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The LHC Higgs data are showing a gradual inclination towards the standard model (SM) result, and
realization of a SM-like limit becomes essential for beyond the SM scenarios to survive. Considering the
accuracy that can be achieved in future colliders, models beyond the standard model that acquire the
alignment limit with a SM-like Higgs boson can surpass others in the long run. Using a convenient
parametrization, we demonstrate that the alignment limit for CP-conserving three Higgs-doublet models
takes on the same analytic structure as that in the case of two Higgs-doublet models. Using the example of a
Z3-symmetric three Higgs-doublet model, we illustrate how such alignment conditions can be efficiently
implemented for numerical analysis in a realistic scenario.
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I. INTRODUCTION

In the post-Higgs discovery era, the absence of any direct
sign of new physics (NP) at the LHC has already kept many
beyond the Standard Model (BSM) scenarios at bay. An
alternative way to find hints for NP is to look for deviations
of Higgs couplings from their corresponding Standard
Model (SM) predictions. However, since the discovery
of the Higgs boson, the LHC Higgs data have been
gradually drifting towards the SM expectations. In fact,
deviations in the observed Higgs signal strengths from their
respective SM values seem to have been significantly
reduced with the increased sensitivity at the LHC Run II
[1,2]. But it is still possible for BSM scenarios to be hiding
behind the curtain, camouflaging themselves with a SM-
like Higgs. Thus, in anticipation that the LHC Higgs data
will continue to incline towards the SM expectations with
increasing accuracy, those BSM scenarios which can
deliver a SM-like Higgs in a certain alignment limit will
have an upper hand in the future survival race. In this paper,
we uphold the three Higgs-doublet models (3HDMs) as
potential candidates for such BSM scenarios.
Adding replicas of the SM Higgs doublet constitutes one

of the simplest ways to extend the SM because such
extensions do not alter the tree-level value of the

electroweak (EW) ρ-parameter. A lot of attention has
already been given to the two Higgs-doublet models
(2HDMs) [3,4] where the scalar sector of the SM is
extended by an additional Higgs doublet. In a next step,
recent years have seen a growing interest in the topic of
3HDMs [5–28] where two additional Higgs doublets are
added to the SM scalar sector. Therefore, 3HDMs conform
to the aesthetic appeal of having three generations of scalars
on footing equal to three fermionic generations in the SM
[29]. In such models, the 125 GeV scalar observed at the
LHC is only the first to appear in a series of many others to
follow. Evidently, the rich scalar spectrum of the 3HDM
must contain one physical scalar having properties similar
to those of the SM Higgs boson, which can serve as a
competent candidate for the 125 GeV scalar. The limit in
which the lightest CP-even scalar possesses SM-like tree-
level couplings with the fermions and the vector bosons is
usually dubbed the alignment limit. In the case of 2HDMs,
the analytic condition for alignment is well known [30–32],
and it has been very useful in analyzing 2HDMs in light of
the Higgs data [33–42]. However, in the case of multiple
Higgs-doublet models with more than two Higgs doublets,
although the general recipe for obtaining alignment has
been studied earlier in the literature [17,24,43], analytic
expressions suitable for practical use are currently lacking.
In this paper, we attempt to find the conditions for align-
ment in 3HDMs, in a simple form that can be easily
implemented in practical models to investigate several
aspects of 3HDMs. In fact, using a convenient parametri-
zation for CP-conserving 3HDMs, we will demonstrate
that the requirement of a SM-like Higgs results in simple
equations which resemble very much the alignment con-
dition in CP-conserving 2HDMs.

*dipankar.das@thep.lu.se
†ipsita.saha@ipmu.jp

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 100, 035021 (2019)

2470-0010=2019=100(3)=035021(10) 035021-1 Published by the American Physical Society

https://orcid.org/0000-0002-2108-9134
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.035021&domain=pdf&date_stamp=2019-08-22
https://doi.org/10.1103/PhysRevD.100.035021
https://doi.org/10.1103/PhysRevD.100.035021
https://doi.org/10.1103/PhysRevD.100.035021
https://doi.org/10.1103/PhysRevD.100.035021
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Our paper will be organized as follows. In Sec. II, we
will briefly revisit the general prescription for obtaining
a SM-like Higgs in multiple Higgs-doublet models. Then,
we will use this to recover the alignment limit in 2HDMs
and extend the idea to the case of 3HDMs. In Sec. III, we
will illustrate how our results of Sec. II can substantially
simplify the analysis of a CP-conserving 3HDM. Finally,
our findings will be summarized in Sec. IV.

