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Muon electron scattering experiments such as the proposed MUonE experiment offer an opportunity for
an improved measurement of the leading-order hadronic running of α, denoted Δαhad. Such a measurement
could be utilized to reduce the theoretical uncertainty on the prediction of the anomalous magnetic moment
of the muon, g − 2. Currently, there is a discrepancy between theory and data for this observable, which
could potentially be explained by beyond the Standard Model (BSM) physics. Here we investigate the
possible impact of missing Standard Model (SM) higher-order corrections and BSM physics on the
proposed measurement of Δαhad. In principle, either could be indirectly fitted into Δαhad, causing
inconsistencies if used in a g − 2 application. The literature suggests a target of 10 ppm on the cross section
for the theoretical accuracy. We assess the validity of this target in detail using a variety of methods, finding
that a 1 ppm target is a more conservative estimate to ensure that missing higher orders do not dominate the
theoretical uncertainty. For the potential BSM contributions, we study various models which contribute
first at tree and loop level. Of particular interest is the impact from dark photon models, which can
potentially affect the measurement of Δαhad at the desired accuracy. At loop level, there exists in general a
kinematic suppression adequate to reduce the BSM contributions to a level which can be neglected for the
extraction of Δαhad.
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I. INTRODUCTION

The quest to conclusively establish the nature of physics
beyond the Standard Model (BSM) has driven high-energy
physics for several decades. Extensions to the Standard
Model (SM) are well motivated, since the SM lacks a
suitable dark matter candidate, as well as a description of
gravity, and has some unappealing features—for instance,
in relation to the hierarchy problem. However, recent
results from collider experiments [predominantly the
Large Hadron Collider (LHC)] paint a picture which is
remarkably consistent with the predictions of the SM.
Barring any major surprises in the current LHC Run II data
set, the quest to derail the SM will enter into a precision
regime. That is, BSM physics will be hunted not through
searches for the direct production of new particles, but
through subtle deviations made manifest in the coupling of
SM particles to each other and themselves.

Excitingly, precision tests already put the SM under
significant tension. There has been a long-standing deviation
between the prediction from the SM for the anomalous
magnetic momentum of the muon g − 2 and various exper-
imental measurements of the same quantity. Excitement is
building for the upcoming update from the Muon g − 2

experiment at Fermilab [1], which will present first results
this summer. The Fermilab experiment should be able to
improve upon the current measurement from Brookhaven
National Laboratory (BNL) [2], ultimately aiming to make
the experimental uncertainties small enough to claim a five-
standard-deviation discrepancy with the SM. A challenge in
making such a monumental statement is that one must
attempt to quantify the theoretical uncertainty in a robust
way so as to ensure thevalidity of the comparison. There is no
100% infallible method of estimating theoretical uncertain-
ties in the SM. This is particularly the case for calculations of
g − 2, which rely on a delicate mixture of perturbative and
nonperturbative ingredients. Nevertheless, several indepen-
dent calculations and methodologies have been performed,
resulting in predictions which all agree within 1σ [3–5],
with the most recent result corresponding to aSMμ ¼
11659182.04� 3.56 × 10−10. Compared to this prediction,
the current (BNL) observation is 3.7 standard deviations
different: aSMμ ¼ 11659209.1� ð5.4Þð3.3Þ × 10−10. For a
review of the theoretical predictions for g − 2, we refer the

*ulrichsc@buffalo.edu
†ciaranwi@buffalo.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 100, 035030 (2019)

2470-0010=2019=100(3)=035030(13) 035030-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.035030&domain=pdf&date_stamp=2019-08-26
https://doi.org/10.1103/PhysRevD.100.035030
https://doi.org/10.1103/PhysRevD.100.035030
https://doi.org/10.1103/PhysRevD.100.035030
https://doi.org/10.1103/PhysRevD.100.035030
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


reader to Ref. [6], and a recent review of potential BSM
explanations can be found in Ref. [7].
While the perturbative piece of g − 2 is under very good

control [8–12], the nonperturbative components are the
largest contributors to the theoretical error budget.
Currently the leading-order (LO) hadronic contributions
and light-by-light scattering dominate the uncertainty:
broadly speaking, both contribute approximately 3 × 10−10

to the total error estimate [3–5,13–16].
The most precise predictions for the LO hadronic

contributions are currently extracted from the ratio R ¼
σðeþe− → hadronsÞ=σðeþe− → μþμ−Þ coupled with the
optical theorem. This extraction is made difficult by the
copious amount of low-energy QCD bound states [5,17],
which have to be integrated over. Efforts are underway to
improve the situation. On the one hand, lattice QCD
provides the means to calculate the hadronic contributions
independently from experimental data [18–27]. On the
other hand, to avoid the complications from bound states
a new measurement of Δαhad, in an alternate kinematic
regime, has been proposed [28,29], known as the MUonE
experiment.
This experiment plans to use a precision measurement of

low-energy μe scattering to probe the running of α, as
shown in Fig. 1. Since the running is now probed in the
spacelike t-channel regime, the integrand is a smooth
function and no longer suffers from the complications
due to the production (and decay) of QCD hadrons.
However, the extraction of such an accurate measurement
of Δαhad (corresponding to an uncertainty of around 0.3%
[30]) represents a significant experimental and theoretical
challenge. In order to obtain the theoretical accuracy
needed, a dedicated effort to provide differential calcula-
tions and Monte Carlo codes has begun. In particular, the
next-to-leading-order (NLO) QED and EW effects have
been calculated [31], as well as the NLO and next-to-next-
to-leading-order (NNLO) hadronic contributions [32].
Furthermore, significant progress has been made towards
a full NNLO QED calculation [33,34].
While significant attention has been given to the pre-

dictions for μe scattering in the SM, thus far, to the best of
our knowledge, no study has been performed which
investigates the sensitivity of MUonE to BSM physics.

That is to say, if BSM physics exists and contributes around
Δaμ ¼ 20 × 10−10 to g − 2, what is the subsequent impact
on a scattering experiment (also involving muons) which
seeks to measure the hadronic contributions at the level of
2 × 10−10? One may naturally worry that any BSM con-
tribution could be present in both to such an extent as to
invalidate the methodology. In the worst-case scenario,
BSM physics would be fitted intoΔαhad, and the agreement
between the “SM” and data would be artificially enhanced.
This paper aims to answer this question. In order to do so,
we will study situations in which BSM enters at both tree
and loop level and classify the overall impact in a
reasonably broad and model-independent manner. Before
doing so, we will first reassess the impact of theoretical
uncertainties from the SM itself and compare them to the
targeted accuracy of 2 × 10−10.

