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We propose an alternative formulation of a left-right symmetric model where the difference between
baryon number (B) and lepton number (L) remains an unbroken symmetry. This is unlike the conventional
formulation, where B − L is promoted to a local symmetry and is broken explicitly in order to generate
Majorana neutrino masses. In our case B − L remains a global symmetry after the left-right symmetry
breaking, allowing only Dirac mass terms for neutrinos. In addition to parity restoration at some high scale,
this formulation provides a natural framework to explain B − L as an anomaly-free global symmetry of the
Standard Model and the nonobservation of (B − L)-violating processes. Neutrino masses are purely Dirac
type and are generated either through a two-loop radiative mechanism or by implementing a Dirac seesaw
mechanism.
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I. INTRODUCTION

With the discovery of the Higgs boson the last missing
piece of evidence confirming the Standard Model (SM)
of particle physics has been obtained. However, the
observation of neutrino oscillations has established non-
vanishing neutrino masses, which is undeniable evidence
of physics beyond the SM. In the SM the left-handed
fermions transform as electroweak doublets while the
right-handed fermions transform as singlets due to parity
violation. Thus, it is natural to look for a left-right
symmetric theory at a high energy scale, where both the
left-handed and the right-handed fermions transform on
an equal footing under the gauge group and parity is
restored. At some high energy the left-right symmetric
gauge group and parity are broken spontaneously, which
explains the observed parity violation at low energies.

This motivates the left-right symmetric model (LRSM),
in which the SM gauge group SUð3Þc × SUð2ÞL ×Uð1ÞY
is extended to make it left-right symmetric SUð3Þc ×
SUð2ÞL × SUð2ÞR ×Uð1ÞX [1]. Several versions of the
LRSM exist in the literature (see e.g., Ref. [2] for a recent
review) and in almost all of these models one identifies the
generator of the group Uð1ÞX with the B − L symmetry,
where B is the baryon number and L is the lepton number.1

For the SM particles this identification follows simply from
the charge equation relating the SM gauge group to the
LRSM gauge group which is broken by the conventional
choice of a triplet Higgs scalar. If this choice is generalized
for the right-handed neutrinos one can then generate small
Majorana neutrino masses for the neutrinos through the
seesaw mechanism [5]. However, in general this choice is
not unique for new fermions added to the SM spectrum or
for alternative Higgs sectors.
In the conventional LRSM, at some high energy scale

compared to the electroweak symmetry breaking scale
the left-right symmetric gauge symmetry group can be
written as

GLR ≡ SUð3Þc × SUð2ÞL × SUð2ÞR ×Uð1ÞX; ð1Þ
which breaks down to the SM gauge group SUð3Þc×
SUð2ÞL ×Uð1ÞY . The electric charge is related to the
generators of the gauge groups by the relation
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Q ¼ T3L þ T3R þ X
2
¼ T3L þ Y: ð2Þ

In the conventional case the quantum number X is
identified with the B − L symmetry, so that B − L becomes
a local gauge symmetry of the model. Consequently, the
left-right symmetry breaking can induce several (B − L)-
violating interactions, including the generation of Majorana
neutrino masses via a seesaw mechanism. The transforma-
tions of the left- and right-handed fermions under the left-
right symmetric gauge group GLR ≡ SUð3Þc × SUð2ÞL ×
SUð2ÞR ×Uð1ÞB−L are given by

qL ¼
�
uL
dL

�
≡

�
3;2;1;

1

3

�
; qR ¼

�
uR
dR

�
≡

�
3;1;2;

1

3

�
;

lL ¼
�

νL

eL

�
≡ ½1;2;1;−1�; lR ¼

�
νR

eR

�
≡ ½1;1;2;−1�:

ð3Þ

Left-right symmetry naturally includes the right-handed
neutrinos νR. The symmetry breaking pattern is given by

SUð3Þc × SUð2ÞL × SUð2ÞR × Uð1ÞX½GLR�
!MRSUð3Þc × SUð2ÞL ×Uð1ÞY ½GSM�
!mWSUð3Þc ×Uð1ÞQ½Gem�;

where MR corresponds to the SUð2ÞR breaking scale. The
relevant scalar sector is given by

Φ ¼
�Φ0

1 Φþ
1

Φ−
2 Φ0

2

�
∶½1; 2; 2; 0�;

ΔL ¼

0
B@

Δþ
Lffiffi
2

p Δþþ
L

Δ0
L − Δþ

Lffiffi
2

p

1
CA

L

∶½1; 3; 1; 2�;

ΔR ¼

0
B@

Δþ
Rffiffi
2

p Δþþ
R

Δ0
R − Δþ

Rffiffi
2

p

1
CA

R

∶½1; 1; 3; 2�: ð4Þ

In the conventional LRSM, the X ¼ B − L symmetry is
broken by the triplet Higgs scalarΔR ≡ ½1; 1; 3; 2� and from
left-right parity symmetry one must also have another
triplet Higgs scalar ΔL ≡ ½1; 3; 1; 2�. For both of the triplets
ΔL;R, the Uð1Þ quantum number is B − L ¼ −2. In the
absence of any additional symmetry, the gauge symmetry
allows the interactions of the Higgs triplets with the
fermions

L ¼ flT
LC

−1lLΔL þ flT
RC

−1lRΔR; ð5Þ

which determine the B − L quantum number of ΔL;R
uniquely, allowing the identification X ¼ B − L. The SM

Higgs doublet breaking the electroweak symmetry also
gives masses to the fermions, which in the presence of both
left- and right-handed fermions transforming as doublets
dictate that the SM Higgs doublet should be a bidoublet
under the group GLR:

ϕ≡ ½1; 2; 2; 0�; ð6Þ

with X ¼ B − L ¼ 0.
When this conventional model is embedded in grand

unified theories like SOð10Þ GUT, the theory contains
diquarks (Δqq that couple to two quarks) or leptoquarks
(Δlq that couple to a quark and a lepton or an antilepton)
[6]. All these scalar fields belong to one 126-dimensional
representation of SOð10Þ and their quantum numbers are
determined by the quantum numbers of the fermions, which
dictate X ¼ B − L. In this conventional formalism there are
many sources of B − L violation, all of which could affect
the lepton asymmetry of the Universe, and hence, the
baryon asymmetry of the Universe. Usually one considers
mainly the interactions of the right-handed neutrinos NR
when studying leptogenesis [7,8] and assumes that all other
interactions decouple before T ≈MN , where MN is the
mass of the lightest right-handed neutrino. The lepton
asymmetry generated by the decays of the lightest right-
handed neutrino would then get converted to a baryon
asymmetry of the Universe in the presence of the sphaler-
ons before the electroweak phase transition. However, after
the decays of the right-handed neutrinos there could be fast
(B − L)-violating interactions originating from the sponta-
neous breaking of the gauged B − L symmetry [9–16].2
A complete study should thus address all the following

interactions:
(1) Interactions of the gauge boson WR with the right-

handed leptons, and also with the Higgs triplet ΔR
which violate B − L quantum numbers [9–16,18]. In
some models, these interactions can also generate a
lepton asymmetry.