II. ALIGNMENT LIMIT

As mentioned earlier, the alignment limit is defined as
the set of conditions under which the lightest CP-even
scalar mimics the SM Higgs by possessing SM-like gauge
and Yukawa couplings at the tree level. To illustrate how
such a limit can be reached in a multiple Higgs-doublet
scenario, let us consider a general n Higgs-doublet model
(nHDM) where the kth doublet is expanded in terms of its
component fields as follows:

ϕk ¼
�

wþ
k

ðhk þ izkÞ=
ffiffiffi
2

p
�
; ðk ¼ 1; 2;…; nÞ: ð1Þ

Under the assumption that all the parameters in the nHDM
scalar potential are real, there will be no mass mixing
between the hk and the zk fields. Denoting by hϕki ¼
vk=

ffiffiffi
2

p
the vacuum expectation value (VEV) for ϕk after

spontaneous symmetry breaking, the total EW VEV, v, can
be identified as

v2 ¼
Xn
k¼1

v2k ¼ ð246 GeVÞ2: ð2Þ

To gain some intuitive insight into the alignment limit of an
nHDM, it is instructive to take a closer look at the scalar
kinetic Lagrangian which contains the following trilinear
couplings,

LS
kin ¼

Xn
k¼1

jDμϕkj2 ∋
g2

2
Wþ

μ Wμ−
�Xn

k¼1

vkhk

�

≡ g2v
2

Wþ
μ Wμ−

�
1

v

Xn
k¼1

vkhk

�
; ð3Þ

where g stands for the SUð2ÞL gauge coupling. Clearly, the
combination,

H0 ¼
1

v

Xn
k¼1

vkhk; ð4Þ

will resemble to the SM Higgs boson in its tree-level gauge
couplings. It is also not very difficult to show that H0 will
have SM-like Yukawa couplings, too [17]. However, this
state H0, in general, is not guaranteed to be a physical

eigenstate. Therefore, the alignment limit will emerge as
the limit when H0 aligns itself completely with the lightest
CP-even physical scalar (h) in the spectrum.

A. Alignment in 2HDM

To begin with, let us apply the result of the previous
section to retrieve the alignment limit in the 2HDM case.
Following the definition in Eq. (4), the state H0 and its
orthogonal combination, R, can be obtained by the follow-
ing orthogonal rotation,

�
H0

R

�
¼ Oβ

�
h1
h2

�
¼

�
cos β sin β

− sin β cos β

��
h1
h2

�
; ð5Þ

where tan β ¼ v2=v1. On the other hand, the physical mass
eigenstates, h and H, are extracted using another orthogo-
nal rotation characterized by the angle, α, as follows:

�
h

H

�
¼ Oα

�
h1
h2

�
¼

�
cos α sin α

− sin α cos α

��
h1
h2

�
: ð6Þ

Inverting Eq. (5) and then plugging it on the right-hand side
of Eq. (6), we can write

�
h

H

�
¼ OαOT

β

�
H0

R

�

¼
�

cosðα − βÞ sinðα − βÞ
− sinðα − βÞ cosðα − βÞ

��
H0

R

�
: ð7Þ

Thus, h will completely overlap with H0 if

cosðα − βÞ ¼ 1 ⇒ α ¼ β; ð8Þ

which defines the alignment limit in 2HDMs.1

B. Alignment in 3HDM

In the case of 3HDMs, let us first parametrize the VEVs
as follows:

v1 ¼ v cos β1 cos β2; v2 ¼ v sin β1 cos β2;

v3 ¼ v sin β2: ð9Þ

Thus, the analogue of Eq. (5) for the 3HDM will read

1In a more conventional setup, the definition of α differs from
our definition by π=2 so that the alignment condition reads
cosðα − βÞ ¼ 0.
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0
B@