II. OVERVIEW

The MUonE experiment proposes to measure Δαhad via
t-channel scattering of muons and electrons. Once Δαhad is
defined, its subsequent contribution to g − 2, denoted aHLO,
is obtained via the following integration [35–37]:

aHLO ¼ α

π

Z
1

0

dxð1 − xÞΔαhad½tðxÞ�; ð1Þ

where t is defined in the spacelike region as a function of x
in the following way:

tðxÞ ¼ x2m2
μ

x − 1
< 0: ð2Þ

In this work, we will use the HADR5N12 program [4,38,39]1

to generate Δαhad [and subsequently aHLO via Eq. (1)]. The
results from the code for Δαhad as a function of x are shown
in Fig. 2, where we have highlighted the MUonE signal
region, which corresponds to x ∈ ½0.3; 0.932�. The region
x < 0.3 is an area of phase space in which the contribution
from Δαhad is rather small, and thus is proposed as a
normalization window to aid in the reduction of exper-
imental systematic uncertainties. The region x > 0.932 is
not kinematically accessible for the proposed experiment.
In the signal region, Δαhad can be modeled by a cubic
polynomial, a quadratic Padé approximant, or a leptonic-
running-like function (see Ref. [40] for a more detailed
comparison). In this work, we choose a cubic polynomial
Δαfithad ¼ c1tþ c2t2 þ c3t3 as a fitting function, which is
also displayed in the figure. We note that Δαhadð0Þ ¼
c0 ¼ 0; as such, there is no constant term in the fit. Over the
MUonE data range, with around 30 data points and 3 free
parameters, it is possible to obtain fitting errors on aHLO at
the level of 0.3% [40].

αhad

μ

e

FIG. 1. Feynman diagram corresponding to the “signal”for the
MUonE experiment. 1Specifically, the 9 September 2009 version.
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We can relate the extraction of Δαhad to the perturbative
expansion in theory. The differential cross section (in t)
expanded to NLO in α can be written as

dσSMfull
dt

¼ α2
dσLO

dt
þ α3

dσNLO

dt
þ 2α2

d
dt

ðσLOΔαhadÞ

¼ dσSMpert
dt

þ 2α2
d
dt

ðσLOΔαhadÞ: ð3Þ

The first two terms can be readily computed in perturbation
theory and are therefore considered a “background” in the
MUonE setup, which will be subtracted from the data.
Access to Δαhad can be found by equating the following
ratio:

d
dt

�
dσExp
dσSMpert

�
¼ d

dt

�
dσSMfull
dσSMpert

�
; ð4Þ

where σExp would correspond to the experimental data.
Expanding the right-hand side to OðαÞ, we see

d
dt

�
dσExp
dσSMpert

�
¼ 1þ 2Δαhad þOðα2Þ: ð5Þ

Implicit in the above expansion is that any physics not
accounted for in dσSMpert but present in the data will be
absorbed into the definition of Δαhad. It is therefore

mandatory to calculate dσSMhad as accurately as possible in
order to minimize unwanted inclusion of known physics
(for example, the inclusion of NNLO effects in α from
perturbative physics). Specifically, the MUonE literature
frequently quotes an error target of 10 ppm ð10−5Þ on the
cross section as the desired goal for the theoretical accuracy
[28–32]. This value is motivated by considering the
degradation of the fitting function by the inclusion of a
systematic uncertainty. Studies have been performed which
suggest that including systematic shifts proportional to LO,
included as parameters in the fit, do not significantly
degrade the results beyond the initial 0.3% value [40].
This can be easily understood, since the essential change is
to include a fourth parameter in the fitting model; however,
with 30 well-measured points, this does not lead to a
significant decrease in the fitting ability.
The aim of this paper is to study in greater detail the

nature of the theoretical quantity which would be fit using
the proposed experimental procedure above. In general,
there are two types of missing theoretical components to
Eq. (5). First, as indicated above, there are missing higher-
order corrections in the SM itself. Second, in the case where
physics BSM exists, the theoretical expansion of the
differential cross section could be modified at OðαÞ or
Oðα2Þ. We therefore capture all missing theoretical infor-
mation in the following equation:

d
dt

�
dσExp
dσSMpert

�
¼ 1þ 2ðΔαhad þ ΔαHO þ ΔαBSMÞ; ð6Þ

where ΔαHO defines all unsubtracted pieces of the SM (for
instance, electron mass effects, N3LO, etc.) and ΔαBSM
corresponds to a model-dependent BSM correction. The fit
to experimental data will therefore simultaneously fit the
target signal, Δαhad, and the additional pieces. When
integrated to obtain aHLO, the unsubtracted terms modify
the result as follows:

aHLO → aHLO þ δaHLO; ð7Þ
where δaHLO captures the integrated pieces which do not
arise from the hadronic running of α:

δaHLO ¼ δaHLOHO þ δaHLOBSM ð8Þ

¼ α

π

Z
0.932

0.3
dxð1 − xÞðΔαHO þ ΔαBSMÞ: ð9Þ

We have also specifically included the integration bounds
of the MUonE fiducial volume. The accuracy on the
extraction of aHLO is thus intimately related to the size
of δaHLO, which should be compared to the 0.3% (fitting)
error target. In the subsequent sections, we will estimate the
impact of δaHLOHO using estimates of higher-order calcula-
tions, and δaHLOBSM for general tree-level and loop-induced
new physics scenarios.