(2) Interactions of the diquark Higgs scalars Δqq with
themselves and with the dilepton Higgs scalars
[19–23]. When a model predicts neutron-antineutron
oscillation, light diquark Higgs scalars are predicted.
These models may wash out the lepton asymmetry
generated by the right-handed neutrino decays.

(3) The interactions of the right-handed triplet Higgs
scalars ΔR [24–27] can also affect the lepton
asymmetry generated by other mechanisms.

(4) The left-handed triplet Higgs scalars ΔL can gen-
erate a lepton asymmetry and also a neutrino mass,
after the right-handed neutrinos decay [28–32].
Even whenMΔ > MN , the Higgs decay can generate
an asymmetry, which is not affected by the slow

2For a recent review with some relevant discussion see e.g.,
Ref. [17].
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lepton-number-violating decays of the right-handed
neutrinos.

In what follows, we will construct a formulation of an
LRSM with an unbroken B − L symmetry, where all these
interactions are absent because B − L is not spontaneously
broken and consequently one ends up with very different
phenomenology and signatures. First, we note that in
general, one can define a new quantum number ζ, such
that in Eq. (1) we have,

X ¼ ðB − LÞ þ ζ: ð7Þ

Thus, if ζ ≠ 0, then B − L can also become a global
unbroken symmetry, independent of the left-right sym-
metry. In this work we point out an alternative scheme of
left-right symmetry breaking, where B − L is no longer
considered to be a local gauge symmetry, but remains an
unbroken symmetry. Consequently, all fermions including
the neutrinos are Dirac particles. Interestingly, in this model
the neutrinos can have tiny Dirac masses generated through
either a two-loop radiative correction or a Dirac seesaw
mechanism [33] depending on the Higgs sector of the
model. This formulation also provides a natural framework
to explain B − L as a global symmetry of the SM and can
explain the nonobservation of any (B − L)-violating proc-
esses. The baryon asymmetry of the Universe can be
explained in this formulation through a (B − L)-conserving
neutrinogenesis mechanism [34–36].
We would like to emphasise that historically, the original

formulation of the LRSM [1] entertained the possibility of
purely Dirac masses for neutrinos as explored in Ref. [37];
however due to the breaking of local B − L symmetry
together with SUð2ÞR, the Dirac masses of neutrinos were
susceptible to corrections due to Majorana contributions
induced by the B − L-violating operators in a UV-complete
theory. This subsequently led to the realization of Majorana
neutrino masses by introducing a seesaw mechanism e.g.,
using a triplet Higgs, which is one of the most interesting
aspects of these formalisms. On the other hand, in our
formalism we explore a potential alternative to the above
formalism where the pure Dirac nature of neutrino masses
is protected by the unbroken B − L global symmetry,
forbidding any possibility of any dimension-five or higher
lepton-number-violating operators. Furthermore, the small-
ness of the neutrino masses is naturally ensured by a two-
loop radiative contribution in one of the variants where the
tree-level and one-loop contributions are forbidden by the
construction of the model. In another variant of the model
the smallness of the Dirac neutrino masses are realized by a
Dirac seesaw mechanism and due to the unbroken B − L
global symmetry such small Dirac masses are protected
against any new Majorana corrections.
The plan for rest of the paper is as follows. In Sec. II, we

present an LRSMwith an unbroken B − L symmetry where
no Higgs bidoublet is present and the Higgs sector consists

of a right-handed doublet, a left-handed doublet and a
parity-odd singlet. In this scenario the quark masses and the
charged lepton masses are generated through a seesaw
mechanism introducing new vector-like states, while the
neutrino masses are generated radiatively at the two-loop
level. In Sec. III, we study the two-loop radiative contri-
bution in the context of neutrino masses and mixing by
constructing a left-right symmetric parametrization à la
Casas-Ibarra and present a phenomenological numerical
analysis for a minimal 2 × 2 case, showing the dependence
of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mix-
ing matrix angle on the hierarchy of heavy charged lepton
masses and the left-right symmetry breaking scale. In
Sec. IV, we present another alternative realization of an
LRSM with a global B − L symmetry in the presence of a
bidoublet Higgs. In this scenario the quarks acquire their
masses through the vacuum expectation value of the
bidoublet, while the charged and the neutral lepton masses
are generated through the Dirac seesaw mechanism in the
presence of heavy vector-like states. In Sec. V, we outline
the observable phenomenology of this formulation and
discuss constraints from various considerations. Finally in
Sec. VI we conclude and comment on the possible
implementation of a dark matter candidate and leptogenesis
mechanisms to generate the observed baryon asymmetry of
the Universe in this scenario.

II. LEFT-RIGHT SYMMETRIC MODEL
WITH AN UNBROKEN B−L SYMMETRY

The fermion content of this model is the same as that
given in Eq. (3). In addition we will add vector-like
fermions. For the left-right symmetry breaking, we now
use a doublet Higgs scalar χR ≡ ½1; 1; 2; 1�, whose vacuum
expectation value (VEV) breaks the left-right symmetry
GLR ≡ SUð3Þc × SUð2ÞL × SUð2ÞR ×Uð1ÞX [38,39]. It is
crucial to note that this field does not have any exclusive
interaction with the SM fermions, and hence the B − L
quantum number is no longer uniquely determined as
compared to the conventional LRSM. Therefore for χR,
we can choose B − L ¼ 0, and hence ζ ¼ 1 in Eq. (7). The
left-right symmetry ensures that we have a second doublet
Higgs scalar χL ≡ ½1; 2; 1; 1�, with the same assignment of
B − L ¼ 0 and ζ ¼ 1. Interestingly, these assignments do
not require any additional global symmetries, but will allow
B − L to remain as a global unbroken symmetry after the
electroweak symmetry breaking.
A priori we have two choices for the Higgs sector to

break the electroweak symmetry. The first choice is that we
keep the Higgs bidoublet from the conventional model;
after electroweak symmetry breaking it will then generate
Dirac masses for all the fermions. Such a scenario is the
subject of the discussion in Sec. IV. In this section we will
be primarily interested in the alternative possibility where
there is no Higgs bidoublet and the left-handed Higgs
doublet χL ≡ ½1; 2; 1; 1� breaks the electroweak symmetry.
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In such a scenario the quark masses and the charged lepton
masses are generated through a seesaw mechanism that
introduces new vector-like states [33]. Interestingly, in this
scenario the neutrino masses can be generated at the two-
loop level [40]. The field content of this model is
summarized in Table I.
The necessity of the scalar field ρ in the model is

justifiable from an examination of the relevant scalar
potential [41]. In the absence of the Higgs bidoublet the
general scalar potential of this model can be written as

