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We extend the work of Carone, Chaurasia and Vasquez on nonsupersymmetric models of flavor based on
the double tetrahedral group. Three issues are addressed: (1) the sector of flavor-symmetry-breaking fields
is simplified and their potential studied explicitly, (2) a flavorful axion is introduced to solve the strong CP
problem and (3) the model is extended to include the neutrino sector. We show how the model can
accommodate the strong hierarchies manifest in the charged fermion Yukawa matrices, while predicting a
qualitatively different form for the light neutrino mass matrix that is consistent with observed neutrino mass
squared differences and mixing angles.
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I. INTRODUCTION

The structure of the fermion Yukawa couplings in the
standard model may result from the sequential breaking of
a horizontal discrete family symmetry. Long ago, Aranda,
Carone and Lebed [1,2] showed how the double tetrahedral
group T 0 could be used to construct successful super-
symmetric flavor models that are similar to those based on
U(2) symmetry [3,4], with or without the assumption of
conventional supersymmetric grand unification. For other
early work on T 0 as a flavor symmetry, see Ref. [5]. Many
other authors have since explored the use of T 0 symmetry in
models that aim to address the flavor structure of the
standard model [6].
Much of thework onT 0 flavor models has assumedweak-

scale supersymmetry, to stabilize the hierarchy between the
weak scale and the grand unified or Planck scale. Over the
past decade, however, there has been no direct evidence for
superpartners at the LHC, nor indirect evidence in the form
of a convincing pattern of deviations from the predictions of
the standardmodel for some subset of its observables.While
one cannot exclude the possibility that supersymmetry is
present and just beyond the reach of current experiments (a
statement that applies to any new physics that has a
decoupling limit), the current state of affairs has motivated
a greater open-mindedness toward consideration of

nonsupersymmetric extensions of the standard model.
For example, the possibility that the standard model could
arise consistently from a string theory without supersym-
metry has been discussed in Ref. [7]. The hierarchies
between mass scales might result from dynamical mecha-
nisms (for example, cosmic relaxation [8] or Nnaturalness
[9]), or anthropic selection [10]. On the other hand, the
fundamental mass scales found in nature may simply be
random and fine tuned, for reasons that are obscure to us at
present. In this work, we assume the absence of supersym-
metry and focus on phenomenological issues, while remain-
ing agnostic on the question of naturalness.
The purpose of the present work is to further explore the

possibility of nonsupersymmetric models of flavor based
on T 0 symmetry, following a study by Carone, Chaurasia
and Vasquez [11]. In Ref. [11], a nonsupersymmetric T 0
model was presented in which the flavor scale MF was
treated as a free parameter. (There is less motivation to link
the flavor scale to a grand unified scale in a framework
where the gauge couplings do not automatically unify.)
Global fits were performed to the fermion masses and
Cabibbo-Kobayashi-Maskawa (CKM) mixing angles, tak-
ing into account the nonsupersymmetric running of the
Yukawa matrices between the scaleMF and the weak scale.
It was found that the model was viable for a wide range of
MF; this scale could be as high as the Planck scale or as low
as the minimum allowed by the flavor-changing-neutral-
current constraints on the heavy, flavor-sector particles with
masses of order MF. At the lower end of this range, flavor-
sector fields, such as the physical components of the flavon
fields that spontaneously break the T 0 symmetry, can
potentially have observable consequences.
Here we go beyond the work of Ref. [11] in a number of

ways: (i) we present a simplification of the model involving
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a smaller number of flavor-symmetry-breaking fields.
While simplicity may be desirable by itself, the smaller
field content allows a less cumbersome study of the flavon
potential that leads to the spontaneous breaking of the
flavor symmetry, so that we can confirm the assumed
pattern of symmetry breaking and study the spectrum of
scalar states. (ii) We address the strong CP problem by
promoting an Abelian factor that is required in the model
from a Z3 symmetry to an anomalous U(1) symmetry. This
leads to a flavorful axion [12] (also called a flaxion [13], or
axiflavon [14–16], in the recent literature), which leads to
more stringent lower bounds on the flavor scaleMF than in
our previous study, as well as new avenues for discovery.
(The idea of flavored axions appeared first in Ref. [17] and
was explored subsequently by a number of authors [18].)
The possibility of flavored axions due to a continuous
Abelian factor in a T 0 flavor model was considered in a
supersymmetric model in Ref. [19]; the present work gives
a simple, nonsupersymmetric realization of this possibility.
(iii) We extend the model to include the neutrino sector. As
we describe later, one model building difficulty that we
must overcome is to explain how the small symmetry-
breaking parameters that lead to pronounced hierarchies in
the charged fermion Yukawa matrices lead to much less
pronounced hierarchies in the neutrino mass matrix (as
indicated, for example, by the two large mixing angles).
Our model will show how this outcome can be achieved.
Our paper is organized as follows: in Sec. II we present