H0

R1

R2

1
CA ¼ Oβ

0
B@

h1
h2
h3

1
CA

¼

0
B@

cos β2 cos β1 cos β2 sin β1 sin β2
− sin β1 cos β1 0

− cos β1 sin β2 − sin β1 sin β2 cos β2

1
CA

×

0
B@

h1
h2
h3

1
CA: ð10Þ

Note that the first row of Oβ in the above equation is
motivated from Eq. (4) but the choices for the second and
the third rows are not unique. Our analysis does not depend
on these choices. Next, in analogy with Eq. (6), Oα will
now be a 3 × 3 orthogonal matrix, which takes us to the
physical basis, ðhH1H2ÞT . Therefore, we can decompose
Oα as follows,

Oα ¼ R3 ·R2 ·R1; ð11aÞ
where

R1 ¼

0
B@

cos α1 sin α1 0

− sin α1 cos α1 0

0 0 1

1
CA;

R2 ¼

0
B@

cos α2 0 sin α2
0 1 0

− sin α2 0 cos α2

1
CA;

R3 ¼

0
B@

1 0 0

0 cos α3 sin α3
0 − sin α3 cos α3

1
CA: ð11bÞ

Now, similar to Eq. (7), we can write
0
B@

h

H1

H2

1
CA ¼ Oα ·OT

β

0
B@

H0

R1

R2

1
CA ð12Þ

in the case of 3HDMs. For the convenience of notation in
our analysis of 3HDMs, we introduce the matrix

O≡Oα ·OT
β ; ð13Þ

where Oβ and Oα have been defined in Eqs. (10) and (11),
respectively. Thus, for h to overlap completely withH0, we
must require2

O11 ¼ 1; ð14Þ

which can be expressed as

cos α2 cos β2 cosðα1 − β1Þ þ sin α2 sin β2 ¼ 1: ð15Þ

After some simple trigonometric manipulations, the above
condition can be recast in the following form,

�
sin

�
α1 − β1

2

�
cos

�
α2 þ β2

2

��
2

þ
�
cos

�
α1 − β1

2

�
sin

�
α2 − β2

2

��
2

¼ 0; ð16Þ

which implies

sin

�
α1 − β1

2

�
cos

�
α2 þ β2

2

�
¼ 0; ð17aÞ

and; cos

�
α1 − β1

2

�
sin

�
α2 − β2

2

�
¼ 0: ð17bÞ

These conditions together define the alignment limit for a
CP-conserving 3HDM. One can easily check that the
conditions of Eq. (17) admit the following two possibilities:

α1 ¼ β1; α2 ¼ β2; ð18Þ

or; α1 ¼ π þ β1; α2 ¼ π − β2: ð19Þ

But, using Eq. (13), it can be verified that choosing
condition (19) instead of condition (18) only amounts to
redefinitions of the physical fields H1 and H2 as

H1 → −H1; and H2 → −H2; ð20Þ

which are physically equivalent. Therefore, we choose
condition (18) as the definition of the alignment limit in
3HDMs, which, when compared with Eq. (7), looks very
similar to the 2HDM case.
In passing, we note that Eq. (15) can be trivially satisfied

in the limit sinα2 ≈ sin β2 ≈ 1, which, in view of Eq. (9),
corresponds to the situation where ϕ3 acquires the entire
EWVEVand consequently ϕ1 and ϕ2 are rendered (almost)
inert. However, barring such extreme VEV hierarchies,
Eq. (18) must be obeyed so that a SM-like Higgs may
emerge from the 3HDM scalar spectrum.

III. EXAMPLE: 3HDM WITH Z3 SYMMETRY

At this point, it is reasonable to ask how close we need to
be to the alignment limit in view of the current Higgs data.
To analyze this, we proceed by defining the Higgs coupling
modifiers as

κx ¼
ghxx

ðghxxÞSM
; ð21Þ2Note that Eq. (14) will automatically ensure O12 ¼ O21 ¼

O13 ¼ O31 ¼ 0 due to the orthogonality of O.
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where x stands for the massive fermions and vector bosons.
Keeping in mind that among H0, R1, and R2 in Eq. (12)
only H0 possesses trilinear coupling of the form H0VV
(V ¼ W, Z), we conclude