V ¼ − μ2χðχ†LχL þ χ†RχRÞ þ λ1½ðχ†LχLÞ2 þ ðχ†RχRÞ2�
þ λ2ðχ†LχLÞðχ†RχRÞ − μ2ρρ

2 þ λρρ
4

þ μρχρðχ†LχL − χ†RχRÞ þ λρχρ
2ðχ†LχL þ χ†RχRÞ: ð8Þ

Redefining λ1 and λ2 in terms of λþ ¼ ðλ1 þ λ2=2Þ=2
and λ− ¼ ðλ1 − λ2=2Þ=2 and using the parametrization
hχ0Li ¼ r sin β, hχ0Ri ¼ r cos β and hρi ¼ s, we can recast
the scalar potential in Eq. (8) as

V ¼ −μ2χr2 þ λþr4 þ λ−r4 cos2 2β − μ2ρs2 þ λρs4

− μρχsr2 cos 2β þ λρχs2r2: ð9Þ

Minimizing the scalar potential with respect to r, β and s
we obtain

−μ2χ þ 2λþr2 þ 2λ−r2 cos2 2β − μρχs cos 2β þ λρχs2 ¼ 0;

ð10Þ

μρχr2s sin 2β − 2λ−r4 cos 2β sin 2β ¼ 0; ð11Þ

λρχr2 − μ2ρ þ 2λρs2 − μρχ cos 2β ¼ 0: ð12Þ

From Eq. (11) it is evident that for μρχ ¼ 0, i.e., if the ρ field
is decoupled from the model then β ¼ π=4; π=2;…. Here
β ¼ π=4 corresponds to the unbroken parity symmetry case
hχ0Li ¼ hχ0Ri and β ¼ π=2 corresponds to the case where
hχ0Li ¼ 0, hχ0Ri ≠ 0, leading to massless quarks and

charged leptons. Therefore we conclude that it is crucial
for the model to have a ρ field with μρχ ≠ 0 thus giving
cos 2β ¼ μρχs=2λ−r2, leading to a realistic mass spectrum
for quarks and charged leptons of the model. Thus, we will
consider the symmetry breaking pattern

SUð3Þc × SUð2ÞL × SUð2ÞR ×Uð1ÞX × P½GLRP�

!hρiSUð3Þc × SUð2ÞL × SUð2ÞR ×Uð1ÞX½GLR�

!hχRiSUð3Þc × SUð2ÞL × Uð1ÞY ½GSM�

!hΦi
SUð3Þc ×Uð1ÞQ½Gem�:

In this scheme, the usual Dirac mass terms for the SM
fermions are not allowed due to the absence of a Higgs
bidoublet scalar. However, in the presence of vector-like
copies of quark and charged lepton gauge isosinglets, the
charged fermion mass matrices can assume a seesaw
structure. The relevant Yukawa interaction Lagrangian in
this model is given by

−L ¼ huLχLq̄LUR þ huRχRq̄RUL þ hdLχ̃Lq̄LDR

þ hdRχ̃Rq̄RDL þ hLχ̃Ll̄LER þ hRχ̃Rl̄REL

þmUŪLUR þmDD̄LDR þmEĒLER þ H:c:; ð13Þ

where we suppress the flavor and color indices on the fields
and couplings for brevity. χ̃L;R denotes τ2χ�L;R, where τ2 is
the usual second Pauli matrix. Note that, in general, if the
parity symmetry is broken by the VEVof a singlet scalar at
some high scale as compared to the left-right symmetry
breaking scale then the Yukawa couplings corresponding to
the right-type and left-type Yukawa terms may run differ-
ently under the renormalization group below the parity
breaking scale. This approach where the left-right parity
symmetry and SUð2ÞR breaking scales are decoupled from
each other was first proposed in Ref. [42]. Therefore, while
writing the Yukawa terms abovewe distinguish the left- and
right-handed couplings explicitly with the subscripts L
and R.
After electroweak symmetry breaking we can write the

mass matrices for the quarks as [43–47]

MuU ¼
�

0 huLuL

h†uRuR mU

�
; MdD ¼

�
0 hdLuL

h†dRuR mD

�
;

ð14Þ

where hχL;Ri ¼ uL;R. Up to leading order in huLuL,
the SM and heavy vector partner up-quark masses are
given by

mu ≈ huLhuR
uLuR
mU

; m̂U ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

U þ ðhuRuRÞ2
q

; ð15Þ

TABLE I. Field content of the LRSM with an unbroken B − L
symmetry in the absence of a Higgs bidoublet.

Field SUð2ÞL SUð2ÞR B − L ζ X ¼ ðB − LÞ þ ζ SUð3ÞC
qL 2 1 1=3 0 1=3 3
qR 1 2 1=3 0 1=3 3
lL 2 1 −1 0 −1 1
lR 1 2 −1 0 −1 1
UL;R 1 1 1=3 1 4=3 3
DL;R 1 1 1=3 −1 −2=3 3
EL;R 1 1 −1 −1 −2 1
χL 2 1 0 1 1 1
χR 1 2 0 1 1 1
ρ 1 1 0 0 0 1
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A priori, the up-type quark mass matrices can be diagon-
alized via left and right unitary transformations giving rise
to the usual Cabibbo-Kobayashi-Maskawa matrix and its
right-handed analog, in the basis where the down-type
quark mass matrix is already diagonal. Simplified expres-
sions for the mixing angles θL;RU can be found in the limit
where the Yukawa couplings are assumed to be real and
therefore the diagonalizing unitary matrices are simplified
to orthogonal matrices OL;R. In this case the mixing angles
θL;RU are given by

tanð2θL;RU Þ ≈ 2huL;uR
uL;RmU

m2
U � ðhuRuRÞ2

: ð16Þ

The down-quark masses and mixing are obtained in an
analogous manner. Note that in writing the above equations
we have dropped the flavor indices of the Yukawa
couplings huL;uR which determine the observed quark
and charged lepton mixings. The hierarchy of the quark
masses can be explained by assuming either a hierarchical
structure of the Yukawa couplings or a hierarchical struc-
ture of more than one generation of the vector-like quark
masses.
Similarly, the charged lepton masses are generated

through a Dirac seesaw mechanism. However, we explicitly
assume more than one generation of vector-like charged
leptons and work in a basis where the vector-like
charged lepton masses are diagonal. In such a basis the
SM charged lepton masses are given by

mlij ¼ uLuRhLik
M−1

Ek
h†Rkj

: ð17Þ

The charged lepton mass matrix given in Eq. (17) can be
diagonalized by the biunitary transformation

mdiag
lα

¼ Ul†
Lαi
mlijU

l
Rjα

; ð18Þ

where lmLðRÞ ¼ ULðRÞl
f
LðRÞ and the superscripts m and f

correspond to the mass and flavor bases, respectively. Light
Dirac neutrino masses are generated through a two-loop
contribution [40]. The relevant Feynman diagram is shown
in Fig. 1. The computation of this diagram leads to the
following neutrino mass term:

L ¼ −
g2Lg

2
R

2

mBmT

m2
WL

m2
WR

htLh
†
tRhbLh

†
bRu

3
Lu

3
Rν̄Li

hLik
I 0
kh

†
Rkj

νRj
;