the model and establish our notation. We study the flavon
potential including the vacuum alignment and the spectrum
of scalar states. We also present a global fit of the charged
fermion masses and mixing angles, analogous to the one
presented in Ref. [11]. We address the strong CP problem
in Sec. III and identify the flavored axion couplings to SM
particles. Bounds on the axion decay constant from flavor
changing decays are given. In Sec. IV we address the
neutrino sector and introduce a type-I seesaw mechanism
with three right-handed neutrinos. In Sec. V, we summarize
our conclusions.

II. THE MODEL

We assume the flavor symmetry GF ¼ T 0 × Z3 ×Uð1Þ,
where the last factor is anomalous and will allow for the
existence of a flavorful axion. We do not review the group
theory of T 0, which was discussed in some detail in Ref. [2]
(including a useful appendix on Clebsch-Gordan factors),

and reviewed again in Ref. [11]. We refer the reader to
those references for details. The flavor-symmetry-breaking
sector consists of three complex scalar fields A, s, and ϕ, in
the 10−, 100, and 20þ representations of T 0 × Z3, using the
notation of Ref. [2]. Notably, the triplet flavon S of
Ref. [11] has been omitted; the model is nonetheless
viable, as we will discuss below. The complete field content
and charge assignments for the model are shown in Table I.
Since the standard model fermions are charged under

GF, the Yukawa couplings, aside from that of the top quark,
arise via higher-dimension operators involving the flavon
fields. These are suppressed by appropriate powers of the
flavor scale MF, the cut off of the low-energy effective
theory. When the flavon fields acquire vacuum expectation
values (vevs), these operators depend on the ratios

hϕi=MF≡
�
ϵ

0

�
; hAi=MF≡ϵ0; and hsi=MF≡ρ: ð2:1Þ

After flavor-symmetry breaking, the following Yukawa
textures are generated:

YU ∼

0
B@

0 u1ϵ0 0

−u1ϵ0 u2ϵ2 u3ϵ

0 u4ϵ u5

1
CA; ð2:2Þ

YD ∼

0
B@

0 d1ϵ0 0

−d1ϵ0 d2ϵ2 d3ϵρ

0 d4ϵ d5ρ

1
CA; ð2:3Þ

YE ∼

0
B@

0 l1ϵ0 0

−l1ϵ0 l2ϵ2 l3ϵ

0 l4ϵρ l5ρ

1
CA: ð2:4Þ

Here the ui, di and li are (in general complex) Oð1Þ
parameters and only the leading-order expressions are
presented. The nonzero entries differ in two ways from
the textures of Ref. [11]: the 2-2 entries above are Oðϵ2Þ,
rather thanOðϵÞ, due to the absence of the T 0-triplet flavon.
However, the factors of ρ appear in different locations, so
that the end results are qualitatively similar. For example,
the suppression of the 1-2 block of Yu in Ref. [11] by an
overall factor of ρ is mimicked here by the higher-order 2-2
entry and the proportionally smaller numerical value of ϵ0,

TABLE I. Charge assignments. The index a ¼ 1, 2 is a generation label. The first four columns correspond to
complex scalar fields, while the remainder are either right-handed standard model fermion fields or Dirac adjoints of
left-handed ones.

A s ϕ H Q̄a
L Q̄3

L daR d3R uaR u3R L̄a L̄3 eaR e3R

T 0 × Z3 10− 100 20þ 100 20− 100 20− 100 20− 100 20− 100 20− 100

Uð1Þ 0 1 0 0 0 0 0 −1 0 0 0 −1 0 0
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as we will see later. We also note that there will be CP
violation in the model even if all the operator coefficients
defined at the level of the Lagrangian are real, due to
imaginary numbers in Clebsch-Gordan coefficients;
these would lead, for example, to factors of i in the 2-2
entries of YU, YD and YE. In general, however, all operator
coefficients are themselves complex, and the 10 phase
degrees of freedom in YU and YD can be used to obtain the
desired CKM phase rather easily. In light of this, and to
simplify our subsequent numerical analysis, we have
chosen all the operator phases so that the parameters shown
in Eqs. (2.2)–(2.4) are real, and omit the CKM phase from
our global fit in Sec. II B.