FIG. 2. The upper panel shows the leading-order hadronic
contributions Δαhad to the running of α in the MUonE signal and
normalization region (computed using the HADR5N12 program
[4,38,39]), and in red we show a cubic fit to Δαhad in the signal
region. The lower panel shows the ratio of the cubic fit over
Δαhad.
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III. RESULTS

A. Impact of missing higher-order corrections

We begin by studying the impact of missing higher-
order terms in the SM. Formally, these are well defined
by their inverse (since we know which terms of the SM
are included). For practical definitions, until the comple-
tion of higher calculations becomes available, one can
only construct some approximate form of missing higher-
order corrections. The simplest function to define is a
flat correction relative to LO, i.e., ΔαLOHO ¼ c, and corre-
spondingly

δaHLOLO ¼ c
α

π

Z
0.932

0.3
ð1 − xÞdx: ð10Þ

This integral can be readily computed, yielding

δaHLOLO ðcÞ ¼ 0.243
αc
π
: ð11Þ

The stated theoretical accuracy of 10 ppm would corre-
spond to c ¼ 5 × 10−6 [accounting for the factor of 2 in
Eq. (6)]; this results in δaHLOLO ð5 × 10−6Þ ¼ 28 × 10−10,
which is approximately equal to Δaμ, the current difference
between theory and experiment for the g − 2 measurement,
and is far too large for a useful extraction of aHLO. In order
to reduce the impact of the missing higher-order corrections
to the level of the current uncertainty on aHLO of ∼2 ×
10−10 (adjusted from the full error for the fiducial volume
of MUonE), c would have to be 3.5 × 10−7, corresponding
to a theoretical accuracy of 0.7 ppm on the differential cross
section. In principle, missing higher orders of this form
(proportional to LO) enter the fit as a constant term, and
therefore generate a nonzero value of c0 in the expansion
in t. These terms could therefore be treated as a theoretical
systematic uncertainty in much the same way as other
systematic uncertainties are handled.
A more worrisome class of corrections are missing terms

with a dynamic t dependence across the fiducial volume of
the MUonE experiment, which cannot simply be absorbed
into a constant term in the fit. In order to investigate the
potential impact of these types of terms, we estimate the
size of various higher-order corrections by computing
the leptonic running of α raised to the appropriate power:

Δαapproxi;HO ðtÞ ¼ κiΔαilepðtÞ; ð12Þ

where ΔαilepðtÞ is defined in the Appendix. We note that
these pieces correspond to a single diagram (rescaled by
LO) from the ith-order correction in the perturbative series
(namely, the equivalent topology of Fig. 1 with i bubble
insertions along the photon line). While this diagram
gives an idea of the order of magnitude of a missing
ith-order correction, the full result could be smaller (due to

cancellations with other diagrams) or larger. Therefore, we
vary our estimate over some set range, by multiplying it
with a factor of κi. A reasonable range for κi can be best
determined upon completion of the NNLO computation,
but for now we will take κi in the range f1=5–5g. We can
validate our estimate at NLO (i ¼ 1) by comparing it to the
available NLO calculation. We find that the exact value
δaexact1;HO ¼ 1.4 × 10−6 lies well within our estimated range
δaapprox1;HO ¼ ð0.6 − 16Þ × 10−6, where the former was
obtained by interpolating the data points presented in
Ref. [31] and adjusting the lower integration bound to
be x ¼ 0.373, due to the restricted range of the NLO data.
Using this approximate form, we compute δaapproxi;HO using

Eq. (12) in Eq. (9). As a result, we estimate that the
unknown higher-order contributions to δaHLO have the
following sizes:

jδaapproxi¼2;HOj ¼ ð0.5 − 13Þ × 10−8; ð13Þ

jδaapproxi¼3;HOj ¼ ð0.4 − 9Þ × 10−10; ð14Þ

jδaapproxi¼4;HOj ¼ ð0.3 − 6Þ × 10−12: ð15Þ

Our estimates corroborate current beliefs that an NNLO
(i ¼ 2) calculation is essential for the success of the
experiment. However, the impact on aHLO from the
i ¼ 2 contribution is estimated to be around 100 times
the target uncertainty of 2 × 10−10. It is not until i ¼ 3,
(corresponding to an approximate N3LO calculation) that
the estimated corrections are around the desired accuracy of
2 × 10−10. These statements are in line with those outlined
in the recent MUonE letter of intent (LOI), Ref. [29], which
(using the 10 ppm target) determined the need for both
NNLO and resummation effects to achieve the theoretical
error target. Both the current literature and our analysis
above suggest that precision significantly beyond NNLO
will be required. Before attempting to quantify what terms
are needed, we first determine the impact of the higher-
order estimate on the differential distribution in terms of
ppm accuracy on the cross section.
To do so, we perform the following analysis: We

generate data for Δαhad using HADR5N12 and for Δαapproxi;HO

with a given value of κi. We then proceed to fit the sum of
these two terms together with a flat statistical uncertainty of
10 ppm using a third-order polynomial fit:

Δαfithad ¼ Δαhad þ κiðΔαilepÞ3 ¼
X3
i¼1

citi; ð16Þ

which is then integrated through Eq. (1). We obtain fitting
uncertainties of 2.3 × 10−10, which match those found in
previous MUonE studies. Our results obtained for various
values of κ3 are shown in Fig. 3, which includes the pure
hadronic contribution (κ3 ¼ 0). We observe that the errors
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arising from the fit do not depend on κ3, but that the central
value of aHLO can be significantly shifted. Especially if
κ3 ≥ 2, the shift exceeds the fitting error of the purely
hadronic data with κ3 ¼ 0 and therefore is the dominant
theoretical uncertainty. For κ3 ¼ 1.5, the shift in aHLO is
2 × 10−10, and we find that the mean value of Δαapprox3;HO is
0.62 × 10−6 and the maximum value is 1.5 × 10−6. This
indicates that a function which contributes at the level of
around 1.2 ppm is sufficient to induce a change in aHLO

greater than 2 × 10−10.
The two estimates presented thus far in this section

suggest that a precision of around 1 ppm will be required in
order to ensure that the extracted value of aHLO is not
altered by the presence of missing higher-order corrections
at the level of 2 × 10−10 or greater. Further, our second
approximate form suggests that this precision occurs
around the N3LO level. Since an N3LO calculation
remains a daunting task, it is natural to investigate whether
a suitable approximation could be constructed to capture
the dominant impact of this term in the perturbative
expansion. Such approximate forms were discussed in
the LOI [29] and compared to the 10 ppm standard.
Here we reinvestigate the issue, in light of the results of
the previous section. In order to do so, we decompose the
perturbative expansion in α to order n as follows:

σðnÞ ¼ σð0Þ
Xn
m¼0

�Xm
i¼0

Xm
j¼0

κmi;jðtÞ
�
α

π

�
m
Lilj

�
; ð17Þ

where we have used the notation of Ref. [29], parametrizing
the cross section in terms of two IR logarithms, L ¼
logð−t=m2Þ and l ¼ −2 log ð2Δω=sÞ. κmi;jðtÞ defines the
coefficient of the logarithms, which is in general a function
of the kinematic variables (of which we are primarily
concerned with the t dependence). Δω is related to the
experimental definition of photons or leptons, and its
discussion is beyond the scope of this paper. Steps outlining
the resummation of these logarithms are discussed in