κV ≡O11 ¼ cos α2 cos β2 cosðα1 − β1Þ þ sin α2 sin β2:

ð22Þ
To obtain the fermionic coupling modifiers, we need to
know how the Higgs doublets couple to the fermions. For
this, we consider the example of a Z3 symmetric 3HDM, in
which the scalar doublets ϕ1 and ϕ2 transform nontrivially
as follows,

ϕ1 → ωϕ1; ϕ2 → ω2ϕ2; ð23Þ
where ω ¼ e2πi=3. Furthermore, some of the right-handed
fermionic fields transform under Z3 as follows,

dR → ωdR; lR → ω2lR; ð24Þ

where dR and lR denote the right-handed down type quarks
and charged leptons, respectively. The rest of the fields in
the theory are assumed to remain unaffected under Z3. With
these charge assignments, ϕ3 and ϕ2 will be responsible for
masses of the up and down type quarks, respectively,
whereas ϕ1 will give masses to the charged leptons.
Consequently, the fermionic coupling modifiers will be
given by

κu ¼
sin α2
sin β2

; ð25aÞ

κd ¼
sin α1 cos α2
sin β1 cos β2

; ð25bÞ

κl ¼ cos α1 cos α2
cos β1 cos β2

; ð25cÞ

all of which, as expected, approach unity in the alignment
limit defined by Eq. (18).
To provide a quantitative estimate of how close we need

to be to the alignment limit, we perform a random scan over
the following parameters:

α1; α2 ∈
�
−
π

2
;
π

2

�
; β1; β2 ∈

�
0;
π

2

�
: ð26Þ

The set of points that successfully negotiate the exper-
imental constraints on κx have been plotted in the sinðα1 −
β1Þ − sinðα2 − β2Þ plane as shown in Fig. 1. From Fig. 1, it
is evident that as the Higgs data converge towards the SM
expectations with increasing accuracy we are pushed closer
to the alignment limit.
To illustrate further the usefulness of the alignment

conditions given in Eq. (18), let us start by writing the
scalar potential for the Z3-symmetric 3HDM [24]:

V ¼ m2
11ðϕ†

1ϕ1Þ þm2
22ðϕ†

2ϕ2Þ þm2
33ðϕ†

3ϕ3Þ þ λ1ðϕ†
1ϕ1Þ2 þ λ2ðϕ†

2ϕ2Þ2 þ λ3ðϕ†
3ϕ3Þ2

þ λ4ðϕ†
1ϕ1Þðϕ†

2ϕ2Þ þ λ5ðϕ†
1ϕ1Þðϕ†

3ϕ3Þ þ λ6ðϕ†
2ϕ2Þðϕ†

3ϕ3Þ
þ λ7ðϕ†

1ϕ2Þðϕ†
2ϕ1Þ þ λ8ðϕ†

1ϕ3Þðϕ†
3ϕ1Þ þ λ9ðϕ†

2ϕ3Þðϕ†
3ϕ2Þ

þ ½λ10ðϕ†
1ϕ2Þðϕ†

1ϕ3Þ þ λ11ðϕ†
1ϕ2Þðϕ†

3ϕ2Þ þ λ12ðϕ†
1ϕ3Þðϕ†

2ϕ3Þ þ H:c:�: ð27Þ

FIG. 1. Allowed region in the sinðα1 − β1Þ − sinðα2 − β2Þ plane from the current (left panel) [2] and the future (right panel) [44]
measurements of κx. The darker and lighter shades represent 1σ and 2σ allowed regions, respectively. While extracting the bound using
the projected accuracies at the high luminosity large hadron collider and the international linear collider, the central values for all the κx
are assumed to be unity, i.e., consistent with the SM.
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We assume that all the parameters in the scalar potential
are real. Now, let us ask how one can find a suitable set
of values for the potential parameters, which is compat-
ible with a 125 GeV Higgs having SM-like properties.
The usual procedure involves a random scan over the
parameter space and selecting those which satisfy the
condition of a SM-like Higgs within the experimental
uncertainties. Needless to say, such a brute force method
is quite inefficient. Therefore, any alternative approach
that can offer a more elegant strategy to recover a SM-
like Higgs boson from the 3HDM scalar potential will be
beneficial for future analyses of 3HDMs in view of the
Higgs data.
To this end, we note that the scalar potential of Eq. (27)

