5) are related to upper off-diagonal ones by switching i <> j in
M (TxT) = (MY (TxT)*fori >1Ai>jAi#j Solving the cubic polynomial equation given in Eq. (41), we find:

1
3
1 A+2
ajg == |b+2y/pcos tem
3 3
1 A=-2
9 =7 (b+2\/ﬁcos< 3 ﬂ)) (C8)
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with

b:2/_18 +/_19+/11+/12

p=b>=3r
A = cos™! < q > (C9)
2/ p?
where r, g stand for
r=22gA1 + Aodi + 245 4 Aody + Aidy — A — 23 — 13 (C10)
q =2b*—9br —27r, (C11)

and 1| =—2AgA1 Ao —AoA Ay + 2243+ Ao A2+ A AE =224 g ho + 11 13
The fifth submatrix M corresponds to scattering with initial and final states being one of the following 12 states:

$d ey st

V2O VRV

M A 0 0 0 0
s 0 0 0 0
0 0 2l 0 0 0
00 0 i, 0 0
0 0 0 0 g O
0 0 0 0 0 Iy

Ms=10 0 0 0 0 o0
00 0 0 -% o0
o0 0o o0 o -%
00 0 0 0
0 0 0 0 i%
00 0 0 0 i%

There are also triply charged states. The submatrix Mg
corresponding to this case generates the scattering with
initial and final states being one of the following (57 +¢7,
5Ty, 5716"), and is given by,

My 00
Mg=| 0 2y 0 (C13)
0 0 2l

and finally, it is easy to check that there is just
one quadruply charged state \%5**6**, leading to

¢T¢§r’ ¢T6+’ ¢;5+’ 5++p0? 5++pl’ 5++p2’ 6++’70’ 5++771’ 6++7]2)- It reads,

o 0 0 0 0 0
o 0 0 0 0 0
o 0 0 0 0 0
o 0 0 0 0 0
0 -2 0 0 -i% o0
0 -2 0 0 -i%
2] 0o 0 0 0 (€12)
0 % 0 0 0 0
0o 0 4 0 0 0
0 0 0 23 O 0
0 0 0 4 O
o 0 0 0 0 4

APPENDIX D: BOUNDEDNESS FROM BELOW
CONSTRAINTS

To proceed to the most general case, we adopt a different
parametrization of the fields that will turn out to be
particularly convenient to entirely solve the problem. For
that we combine both parametrizations used in [15,57] and
define:

r=\/H{H, + HiH, + TrATA (D1)
H{H| = r?cos®Osin® ¢ (D2)
HiH, = r*sin® @sin? ¢ (D3)
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TrATA = 2 cos? (D4)
Tr(ATA)2/(TrATA)? = € (D5)
(HIAATH,)/(HH TrATA) =5 (D6)
(HIAATH,)/(HH,TrATA) = ¢ (D7)

Obviously, when H,, H, and A scan all the field space, the
radius r scans the domain [0, oo, the angle 6 € [0, 2z], and
HIH,
[H,]H,]
spinor, it is a complex number a + iff such that |a + iff| < 1.
We can rewrite it in polar coordinates as a + iff = e with
£e€(0,1). We can also show that 7 € (0,1), ¢ € (0,1),

and e € [}, 1].
With this parametrization, one can cast V(4>(H 1, Hy, A)
in the following simple form,

the angle ¢ € [0,5]. Moreover, as is a product of unit

VA (r, e, S oo & €11, )
= P} + astsl + dachst + daciiolé?

+ Ascsgspé” cos 2y + c;‘b(/_lg + €ly)

+ g5 (A6 +ndg) + s5egss (29 + Eo) } (D8)
To simplify we take:
x = cos> 0 (D9)
y =sin® ¢ (D10)
z=cos2y € (—1,1) (DI11)

which allows us to rewrite the potential in the final form:

A A
V&t = {ilxz +32(1 —x)? + A3x(1 = x)

+ Agx(1 = x)E + Asx(1 — x)ffzz}y2

+ {4 +edo}(1-y)

+ {(d6 +nds)x + (A7 + o) (1 — x) }y(1 — )
(D12)

it is easy to find the constraint conditions by studying

V& (x,v,2,& €,1.¢) as a quadratic function using the fact
that:

fy)=ay*+b(1-y)*+cy(1-y),

y€(0,1)a>0,b>0 and ¢c+2Vab>0  (DI13)

we can deduce the set of constraints as:

Fi(&,2) E%xz —1—%(1 — %)%+ A3x(1 = x) + A4x(1 —x)&2
Fasx(1=x)E7> 0 (D14)
F(e)=13+ely >0 (D15)