Ref. [29]. Rather, we take as a starting point the stated
theoretical uncertainty from Ref. [29] after the proposed
resummation techniques have been applied, which is given
by the term

κ32;0

�
α

π

�
3

L2; ð18Þ

i.e., L2 with no enhancement by an l power and with κ32;0 of
Oð1Þ. Our aim is thus to relate the uncertainty induced by
this term to the findings of our previous analyses. It is
straightforward to relate this expansion to our previous
estimate of the missing higher-order corrections. Our
estimate was constructed from one-loop bubble integrals,
which contain logarithms of the form

L0 ¼ log

�
−
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t=ð4m2

eÞ
p

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t=ð4m2

eÞ
p

�
ð19Þ

(see the Appendix for the full form). Over the range of
phase space available to MUonE, one can write to a good
approximation

L0 ≈ L ¼ log

�
−

t
m2

e

�
¼ log

�
x2

1 − x

m2
μ

m2
e

�
∼ 10: ð20Þ

Hence, our previous estimation was of the form
aðtÞL3 þ bðtÞL2 þ cðtÞLþ dðtÞ, which we note contains
cubic powers of L, and is therefore of higher order than
Eq. (18). Motivated by our previous study and the error
estimate of Ref. [29], we study the functions

ΔαLj;n;HO ¼ 1

2

�
α

π

�
n
κnj;0L

j; ð21Þ

where 0 ≤ j ≤ n, and for simplicity we take κ to be an
unknown constant. The factor of 1=2 is inserted to ensure a
consistent definition of ΔαHO in Eqs. (7) and (17), which
allows us to quickly relate κ to the expansion coefficient of
a particular term in the cross section. This then resembles
our previous estimate in terms of the logarithmic structure
(with all rational functions of t dropped) and the stated error
estimate from Ref. [29], which starts at j ¼ 2 (for n ¼ 3).
We perform the same analysis as the previous estimate,

namely performing a combined fit to Δαhad and ΔαLj;n;HO,
and integrating the total to obtain a modified aHLO. We
present the difference from the Δαhad-only result (in units
of 10−10) in Table I, where we have set κnj;0 ¼ 1 for

FIG. 3. Different values of the leading hadronic contribution,
depending on the size of κ3 multiplying the approximate N3LO
correction, defined according to Eq. (12).

TABLE I. jδaj × 1010 values for various powers of α and Lwith
κna;b ¼ 1 for all contributions.

ðα=πÞnLn ðα=πÞnLn−1 ðα=πÞnLn−2 ðα=πÞnLn−3

n ¼ 2 980 88 8 � � �
n ¼ 3 26 2.3 0.21 0.019
n ¼ 4 0.67 0.059 0.0053 0.00048
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simplicity. We present results for n ¼ 2, 3, 4 and 0 ≤ j ≤ n.
Of particular interest is the comparison between our
previous third-order estimate and that obtained here. We
see that the shift induced by the α3L3 term is significantly
larger than the third-order approximate constructed from
the leptonic running (∼25 compared to 1). This is primarily
since the leptonic running scales like 1=3 compared to
ΔαL3;3;HO; when raised to the third power, this causes a
suppression of 27. In the leptonic running, there is also a
partial cancellation between the L3 and L2 terms, which
suppresses the contribution by roughly a factor of 2. This
partial cancellation is mimicked by the factor of 1=2
in Eq. (21).
We observe that the α3L2 term (with a coefficient of 1)

contributes around 2 × 10−10 to δa. This strongly suggests
that this term will be required in order to achieve the desired
accuracy of MUonE (unless for some reason the coefficient
were significantly smaller than 1). The α3L term contrib-
utes around 0.2 × 10−10 to δa and is therefore extremely
sensitive to the true value of κ as to whether or not is
contribution is mandated. The coefficient of α4L3 is of a
similar (albeit smaller) size; its presumed importance (or
lack thereof) should be easier to quantify once more is
known about the perturbative expansion.
In order to present this information in a more usable

format (after the completion of future higher orders), we
compute the value of κ required for each term (taken
individually) to be sufficient to alter the fitted aHLO by
greater than or equal to 2 × 10−10. These values of κ are
summarized in Table II. For example, we see that if the α3L
term has a coefficient greater than 10, it will need to be
included in the theoretical calculation. If the coefficients are
of Oð1–10Þ, then α3L2 and α3L should be included. Upon
understanding of the perturbative structure at n ¼ 2 and
n ¼ 3, it may be possible to predict more accurately
whether the α4L3 terms are needed. Presumably, if the
technology exists to determine the third order up to single
logarithmic accuracy, similar techniques may be utilized to
determine the α4L3 term. We recall that in reality the
coefficients of these subleading logarithms are themselves
functions of the external kinematics, and therefore model-
ing them as a constant is somewhat risky. Needless to say,
once more is known about the lower-order terms in the
expansion, it will be easier to make more predictive
comments about exactly which coefficients are needed.

In summary, it seems that the knowledge of α3L2 is
mandatory, and that the α3L and α4L3 terms need a more
robust argument so as to judge the maximum size of their
coefficient in the full perturbation theory (ideally with an
actual calculation).
As a final issue, we comment on the role of fitting in

determining our results above. We recall that the numbers
computed in this section were obtained by integrating
Δαfithad, which corresponded to the combination of Δαhad
and the chosen higher-order correction with an error given
by 5 × 10−6 in the fit. It is interesting to compute the
unfitted corrections to δa arising from Eq. (21) integrated
term by term, i.e.,

δani ¼
1

2

�
α

π

�
nþ1

Z
0.932

0.3
ð1 − xÞ log

�
x2

1 − x

m2
μ

m2
e

�i

dx; ð22Þ

where we have set κni;0 ¼ 1. Focusing on n ¼ 3 and
i ¼ 2, 1, we find

δa32 ¼ 3.7 × 10−10; δa31 ¼ 0.36 × 10−10; ð23Þ

which should be compared to 2.3 and 0.21 × 10−10

(Table I) for the respective fitted values. We observe that
fitting the logarithms onto a cubic polynomial reduces
the “pure”impact of the pieces by around a factor of 2.
Other fitting functions have been investigated for Δαhad
(and are beyond the scope of this work), but it would be
an interesting study to investigate if these terms could
be further suppressed by modifications to the fitting
procedure.
We present a summary of our various findings in

Table III. The three different types of functions all paint
a broadly similar picture. That is, extracting aHLO with a
systematic uncertainty from missing higher-order correc-
tions less than or equal to 2 × 10−10 requires control of the
differential t distribution at around the 1 ppm level. We
classify the size of the coefficients needed in a perturbative
expansion of α and log ð−t=m2

eÞ. Anticipating the size of
the coefficients at around Oð1–10Þ mandates terms up to
order α3L and possibly α4L3. As more theoretical work is

TABLE II. κ values for the individual coefficient at which jδaj
exceeds the desired accuracy of 2 × 10−10.