contains 15 parameters. Among them, the bilinear para-
metersm2

11,m
2
22, andm

2
33 can be traded for the three VEVs,

v1, v2, and v3, or equivalently v, tan β1, and tan β2. The
remaining 12 quartic couplings can be exchanged for seven
physical masses (three CP-even scalars, two CP-odd
scalars, and two pairs of charged scalars) and five mixing
angles (three in the CP-even sector, one in the CP-odd
sector, and one in the charged scalar sector). To demon-
strate this explicitly, let us examine the potential of Eq. (27)
in some more detail.
We start by using the minimization conditions to

trade the bilinear parameters in favor of the VEVs as
follows:

m2
11 ¼ −λ1v21 −

1

2
fðλ4 þ λ7Þv22 þ ðλ5 þ λ8Þv23 þ 2λ10v2v3g

−
v2v3
2v1

ðλ11v2 þ λ12v3Þ; ð28aÞ

m2
22 ¼ −λ2v22 −

1

2
fðλ4 þ λ7Þv21 þ ðλ6 þ λ9Þv23 þ 2λ11v1v3g

−
v1v3
2v2

ðλ10v1 þ λ12v3Þ; ð28bÞ

m2
33 ¼ −λ3v23 −

1

2
fðλ5 þ λ8Þv21 þ ðλ6 þ λ9Þv22 þ 2λ12v1v2g

−
v1v2
2v3

ðλ10v1 þ λ11v2Þ: ð28cÞ

Now, let us investigate the mass matrices in different
sectors.

A. CP-odd scalar sector

The mass term for the pseudoscalar sector can be
extracted from the scalar potential as

Vmass
P ¼ ð z1 z2 z3 Þ

M2
P

2

0
B@

z1
z2
z3

1
CA; ð29Þ

where M2
P is the 3 × 3 mass matrix, which can be block

diagonalized as follows3:

ðBPÞ2 ≡Oβ ·M2
P ·OT

β ¼

0
B@

0 0 0

0 ðB2
PÞ22 ðB2

PÞ23
0 ðB2

PÞ23 ðB2
PÞ33

1
CA:

ð30aÞ

The elements of B2
P are given by

ðB2
PÞ22 ¼ −

v3
2v1v2ðv21 þ v22Þ

½λ10v1ðv21 þ 2v22Þ2

þ λ11v2ð2v21 þ v22Þ2 þ λ12v3ðv21 − v22Þ2�; ð30bÞ

ðB2
PÞ23 ¼

v
2ðv21 þ v22Þ

½−λ10v1ðv21 þ 2v22Þ

þ λ11v2ð2v21 þ v22Þ þ 2λ12v3ðv21 − v22Þ�; ð30cÞ

ðB2
PÞ33 ¼−

v2

2v3ðv21þ v22Þ
½λ10v21v2þ λ11v1v22þ 4λ12v1v2v3�:

ð30dÞ

The matrix B2
P can be fully diagonalized using a

orthogonal transformation as follows,

Oγ1 · ðBPÞ2 ·OT
γ1 ¼

0
B@

0 0 0

0 m2
A1 0

0 0 m2
A2

1
CA; ð31aÞ

where

Oγ1 ¼

0
B@

1 0 0

0 cos γ1 − sin γ1
0 sin γ1 cos γ1

1
CA: ð31bÞ

This last step of diagonalization will entail the following
relations:

m2
A1cos

2γ1 þm2
A2sin

2γ1 ¼ ðB2
PÞ22; ð32aÞ

cos γ1 sin γ1ðm2
A2 −m2

A1Þ ¼ ðB2
PÞ23; ð32bÞ

m2
A1sin

2γ1 þm2
A2cos

2γ1 ¼ ðB2
PÞ33: ð32cÞ

Using Eq. (30), we can now invert Eq. (32) to solve for
λ10, λ11, and λ12 as follows,

3Such a block diagonalization in the pseudoscalar and the
charged scalar sectors is a general property of CP-conserving
3HDMs.
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λ10 ¼
2m2