A. The flavon potential

In this subsection, we consider the flavon potential, to
confirm that the pattern of vevs assumed in Eq. (2.1) can be
achieved and to study the spectrum of physical scalar states.
We will do this by assuming the desired vev pattern, and
imposing the extremization conditions on the potential to
fix some of its otherwise free parameters. We then check
the second-derivative matrix of the potential for positive
definiteness. To simplify the discussion, we exclude the s
field, since it is a trivial singlet under the non-Abelian
discrete flavor group and it is straightforward to write down
a potential involving s alone that provides for its vev.
Including terms that couple s to the other fields, e.g.,
jsj2jϕ2j, will not qualitatively change our results providing
that their couplings are not too large, which is good enough
for a proof of principle. We are particularly interested in
accidental global symmetries that arise in the potential as a
consequence of the T 0 × Z3 discrete symmetry. These lead
to pseudo-Goldstone bosons whose masses arise via
higher-dimension operators. We estimate the masses of
these states to confirm that they are not so light that their
phenomenological consequences need to be taken into
account. In this case, the only light state that will have
interesting flavor-changing physics will be a single fla-
vorful axion associated with the s field.
The most general scalar potential for a singlet and a

doublet transforming as A ∼ 10−, ϕ ∼ 20þ under T 0 × Z3,
respectively, is given by

V ¼ VA þ Vϕ þ VAϕ; ð2:5Þ

where

VA ¼ m2
AjAj2 þ μðA3 þ A�3Þ þ λAjAj4; ð2:6Þ

Vϕ ¼ m2
ϕjϕj2 þ λϕjϕj4; ð2:7Þ

VAϕ ¼ λAϕjAj2jϕj2: ð2:8Þ

Note that this potential has an accidental Uð2Þϕ global
symmetry as well as an additional Uð1ÞA symmetry in the
limit μ → 0. We parametrize the fields in terms of their real
degrees of freedom

A ¼ 1ffiffiffi
2

p ðA1 þ iA2Þ; ð2:9Þ

and

ϕ ¼ 1ffiffiffi
2

p
�
ϕ11 þ iϕ12

ϕ21 þ iϕ22

�
: ð2:10Þ

The Yukawa textures in Eqs. (2.2)–(2.4) are reproduced
provided only the following real fields develop vevs:

hϕ11i=
ffiffiffi
2

p
¼ ϵMF and hA1i=

ffiffiffi
2

p
¼ ϵ0MF: ð2:11Þ

The location of a local minimum of the potential is
determined by six first-derivative equations, corresponding
to the six real scalar fields in Eqs. (2.9) and (2.10).
However, for the assumed vev pattern, only two of these
equations are nonvanishing,

∂V
∂A1

����
vev

¼
ffiffiffi
2

p
ϵ0MFðm2

Aþ2ϵ02M2
FλAþ ϵ2M2

FλAϕþ3ϵ0MFμÞ

¼ 0; ð2:12Þ

∂V
∂ϕ11

����
vev

¼
ffiffiffi
2

p
ϵMFðm2

ϕ þ ϵ02M2
FλAϕ þ 2ϵ2M2

FλϕÞ ¼ 0;

ð2:13Þ

where the subscript “vev” indicates that the fields have
been set to their vevs, those shown in Eq (2.11) with all
others vanishing. For a given choice of the dimensionless
couplings, Eqs. (2.12) and (2.13) allow us to determine the
mass parameters

m2
A ¼ −2ϵ02M2

FλA − ϵ2M2
FλAϕ − 3ϵ0MFμ; ð2:14Þ

m2
ϕ ¼ −ϵ02M2

FλAϕ − 2ϵ2M2
Fλϕ: ð2:15Þ

To obtain the mass spectrum, we construct the second
derivative matrix for the potential in terms of the six real
scalar fields, evaluated with the assumed vevs, and with
mass parameters fixed by Eqs. (2.14) and (2.15). In the
basis ðϕ11; A1; A2;ϕ12;ϕ21;ϕ22Þ we find
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m2
scalar ¼