ð19Þ

where I 0
k ¼ mEk

Ik corresponds to a diagonal matrix, with

Ik ¼
Z

d4k
ð2πÞ4

Z
d4p
ð2πÞ4

3m2
WL

m2
WR

þ ðp2 −m2
WL

Þðp2 −m2
WR

Þ
p2ðp2 −m2

Ek
Þðp2 −m2

WL
Þðp2 −m2

WR
Þk2ðk2 −m2

BÞðpþ kÞ2½ðpþ kÞ2 −m2
T �
: ð20Þ

Here p and k denote the momenta of the WL and b in the
loops, respectively. Note that to simplify the analysis we
have made the assumption that the top and bottom quarks
contribute dominantly in the one-loop diagram inducing the
mixing between WL and WR, and consequently in writing
Eq. (19) we treat the corresponding Yukawa couplings ht
and hb as numbers instead of matrices in the presence of
more than one generation of heavy vector-like quarks. On
the other hand, hL;R are in general 3 × 3 matrices which
play a crucial role in understanding the neutrino masses and
mixings. We would like to point out that for a scenario with
a single generation of vector-like charged leptons or more
than one generation of vector-like charged leptons with
degenerate masses in the integral given in Eq. (20) the
neutrino mass matrix turns out to be directly proportional to
the charged lepton mass matrix and consequently, the
PMNS matrix turns out to be diagonal which is ruled

out by the current neutrino oscillation data.3 However, we
would like to emphasize that the above argument is no
longer true in the case where more than one generation of
vector-like charged leptons with a hierarchical mass spec-
trum is considered. In Sec. III, we shall focus on this
scenario and show that it is indeed possible to accommo-
date nontrivial mixings in the PMNS mixing matrix using
only the two-loop radiative contribution if more than one
generation of heavy vector-like charged leptons is present.
In the Appendixes A and B we sketch two alternative

methods of evaluating the two-loop integral given in

FIG. 1. Two-loop radiative diagram generating Dirac neutrino
masses.

3In such scenarios the situation can be remedied by extending
the field content of the model to also include heavy vector-like
neutrinos to realize a Dirac seesaw scenario or by extending the
Higgs sector to realize a one-loop radiative mechanism for
generating the neutrino masses.
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Eq. (20). Note that even though such integrals have been
evaluated in the literature for one heavy vector-like charged
lepton state under some simplifying assumptions [40], it is
crucial to evaluate them more generally to understand the
dependence of the integral on the vector-like quark masses,
which generate a nontrivial mixing for the neutrinos in
addition to nonzero masses. Following the approach out-
lined in Appendix A, the final neutrino masses are given by

mνij ¼
g2Lg

2
R

2

mbmt

m2
WL

m2
WR

uLuRhLik
J kh

†
Rkj

; ð21Þ

where

J k ¼
mEk

ð16π2Þ2
Z

∞

0

dr
αk

rþ αk

Z
1

0

dx ln

×

�
xð1 − xÞrþ ð1 − xÞ

xð1 − xÞrþ ð1 − xÞ þ xβk

ð1 − xÞrþ βk
ð1 − xÞr

�
; ð22Þ

with αk ¼ m2
B=m

2
Ek

and βk ¼ m2
T=m

2
Ek
. The neutrino mass

matrix given in Eq. (21) can be diagonalized by the
biunitary transformation

mdiag
να ¼ Uν†

Lαi
mνijU

ν
Rjα

; ð23Þ

where Uν
L and Uν

R are the left- and right-handed unitary
matrices corresponding to the biunitary transformation
diagonalizing the neutrino mass matrix.

III. A LEFT-RIGHT SYMMETRIC
PARAMETRIZATION OF THE RADIATIVE

NEUTRINO MASSES AND MIXING

To analyze the two-loop radiative neutrino masses and
mixings phenomenologically, it is convenient to parame-
trize the charged lepton and neutrino masses. From
Eqs. (17) and (18) the diagonal charged lepton matrix is
given by

mdiag
l ¼ Ul†

LhLM̂
−1
E h†

RU
l
R; ð24Þ

where the matrices have been made bold to distinguish
them from numbers and M̂−1

E ¼ uLuRm−1
E is a diagonal

matrix. Similarly, from Eqs. (21) and (23) the diagonal
neutrino mass matrix is given by

mdiag
ν ¼ Uν†

L hLMEν
h†
RU

ν
R; ð25Þ

where

MEν
¼ g2Lg

2
R

2

mbmt

m2
WL

m2
WR

uLuRJ ð26Þ

is a diagonal matrix with J being the diagonal matrix
corresponding to the integral (22). If J is not proportional to
m−1

E then one can have a nontrivial PMNS mixing matrix
UL ¼ Ul†

LU
ν
L by solving Eqs. (24) and (25) simultaneously,

in order for hL and hR to fit the neutrino oscillation data. A
comprehensive numerical analysis of the 3 × 3 general left-
right asymmetric mixing case is highly nontrivial and
involves a large number of parameters. This is beyond
the scope of the current work and will be addressed in a
future work. Here we will focus on a particularly interesting
limiting case where the left- and right-handed unitary
rotation matrices and the Yukawa couplings are identical
i.e., Ul;ν

L ≡ Ul;ν
R ≡ Ul;ν and hL ≡ hR ≡ h. This helps us to

construct a new parametrization à la Casas-Ibarra [48]
which immensely simplifies the underlying numerical
analysis of simultaneously solving Eqs. (24) and (25).
Even though such a simplifying assumption need not be
true in general, it enables us to explore the qualitative
dependence of the PMNS mixing angle on different model
parameters by using a phenomenological approach. As
noted before, for a diagonal mE and J, M̂−1

E and MEν
are

diagonal matrices in generation space, which allows us to
write the identities

ðmdiag
l

−1=2Ul†hM̂−1=2
E ÞðM̂−1=2

E h†Ulmdiag
l

−1=2Þ ¼ I ¼ RlR
†
l ;

ð27Þ

ðmdiag
ν

−1=2Uν†hM1=2
Eν

ÞðM1=2
Eν

h†Uνmdiag
ν

−1=2Þ ¼ I ¼ RνR
†
ν;

ð28Þ

where Rl;ν are arbitrary unitary matrices (R†R ¼ I).
Working in a basis where the charged lepton masses are
diagonal, i.e., Ul ¼ I and Uν ≡ U, the PMNS mixing
matrix, one can solve Eq. (27) for the Yukawa matrix h
up to an arbitrary unitary matrix Rl

TABLE II. Current global best-fit values for the neutrino oscillation parameters, taken from Ref. [53].