A1

9v2

�
s2γ1
cβ1cβ2

−
2sβ1c

2
γ1

sβ2cβ2
þ s3β1sγ1cγ1

sβ1cβ1cβ2
þ tan β2s2γ1

�
tan β1
cβ1

− 2cβ1 cot β1

��

−
m2

A2

9v2

�
ð2c2β1 þ 3Þ s2γ1

cβ1cβ2
þ 4

sβ1s
2
γ1

sβ2cβ2
− 2 tan β2c2γ1

�
tan β1
cβ1

− 2cβ1 cot β1

��
; ð33aÞ

λ11 ¼
m2

A1

9v2

�
−
4cβ1c

2
γ1

sβ2cβ2
þ ð−3þ 2c2β1Þ

sβ1cβ2
s2γ1 þ 2ðcot4β1 þ cot2β1 − 2Þsβ1s2γ1 tan β1 tan β2

�

þm2
A2

9v2

�
−
4cβ1s

2
γ1

sβ2cβ2
þ ð5þ cot2β1Þ

cβ2
s2γ1sβ1 þ 2ðcot4β1 þ cot2β1 − 2Þsβ1c2γ1 tan β1 tan β2

�
; ð33bÞ

λ12 ¼
m2

A1

36v2

�
4s2β1c

2
γ1

s2β2
−
4c2β1s2γ1

sβ2
þ ðc4β1 − 17Þ s2γ1

sβ1cβ1

�

þ m2
A2

36v2

�
4s2β1s

2
γ1

s2β2
þ 4c2β1s2γ1

sβ2
þ ðc4β1 − 17Þ c2γ1

sβ1cβ1

�
; ð33cÞ

where sx and cx stand for sin x and cos x, respectively.

B. Charged scalar sector

Similar to the pseudoscalar case, the 3 × 3 charged sector mass matrix M2
C can also be block diagonalized as

ðBCÞ2 ≡Oβ ·M2
C ·OT

β ¼

0
B@

0 0 0

0 ðB2
CÞ22 ðB2

CÞ23
0 ðB2

CÞ23 ðB2
CÞ33

1
CA; ð34aÞ

where

ðB2
CÞ22 ¼ −

1

2ðv21 þ v22Þ
�
λ10

v3
v2

ððv21 þ v22Þ2 þ v42Þ þ λ11
v3
v1

ððv21 þ v22Þ2 þ v41Þ þ λ12
v23
v1v2

ðv41 þ v42Þ

þ λ7ðv21 þ v22Þ2 þ λ8v22v
2
3 þ λ9v21v

2
3

�
; ð34bÞ

ðB2
CÞ23 ¼

v
2ðv21 þ v22Þ

½−v1v22λ10 þ λ11v21v2 þ λ12v3ðv21 − v22Þ − λ8v1v2v3 þ λ9v1v2v3�; ð34cÞ

ðB2
CÞ33 ¼ −

v2

2ðv21 þ v22Þ
�
v21v2
v3

λ10 þ λ11
v1v22
v3

þ 2v1v2λ12 þ λ8v21 þ λ9v22�: ð34dÞ

We completely diagonalize the charged scalar mass
matrix as

Oγ2 · ðBCÞ2 ·OT
γ2 ¼

0
B@

0 0 0

0 m2
C1 0

0 0 m2
C2

1
CA; ð35aÞ

where

Oγ2 ¼

0
B@

1 0 0

0 cos γ2 − sin γ2
0 sin γ2 cos γ2

1
CA: ð35bÞ

Thus, we will have the following relations:

m2
C1cos

2γ2 þm2
C2sin

2γ2 ¼ ðB2
CÞ22; ð36aÞ

cos γ2 sin γ2ðm2
C2 −m2

C1Þ ¼ ðB2
CÞ23; ð36bÞ

m2
C1sin

2γ2 þm2
C2cos

2γ2 ¼ ðB2
CÞ33: ð36cÞ

These equations in conjunction with Eq. (34) will enable
us to solve for λ7, λ8, and λ9 as given below,
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λ7 ¼
ðm2

