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The flavor changing decays of heavy bottom quarks to the corresponding lighter quarks (u, c, and s) in
various B-meson decays via charged current and neutral current semileptonic transitions have emerged as
promising candidates to explore physics beyond the standard model. Experimentally the lepton flavor
universality violation in b → ðc; uÞlν and b → slþl− transitions have been reported to a higher precision.
The measurements of the lepton flavor violating ratios such as RDð�Þ , RJ=Ψ, and RKð�Þ are observed to deviate
from the standard model expectations at the level of 1.4σ, 2.5σ, 1.5σ, 2.4σ, and 2.2σ respectively. Motivated
by these anomalies, we investigate the lepton flavor universality violation in Σb → Σclν and Ωb → Ωclν
decays. We follow a model independent effective field theory formalism and study the implications of RDð�Þ

anomalies on Σb → Σcτν and Ωb → Ωcτν decay modes. We give predictions of various physical
observables such as the ratio of branching ratios, total differential decay rate, forward-backward
asymmetry, lepton side polarization fraction, and convexity parameter within the standard model and
within various new physics scenarios.
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I. INTRODUCTION

Although, the present-day experimental results in B
factory experiments are dominated by the meson decays
over the baryon decays, the theoretical exploration of the
semileptonic decays of baryons have a longer history as
compared to the mesons. The system of particles which are
classified under mesons and baryons are mainly distin-
guished by their quark structure. In the early 1960s the
concept of diquarks emerged out of some critical phenom-
enological ideas and have lead to the diverse coherent
thoughts about the baryon decay characteristics. Soon after
in Refs. [1,2] the concept of a diquark was literally
introduced in order to describe a baryon as a composite
state of two particles called a quark and a diquark. The
heavy quark symmetry assumes baryons as a bound state of
ðQqqÞ where Q is the heavy quark surrounded by the
lighter quarks q. This idea of a quark-diquark picture of
a baryon has successfully managed to predict various

properties including their compositions and the decay
probabilities. During the weak decays of baryons, only
the heavier quark will be knocked out of a baryon and take
part in the decay process by changing its flavor whereas
the lighter diquark pair will act as a spectator [3]. This is
because when we carefully monitor this process, the
quantum numbers (color index, helicities, momentum)
are conserved for the lighter diquark system. Hence, this
baryon three-body problem is reduced to a usual meson
two-body problem (see Fig. 1). Therefore, at the scale of
quark level transitions, the treatment of semileptonic
decays of baryons are considered to be very much analo-
gous to that of mesons.
The study of semileptonic B meson decays is of great

interest due to the long-standing anomalies that are present
in various B meson decays mediated via b → clν and

FIG. 1. Tree level Feynman diagram representing the transi-
tions of Σ−

b ðddbÞ → Σ0
cðddcÞl−ν̄l and Ω−

b ðssbÞ → Ω0
cðsscÞl−ν̄l.
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b → slþl− quark level transitions. The most well-grounded
measurements which substantiate these anomalies are the
ratio of branching ratios RD and RD� defined as

RD ¼ BðB → DτνÞ
BðB → Dfe=μgνÞ ; RD� ¼ BðB → D�τνÞ

BðB → D�fe=μgνÞ :

ð1Þ

The precise standard model (SM) predictions of RD and
RD� based on the recent lattice calculations have been
carried out by various groups and interestingly every
prediction is in good agreement with each other. The
FNAL/MILC Collaboration predicts the value of RD to
be 0.299� 0.011 [4]. Similarly, in Ref. [5] it is predicted to
be 0.300� 0.008. By combining these two calculations the
FLAG working group [6] has come up with a value of
RD ¼ 0.300� 0.008. The authors in Ref. [7] suggest a
more accurate value of RD ¼ 0.299� 0.003 by combing
the two lattice calculations by obtaining the experimental
form factors of B → Dlν from BABAR and Belle. In fact
various similar calculations of RD can also be found in
Refs. [8,9]. Regarding the RD� SM predictions, at present
we have quite a large number of predictions in which every
prediction manifests a minimal variation. In Ref. [10] the
authors predicted the value to be RD� ¼ 0.252� 0.003.
More recent calculations of RD� ¼ 0.257� 0.003 [8],
0.257� 0.005 [9], and 0.260� 0.008 [11] obtained from
the new form factor inputs by fitting the unfolded spectrum
from Belle with the BGL parametrization [12] are in good
agreement with each other as well as with the previous
prediction. One can expect an even more precise prediction
of RD� once the full lattice QCD calculations are available.
On the other hand, we have several measurements of RD
and RD� from various experiments such as BABAR, Belle,
and LHCb. The Heavy Flavor Averaging Group (HFLAV)
determined the combined deviation in RDð�Þ with respect to
the SM. Recent measurements from Belle in 2019 have a
significant impact on the average values of RDð�Þ . At present
the combined deviation in RDð�Þ is reported to be 3.08σ from
the SM expectations. The average values of RD and RD�

reported by HFLAV are displayed in Table I.
The clear disagreements between the SM predictions and

the experimental measurements strongly indicate possible
new physics. Several new physics scenarios are being
investigated within model dependent and model indepen-
dent frameworks [23–42]. Similarly, implications of RDð�Þ

anomalies on similar decay modes have been studied as
well. The details can be found in Refs. [43–53].