ðα=πÞnLn ðα=πÞnLn−1 ðα=πÞnLn−2 ðα=πÞnLn−3

n ¼ 2 0.002 0.02 0.3 � � �
n ¼ 3 0.08 0.9 10 100
n ¼ 4 3 30 400 4000

TABLE III. Average and maximal sizes of different contribu-
tions in ppm ð10−6Þ, which induce a theoretical systematic
uncertainty that is larger then the targeted accuracy of 2 × 10−10.

Function
Mean
½×10−6�

Maximum
½×10−6�

δσ=σð0Þ
[ppm]

ΔαL3;2;HO½κ ¼ 0.9� 0.67 1 1.3
ΔαL3;1;HO½κ ¼ 10� 0.67 0.83 1.3
ΔαL4;4;HO½κ ¼ 3� 0.66 1.4 1.3
ΔαLOHO 0.35 0.35 0.7
1.5 × Δα3lepðtÞ 0.62 1.47 1.2
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completed, it will be possible to determine the likely size of
missing coefficients more accurately. Finally, we can
estimate the theoretical systematic uncertainty arising from
a function which has a mean value corresponding to the
10 ppm target (as originally proposed [29]). Performing the
same analysis as above (using the α3L2 template function)
results in a shift of δaHLOHO ¼ 16 × 10−10, with other choices
of template functions resulting in similar values.

B. Tree-level BSM contributions

The previous section discussed the precision needed in
the SM to enable an accurate extraction of Δαhad. There is a
second component to Eq. (6) arising from putative BSM
physics. In this section we analyze the potential impact of
different types of models. We begin by discussing BSM
contributions which may enter first at tree level. A tree-
level exchange connects the two lepton lines, and therefore
corresponds to an example like the rightmost diagram in
Fig. 4. In order to have avoided detection, the new boson
exchanged between the leptons must either be very heavy
or have suppressed couplings to SM matter. The simplest
examples correspond to the exchange of either a spin-0
scalar or spin-1 gauge boson. For the case of a scalar (or
pseudoscalar), the couplings scale with lepton masses. This
assumes minimal flavor violation, in which case the only
flavor-violating spurions are the Yukawa matrices. Given
the smallness of the electron Yukawa, we focus instead on
the exchange of a spin-1 gauge boson. In order to study a
(simple) relevant example, we consider a vector gauge
boson arising from an additionalUð1ÞX symmetry [referred
to as a secluded Uð1Þ] that mixes with the Standard Model
photon (a dark photon). Originally such models were
proposed as good candidates to explain the difference in
g − 2 [41]; however, much of the desired parameter space is
now excluded by other measurements [42]. However, there
is still an unconstrained region of parameter space in which
the models could have some impact on g − 2.
A secluded Uð1Þ Lagrangian includes a new gauge

boson Xμ which couples to the hypercharge gauge boson
of the SM [41,42]:

L ¼ −
1

4
F̂μνF̂

μν −
ϵ0

2
F̂μνX̂μν −

1

4
X̂μνX̂

μν

− g0yYμ B̂μ þ 1

2
M̂2

XX̂μXμ; ð24Þ

where B̂μ defines the hypercharge gauge boson, with
corresponding field strength tensor F̂μν and gauge coupling
g0, and the hypercharge current jYμ defines the coupling to
SM fermions. The hats on the fields indicate that the
relevant fields are not canonically normalized and require
rotation to the mass basis. This results in a redefinition of
the SM Z-boson mass, a massless photon, and a massive
dark photon (denoted by A0). The dark photon couples
universally to all SM quark and lepton flavors with a
suppression given by ϵ ¼ ϵ0 cos θw.
Recalling Eq. (6), we see that unaccounted BSM physics

would be absorbed into the hadronic running of α. For tree-
level BSM physics we find a contribution of the form

ΔαBSM ¼ ℜ½MQEDMBSM�
jMQEDj2

; ð25Þ

which corresponds to the interference term between the SM
and BSM contributions. We neglect the BSM-squared term,
assuming that it remains small.
For the dark photon model described above, the LO

interference is simple to compute—indeed, since the only
modifications are to the t-channel propagator and the
coupling, the ratio is given by

ΔαDP ¼
ϵ2t

t −m2
A0
; ð26Þ

where mA0 is the mass of the new boson. We note that
formally, the width of the dark photon ΓA0 enters into the
above expression. The width, however, is suppressed by an
additional factor of ϵ2. As a result, the effects of the width
enter at the same level as the BSM contribution squared
(ϵ4), which we neglect consistently.
Our results are presented in Fig. 5, where we present

Δα½mA0 �
DP as a function of x. We have chosen ϵ2 ¼ 2 × 10−7,

which is close to the current exclusion limits for the
secluded Uð1ÞX model [42], and we present curves for
three different mass choices, mA0 ¼ f0.01; 0.1; 1g GeV. It
is clear that both the shape and the relative importance
compared to Δαhad are strongly dependent on mA0 . Since in
the spacelike region t is negative, the denominator of
Eq. (26) never diverges, and therefore increasing the mass
lowers the overall impact. As jtj > mA, the ratio approaches
an asymptotic value of ϵ2.