Parameter Best fit �1σ Parameter Best fit �1σ

sin2 θ12=10−1 3.20þ0.20
−0.16 δCP=πðNOÞ 1.21þ0.21

−0.15
sin2 θ23=10−1ðNOÞ 5.47þ0.20

−0.30 δCP=πðIOÞ 1.56þ0.13
−0.15

sin2 θ23=10−1ðIOÞ 5.51þ0.18
−0.30 Δm2

21½10−5 eV2� 7.55þ0.20
−0.16

sin2 θ13=10−2ðNOÞ 2.160þ0.083
−0.069 jΔm2

31j½10−3 eV2�ðNOÞ 2.50� 0.03
sin2 θ13=10−2ðIOÞ 2.220þ0.074

−0.076 jΔm2
31j½10−3 eV2�ðIOÞ 2.42þ0.03

−0.04
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h ¼ mdiag
l

1=2RlM̂
1=2
E ; ð29Þ

which can then be substituted into Eq. (28) to solve
for the PMNS mixing matrix up to an arbitrary unitary
matrix Rν

U ¼ ðh†Þ−1M−1=2
Eν

R†
νm

diag
ν

1=2: ð30Þ

In order to understand the dependence of the PMNSmixing
angle on different model parameters (in particular, the left-
right symmetry breaking scale and mass scale of the heavy
vector-like fermions) and the arbitrary unitary rotation
matrices qualitatively, we explore the discussed paramet-
rization to solve Eqs. (29) and (30) simultaneously for a
2 × 2 case. Furthermore we restrict ourselves to the case
where all the Yukawa matrices and rotation matrices are

FIG. 2. Numerical solutions for 2 × 2 mixing simultaneously fitting Eqs. (29) and (30) for the case of normal ordering of neutrino
masses: (top left) SUð2ÞR breaking scale uR, (top right) 2 × 2 PMNS mixing angle, (middle left) the arbitrary rotation matrix angles in
Rl, (middle right) the arbitrary rotation matrix angles inRν, and (bottom) the maximal element of the Yukawa matrix h, as a function of
the mass difference between two generations of vector-like charged lepton masses ΔmE for different benchmark values of mB. See text
for the benchmark values of the other relevant parameters.
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real. With these simplifying assumptions, the arbitrary
rotation matrices Rl;ν and the PMNS matrix U can now
be parametrized in terms of one rotation angle each

U ¼
�

cos θ sin θ

− sin θ cos θ

�
; Rl ¼

�
cos θl sin θl

−ξ sin θl ξ cos θl

�
;

Rν ¼
�

cos θν sin θν
−ξ sin θν ξ cos θν

�
; ð31Þ

where ξ ¼ �1, and θ corresponds to the usual PMNS
maximal angle θ23. Among the other free parameters we set
gR ¼ gL, mT ¼ 1.5 TeV to be consistent with the current
search limits from Refs. [49–51] and the lightest vector-like
charged lepton massmE1

¼ 1 TeV to be consistent with the
current search limits from Ref. [52], as benchmark points.
For the 2 × 2matrixmdiag

l we choose the diagonal entries to
be the muon and tau masses. Further, the 2 × 2 approxi-
mation makes use of the hierarchy of mass squared

FIG. 3. Numerical solutions for 2 × 2 mixing simultaneously fitting Eqs. (29) and (30) for the case of inverted ordering of neutrino
masses: (top left) SUð2ÞR breaking scale uR, (top right) 2 × 2 PMNS mixing angle, (middle left) the arbitrary rotation matrix angles in
Rl, (middle right) the arbitrary rotation matrix angles inRν, and (bottom) the maximal element of the Yukawa matrix h, as a function of
the mass difference between two generations of vector-like charged lepton masses ΔmE for different benchmark values of mB. See text
for the benchmark values of the other relevant parameters.
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splittings: the diagonal entries of mdiag
ν are set by the

splittings, while the 2 × 2 mixing angle θ corresponds
approximately to the 3 × 3 atmospheric mixing angle θ23.
We use the best-fit values for the atmospheric and solar
neutrino mass-squared differences from the global oscil-
lation analysis [53]. For ease of reference, the relevant
global analysis parameters are summarized in Table II. For
these benchmark choices, we solve Eqs. (29) and (30)
simultaneously to obtain simultaneous solutions for four
parameters θ, uR, θl and θl as a function of the mass
difference between two generations of vector-like charged
lepton masses mE2

−mE1
≡ ΔmE for different benchmark

values of mB.
In Fig. 2, we present the numerical solutions for the case

of normal ordering, setting the lightest neutrino mass to be
10−2 eV as a benchmark choice and using the resultant
heavier neutrino masses as the diagonal entries of mdiag

ν . In
the top left plot we show the relevant SUð2ÞR breaking
VEV uR as a function of the mass difference between two
generations of vector-like charged lepton masses ΔmE for
different benchmark values of mB and in the top right plot
we show the variation of the 2 × 2 PMNS mixing angle
corresponding to the usual mixing angle θ23 as a function of
the mass difference between two generations of vector-like
charged lepton massesΔmE for different benchmark values
ofmB. Vector-like quark masses are limited to be figheavier
than mQ ≳ 1.4 TeV [49–51], which is satisfied for all our
choices.
It is evident from these plots that one requires a SUð2ÞR

breaking VEVof uR ∼Oð102Þ TeV to generate the correct
neutrino mass splitting and a maximal PMNS mixing angle.
Although, a priori, it appears to be relatively high as
compared to the currently accessible mass scales at the
LHC, it is interesting to note that such mass scales are in
agreement with the strong cosmological bounds (discussed
in Sec. V) on the SUð2ÞR breaking scale in this model. As
mentioned earlier, these plots also clearly demonstrate that
the hierarchy of masses of the two generations of vector-like
charged lepton masses play a crucial role in generating a
nontrivial PMNS mixing angle in contrast to the scenario
with a single generation of vector-like charged leptons or
more than one generation of vector-like charged leptons with
degenerate masses where the neutrino mass matrix turns out
to be directly proportional to the charged lepton mass matrix
leading to a trivial PMNS mixing matrix which is incon-
sistent with the neutrino oscillation data. A large splitting
ΔmE ≳ 100 TeV is thus required to achieve a large neutrino
mixing angle. In our benchmark choice, this is achieved
using a hierarchical heavy fermion spectrum. Note that only
a strictly hierarchical spectrum with ΔmE=mE1

≳ 100 can
lead to the maximal neutrino mixing angle case. In the
middle two plots we show the arbitrary rotation matrix
angles inRl andRν defined in Eq. (31) as a function of the
mass difference between two generations of vector-like
charged lepton masses ΔmE for different benchmark values

of mB. Finally, in the bottom plot we show the maximal
element of the Yukawa matrix h as a function of the mass
difference between two generations of vector-like charged
lepton masses ΔmE for different benchmark values of mB,
which shows that the numerical solutions correspond to
Yukawa couplings well within the perturbative regime.
In Fig. 3, we present the numerical solutions for the case

of inverted ordering using the best-fit values for the
atmospheric and solar neutrino mass-squared differences
from the global oscillation analysis of Ref. [53], setting the
lightest neutrino mass to be 10−2 eV as a benchmark choice
and using the second- and third-generation neutrino masses
as the diagonal entries of mdiag

ν . We note that in this case
one also requires a SUð2ÞR breaking VEV of uR ∼
Oð102Þ TeV to generate the correct neutrino mass splitting
and a maximal PMNS mixing angle.