Apart from RD and RD� measurements, the LHCb has
also measured the ratio of branching ratio RJ=Ψ¼
BðBc→J=ΨτνÞ=BðBc→J=ΨlνÞ to be 0.71�0.17�0.18
[54] which stands around 1.3σ away from the SM value of
[0.20, 0.39] [55]. As this error is relatively large, we do not
consider RJ=Ψ in our new physics (NP) analysis.
In the SM, the Σb and Ωb semileptonic decays have been

studied by several authors using the Σb → Σc andΩb → Ωc
transition form factors obtained in the spectator-quark
model, the relativistic quark model, the Bethe-Salpeter
approach, relativistic three-quark model, and the light-front
quark model [56–67]. The total decay rate Γ (in units of
1010 s−1) predicted within these models ranges from 1.44
to 2.23 for Σb → Σceν and 1.29 to 1.87 for Ωb → Ωceν.
These variations in the prediction of Γ may be due to the
complexity in understanding the baryon structures and also
due to the lack of precise predictions of various form
factors. Nevertheless, we explore the NP effects on various
observables pertaining to Σb → Σcτν and Ωb → Ωcτν
decays within the model independent effective field theory
formalism. It is indeed essential to study these decay modes
both theoretically and experimentally to test the lepton
flavor universality violation (LFUV).
We hope that there are good chances of studying these

decays experimentally as the present-day LHCown plenty of
data on heavy baryons. It may be difficult to measure the
Σb → Σclν branching ratio as Σb can decay strongly and
hence their weak branching ratios will be very small [68].
However, measurement of an Ωb → Ωclν branching ratio
will be feasible because Ωb decays predominantly weakly
and has a significantly large semileptonic branching ratio.
One can estimate the branching ratios forΩb → Ωclν decays
which are found to be of the order of 10−2 for electron and
10−3 for tau final states. Hence it is worth studying these
decay modes as they can give complimentary information
regarding possible new physics [56,60,67].
Investigating the implications of RDð�Þ on Σb → Σcτν and

Ωb → Ωcτν decays will draw more interesting results. For
this study, we have considered the form factors obtained
in the relativistic quark model [56]. We give predictions of
various observables within the SM and within various NP
scenarios. The results pertaining to the lepton side forward-
backward asymmetry and the convexity parameter are
predicted in the SM for the first time in both the decay
modes. Also, the new physics studies on these particular
decay modes have not been explored until today.
The paper is organized as follows: In Sec. II, we briefly

review the effective Lagrangian in the presence of the new

TABLE I. Recent SM predictions and world averages of RD and RD� .

Observables SM predictions World averages Deviation

RD ¼ BðB → DτνÞ=BðB → DlνÞ 0.299� 0.003 [4–7] 0.340� 0.027� 0.013 [13–16] 1.4σ
RD� ¼ BðB → D�τνÞ=BðB → D�lνÞ 0.258� 0.005 [8–11] 0.295� 0.011� 0.008 [13–22] 2.5σ
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physics couplings. Next we discuss the helicity formalism
for Σb → Σc and Ωb → Ωc transitions and write down the
respective vector, axial-vector, scalar, and pseudoscalar
helicity amplitudes. We also write down the formulas to
calculate the total differential decay rate and various q2

dependant observables. In Sec. III, we discuss the numeri-
cal results with all necessary input parameters. The
numerical results are reported within the SM and within
various NP scenarios. Finally, we conclude with a brief
summary of our results in Sec. IV.

II. METHODOLOGY

Effective field theory formalism is a natural way to
separate the effects coming from different scales involved
in weak decays. The most relevant effective Hamiltonian
for b → clν transition decays represented at the scale of a
bottom quark, containing both the SM and the possible NP
operators, is defined as [69,70]

Heff ¼
4GFffiffiffi

2
p Vcb½ð1þVLÞOVL

þVROVR
þ SLOSL þ SROSR

þ TOT � þH:c:; ð2Þ

where GF is the Fermi coupling constant, Vcb is the CKM
matrix element, and VL, VR, SL, SR, and T are the Wilson
coefficients (WCs) corresponding to the vector, scalar, and
tensor NP operators. The Fermionic operators OVL

, OVR
,

OSL , OSR , and OT are defined as

OVL
¼ ðc̄γμbLÞðl̄LγμνlLÞ; OVR

¼ ðc̄γμbRÞðl̄LγμνlLÞ ð3Þ
OSL ¼ ðc̄bLÞðl̄RνlLÞ; OSR ¼ ðc̄bRÞðl̄RνlLÞ ð4Þ
OT ¼ ðc̄σμνbLÞðl̄RσμννlLÞ: ð5Þ
Here, we assume the neutrino to be always left chiral and

all the WCs to be real. We rewrite the effective Lagrangian
by considering NP contributions only from the vector and
scalar type interactions as [71]

Leff ¼ −
GFffiffiffi
2

p VcbfGVl̄γμð1 − γ5Þνlc̄γμb −GAl̄γμð1 − γ5Þ

× νlc̄γμγ5bþGSl̄γμð1 − γ5Þνlc̄b
− GPl̄γμð1 − γ5Þνlc̄γ5bg þ H:c:; ð6Þ

where

GV ¼ 1þ VL þ VR; GA ¼ 1þ VL − VR;

GS ¼ SL þ SR; GP ¼ SL − SR: ð7Þ
Within the SM, VL;R ¼ SL;R ¼ 0.
Using the effective Lagrangian of Eq. (6), the three body

differential decay distribution for the B1 → B2lν decays
can be written as

d2Γ
dq2d cos θ

¼ G2
FjVcbj2jP⃗B2

j
29π3m2

B1

�
1 −

m2
l

q2

�
LμνHμν; ð8Þ

where Lμν and Hμν are the leptonic and hadronic

current tensors. Here jP⃗B2
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B1
; m2