C1 −m2
C2Þ

2v2

�
ð−3þ c2β2Þ

c2γ2
c2β2

þ 4 tan β2
tan 2β1

s2γ2
cβ2

�
−
ðm2

C1 þm2
C2Þ

v2
− λ10

tan β2
sβ1

− λ11
tan β2
cβ1

; ð37aÞ

λ8 ¼
m2

C1

v2

�
−2s2γ2 þ tan β1

s2γ2
sβ2

�
−
m2

C2

v2

�
2c2γ2 þ tan β1

s2γ2
sβ2

�
− λ10sβ1 cot β2 − λ12 tan β1; ð37bÞ

λ9 ¼ −
m2

C1

v2

�
2s2γ2 þ cot β1

s2γ2
sβ2

�
þm2

C2

v2

�
−2c2γ2 þ cot β1

s2γ2
sβ2

�
− λ11cβ1 cot β2 − λ12 cot β1; ð37cÞ

where the other three couplings (λ10, λ11, and λ12) can be
replaced using Eq. (33).

C. CP-even scalar sector

The mass terms in the neutral scalar sector can be
extracted from the potential as

Vmass
S ¼ ð h1 h2 h3 Þ

M2
S

2

0
B@

h1
h2
h3

1
CA; ð38aÞ

whereM2
S is the 3 × 3 symmetric mass matrix of which the

elements are given by

ðM2
SÞ11 ¼ 2v21λ1 −

v2v3ðv2λ11 þ v3λ12Þ
2v1

; ð38bÞ

ðM2
SÞ12 ¼ v1ðv2ðλ7 þ λ4Þ þ v3λ10Þ þ

v3
2
ð2v2λ11 þ v3λ12Þ;

ð38cÞ

ðM2
SÞ13 ¼ v1ðv3ðλ8 þ λ5Þ þ v2λ10Þ þ

v2
2
ðv2λ11 þ 2v3λ12Þ;

ð38dÞ

ðM2
SÞ22 ¼ 2v22λ2 −

v1v3ðv1λ10 þ v3λ12Þ
2v2

; ð38eÞ

ðM2
SÞ23 ¼ v3ðv2ðλ6 þ λ9Þ þ v1λ12Þ þ

v1
2
ð2v2λ11 þ v1λ10Þ;

ð38fÞ

ðM2
SÞ33 ¼ 2v23λ3 −

v1v2ðv1λ10 þ v2λ11Þ
2v3

: ð38gÞ

This mass matrix should be diagonalized via the following
orthogonal transformation,

Oα ·M2
S ·O

T
α ≡

0
B@

m2
h 0 0

0 m2
H1 0

0 0 m2
H2

1
CA; ð39Þ

where Oα has already been defined in Eq. (11). Inverting
the above Eq. (39), we get

M2
S ≡OT

α ·

0
B@

m2
h 0 0

0 m2
H1 0

0 0 m2
H2

1
CA ·Oα; ð40Þ

which enables us to solve for the remaining six lambdas as
follows:

λ1 ¼
m2

h

2v2
c2α1c

2
α2

c2β1c
2
β2

þ m2
H1

2v2c2β1c
2
β2

ðcα1sα2sα3 þ sα1cα3Þ2 þ
m2

H2

2v2c2β1c
2
β2

ðcα1sα2cα3 − sα1sα3Þ2

þ tan β1 tan β2
4c2β1

ðλ11sβ1 þ λ12 tan β2Þ; ð41aÞ

λ2 ¼
m2

h

2v2
s2α1c

2
α2

s2β1c
2
β2

þ m2
H1

2v2s2β1c
2
β2

ðcα1cα3 − sα1sα2sα3Þ2 þ
m2

H2

2v2s2β1c
2
β2

ðcα1sα3 þ sα1sα2cα3Þ2

þ tan β2
4s2β1 tan β1

ðλ10cβ1 þ λ12 tan β2Þ; ð41bÞ

λ3 ¼
m2

h

2v2
s2α2
s2β2

þm2
H1
c2α2s

2
α3

2v2s2β2
þm2

H2
c2α2c

2
α3

2v2s2β2
þ s2β1
8tan3β2

ðλ10cβ1 þ λ11sβ1Þ; ð41cÞ
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λ4 ¼
1