IV. LEFT-RIGHT SYMMETRIC MODEL
WITH A GLOBAL B−L SYMMETRY IN

THE PRESENCE OF A BIDOUBLET HIGGS

In this alternative scenario a Higgs bidoublet breaks
the electroweak symmetry. The field content and their
transformations are summarized in Table. III. The quarks
acquire their masses through the vacuum expectation value
of the bidoublet while the Yukawa couplings giving rise to
lepton masses are forbidden by some symmetry.4 Both the
charged and neutral leptons would then acquire Dirac
seesaw masses in this scenario [33].5 For this purpose,
we introduce four singlet vector-like fermions, which are
the charged and neutral heavy leptons:

σL ≡ ½1; 1; 1; 0�; σR ≡ ½1; 1; 1; 0�;
EL ≡ ½1; 1; 1; 2�; ER ≡ ½1; 1; 1; 2�; ð32Þ

which carry B − L ¼ 1, and hence, ζ ¼ −1 for the neutral
fermions σL;R and ζ ¼ 1 for the charged fermions EL;R. The
left-right symmetry breaking will allow mixing of these
fermions with the light leptons, and hence, the assignment
of lepton number is more natural than in the conventional
left-right symmetric models, where similar new singlets
carry vanishing lepton numbers. The VEVs of the fields
χL;R introduce mixing of the new neutral leptons σL;R with
the neutrinos and the new charged leptons EL;R with the
charged leptons. As far as quark masses are concerned,
vector-like heavy quark fields are not necessary for this
scheme, but nonetheless can be included. The general
scalar potential with all the scalar fields can be written as

4For example one may introduce an additional discrete Z2

symmetry, such that LR, σR and ER are odd under this discrete
symmetry. Note that in such a case the vector-like mass term for σ
and E will break this Z2 symmetry softly.

5For other interesting implementations of purely Dirac
neutrino masses in the context of other models see e.g.,
Refs. [54–57].
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V ¼ μ21Tr½Φ†Φ� þ μ22ðTr½Φ̃Φ†� þ Tr½Φ̃†Φ�Þ þ λ1ðTr½Φ†Φ�Þ2 þ λ2½ðTr½Φ̃Φ†�Þ2 þ ðTr½Φ̃†Φ�Þ2�
þ λ3Tr½Φ̃Φ†�Tr½Φ̃†Φ� þ λ4Tr½Φ†Φ�ðTr½Φ̃Φ†� þ Tr½Φ̃†Φ�Þ þ μ2hðχ†LχL þ χ†RχRÞ
þ λ5½ðχ†LχLÞ2 þ ðχ†RχRÞ2� þ λ6ðχ†LχLÞðχ†RχRÞ þ α1Tr½Φ†Φ�ðχ†LχL þ χ†RχRÞ
þ α2ðχ†LΦΦ†χL þ χ†RΦ†ΦχRÞ þ α3ðχ†LΦ2Φ

†
2χL þ χ†RΦ̃†Φ̃χRÞ þ α4ðχ†LΦΦ̃†χL

þ χ†RΦ†Φ̃χRÞ þ α�4ðχ†LΦ̃Φ†χL þ χ†RΦ̃†Φ̃χRÞ þ μhΦ1ðχ†LΦχR þ χ†RΦ†χLÞ
þ μhΦ2ðχ†LΦ̃χR þ χ†RΦ̃†χLÞ − μ2ρρ

2 þ λ7ρ
4 þMρðχ†LχL − χ†RχRÞ

þ λ8ρ
2ðχ†LχL þ χ†RχRÞ þ λ9ρ

2Tr½Φ†Φ� þ λ10ρ
2½DetðΦÞ þ DetðΦ†Þ�; ð33Þ

where Φ̃ ¼ τ2Φ�τ2. Using the notation hχLi ¼ uL, hχRi ¼ uR, hΦi ¼ diagðv1; v2Þ and hρi ¼ s, we minimize the scalar
potential to obtain

μ2LuL þ 2λ5u3L þ λ6uLu2R þ μhϕðv1 þ v2ÞuR ¼ 0; ð34Þ

μ2RuR þ 2λ5u3R þ λ6uRu2L þ μhϕðv1 þ v2ÞuL ¼ 0; ð35Þ

where μhϕ ¼ ðμhΦ1v2 þ μhΦ2v1Þ=ðv1 þ v2Þ. The effective mass terms μ2L and μ2R are given by

μ2L ¼ μ2h þMsþ λ8s2 þ ðα4 þ α�4Þv1v2 þ α1ðv21 þ v22Þ þ α2v22 þ α3v21;

μ2R ¼ μ2h −Msþ λ8s2 þ ðα4 þ α�4Þv1v2 þ α1ðv21 þ v22Þ þ α2v22 þ α3v21: ð36Þ

From Eqs. (34) and (35) one gets

uLuRð2MsÞ þ ð2λ5 − λ6Þðu2L − u2RÞuLuR þ μhϕðv1 þ v2Þðu2R − u2LÞ ¼ 0: ð37Þ

One can derive the seesaw relation from the above
equation as

uLuR ¼ μhϕðv1 þ v2Þðu2L − u2RÞ
2Msþ ð2λ5 − λ6Þðu2L − u2RÞ

: ð38Þ

Assuming the hierarchy uL ≪ uR ≪ s, M yields

uL ¼ −μhϕðv1 þ v2ÞuR
2Ms

: ð39Þ

Thus in this scenario a small uL=uR can be obtained by
choosing the scales M; ρ; μhϕ appropriately.
The Yukawa term for the quarks involving the Higgs

bidoublet is given by

−Lbidoublet ¼ fijq̄LqRΦþ f0ijq̄LqRΦ̃þ H:c:; ð40Þ

where Φ̃ ¼ τ2Φτ2 and τ2 is the second Pauli matrix. After
the electroweak symmetry is broken via the VEV of the
Higgs scalar bidoublet, one can obtain the Dirac mass terms
for the SM quarks. Thus, the quark masses are similar to
those in the conventional LRSM and we will not repeat the
details here.6 On the other hand, for the charged and neutral
leptons there is no Dirac mass term due to the Higgs
bidoublet as mentioned earlier.7 The Yukawa interactions
giving mass to the leptons are given by

L ¼ fLLT
LC

−1σLχL þ fRLT
RC

−1σRχR þmσσLσR

þ hLL̄LχLER þ hRL̄RχREL þmEELER þ H:c: ð41Þ

TABLE III. Field content of the LRSM with a unbroken B − L
symmetry in the presence of a Higgs bidoublet.