B2
; q2Þ

q
=2mB1

with

λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ðabþ bcþ caÞ represents
the three momentum vector of the outgoing baryon. One
can use the helicity techniques for the covariant contraction
of Lμν and Hμν, details of which can be found in
Refs. [72,73]. We follow Ref. [71] and write the expression
for differential decay distribution for B1 → B2lν decays in
terms of the helicity amplitudes as follows:

d2Γ
dq2dcosθ

¼N

�
1−

m2
l

q2

�
2
�
A1þ

m2
l

q2
A2þ2A3þ

4mlffiffiffiffiffi
q2

p A4

�

ð9Þ

where θ is the angle between the P⃗B2
and lepton three

momentum vector in the l − ν rest frame and

N ¼ G2
FjVcbj2q2jP⃗B2

j
512π3m2

B1

�
1 −

m2
l

q2

�
2

;

A1 ¼ 2sin2θ

�
H2

1
2
0
þH2

−1
2
0

�

þ ð1 − cos θÞ2H2
1
2
1
þ ð1þ cos θÞ2H2

−1
2
−1;

A2 ¼ 2cos2θ

�
H2

1
2
0
þH2

−1
2
0

�
þ sin2θ

�
H2

1
2
1
þH2

−1
2
−1

�

þ 2

�
H2

1
2
t
þH2

−1
2
t

�
− 4 cos θ

�
H1

2
tH1

2
0 þH−1

2
tH−1

2
0

�
;

A3 ¼
�
HSP

1
2
0

�
2

þ
�
HSP

−1
2
0

�
2

;

A4 ¼ − cos θ

�
H1

2
0H

SP
1
2
0
þH−1

2
0H

SP
−1
2
0

�

þ
�
H1

2
tH

SP
1
2
0
þH−1

2
tH

SP
−1
2
0

�
: ð10Þ

A. Form factors and helicity amplitudes

The hadronic matrix elements of vector and axial vector
currents between two spin half baryons are parametrized in
terms of the following form factors:

MV
μ ¼ hB2; λ2jc̄γμbjB1; λ1i ¼ ū2ðp2; λ2Þ½f1ðq2Þγμ

þ if2ðq2Þσμνqν þ f3ðq2Þqμ�u1ðp1; λ1Þ;
MA

μ ¼ hB2; λ2jc̄γμγ5bjB1; λ1i ¼ ū2ðp2; λ2Þ½g1ðq2Þγμ
þ ig2ðq2Þσμνqν þ g3ðq2Þqμ�γ5u1ðp1; λ1Þ; ð11Þ

where qμ ¼ ðp1 − p2Þμ is the four momentum transfer, λ1
and λ2 are the respective helicities of the parent and

IMPLICATION OF RDð�Þ ANOMALIES ON SEMILEPTONIC DECAYS … PHYS. REV. D 100, 035015 (2019)

035015-3



daughter baryons, and σμν ¼ i
2
½γμγν�. Here, B1 represents

the bottomed baryon Σb or Ωb and B2 represents the
charmed baryon Σc or Ωc. In the heavy quark limit, these
matrix elements can be parametrized in terms of four
velocities vμ and v0μ as follows:

MV
μ ¼hB2;λ2jc̄γμbjB1;λ1i¼ ū2ðp2;λ2Þ½F1ðwÞγμþF2ðwÞvμ

þF3ðwÞv0μ�u1ðp1;λ1Þ;
MA

μ ¼hB2;λ2jc̄γμγ5bjB1;λ1i¼ ū2ðp2;λ2Þ½G1ðwÞγμ
þG2ðwÞvμþG3ðwÞv0μ�γ5u1ðp1;λ1Þ; ð12Þ

where w ¼ v:v0 ¼ ðm2
B1

þm2
B2

− q2Þ=2mB1
mB2

and mB1

and mB2
are the masses of the B1 and B2 baryons,

respectively. One can compute the hadronic form factors
for scalar and pseudoscalar currents by using the equation
of motion. Those matrix elements are

hB2; λ2jc̄bjB1; λ1i

¼ ū2ðp2; λ2Þ
�
f1ðq2Þ

q
mb −mc

þ f3ðq2Þ
q2

mb −mc

�

× u1ðp1; λ1Þ;
hB2; λ2jc̄γ5bjB1; λ1i

¼ ū2ðp2; λ2Þ
�
−g1ðq2Þ

q
mb þmc

− g3ðq2Þ
q2

mb þmc

�

× γ5u1ðp1; λ1Þ; ð13Þ

where mb and mc are the respective masses of b and c
quarks calculated at the renormalization scale μ ¼ mb.
These two sets of form factors are related through the
following relations as given below and the q2 behavior of
form factors f0s and g0s are displayed in Fig. 2.

f1ðq2Þ ¼ F1ðq2Þ þ ðmB1
þmB2

Þ
�
F2ðq2Þ
2mB1

þ F3ðq2Þ
2mB2

�
;

f2ðq2Þ ¼
F2ðq2Þ
2mB1

þ F3ðq2Þ
2mB2

;

f3ðq2Þ ¼
F2ðq2Þ
2mB1

−
F3ðq2Þ
2mB2

;

g1ðq2Þ ¼ G1ðq2Þ − ðmB1
−mB2

Þ
�
G2ðq2Þ
2mB1

þ G3ðq2Þ
2mB2

�
;

g2ðq2Þ ¼
G2ðq2Þ
2mB1

þ G3ðq2Þ
2mB2

;

g3ðq2Þ ¼
G2ðq2Þ
2mB1

−
G3ðq2Þ
2mB2

: ð14Þ

In the heavy quark limit, the form factors can be
expressed in terms of the Isgur-Wise function ζ1ðwÞ as
follows [56]:

F1ðwÞ ¼ G1ðwÞ ¼ −
1

3
ζ1ðwÞ;

F2ðwÞ ¼ F3ðwÞ ¼
2

3

2

wþ 1
ζ1ðwÞ;

G2ðwÞ ¼ G3ðwÞ ¼ 0: ð15Þ

The explicit expression for ζ1ðwÞ is found to be

ζ1ðwÞ¼ lim
mQ→∞

Z
d3p
ð2πÞ3ΨB2

�
pþ2ϵdðpÞ

ffiffiffiffiffiffiffiffiffiffiffi
w−1

wþ1

r
eΔ

�
ΨB1

ðpÞ

ð16Þ

where eΔ ¼ Δ=
ffiffiffiffiffiffi
Δ2

p
, a unit vector in the direction of Δ ¼

MB2
v −MB1

v, and B1 and B2 are the parent and daughter
baryon respectively. We refer to Ref. [56] for all the omitted
details.
The relation between the hadronic matrix elements and

the helicity amplitudes are defined as [72,74,75]

FIG. 2. Σb → Σc (left) and Ωb → Ωc (right) transition form factors as a function of q2.
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HV=A
λ2λW

¼ MV=A
μ ðλ2Þϵ†μðλWÞ; ð17Þ

where λ2 and λW are the respective helicities of the daughter
baryon and the off-shell W boson. In the rest frame of
parent baryon B1, the helicity amplitudes can be written
as [76,77]

HV
1
2
0
¼ GV

ffiffiffiffiffiffiffi
Q−

p
ffiffiffiffiffi
q2

p ½mþf1ðq2Þ − q2f2ðq2Þ�;

HA
1
2
0
¼ GA

ffiffiffiffiffiffiffi
Qþ

p
ffiffiffiffiffi
q2

p ½m−g1ðq2Þ þ q2g2ðq2Þ�;

HV
1
2
1
¼ GV

ffiffiffiffiffiffiffiffiffi
2Q−

p
½−f1ðq2Þ þmþf2ðq2Þ�;

HA
1
2
1
¼ GA

ffiffiffiffiffiffiffiffiffi
2Qþ

p ½−g1ðq2Þ −m−g2ðq2Þ�;

HV
1
2
t
¼ GV

ffiffiffiffiffiffiffi
Qþ

p
ffiffiffiffiffi
q2

p ½m−f1ðq2Þ þ q2f3ðq2Þ�;

HA
1
2
t
¼ GA

ffiffiffiffiffiffiffi
Q−

p
ffiffiffiffiffi
q2

p ½mþg1ðq2Þ − q2g3ðq2Þ�; ð18Þ

where Q� ¼ ðmB1
�mB2

Þ2 − q2 and m� ¼ ðmB1
�mB2

Þ.
For the helicity flipped components, these amplitudes turn
out to be HV

−λ2−λW ¼ HV
λ2λW

and HA
−λ2−λW ¼ −HA

λ2λW
. Hence,

the total left-handed helicity amplitude is

Hλ2λW ¼ HV
λ2λW

−HA
λ2λW

: ð19Þ
The scalar/pseudoscalar helicity amplitudes are defined as

HSP
1
2
0
¼ HS

1
2
0
−HP

1
2
0
;

HS
1
2
0
¼ GS

ffiffiffiffiffiffiffi
Qþ

p
mb −mc

½m−f1ðq2Þ þ q2f3ðq2Þ�;

HP
1
2
0
¼ GS

ffiffiffiffiffiffiffi
Q−

p
mb þmc

½mþg1ðq2Þ − q2g3ðq2Þ�: ð20Þ

For these amplitudes, the helicity flipped counterparts are
HS

−λ2−λW ¼ HS
λ2λW

and HP
−λ2−λW ¼ −HP

λ2λW
.

The form factors f0s and g0s can also be expressed in
terms of the Isgur-Wise function ζ1ðwÞ as

f1ðq2Þ ¼ ζ1ðwÞ
�
−
1

3
þmþXþ

�
;

f2ðq2Þ ¼ ζ1ðwÞXþ;

f3ðq2Þ ¼ ζ1ðwÞX−; ð21Þ

g1ðq2Þ ¼ ζ1ðwÞ
�
−
1

3

�
;

g2ðq2Þ ¼ 0;

g3ðq2Þ ¼ 0: ð22Þ
Similarly, the helicity amplitudes in Eqs. (18) and (20)

can be simplified in the following form:

HV
1
2
0
¼ ζ1ðwÞGV

ffiffiffiffiffiffiffi
Q−

p
ffiffiffiffiffi
q2

p
�
mþ

�
−
1

3
þmþXþ

�
− q2Xþ

�
;

HA
1
2
0
¼ ζ1ðwÞGA

ffiffiffiffiffiffiffi
Qþ

p
ffiffiffiffiffi
q2

p
�
−
1

3
m−

�
;

HV
1
2
1
¼ ζ1ðwÞGV

ffiffiffiffiffiffiffiffiffi
2Q−

p ��
1

3
−mþXþ

�
þmþXþ

�
;

HA
1
2
1
¼ ζ1ðwÞGA

ffiffiffiffiffiffiffiffiffi
2Qþ

p �
1

3

�
;

HV
1
2
t
¼ ζ1ðwÞGV

ffiffiffiffiffiffiffi
Qþ

p
ffiffiffiffiffi
q2

p
�
m−

�
−
1

3
þmþXþ

�
þ q2X−

�
;

HA
1
2
t
¼ ζ1ðwÞGA

ffiffiffiffiffiffiffi
Q−

p
ffiffiffiffiffi
q2

p
�
−
1

3
mþ

�
;

HS
1
2
0
¼ ζ1ðwÞGS

ffiffiffiffiffiffiffi
Qþ

p
mb −mc

�
m−

�
−
1

3
þmþXþ

�
þ q2X−

�
;

HP
1
2
0
¼ ζ1ðwÞGS

ffiffiffiffiffiffiffi
Q−

p
mb þmc

�
−
1

3
mþ

�
; ð23Þ

where X� ¼ 2=½3ðwþ 1Þ�½m�=mB1
mB2

�.