Fii(n.8) = (d¢ +ng)x + (A7 + {A9) (1 — x)
> =2\/F (& 2)Fy(e) (D16)

For F;(£,z) > 0 one can use Eq. (D13) again to get the
ordinary 2HDM BFB constraints taking into account if
(E=0;1and z=-1; I:

)«1,)«2 >0 (D17)
)«3 + /11/12 >0 (Dlg)
13 +ﬂ4 — |/15| + \/llﬂz >0 (D19)

For Fj;(e) which is monotonic function, the condition

0 < Fyy(e) is s equivalent to 0 < Fy;(3) and 0 < F;(1). So

that Eq. (D15) becomes,
/_18 —+ 29 > 0,

- 1-

For Eq. (D16), one can write it as:

Fr(n.) + 2 F(&.2)Fy(e) >0
Fry(n,§) >0 and F;(&,2)F(e) >0 (i)
=4 or

Fi(n,8) <0 and 4F (€, 2)Fy(e) > F,(n.¢) (ii)
(D21)

(i) scenario (i): starting with the fact that x=cos?6>0
and 1 —x=sin’§>0, thus F;;;(n,{) > 0 = generic
relations:

/16 + 7’]/18 > 0,

Viypelo.1] (D22

A+l >0, V Ce€]0,1] (D23)
We note here that # and { are independent param-
eters since there are no quartic couplings linking
together H|, H,, and A. Consequently the two
monotonic function in (D22) and (D22) leads as

above to,

/16>0,
A >0,

1'6 +ﬁ'8 >0,

A4 >0 (D24)
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(i) scenario (ii): this scenario imply both (4¢ + 174g) and (47 + {49) < 0 and leads to:

{221 (25 + €9) — (A6 +1ds)* }x* + {242 (A5 + €do) — (A7 4 {29)?}(1 — x)?

+ {4025 + A& + A58%2) (s + €do) = 2(26 +ng) (A7 + o) Jx(1 = x) > 0 (D25)
Applying the lemma given by Eq. (D13), we get the following generic new constraints,
Ao +nAg > —1/24 (Ag + €lo) (D26)
A+ Chg > =1/ 205 (Ag + €g) (D27)
4(A3 + M + A5822) (As + €do) — 2(6 + 1dg) (A7 + {Ao)
> —2\/<2/11(/_18 +€do) = (A6 +128)*) (222 (g + €do) — (A7 + CAo)?) (D28)

To continue, some major adjustments are needed to
complete the set of BFB constraints. Firstly, we note
further that each of two parameters (1, €) and (£, €) cannot
be anywhere in their small ranges bounded by the vertices
(0%) and (1, 1) each. Indeed, from Egs. [(D5)-(D6)] and
[(D5)—(D7)], it can be shown that the possible values of (7,
€) and (¢, €) correspond respectively to:

2P -2+ 1<e<l, (D29)

22-2%+1<e<1 (D30)

which define the shaded region depicted in Fig. 12.
Returning to the Egs. (D26) and (D27), they may be
formulated as,

and see how to get rid of #, ¢ and e. The minimum of
G(n,€) and Gy;(C,€) occurs at the border of the shaded
regions in Fig. 12 since both functions are monotonic
in both (5, € and (£, €), respectively. Otherwise,
0 < G;(n,e) © 0 <minGy(n,€) VY n,e, and by the same
way 0 < G;(¢,¢) © 0 <minGy(,€) V ¢, e Such min-
imums that are part of the lines defined by e =2n>—2n+1
and € = 2¢% — 2¢ + 1. One redefines,

G(n) = G;(n.2p* =2n+1) and

Gu(6) = Gu(¢.28* =20 + 1) (D33)

with the examination of G,(7) and Gy (¢) convexities
V n€[0,1] and 5 € [0, 1]. Noticing here that

- senlGy(n)] = send4o(2s + 1)) = senlls]  (D34)
0 <6 +nlg + /241 (13 + €do) = Gy(n,€)  (D31)
sgn[G7;(0)] = sgnf44349 (245 + Ao)] = sgn[ds]  (D35)
0<dy+8d+ V 2h(% +edy) = Gy(lie)  (D32) where (D20) is taken into account.
1 1
0.9 ~ 0.9 ~
+ +
° \l‘
o o
0.8 i 0.8 !
b \I\
w o w o
07 07
06 06
05 05 ; : : ‘
0 0.2 04 06 08 1 0 0.2 04 06 08 1

n

¢

FIG. 12. Dependence of parameters: (17, ¢) (left) and (,¢) (right) showing the allowed shaded regions.