FIG. 4. Topologies illustrating the possible insertion of BSM physics.
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We present results for the integrated contribution to
δaHLOBSM in Table IV. Assuming that the MUonE experiment
can reach their expected sensitivity of 2 × 10−10, we see
that the lightest dark photon model contributes at the level
of this uncertainty. Since this relevant parameter space is at
the edge of the current exclusion limits [42], future dark
photon searches will have likely excluded all relevant
parameter space by the time the MUonE experiment is
performed.
In contrast, if the BSMsector is expanded to includeBSM

matter content, e.g., by including a dark matter candidate
[43,44], the incorporated potential decays to light dark
sector fermions (or scalars) can alter the width of the dark
photon. As a result, the decays to SM matter can be
suppressed, causing an overall lowering of the ability of
direct searches to constrain the dark photon parameter space.
Such an extended dark sector was recently proposed as a
method of explaining g − 2 while evading some existing
searches [45]. Since theMUonE experiment is only margin-
ally dependent on the decay width of the dark photon, such
extended BSM models could make sizable contributions,
while evading bounds from direct searches. Consequently, a
careful examination of the current dark photon bounds will
be necessary, once the MUonE data are analyzed.
Finally, we note that models in which the BSM medi-

ating particle is heavy can also be interpreted using Eq. (26)
with the replacement ϵ2 → Oð1Þ for EW scale couplings. In
this instance, we see the suppression is given by t=ðt −m2Þ.
It is thus clear that heavy new physics will effectively look

like t=m2 in the fiducial region of the MUonE experiment.
LEP limits [46–50] on contact interactions already impose
m≳O TeV, which is sufficient to suppress heavy new
physics to such a level as to be neglected in the MUonE
analysis.

C. Loop-level BSM contributions

We now consider the possibility that the SM prediction is
modified at the one-loop level. This changes Eq. (5) to the
following:

d
dt

�
dσExp
dσSMpert

�
¼ 1þ 2Δαhad þ 2α

d
dt

�
dσBSM

dσLO

�

þOðα2Þ; ð27Þ
where dσBSM defines the BSM physics contribution. We
note that, due to the implicit insertion of a factor of α in the
definition of Δαhad, both terms in Eq. (27) are of the same
(formal) order in the perturbative expansion of the ratio. As
illustrated in Fig. 4, there are four possible insertions of
BSM interactions in the basic LO topology. They can be
included on either of the individual lepton lines, on the
photon propagator, or by connecting the two lines together.
We can thus expand dσBSM as follows:

dσBSM ¼
�
ΔαγBSM þ

X
l¼e;μ

ΔαlBSM þ Δαe;μBSM

�
dσLO;

where ΔαiBSM corresponds to the correction associated with
particle content i factored onto the LO differential cross
section dσLO. In this work, we set Δαe;μBSM ¼ 0—that is, we
neglect box-type contributions in which the new physics
connects the two lepton lines. This is primarily because
they either represent a QED correction to a tree-level
contribution (as discussed in the previous section) or
involve couplings that are heavily constrained by lepton
flavor violation, or are suppressed by the smallness of the
electron Yukawa coupling (for exchange of scalar par-
ticles). Contributions from heavy new physics which are
not flavor suppressed effectively reduce to a four-fermion
contact interaction, which falls under the discussion of
the previous section. Before detailing the calculation in
specific models [the MSSM and a gauged Uð1ÞLμ−Lτ

model] in the next section, we first outline the character-
istics of the remaining contributions.
The contributions from one-loop BSM corrections to the

photon propagator can be written as

ΔαγBSM ¼ ℜ½ΣrðtÞ�; ð28Þ

where ΣrðtÞ defines the renormalized photon self-energy,
which in the on-shell scheme is given by ΣrðtÞ ¼ ΣðtÞ−
Σð0Þ. The equation above was obtained by expanding the
photon propagator in α,

FIG. 5. The plot shows the leading-order hadronic contribu-
tions Δαhad in comparison with various dark photon models

Δα½mA0 �
DP .

TABLE IV. Integrated contributions to δaHLOBSM stemming from
three different dark photon models.

ϵ2 2 × 10−7

mA0 ½GeV� 0.01 0.1 1

δaHLOBSM 1.1 × 10−10 4.6 × 10−11 1.3 × 10−12
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Dμν ¼ −i
gμν

t
ð1þ ΣðtÞ þO½α2�Þ; ð29Þ

and introducing the form factor ΣðtÞ as
ΣμνðtÞ ¼ iðtgμν − ðp2 − p3Þμðp2 − p3ÞνÞΣðtÞ: ð30Þ

In addition, we introduced the outgoing four-momenta of
the electron and muon as ðp2 − p3Þ2 ¼ q2 ¼ t. In general,
heavy new physics will act much like the top-quark
contribution to the self-energy. For t ≪ m2

t , which corre-
sponds to the majority of the range in x (and includes the
fiducial detector volume), these terms scale like t=m2

t , so in
general we do not expect a significant contribution from
heavy BSM physics from self-energy-type corrections.
The corrections to the lepton-photon vertex lead to

contributions of the form

ΔαlBSM ¼ Fr;l
e ðtÞ þ Kl

bF
r;l
m ðtÞ: ð31Þ

The projection onto the tree-level matrix is obtained by first
computing the unrenormalized electric and magnetic form
factor in terms of its constituent Lorentz structures:

Γμ
l ¼ −ie

�
γμFl

eðtÞ þ
iσμνqν
2ml

Fl
mðtÞ

�
; ð32Þ

with σμν ¼ i=2½γμ; γν�. The renormalization at one loop in
the on-shell scheme is given by Fr;l

e ðtÞ ¼ Fl
eðtÞ − Fl

eð0Þ
and Fr;l

m ðtÞ ¼ Fl
mðtÞ. We recall that g − 2 for a lepton is

defined as the magnetic form factor at zero momentum,
Fr;l
m ð0Þ ¼ al. We can therefore quantify the impact on

Δαhad from a BSM theory which contributes aBSMμ to g − 2

using the following order of magnitude estimate:

ΔαlBSM ∼ Kl
ba

BSM
μ ; ð33Þ

where we suppress the electric contribution for the follow-
ing discussion. It is apparent that, depending on the size of
K, BSM physics may induce a change in aHLO comparable
to the BSM contribution to g − 2. The kinematic factor K
thus plays a critical role in determining the overall impact
of the BSM physics contribution to the interpretation of
aHLO. It can be computed by taking the interference of the
magnetic part of the form factor (along the fermion line l)
with the rest of the amplitude defined as in the SM, with the
pure SM amplitude, and is

Kl
b ¼ ð2m2

b þ tÞt
2ðm2

e þm2
μ − sÞ2 þ 2stþ t2

; ð34Þ

where b is the mass of the “spectator fermion,” which
couples via the SM vertex in the diagram. We plot the
magnitude of the kinematic factor in Fig. 6 for both muon
and electron vertices. It is clear that the kinematic factor,
for the center-of-mass energy proposed by the MUonE

Collaboration,
ffiffiffi
s

p ¼ 0.4055541 GeV, results in a signifi-
cant suppression of the magnetic part of the form factor over
the majority of the available phase space. Therefore, we can
see thatΔαlBSM ≪ aBSM, and in general amodelwhich seeks
to explain g − 2 by introducing a loop-level contribution of
the form aBSM ∼ 20 × 10−10 will contribute a negligible
amount to the extraction of Δαhad in μe scattering.
The argument above assumes that both Fr;l

e ðtÞ and
Fr;l
m ðtÞ do not become sufficiently large at any point in

the MUonE phase-space regime probed. In order to
demonstrate the suppression in a realistic setting, we
provide an example calculation in the MSSM and a gauged
Uð1ÞLμ−Lτ

model in the next section.