B. Decay distribution and q2 observables

To obtain the normalized differential decay rate, we
perform the cos θ integration in Eq. (9), i.e.,

dΓ
dq2

¼ 8N
3

�
1 −

m2
l

q2

�
2
�
B1 þ

m2
l

2q2
B2 þ

3

2
B3 þ

3mlffiffiffiffiffi
q2

p B4

�
;

ð24Þ

where

B1 ¼ H2
1
2
0
þH2

−1
2
0
þH2

1
2
1
þH2

−1
2
−1;

B2 ¼ H2
1
2
0
þH2

−1
2
0
þH2

1
2
1
þH2

−1
2
−1 þ 3

�
H2

1
2
t
þH2

−1
2
t

�
;

B3 ¼
�
HSP

1
2
0

�
2 þ

�
HSP

−1
2
0

�
2
;

B4 ¼ H1
2
tH

SP
1
2
0
þH−1

2
tH

SP
−1
2
0
: ð25Þ

The SM equations can be obtained by setting GV ¼
GA ¼ 1 and G̃V ¼ G̃A ¼ 0.
The ratio of branching ratio is defined by considering the

ratios of the differential decay rate with the heavier τ lepton
in the final state to the differential decay rate with the
corresponding lighter lepton in the final state as

RB2
¼ ΓðB1 → B2τνÞ

ΓðB1 → B2lνÞ
; ð26Þ

where B1ð2Þ ¼ ΣbðcÞ;ΩbðcÞ and l ¼ e or μ.
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Similarly, we also define various q2 dependent observ-
ables such as total differential decay rate dΓ=dq2ðq2Þ, ratio
of branching ratio RB2

ðq2Þ, forward backward asymmetry
Al
FBðq2Þ obtained by integrating over linear cos θ depend-

ency of the distribution, and polarization fraction of the
charged lepton Plðq2Þ calculated by measuring the differ-
ence between the lepton helicity nonflip rate to the lepton
helicity flip rate and convexity parameter Cl

Fðq2Þ which is
found by integrating over cos2 θ dependency of the dis-
tribution for both of the decay modes as follows:

RB2
ðq2Þ ¼ ΓðB1 → B2τνÞ

ΓðB1 → B2lνÞ
;

Al
FBðq2Þ ¼

ðR 0
−1 −

R
1
0 Þd cos θ d2Γ

dq2d cos θ
dΓ
dq2

;

Plðq2Þ ¼ dΓðþÞ=dq2 − dΓð−Þ=dq2
dΓðþÞ=dq2 þ dΓð−Þ=dq2 ;

Cl
Fðq2Þ ¼

1

ðdΓ=dq2Þ
d2

dðcos θÞ2
�

d2Γ
dq2d cos θ

�
; ð27Þ

where dΓðþÞ=dq2 and dΓð−Þ=dq2 are the respective
differential decay rates of positive and negative helicity
of lepton. The average values of all the observables such as
hPli, hAl

FBi, hCl
Fi, and hRi are obtained by integrating the

numerator and denominator separately before taking the
ratio.

III. RESULTS AND DISCUSSIONS

A. Input parameter

For our numerical computation of various observables
we use the input parameters from Ref. [78] and, for
definiteness, we report it in Table II. Masses of all the
particles are in GeV units and Fermi coupling constant GF

is in GeV−2 unit. For the Σb → Σc and Ωb → Ωc transition
form factors, we follow Ref. [56] and use the form factor
inputs obtained in the framework of the relativistic quark
model. In the heavy quark limit the invariant form factors
are expressed in terms of the Isgur-Wise functions ζ1ðwÞ
and ζ2ðwÞ obtained for the whole kinematic range using the
ΨΣðb;cÞ and ΨΩðb;cÞ baryon wave functions. The values of
ζ1ðwÞ and ζ2ðwÞ in the whole kinematic range, pertinent for
our analysis, were obtained from Ref. [79].

B. Standard model predictions

The SM predictions are reported for Σb → Σclν and
Ωb → Ωclν decay modes undergoing b → clν quark level
transitions where l is either an electron or a tau lepton.
In Table III, we display the average values of various
observables such as the total decay rate Γ, longitudinal
polarization of the charged lepton hPli, forward-backward
asymmetry hAl

FBi, and the convexity parameter hCl
Fi for

both electron mode and tau mode respectively. We also
report the ratio of branching ratios for these decay modes.
The total decay rate for both the decay modes is observed to
be larger for the lighter leptons (e or μ) as compared to the
heavier τ lepton. The polarization fraction for the electron is

TABLE II. Theory input parameters [78].

Parameter Value Parameter Value Parameter Value Parameter Value

mΣb
5.8155 mΣc

2.45375 mbðmbÞ 4.18 mcðmbÞ 0.91
mΩb

6.0461 mΩc
2.6952 GF 1.1663787 × 10−5 jVcbj 0.041(11)

me 0.51099 × 10−3 mτ 1.77682

TABLE III. The SM central values and the corresponding 1σ range for the total decay rate Γ, the ratio of branching ratio hRi, the lepton
polarization fraction hPli, the forward-backward asymmetry hAl

FBi, and the convexity factor hCl
Fi for the e mode and the τ mode of

Σb → Σclν and Ωb → Ωclν decays.