Field SUð2ÞL SUð2ÞR B − L ζ X ¼ ðB − LÞ þ ζ SUð3ÞC
qL 2 1 1=3 0 1=3 3
qR 1 2 1=3 0 1=3 3
lL 2 1 −1 0 −1 1
lR 1 2 −1 0 −1 1
EL;R 1 1 −1 −1 −2 1
σL;R 1 1 −1 þ1 0 1
χL 2 1 0 1 1 1
χR 1 2 0 1 1 1
ρ 1 1 0 0 0 1
Φ 2 2 0 0 0 1

6Note that, in the presence of vector-like quarks in the model
there can be a seesaw-type contribution as well [43].

7To ensure this we assume that under a discrete Z2 symmetry
the right-handed fields LR, σR, and ER are odd, while all other
fields are even.
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The charged lepton masses are generated through a Dirac
seesaw mechanism (similar to Sec. II) and the mass matrix
is given by

mlij ¼ uLuRhLik
M−1

Ek
h†Rkj

: ð42Þ

To simplify our analysis of the neutrino sector we shall
work with the CP conjugates of the right-handed fields

νR!CPðνRÞc ¼ ðνcÞL ¼ NL and σR!CPðΣcÞL ¼ ΣL; ð43Þ

so that the neutrino mass matrix can be written in the basis
ð νL NL σL ΣL Þ as

Mν ¼

0
BBB@

0 0 a 0

0 0 0 b

a 0 0 c

0 b c 0

1
CCCA: ð44Þ

Here a ¼ fLuL, b ¼ fRuR, and c ¼ mσ. This gives six
Dirac neutrinos: three very heavy ones with mass ∼c, and
three light ones with mass ∼ab=c [58–60]. The heavy
Dirac neutrinos are made of σL and ΣL, while the light
Dirac neutrinos are the usual neutrinos—a combination of
νL andNL or νR. Note that one can a priori draw a two-loop
diagram similar to Fig. 1, without the vector-like fields in a
scenario where the charged lepton and quark masses are
generated by the bidoublet Higgs and only neutrino masses
are vanishing at the tree level. However, in such a diagram
the external neutrino lines can be folded to generate a
tadpole correction to the VEVof the neutral component of
the bidoublet Higgs which diverges and therefore must be
canceled by adding a counterterm [37]. Therefore, one must
ensure that the bidoublet VEV satisfies the constraint
h0jTr½Φτ2Φ�τ2�j0i ¼ 0 at the tree level, implying that there
is no mixing between WL −WR at the tree level.

V. PHENOMENOLOGY AND CONSTRAINTS

We now briefly outline the general observable phenom-
enology of our LRSM, specifically the complimentary
constraints cosmology and direct collider searches can
put on additional gauge bosons to the SM. These con-
straints can be interpreted in the MZ0 − g0 parameter space
of an unbroken additional gauge group Uð1ÞX, where MZ0

is the mass of theUð1ÞX mediator (Z0) and g0 is the coupling
strength of Z0 to fermions. They are however directly
transferable to theMWR

− gR parameter space of our model.
Given the benchmark parameter values considered in this
paper, and the subsequent ∼Oð102Þ TeV size of the
SUð2ÞR breaking scale, we are most interested in con-
straints in the region MWR

> 1 TeV.
The bound on the number of fermionic relativistic

degrees of freedom at the time of big bang nucleosynthesis

(BBN), Neff < 4 (obtained at 90% C.L. from the abun-
dances of light nuclei), can exclude an important region in
the generic MZ0 − g0 parameter space. With the addition of
right-handed neutrinos νR to the SM, the Uð1ÞX mediator
can lead to the thermalization of νR with the photon bath
via the process f̄f ↔ ν̄RνR. In particular, the size of this
effect can be increased through resonant enhancement
at temperatures around MZ0 when the mediator goes
on shell.
Over the mass range 1 eV < MZ0 < 1 TeV, BBN puts a

varying upper bound on the coupling g0 from the condition
that the thermalization of νR does not contribute consid-
erably to Neff . For masses MZ0 < 1 MeV, e.g., νR must
thermalize after the photon temperature ∼1 MeV, giving
g0 < 3 × 10−7 keV=MZ0 . Natural couplings of order unity
are similarly excluded for 1 MeV < MZ0 < 10 GeV, but
both of these regimes are clearly not of interest in our
scenario. For MZ0 > 10 GeV the f̄f ↔ ν̄RνR process can
be treated at TBBN as a four-fermion contact interaction and
constraints are thus put on the ratio MZ0=g0. This is
analogous to a constraint on the ratio MWR

=gR, which also
leads to thermalization via f̄f ↔ ν̄RνR. The constraint
presented in Ref. [61] is MZ0=g0 > 6.7 TeV. For the
benchmark couplings considered in the radiative and
Higgs bidoublet cases in this paper, this puts a lower
bound on MWR

in the range 1–6 TeV. Reference [62]
similarly investigated the regime MZ0 ≫ TBBN, but instead
studied the relationship between Neff and the temperature
Tdec
νR at which νR decouples. Enforcing the interaction rate

ΓðTdec
νR Þ to be equal to the Hubble rate HðTdec

νR Þ at this
temperature, a bound of similar size can be placed
on MWR

=gR.
Direct searches for additional gauge bosons have also

been performed at colliders, with analyses probing large
values of MZ0 . The study of LEP 2 data [63] in Ref. [64]
parametrized the effect of Z0 exchange on dielectron and
dimuon channels with a four-fermion contact interaction
for MZ0 ≫ 200 GeV. This improves on similar model-
independent bounds from the CDF and DØ experiments
at the Tevatron [65,66] to MZ0=g0 > 6.9 TeV. In the mass
range MZ0 ¼ 0.5–3.5 TeV, the ATLAS and CMS experi-
ments at the LHC constrained slightly more of the
parameter space than the linear constraint on MZ0=g0
[67,68]. A more recent ATLAS analysis set a lower bound
on the mediator mass of MZ0 > 5.1 TeV using the sequen-
tial Standard Model benchmark scenario, where the cou-
plings g0 are the same as those of the SM [69]. For the
benchmark value of gR considered in this paper and the
subsequent lower bound of MWR

≳ 5 TeV, we can safely
expect the additional gauge bosonWR to be out of reach at
the high-luminosity LHC.8

8For a relevant discussion of WR multileptonic decay modes
see Refs. [70,71].
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VI. CONCLUSION