IV. MSSM

Supersymmetric (SUSY) theories offer a compelling
UV-complete extension to the SM, of which the minimally
supersymmetric Standard Model (MSSM) provides a
relatively simple realization of SUSY by introducing a
limited number of new parameters [51]. In general, while
the MSSM is by now severely constrained by the LHC, it is
rather easy in this model to introduce new contributions to
the muon anomalous magnetic moment, which can be
utilized to explain the current 3.7σ derivation [52–55]. The
same contributions also arise for muon-electron scattering,
and therefore the MSSM is an excellent theory for us to
demonstrate the argument presented in the previous section
applied to a full model. For this purpose, we use the
framework of the previous section and compute the
corrections from the muon vertex form factors [Eq. (31)]
and the photon propagator [Eq. (28)] arising from smuons
and charginos. We neglect any corrections to the electron-
photon vertex, since they are constrained by the electron
g − 2 and generally suppressed due to the small mass of the
electron. We follow the notation set up in Refs. [7,51] with
the chargino mass matrix defined as follows:

FIG. 6. The kinematic factor K, evaluated for electron and
muon vertices for the kinematics of the MUonE experimental
setup.
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Mχ0 ¼

0
BBB@

M1 0

0 M2

MOD

MT
OD

0 −μ
−μ 0

1
CCCA; ð35aÞ

MOD ¼
�−cbsWMZ sbsWMZ

cbcWMZ −sbcWMZ

�
; ð35bÞ

Mχ� ¼
�

M2

ffiffiffi
2

p
sbMWffiffiffi

2
p

cbMW μ

�
; ð35cÞ

and

M2
μ̃ ¼

� m2
L;μ −mμμ tan β

−mμμ
� tan β m2

R;μ

�
; ð35dÞ

where m2
L;μ ¼ m2

L þ ðs2W − 1
2
Þm2

Z cos 2β, m2
R;μ ¼ m2

R−
s2Wm

2
Z cos 2β, and the abbreviations sb ¼ sin β, cb ¼

cos β, sW ¼ sin θW , and cW ¼ cos θW . We neglect the soft
SUSY-breaking term Aμ̃ in the smuon mass matrix, since it
only amounts to small corrections in the smuon mass. The
mass of the muon sneutrino is given through the left-
handed smuon mass parameter

m2
ν̃ ¼ m2

L þ 1

2
M2

Z cos 2β: ð36Þ

The real and positive masses of the neutralinos, charginos,
and smuons can be found by diagonalizing the correspond-
ing mass matrix:

N�Mχ0N
† ¼ diagðmχ0

1
; mχ0

2
; mχ0

3
; mχ0

4
Þ; ð37aÞ

U�Mχ�V
† ¼ diagðmχ�

1
; mχ�

2
Þ; ð37bÞ

XM2
μ̃X

† ¼ diagðm2
μ̃1
; m2

μ̃2
Þ: ð37cÞ

Under the assumption that the gaugino masses unify at
some GUT scale

M1 ¼
g21M2

g22
≈
5

3
tan2WM2; ð38Þ

we end up with five relevant MSSM parameters: M2, μ,
tan β, mL;μ, and mR;μ.
The calculation of the relevant Feynman diagrams was

performed in the following manner: the diagrams were
generated with QGraf [56] and projected onto form factors
defined in Eqs. (29) and (32). Scalar integrals were reduced
to master integrals using integration-by-parts identities,
generated by LiteRed [57]. The master integrals were then
computed using QCDloop [58]. Finally, we renormalized
our calculation in the on-shell scheme [59].

Our results are shown in Fig. 7, where we choose three
sets of MSSM parameters as defined in Table V, which
are compatible with the current g − 2 discrepancy. The
individual parameters are varied so as to preferentially
select different loop diagrams. Regardless of the para-
meter choice, we observe that the MSSM corrections are
sufficiently small such as to effect δaHLOBSM at the level of
Oð10−13Þ and therefore can be safely neglected. This
validates with a specific model the more general statements
made in the previous section regarding the overall impact
of heavy-loop-induced new physics.

V. A U(1)Lμ −Lτ
MODEL

As a final example, we consider a loop-induced BSM
correction which corresponds to a dark photon gauged
under the difference of muon and tau lepton numbers
Lμ − Lτ [60,61]. Since there is no tree-level coupling to
electrons, this model is harder to constrain experimentally
[62] and thus still has an available window of parameter
space compatible with g − 2 [42]. For our discussion it
represents an interesting test case, since the light mediating
particle invalidates the argument given in the previous
section regarding the smallness of self-energy-style cor-
rections (the kinematic suppression from the vertex dia-
grams is still present). These models therefore present a test
of loop-induced BSM physics in a regime different from the
MSSM example considered previously. In principle, this

FIG. 7. The plot shows the leading-order hadronic contribu-
tions Δαhad in comparison with different parameter selections for
the MSSM.

TABLE V. Definitions of parameter choices used for the
MSSM calculation.