Σb → Σclν Ωb → Ωclν

e mode τ mode e mode τ mode

Γ × 1010 s−1 Central value 1.401 0.473 1.235 0.447
1σ range (with 10% uncertainty in ζ1) [1.325, 1.474] [0.447, 0.506] [1.162, 1.284] [0.422, 0.480]
1σ range (with 20% uncertainty in ζ1) [1.259, 1.548] [0.425, 0.538] [1.113, 1.348] [0.401, 0.514]
1σ range (with 30% uncertainty in ζ1) [1.205, 1.631] [0.406, 0.573] [1.073, 1.422] [0.382, 0.551]

hPli Central values −1.000 0.131 −1.000 0.135
hAl

FBi Central value 0.050 −0.253 0.050 −0.251
hCl

Fi Central value −1.172 −0.200 −1.148 −0.196
hRi Central value 0.338 0.362
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−1.00. The τ polarization fraction is 0.131 for Σb → Σc and
0.135 for Ωb → Ωc decay modes. The forward-backward
asymmetry for electron mode and tau mode are almost
similar for both the decay modes. The convexity parameter
Cl
F for the τ mode is larger than the e mode. The ratio of

branching ratio for Ωb → Ωclν is slightly larger than the
Σb → Σclν decay mode.
We also determine the size of uncertainties in each

observable that are coming from various input parameters.
The uncertainties for the theoretical predictions can come
from the nonperturbative hadronic form factors and not very
well-know Cabibbo–Kobayashi–Maskawa (CKM) matrix
element jVcbj. Here, we consider the 10% uncertainty in
ζ1ðwÞ and the jVcbj uncertainty as mentioned in Table II. In
order to measure the size of uncertainty, we perform a
random scan over the input parameters within 1σ. Although,
the assumption of 10% uncertainty in the form factor inputs
is conservative, if one assumes it to be even larger than 10%
i.e., 20% or 30%, it is not going to affect the results severely.
We see that, except for Γ, the form factor uncertainty exactly
cancels in all the other observables. In Table III, we report
the uncertainty range for Γ with 10%, 20%, and 30%
uncertainty in the form factors. We see that there is no
uncertainty in hPli, hAl

FBi, hCl
Fi, and hRi.

The behavior of each observable as a function of q2 for
Σb → Σclν and Ωb → Ωclν decays are reported in Figs. 3
and 4. We compare each observable for both electron and
tau lepton final states. Purple represents the electron mode
and green represents the tau mode. The q2 dependence of

all of the observables are distinct for both e and τ modes.
The RΣc

ðq2Þ show an almost positive slope over the entire
q2 range. The total differential decay rate for electron is
maximum at minimum q2 and minimum at maximum q2

whereas, the total differential decay rate for tau is maxi-
mum at around q2 ¼ 8 GeV2 and approaches zero at
minimum and maximum q2. The Peðq2Þ is −1 over the
entire q2 range and the Pτðq2Þ take only positive values for
all q2 values. The Al

FBðq2Þ is positive in e mode while it is
negative in τ mode in the whole q2 range. At q2 ¼ q2max,
both Ae

FBðq2Þ and Aτ
FBðq2Þ approach to zero. The Ce

Fðq2Þ is
around -1.5 at q2 ¼ m2

l and zero at maximum q2. On the
other hand Cτ

Fðq2Þ approaches zero at both minimum and
maximum q2. Similar conclusions can be made for the
Ωb → Ωclν decay mode as well.

C. New physics analysis

We analyze the NP effects in a model independent way.
The new physics effects are investigated in four different
scenarios by considering each new vector and scalar type
NP couplings associated with the left-handed neutrinos one
at a time. The effects of VL, VR, SL, and SR NP couplings
are studied for both Σb → Σcτν and Ωb → Ωcτν decay
modes. We first perform a naive χ2 test to find the best fit
values of each observable by defining

½χ2�Total ¼
½Rexpt

D − Rth
D�2

½ΔRexpt
D �2 þ ½Rexpt

D� − Rth
D� �2

½ΔRexpt
D� �2 ð28Þ

FIG. 3. Ratio of branching ratio RΣc
ðq2Þ, the total differential decay rate dΓ=dq2, the lepton polarization fraction Plðq2Þ, the forward-

backward asymmetry Al
FBðq2Þ, and the convexity parameter Cl

Fðq2Þ for the Σb → Σclν decays in the SM. The purple color represents the
e mode and the green color represents the τ mode.
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where, Rexpt
D and Rexpt

D� refer to the experimental values of
RD and RD� and ΔRexpt

D , ΔRexpt
D� refer to the experimental

uncertainties associated with RD and RD� and similarly Rth
D,

Rth
D� refer to the theoretical values corresponding to various

NP couplings. For the uncertainties in RD and RD� , we
added the systematic and statistical uncertainties in quad-
rature. To calculate the best fit values, we evaluate the
minimum χ2 and find the respective best fit values for each
VL, VR, SL, and SR NP couplings. In Table IV, we display
the corresponding best fit average values of each observ-
able associated with VL, VR, SL, and SR NP couplings for
the Σb → Σcτν and Ωb → Ωcτν decay modes. Although
there are deviations of each observable in each NP
scenarios, the forward-backward asymmetry hAτ