The question of how neutrinos acquire their masses,
which are needed to understand the observed oscillation
phenomena, remains one of the main outstanding issues in
particle physics. The overwhelming majority of explana-
tions work by generating ΔL ¼ 2 Majorana masses for
neutrinos, with the type-I seesaw mechanism as the most
prominent example. While this approach clearly has
theoretical and phenomenological advantages, it is also
important to pursue other potential solutions.
In this paper, we have proposed an alternative formu-

lation of a left-right symmetric model where B − L is not
broken and thus neutrino Majorana masses are strictly
forbidden. Instead, B − L remains a global symmetry after
the left-right symmetry breaking, allowing only Dirac mass
terms for neutrinos. While parity is restored at a high scale,
this formulation provides a natural framework to explain
B − L as an anomaly-free global symmetry of the SM. In
this model, a bidoublet Higgs is not present and the charged
SM fermion masses fundamentally originate from a Dirac
seesaw mechanism connected to heavy vector-like fermion
partners. The lightness of neutrinos in this instance is
explained by the fact that the neutrino Dirac mass terms are
induced at the two-loop level, cf. Fig. 1. Alternatively, a
Dirac seesaw mechanism can be invoked for the neutrinos
as well if the corresponding heavy vector-like neutrino
partners exist. We showed that for an appropriate spectrum
of heavy states, both the lightness of neutrinos relative to
the charged fermions can be explained and a large two-
flavor mixing in the leptonic sector can be explained. An
analysis of the full three-flavor framework will be reported
elsewhere.
Our models may be enhanced in several directions. For

example, while neutrinoless double-beta decay is strictly
forbidden, one can add a light charge-neutral scalar particle
ϕ with quantum numbers ½1; 1; 2; 1� under our model gauge
group. This particle can potentially be a dark matter
candidate [72–74] with a Yukawa coupling to the heavy
N of the form gϕNNϕ. In this case, 0νββϕ decay with
emission of the light neutral scalar ϕ via a single effective
dimension-seven operator of the form Λ−3

NPðūOdÞðēOνÞϕ is
possible. This provides a working example of a scenario
where purely Dirac neutrinos can mimic the conventional
0νββ decay associated with the violation of lepton number
by two units and thus the Majorana nature of neutrinos.
This supports the necessity of searches for extra particles in
double-beta decay in order to fully understand the nature of
neutrinos [75].

Finally, we would also like to make some remarks on the
possibility of realizing leptogenesis in this formalism. In
our scenarios, leptogenesis may occur through neutrino-
genesis [34,35]. To give an example, the scalar field χR can
decay as χR → lR þ ER and χR → Φ† þΦ because of the
coupling χ†RχRΦ†Φ when χR acquires a VEV. Through self-
energy diagrams there can then be an interference and these
decays can generate an asymmetry in the ζ quantum
number which means that there will be more ER compared
to EL, since lR and ϕ have ζ ¼ 0. However, since B − L is
conserved, the asymmetry in ER will be the same as the
asymmetry in lR. Since B − L is conserved, the out-of-
equilibrium three-body decays of ER and EL will produce
different amounts of νL and νR. Since the Yukawa cou-
plings responsible for νR þ ϕ → νL þWL are not allowed,
the amount of lepton asymmetry stored in νR will not be
converted into νL. Thus although there is no B − L
asymmetry, there is an asymmetry in νL and an equal
and opposite amount of asymmetry in νR. Since the νR
asymmetry will not get converted to a baryon asymmetry in
the presence of sphalerons, the νL asymmetry will generate
the baryon asymmetry of the Universe. Since B − L is an
unbroken symmetry in this model, there are no other
washout interactions that can affect the baryon asymmetry
of the Universe. Alternatively, one can also add an addi-
tional heavy doublet scalar field to implement a neutrino-
genesis mechanism similar to Ref. [36].
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APPENDIX A: EVALUATION OF THE TWO-
LOOP INTEGRAL USING THE PASSARINO-

VELTMAN INTEGRAL REDUCTION

In this Appendix we outline the evaluation of the two-
loop integral given in Eq. (20) using the Passarino-Veltman
integral reduction. Note that the first term in the numerator
of Eq. (20) is suppressed by m2

WL
=m2

WR
with respect to the

second term and therefore can be neglected to obtain

Ik ≃
Z

d4k
ð2πÞ4

Z
d4p
ð2πÞ4

1

p2ðp2 −m2
Ek
Þk2ðk2 −m2

BÞðpþ kÞ2½ðpþ kÞ2 −m2
T �
: ðA1Þ

Next, by using partial-fraction decomposition and the Passarino-Veltman reduction formula the integral can be simplified to
obtain
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Ik ¼
i

16π2m2
Tm

2
Bm

2
Ek

Z
d4k
ð2πÞ4

�
1

k2 −m2
B
−

1

k2

�
½B0ðk2; m2

E;m
2
TÞ − B0ðk2; 0; m2

TÞ−B0ðk2; m2
E; 0Þ þ B0ðk2; 0; 0Þ�; ðA2Þ

where B0 is the Passarino-Veltman function defined as [76]

B0ðk2; m2
1; m

2
2Þ ¼

1

ϵ
−
Z

1

0

dx ln

�
−xð1 − xÞk2 þ ð1 − xÞm2

1 þ xm2
2

μ2

�
: ðA3Þ

Next, by performing aWick rotation and defining the dimensionless quantities αk ¼ m2
B=m

2
Ek
and βk ¼ m2

T=m
2
Ek
the integral

given in Eq. (A2) can be further simplified to obtain

Ik ¼
1

ð16π2Þ2m2
Bm

2
T

Z
∞

0

dr
αk

rþ αk

Z
1

0

dx ln

�
xð1 − xÞrþ ð1 − xÞ

xð1 − xÞrþ ð1 − xÞ þ xβk

ð1 − xÞrþ βk
ð1 − xÞr

�
: ðA4Þ

APPENDIX B: EVALUATION OF THE TWO-LOOP INTEGRAL
USING MASTER INTEGRAL REDUCTION

In this Appendix we outline another alternative approach using master integral reduction for the evaluation of the two-
loop integral given in Eq. (A1). Using Feynman parametrization the two-loop integral can be written as

Ik ¼
Z

1

0

Z
1

0

Z
1

0

dx1dx2dx3Gðm1ðx1; mEk
Þ; 2;m2ðx2; mBÞ; 2;m3ðx3; mTÞ; 2; 0Þ; ðB1Þ

where

Gðm1;α1;m2; α2;m3; α3; q2Þ ¼
Z

dDpdDk
1

ðp2 −m2
1Þα1ðk2 −m2

2Þα2 ½ðpþ kþ qÞ2 −m2
3Þ�α3

: ðB2Þ

The integration given by Eq. (B2) can be obtained by taking the derivative of the basic master integral

Gðm1; 2;m2; 2;m3; 2; 0Þ ¼ ∂m2
2
∂m2

3
Gðm1; 2;m2; 1;m3; 1; 0Þ; ðB3Þ

where the master integral is given by [77]

Gðm1; 2;m2; 1;m3; 1; 0Þ ¼ π4
�
2

ϵ2
þ 1

ϵ
½−1þ 2γ þ 2 logðπm2

1Þ� þ
1

4
þ π2

12

þ 1

4
½−1þ 2γ þ 2 logðπm2

1Þ�2 − 1þ gðm1; m2; m3; 0Þ
�
; ðB4Þ

with

gðm1; m2; m3; 0Þ ¼
Z

1

0

dx

�
1þ Spð1 − μ2Þ − μ2

1 − μ2
log μ2

�
; ðB5Þ

where SpðzÞ corresponds to the Spence function and the following notations are used

μ2 ¼ axþ bð1 − xÞ
xð1 − xÞ ; a ¼ m2

2

m2
1

; b ¼ m2
3

m2
1

: ðB6Þ
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