Set M2 [GeV] μ [GeV] tan β mL;μ [GeV] mR;μ [GeV]

L 200 200 4 100 100
Hχ 700 700 30 300 100
Hμ̃ 200 200 30 600 600
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model can be captured by an effective tree-level interaction
by integrating out the loop, and thus could be constrained
using the tree-level model (with a replacement ϵ2 → ϵϵ0e).
Here, however, we will use the full one-loop machinery to
ensure a full comparison (also including vertex corrections)
is made.
Our results for this model are summarized in Fig. 8,

where we plot ΔαBSM for three different choices of the dark
photon mass (which would be broadly compatible with
g − 2). Although the contributions from the light new
physics are considerably larger than those from the
MSSM, they are still suppressed to a percent level con-
tribution to the error on Δαhad, and therefore can be
neglected in the MUonE analysis [δaHLOBSM ¼ Oð10−12Þ].
From a theoretical viewpoint, it is interesting to investigate
the predictions in slightly more detail, as they have some-
what unique features compared to the other examples we
have studied. For light mediators, the dominant contribu-
tion comes from the electric form factor [e.g., the first term
in Eq. (32)], which is negative (for this reason we plot the
absolute values in Fig. 8). On the other hand, the con-
tribution arising from the self-energy-type corrections has a
positive sign. The two terms compete, and in particular at
large x, the self-energy terms approach a constant value (for
fixed coupling) regardless of the dark photon mass, while
the renormalized electric form factor acts like an effective
coupling which decreases with increasing mass. As a result,
the shape of the vertex corrections as a function of x is not
sensitive to the mass of the dark photon. We note that the
magnetic form factor is subleading for all three choices
such that the total vertex correction is set by the electric
form factor.
For the two lighter cases studied (mA0 ¼ 0.01, 0.1 GeV),

the electric form factor dominates over the entire x range,
and the prediction remains negative. For our heaviest case,
mA ¼ 1 GeV, the vertex suppression is sufficient such that

at larger values of x, the self-energy term dominates; as a
result, the prediction changes sign at large x.

VI. CONCLUSIONS

A precision low-energy μe scattering experiment offers
the opportunity to perform an independent measurement of
the LO hadronic running of α (Δαhad) with the possibility of
producing a result with similar or improved uncertainties to
existing calculations or extractions. Such a measurement
would have an immediate application in the comparison
between data and theory for the anomalous magnetic
moment of the muon g − 2. Currently there is significant
tension (3.7σ) between data and the predictions of the SM
for this observable. Excitingly, this may be due to con-
tributions from as yet undiscovered BSM physics. New
results for g − 2 are expected from the Muon g − 2 experi-
ment at Fermilab this summer. Since aHLO represents the
second-largest single contributor to the theoretical error
budget, its extraction using an independent method, not
plagued by low-energy hadron resonances (a problem for
the current method relying on the optical theorem) is well
motivated. For this reason, the MUonE experiment has
been proposed as a means of achieving this measurement
through t-channel scattering of electrons and muons.
The desired accuracy on theMUonE experiment (in units

of the anomalous magnetic moment of the muon) is about
2 × 10−10; we studied the feasibility of obtaining this goal
given the presence of unknown higher-order corrections in
the SM.While it is clear that a precision of 0.3% on the fit is
realistic given the proposed experimental methodology,
there is an underlying dependence on missing terms in the
theory which may alter the mathematical definition of the
fitted function at a level much greater than this accuracy
(i.e., one is not determining purely Δαhad but instead the
combination of Δαhad þ higher-order perturbative terms).
We conclude that the target of 10 ppm for the theoretical
uncertainty is insufficient to obtain the desired accuracy on
aHLO. We demonstrated this using an estimate of the order
of magnitude of higher-order corrections constructed from
the leptonic running raised to the appropriate power, and by
investigating powers of logð−t=m2

eÞ which may enter into
the perturbative expansion. Both analyses suggest that
1 ppm is a more realistic target to achieve the 2 × 10−10

theoretical uncertainty.
A putative BSM contribution to g − 2 may be as large

∼25 × 10−10. One therefore should ask, if a BSM explan-
ation is employed to address the g − 2 discrepancy, what
would its impact be on a similar scattering experiment? A
natural worry is that BSM physics could be accidentally
fitted into an extraction of Δαhad at the MUonE experiment,
and lead to a misinterpretation of g − 2 data (in the worst-
case scenario, forcing artificial agreement with the “SM”).
It is, in our opinion, therefore crucial to understand how
different types of BSM signals would manifest themselves

FIG. 8. The plot shows the leading-order hadronic contribu-
tions Δαhad in comparison with various Uð1ÞLμ−Lτ

dark photon

models Δα½mA0 �
Bμτ

.
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in the MUonE experimental setup. Providing such a study
was one of the principal aims of this paper.
Generic BSM physics capable of altering μe scattering

will enter first at either tree or loop level, and the potential
impact in the two scenarios is rather different. For tree-level
BSM physics, the landscape is rather strongly constrained
by previous collider experiments. This leaves two potential
windows in the generic BSM parameter space; first, the
mediating BSM particle could be sufficiently heavy to have
avoided direct production at LEP/LHC, etc.; or second, the
coupling of the mediating particle could be small enough
that it is sufficiently weakly produced at colliders to have
been observed. Heavy BSM physics essentially replaces the
tree-level diagram with a four-fermion vertex, and existing
constraints are sufficient to render this of no concern to the
MUonE operational procedure. Lighter weakly coupled
BSM physics is much more interesting from the MUonE
perspective. In particular, dark photon models with an
extended BSM matter sector might be able to make sizable
contributions, while evading exclusion limits set by dark
photon searches. Given the timescale of the experiment and
the current experimental interest in dark photons, the
available parameter space will be more tightly constrained
by the time the MUonE experiment takes data. However, if
a dark photon model is used to explain g − 2, its impact on
the MUonE result should be computed to avoid double
counting.
Physics which enters first at loop-level is more subtle; we

showed that in general there is a significant suppression
from the kinematics and that generic models will contribute
at a much smaller level than the anticipated error on Δαhad.
We demonstrated this with explicit calculations in the
MSSM or a dark photon arising from a gauged Uð1ÞLμ−Lτ

.

Given the importance of interpreting the g − 2 difference
as the breakdown of the SM, we suggest that if Δαhad
information is used from μe scattering, the BSM contri-
bution toΔαhad (as extracted from the data) is calculated for
the model to ensure that the contribution is not large in
both. Following the steps presented in this paper can
provide an estimation of the size of the BSM physics,
although a more rigorous analysis following the steps of the
experiment should be conducted if warranted.
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APPENDIX: FORM OF THE LEPTONIC
RUNNING

In this appendix, we give the analytic expression for the
leptonic running of α that was used to approximate the
higher-order corrections:

Δαlep ¼
X
l¼e;μτ

α

π

2
64− 5

9
−
4m2

l

3t
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
l

t

r
2m2

l þ t
3t

× log

0
B@−

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

l
t

q

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

l
t

q
1
CA
3
75: ðA1Þ
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