FBi corre-
sponding to SL shows a completely different pattern for
both Σb → Σcτν and Ωb → Ωcτν decay modes. It assumes

positive values for SL and negative for the rest of the NP
couplings. Measurement of hAτ

FBi for these decay modes in
the future will be crucial in distinguishing various NP
Lorentz structures. We also compare in Figs. 5 and 6
various q2 dependent observables obtained using the best
fit values of each NP couplings with the SM central value.
It is evident that the deviation observed with the SL NP
coupling is quite different from all the other NP couplings
in both the decay modes.
To get the allowed NP parameter space in each scenario,

we impose the 3σ constraint coming from the measured
values of the ratio of branching ratios RD and RD� . We have
shown in Fig. 7 the allowed ranges ofVL,VR, SL, and SR NP
couplings that are compatiblewith the 3σ constraints coming
from themeasured values ofRD andRD� . The allowed ranges
of VL, VR, SL, and SR NP couplings are as follows:

FIG. 4. Ratio of branching ratio RΩc
ðq2Þ, the total differential decay rate dΓ=dq2, the lepton polarization fraction Plðq2Þ, the forward-

backward asymmetry Al
FBðq2Þ, and the convexity parameter Cl

Fðq2Þ as a function of q2 for the Ωb → Ωclν decays in the SM. Purple
represents the e mode and green represents the τ mode.

TABLE IV. Ratio of branching ratio hRi, the total decay rate Γ, the tau polarization fraction hPτi, the forward-
backward asymmetry hAτ

FBi, and the convexity parameter hCτ
Fi for Σb → Σcτν and Ωb → Ωcτν decay modes with

the best fit value of each NP coupling.

Σb → Σcτν Ωb → Ωcτν

VL VR SL SR VL VR SL SR

Γ × 1010 s−1 0.548 0.450 0.489 0.538 0.518 0.426 0.466 0.509
hPτi 0.131 0.092 0.159 0.236 0.135 0.095 0.170 0.241
hAτ

FBi −0.253 −0.241 0.242 −0.250 −0.251 −0.239 0.240 −0.248
hCτ

Fi −0.200 −0.192 −0.193 −0.176 −0.196 −0.189 −0.188 −0.172
hRi 0.391 0.321 0.349 0.384 0.419 0.345 0.377 0.421
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FIG. 5. The q2 dependency of the ratio of branching ratio RΣc
ðq2Þ, the total differential decay rate dΓ=dq2, the lepton polarization

fraction Pτðq2Þ, the forward-backward asymmetry Aτ
FBðq2Þ, and the convexity factor Cτ

Fðq2Þ in SM (red) and in the presence of
VL (purple), VR (green), SL (black), and SR (pink) NP couplings for the Σb → Σcτν decay mode.

FIG. 6. The q2 dependency of the ratio of branching ratio RΩc
ðq2Þ, the total differential decay rate dΓ=dq2, the lepton polarization

fraction Pτðq2Þ, the forward-backward asymmetry Aτ
FBðq2Þ, and the convexity factor Cτ

Fðq2Þ in SM (red) and in the presence of
VL (purple), VR (green), SL (black), and SR (pink) NP couplings for the Ωb → Ωcτν decay mode.
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VL ∈ ½−0.2; 0.2�; VR ∈ ½−0.1; 0.02�;
SL ∈ ½−0.2; 0.1� and ½−1.6;−1.4�;
SR ∈ ½−0.2; 0.33�: ð29Þ

We also report the q2 dependency of each observable
such as the ratio of branching ratio RΣc

ðq2Þ and RΩc
ðq2Þ,

the total differential decay rate dΓ=dq2, the tau polarization
fraction Pτðq2Þ, the forward-backward asymmetry Aτ

FBðq2Þ,
and the convexity factor Cτ

Fðq2Þ for both the decay modes
in Figs. 8 and 9. In each figure we incorporate both SM and
NP behavior. The SM and NP are distinguished by red and
purple colors respectively. We represent the SM central
curve and the corresponding 1σ band which we obtain by
varying the input parameters (form factors and Vcb) within
1σ with red. On the other hand, the best fit curve and the
band for each NP coupling obtained by imposing the 3σ
constraint coming from the measured values ofRD andRD�

are represented with purple. Our main observations are as
follows:

(i) The effect of the VL NP coupling is encoded in the
vector and axial vector helicity amplitudes only.
In case of Σb → Σcτν decays, the deviation from
the SM prediction due to the VL NP coupling is
observed only in the ratio of branching ratio Rðq2Þ
and the total differential decay rate dΓ=dq2. With VL

NP coupling the differential decay width dΓ=dq2 is
proportional to ð1þ VLÞ2. Hence, the NP depend-
ency cancels in the ratios and we do not see any

deviation from the StandardModel prediction for the
observables such as Pτðq2Þ, Aτ

FBðq2Þ, and Cτ
Fðq2Þ.

Similar conclusions can be made for the Ωb → Ωcτν
decay mode as well.

(ii) Similar to VL, the VR NP effects are encoded in the
vector and the axial vector helicity amplitudes
alone. Deviation in each observable from the SM
prediction is observed in this scenario. There is no
cancellation of NP effects in Pτðq2Þ, Aτ

FBðq2Þ, and
Cτ
Fðq2Þ since, in the presence of the VR NP

coupling, dΓ=dq2 depends on both ð1þ VRÞ2
and ð1 − VRÞ2. So there is no cancellation of NP
effects in the ratios. As a result, we see deviation
from the SM prediction in each observable. The
deviation observed in dΓ=dq2, Rðq2Þ, Aτ

FBðq2Þ, and
Cτ
Fðq2Þ are less in comparison to the deviation

observed in the tau polarization fraction Pτðq2Þ.
Similar conclusions can be made for the Ωb →
Ωcτν decay mode as well.