4v2s2β1c
2
β2

½ðm2
H1

−m2
H2
Þfð−3þ c2α2Þs2α1c2α3 − 4c2α1sα2s2α3g − 2ðm2

H1
þm2

H2
Þs2α1c2α2 �

þm2
h

v2
s2α1c

2
α2

s2β1c
2
β2

−
tan β2
s2β1

ð2λ10cβ1 þ 2λ11sβ1 þ λ12 tan β2Þ − λ7; ð41dÞ

λ5 ¼
m2

h

v2
cα1s2α2
cβ1s2β2

−
m2

H1

v2cβ1s2β2
ðcα1s2α2s2α3 þ sα1cα2s2α3Þ þ

m2
H2

v2cβ1s2β2
ðsα1cα2s2α3 − cα1s2α2c

2
α3Þ

−
sβ1

2 tan β2
ð2λ10 þ λ11 tan β1Þ − λ12 tan β1 − λ8; ð41eÞ

λ6 ¼
m2

h

v2
sα1s2α2
sβ1s2β2

þm2
H1

v2
cα2

sβ1s2β2
ð−2sα1sα2s2α3 þ cα1s2α3Þ −

m2
H2

v2
cα2

sβ1s2β2
ð2sα1sα2c2α3 þ cα1s2α3Þ

−
cβ1

2 tan β2
ðλ10 cot β1 þ 2λ11Þ − λ12 cot β1 − λ9: ð41fÞ

D. Implementing the alignment limit

With Eqs. (33), (37), and (41) in hand, we can now go
back to the problem of finding a set of lambdas consistent
with a 125 GeV SM-like Higgs boson. This can now be
achieved quite simply by putting mh¼ 125 GeV, α1 ¼ β1,
and α2 ¼ β2 in Eqs. (33), (37), and (41). Moreover,
deviations from the exact alignment limit can also be
parametrized rather conveniently. Defining sinðα1 − β1Þ ¼
δ1 and sinðα2 − β2Þ ¼ δ2, one can use

α1 ¼ sin−1ðδ1Þ þ β1; α2 ¼ sin−1ðδ2Þ þ β2; ð42Þ

to extract α1 and α2 and then put them back in Eqs. (33),
(37), and (41) to compute the lambdas. Thus, the final result
can be obtained in terms of the deviations, δ1 and δ2 with
δ1 ¼ δ2 ¼ 0 characterizing the exact alignment limit.
Before we conclude, it should be noted that Eqs. (33),

(37), and (41) allow us to express the scalar self-couplings
in terms of the physical parameters. To illustrate, one can
write the charged Higgs trilinear couplings with the SM-
like Higgs scalar as follows:

LHþ
i H

−
i h

¼ gHþ
i H

−
i h
Hþ

i H
−
i h; ði ¼ 1; 2Þ: ð43Þ

Using Eqs. (33), (37), and (41), one can then calculate

gHþ
i H

−
i h

¼ −
1

v
ðm2

h þ 2m2
CiÞ ¼ −

gm2
Ci

MW

�
1þ m2

h

2m2
Ci

�
;

ði ¼ 1; 2Þ; ð44Þ

in the alignment limit,MW being the mass of the W-boson.
Thus, non-negligible contributions to decay processes like
h → γγ can arise even from superheavy charged scalars,

which will strongly constrain the Z3-symmetric 3HDM
[45]. Terms that break the Z3 symmetry softly should be
included in the scalar potential to avoid such strong
constraints.

IV. SUMMARY

To summarize, we have presented a recipe for recovering
a SM-like Higgs boson with a mass 125 GeV from the
3HDM scalar spectrum. We have advocated a suitable
parametrization in which such an alignment limit looks
very similar to the corresponding limit in 2HDM case.
Using a Z3 symmetric 3HDM as an example, we have
demonstrated that our alignment conditions are simple
enough to be easily implemented in a practical scenario,
which is a clear upshot of our analysis. Although the topic
of 3HDMs is well trodden in the literature, the existence of
an alignment limit described by such simple analytic
conditions does not appear to be a widespread knowledge.
Given the growing interest of the community in the topic of
multiple Higgs-doublet models, a number of studies on the
constraints faced by such models from the Higgs data is
expected to rise in the coming years. Thus, the fact that our
analysis provides a way to efficiently implement the
alignment limit in case of a CP-conserving 3HDM makes
our results quite timely and relevant.
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