035031-28



THEORY AND PHENOMENOLOGY OF A TWO-HIGGS-DOUBLET ...

PHYS. REV. D 100, 035031 (2019)

Therefore, one can always find a values 7, (resp. ;) for
which G)(179) =0 (resp. G};(¢o) =0), so that it may
be a minimum only when G7(0) > 0 A G/(1) < 0 (resp.
G (0) > 0 A GYy(1) < 0). This will be true if and only if

/_19\/ 2],1 Z |/18|\/ Zg —+ Zg (resp. 19\/2/12 Z |/19|\/ /_18 + /_19) In

this case,

R 1 1 - A
Gi(no) = 2¢ + Shts \/(411,19 -2) (1 + 2/1—8) (D36)
9

. 1 1 - A
Gi(&o) =247 + Ao+ \/(4/1219 —22) (1 + 2/1—8) (D37)
9

We note also that the minimums may situate at y=0vn=1
(resp. { =0 Vv ¢ =1) from which we get the constraints

that both G;(0) = g +1/24,(dg +d9) and G,(1) =
A6 +Ag + /24 (g + Ag) should be positive quantities
(resp. G (0) =7 + /24 (Ag + 1) and  Gp(1) =
A7+ Ao + /22 (g + o))

As for the Eq. (D28) its implies,

0 < g(&.2)(4s + €do) — 2(A6 + 1) (A7 + Lho) + 2\/(2/11(/_18 +edo) = (%6 + 14g)*) (242 (As + €do) = (A7 + {29)?)

= Gm(’%C, 5)

where (£, z) = 4(A; + A& + 158%2).

(D38)

The minimum of G (1, {, €), as previously, occurs at the border of the dashed line in Fig. 13, so that we can replace
eithere — 21> — 25 + 1 ore — 2¢* — 2¢ + 1 in which function of two independent variables could be simplified. If the first

proposal was retained, the function Gy (7, ¢, €) becomes

Gii(n.0) = g(&.2) (Ag + Ao (20 = 21+ 1)) — 2(Ae + ndg) (A7 + Co)

+ 2\/(2/11(/_18 + 29(2n% =27+ 1)) = (A6 + 128)*) (242 (4 + A9 (27> = 27+ 1)) — (A7 + $Ao)?)

In order to find out if such function is convex or not,
differentiation is needed and one can easily check that:

Gy
AGHI(V],C)E< on >E<Fl(iivrl»g)> (D40)

% Fy(4i,n,¢)

22 -2n+1<en ?-2C+1<5¢€
AT
- —

-

FIG. 13. The simultaneous variation of € as a function of # and
¢ showing the allowed dashed-line region.

(D39)

where the functions F|, F, have a complex forms in
/11' > N, C .

Solving the above two stationary points give rise to one
solution given by,

(10-So)1> M0+ C0)2- (M0-C0)3  and (19, 8o)y

Therefore, we examine the Hessian of G;;; as follows,
aZGlII aZGlU
H—( P 01184“)_([{11 le)
= .. L =
where the matrix elements H,; = H;;(4;,1.¢).
At the points given in (D41), the eigenvalues of H can

be expressed in terms of A's by solving the following
equation:

(D41)

(D42)

Hll_A H12

|H — Al,| :} (D43)

21 H22 -

Hence, at this stage, and for Gm to be convex, the
eigenvalues A; and A, for each point should be positive
quantities. Within sight of their long and complicated
expressions, we will not show them here, though they
would be taken into account in our calculations.
Furthermore, one must also make sure that for each point,
both 0 < 79,y < 1 for which we request that,
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Gm(ﬂofo) >0

V £€10,1] and z € [-1,1].

The remaining possibility is that the minimum of Gm isat (n,¢) = (0, 0), (0, 1), (1, 0), or (1, 1), from which we get the

constraints that

0 < (A +29)9(8.2) = 2(As + 45) (47 + Ao) + 2\/(2}“1(;18 +29) = (A6 +48)*) (242 (Ag + A9) = (A7 + 29))

(D44)

0 < (2 +A9)g(£.2) = 2(A6 + A5) A7 + 2\/(2/11(/_18 + 29) = (A6 + 48)*) (242 (Ag + Ao) — (A7 + 49)?)

(D45)

0 < (A5 + Ao)g(£.2) — 24647 + 2\/(2/11(’_18 + o) = 22) (242 (2 + Ag) — A2)

0 < (A5 + A9)g(£,2) = 2A6(A7 + Ao) + 2\/(% (A + Ag) — A2) (222 (s + Ao) — 23).

(D46)
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