(iii) The scalar NP coupling SL comes into the decay
amplitude through the scalar and pseudoscalar
helicity amplitudes. In this scenario, the differential
decay width dΓ=dq2 depends on SL linearly as well
as quadratically, i.e., dΓ=dq2 ∝ ðSL; S2LÞ. Hence the
NP dependency does not cancel in the ratios and
we observe deviation of all the observables from the
SM prediction. We even observe that the deviation
from the SM prediction is more pronounced than
that with VL, VR, and SR NP couplings. This can be

FIG. 7. The allowed regions of VL, VR, SL, and SR NP couplings once the 3σ constraint coming from the measured values of the ratio
of branching ratios RD and RD� are applied. Red represents RD and purple represents RD� . The 3σ range for RD is [0.2503, 0.4297] and
RD� is [0.2542, 0.3358].
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easily understood from the allowed ranges ofVL, VR,
SL, and SR NP couplings. The strength of the SL NP
coupling is more than all the other NP couplings and
accordingly, we see significantlywider bands than the
SM plots in the scenario with the SL NP coupling.
More interestingly, the SM central curve and the best
fit curve due to the SL NP coupling show completely
different behavior for all the observables. Moreover,

there is even a zero crossing in the best fit curve of the
tau polarization fraction Pτðq2Þ at q2 ≈ 7.5 GeV2

below which Pτðq2Þ takes negative values. Similarly,
the best fit curve of forward-backward asymmetry
Aτ
FBðq2Þ has a zero crossing around q2 ≈ 3.5 GeV2.

However, depending on the value of the SL NP
coupling, there may or may not be any zero crossing
in Pτðq2Þ and Aτ

FBðq2Þ.

FIG. 8. The q2 dependency of various observables such as the ratio of branching ratio RΣc
ðq2Þ, the total differential decay rate dΓ=dq2,

the tau polarization fraction Pτðq2Þ, the forward-backward asymmetry Aτ
FBðq2Þ, and the convexity parameter Cτ

Fðq2Þ for the Σb → Σcτν
decay mode in the presence of VL (first column), VR (second column), SL (third column), and SR (fourth column). NP couplings are
shown with the purple band, whereas the SM prediction is shown with the red band. The red solid line represents the SM prediction with
the central values of each input parameter and the purple solid line represents the prediction once the best fit values of the NP couplings
are used.
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(iv) Similar to SL, NP effects coming from the SR NP
coupling are encoded in the scalar and pseudoscalar
helicity amplitudes only. Again a significant deviation
from the SM prediction is observed, in particular, for
Rðq2Þ,dΓ=dq2,Pτðq2Þ, andCτ

Fðq2Þ as the differential
decay width dΓ=dq2 depends on SR linearly as well
as quadratically, i.e., dΓ=dq2 ∝ ðSR; S2RÞ. Hence, the
NP dependency does not cancel in the ratios. It is,

however, worth mentioning that the NP effect in
AFBðq2Þ is quite negligible in this scenario.

IV. SUMMARY AND CONCLUSION

The main objective of this work is to determine the size
of the lepton flavor universality violation in the semi-
leptonic decays of Σb and Ωb heavy baryons. Motivated by

FIG. 9. The q2 dependency of various observables such as the ratio of branching ratio RΣc
ðq2Þ, the total differential decay rate dΓ=dq2,

the tau polarization fraction Pτðq2Þ, the forward-backward asymmetry Aτ
FBðq2Þ, and the convexity parameter Cτ

Fðq2Þ for theΩb → Ωcτν
decay mode in the presence of VL (first column), VR (second column), SL (third column), and SR (fourth column). NP couplings are
shown with the purple band, whereas the SM prediction is shown with the red band. The red solid line represents the SM prediction with
the central values of each input parameter and the purple solid line represents the prediction once the best fit values of the NP couplings
are used.
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the long-standing flavor anomalies in B → Dð�Þlν decay
modes, we follow a model independent effective field
theory approach and study the various physical observables
within the SM and in the presence of new vector and scalar
type NP couplings. We have used the helicity formalism to
construct the angular decay distribution for the b → clν
transitions. We define several observables such as the
lepton polarization, lepton side forward-backward asym-
metry, and convexity parameter for the Σb → Σclν and
Ωb → Ωclν decays. The numerical results have been
presented for both electron mode and tau mode within
the SM. We also display the q2 dependant plots within the
SM and within various NP scenarios. To find the allowed
parameter space, we impose a 3σ constraint coming from
the measured ratio of branching ratios RD and RD� . We
perform our analysis by considering each NP parameter
one at time. We also perform a naive χ2 analysis to
determine the best fit values of each NP coupling. The
corresponding best fit values of each observable are also
reported. The deviation observed with scalar NP couplings
is more pronounced than that with the vector NP couplings.

The deviation observed in the case of the SL NP coupling is
quite distinct from all other NP couplings. In the future, this
may help to identify the exact nature of NP.
Unlike B meson decays which have been rigorously

studied both theoretically and experimentally over the last
decade, the baryonic decay modes which undergo similar
quark level transitions are less explored. Study of these
decay modes are useful for two reasons. First, it can provide
us complementary information regarding NP in various B
meson decays and also can be useful in determining the
value of the CKM matrix element jVcbj. Second, study of
these decay modes both theoretically and experimentally
can act as a useful ingredient in maximizing future
sensitivity to NP.
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