0
BBBBBBBBBB@

4ϵ2M2
Fλϕ 2ϵϵ0M2

FλAϕ 0 0 0 0

2ϵϵ0M2
FλAϕ ϵ0MFð4ϵ0MFλA þ 3μÞ 0 0 0 0

0 0 −9ϵ0MFμ 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCCA

ð2:16Þ

The three nonvanishing eigenvalues of the mass squared
matrix are positive, provided that μ < 0 and (assuming ϵ, ϵ0
and λϕ are positive)

jμj< ϵ0MF

3λϕ
ð4λAλϕ − λ2AϕÞ and jμj< 4

3

MF

ϵ0
ðϵ2λϕ þ ϵ02λAÞ;

ð2:17Þ

which is easily arranged. The three massless states are
expected from Goldstone’s theorem, since the Uð2Þϕ
symmetry is spontaneously broken to a residual U(1)
symmetry that rotates the second component of the ϕ
column vector by a phase. However, these zero eigenvalues
are lifted when one takes into account corrections to the
potential from higher-dimension operators that break the
accidental Uð2Þϕ global symmetry. We find that the lowest-
order operators that have this effect occur at dimension 6,

Vhd ¼
1

M2
F
ðc61½ðϕϕÞ3ðϕϕÞ3�3ðϕϕÞ3 þ H:c:Þ

þ c62
1

M2
F
½ðϕ�ϕ�Þ3ðϕϕÞ3�3ðϕ�ϕÞ3 þ � � � ; ð2:18Þ

where the subscript indicates the T 0 representation of the
given product, with Clebsch-Gordan factors left implicit.
We have studied the eigenvalues of Eq. (2.16) numerically
after including the additional potential terms in Vhd, and
find that all the eigenvalues are positive and nonvanishing;
the masses of the three pseudo-Goldstone bosons are of
order ϵ2MF. We will see later that the numerical values of
our symmetry breaking parameters and our extension to the
neutrino sector will imply that this scale corresponds to
roughly 1012 GeV. We therefore do not expect meaningful
phenomenological bounds on the three pseudo-Goldstone
states. We note that there are also dimension-5 operators
that one can write down which correct the potential (e.g.,
A3jϕj2 and A3jAj2) but these do not break the accidental
Uð2Þϕ symmetry and provide higher-order corrections to
the eigenvalues that are already nonvanishing at lowest
order.

B. Fit to quarks and charged leptons

In this subsection, we verify that the Yukawa textures in
Eqs. (2.2)–(2.4) reproduce the correct masses and mixing
angles for the charged fermions, by performing a global fit
that takes into account running from a high scale (which we
will take to be 4 × 1016 GeV, to be consistent with our later
discussion of the neutrino sector) down to the weak scale.
This is the same analysis that was performed in Ref. [11]
for an arbitrary MF scale, but is now modified to take into
account the textures predicted in the present model. We
take the model parameters fui; di; li; ϵ; ϵ0; ρg to be real as a
simplifying assumption since, as discussed earlier, there is
no difficulty in accommodating a CKM phase if one allows
an arbitrary phase parameter for every operator coefficient.
The experimental inputs are the quark and lepton masses
and CKM angles, which we associate with the scale mZ
(i.e., we ignore weak scale threshold corrections). We seek
solutions in which the order one parameters are in fact not
far from one, while predictions for the observables,
renormalized at the weak scale, are within two standard
deviations of experimental values. Employing the same
technique as Refs. [2,11], we construct a function χ̃ whose
minimization achieves this goal:

χ̃2 ¼
X9
i¼1

�
mth

i −mexp
i

Δmexp
i

�
2

þ
�jVth

usj − jVexp
us j

ΔVexp
us

�
2

þ
�jVth

ubj − jVexp
ub j

ΔVexp
ub

�
2

þ
�jVth

cbj − jVexp
cb j

ΔVexp
cb

�
2

þ
X5
i¼1

�
ln juij
ln 3

�
2

þ
X5
i¼1

�
ln jdij
ln 3

�
2

þ
X5
i¼1

�
ln jlij
ln 3

�
2

:

ð2:19Þ

The first four terms would be present in a conventional chi-
squared function, and place weight on how close the
theoretical predictions for observables are to experimental
observations, relative to the experimental error. The exper-
imental errors are handled as in Refs. [2,11]: they are
inflated to 1% of the central measured value if the error is
smaller that this amount. This takes into account theoretical
uncertainties (for example, two-loop running effects) that
have been omitted. The remaining three terms of Eq. (2.19)
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place weight on the coefficients having values that are order
one, the expectation of naive dimensional analysis.
Including these terms is equivalent to assuming that the
coefficients are distributed with a log-normal distribution
with mean 1 and standard deviation σ ¼ lnð3Þ=2 such that
the absolute value of an element drawn from the distribu-
tion has a 95% probability to lie in the range [0.3, 3]. There
are a total of 12 observables (nine masses and three mixing
angles) and, given the stated constraints on the model
parameters, the only three genuine free parameters,
fϵ; ϵ0; ρg.1 Thus, we expect a good fit if χ̃2 ≈ 9. The best
fit values together with the experimental and theoretical
predictions are presented in Table II. We note that our
successful results might be anticipated from the qualita-
tively similar Yukawa textures obtained in U(2) flavor
models [15,20], a further example of the similarities

between T 0 models and U(2) models that was the focus
of Refs. [1,2].
Finally, we note that global symmetries are expected to be

broken by quantum gravity effects [22], but we can assume
that there is an ultraviolet completion which allows the U(1)
symmetry to arise as a consequence of the continuous and
discrete gauge symmetries that are present in a more
complete theory. Another concern in the present framework
is that the breaking of discrete symmetries can lead to
potential domain-wall problems. However, these can be
rendered harmless it the domain regions arewidely separated
due to inflation. We will find later in Sec. III that MF is
constrained to be sufficiently high so that any problems with
domain walls may be eliminated via this mechanism.

III. THE FLAVORFUL AXION

The model we have presented includes a flavon field s,
charged under the U(1) factor of the flavor group, which
assures, for example, the correct values of the bottom quark
and tau lepton Yukawa couplings. This U(1) also serves as a
Peccei-Quinn (PQ) symmetry and its spontaneous breaking
leads to a flavorful axion. Only the third generation right-
handed down quark and the third generation left-handed
lepton doublet have nontrivial charges under the U(1)
symmetry (see Table I), but rotation to the mass eigenstate
basis will induce axion couplings to fields of the first two
generations. The axion is identified via the nonlinear
representation

s ¼ vs þ σffiffiffi
2

p eia=vs : ð3:1Þ

The radial component σ is a heavy degree of freedom and is
integrated out of the low-energy effective field theory. The
phase field a is the Goldstone boson of the spontaneously
broken Uð1Þ≡ Uð1ÞPQ symmetry and is identified with the
QCD axion. Nonperturbative QCD effects generate a
potential for the axion, with the minimum corresponding
to vanishing of the θ̄ parameter of QCD, solving the strong
CP problem. For complete reviews on this subject see
Refs. [23,24].
The axiflavon couplings to fermions originate from the

following Yukawa couplings

LYa ¼ −½Q̄iYd
i3Hd3R þ L̄3Ye

3jHejR�
s
MF

þ H:c:; ð3:2Þ

or more explicitly

LYa ¼ −
�
d3Q̄aϵab

�hϕbi
MF

�
Hd3R þ d5Q̄3Hd3R

þ l4L̄3ϵab

�hϕbi
MF

�
HeaR þ l5L̄3He3R

�
vseia=vsffiffiffi
2

p
MF

þ H:c:;

ð3:3Þ

TABLE II. Fit to the charged fermion masses and mixing
angles. All masses are given in GeV. (Note that mt is the MS
mass, not the pole mass.) The value of the quantity χ̃2 defined in
the text is 12.3. Running from the flavor scale MF down to the Z
mass is taken into account, with MF ¼ 4 × 1016 GeV, (see
Sec. IV) chosen for the purpose of illustration.

Best fit parameters

ϵ ¼ 2.42 × 10−2, ϵ0 ¼ 9.75 × 10−5, ρ ¼ −1.38 × 10−2

u1 ¼ 1.22 d1 ¼ 0.662 l1 ¼ 0.612
u2 ¼ −0.671 d2 ¼ 1.29 l2 ¼ 0.643
u3 ¼ −2.26 d3 ¼ −1.02 l3 ¼ 0.352
u4 ¼ −0.702 d4 ¼ −0.276 l4 ¼ 2.40
u5 ¼ 0.384 d5 ¼ 0.376 l5 ¼ 0.295

Observable Expt. value from [21] Fit value
mu ð2.2� 0.45Þ × 10−3 2.30 × 10−3

mc 1.275� 0.03 1.274
mt 160� 4.5 160.0
md ð4.7� 0.4Þ × 10−3 5.42 × 10−3

ms ð9.5� 0.6Þ × 10−2 9.16 × 10−2

mb 4.18� 0.035 4.17
me ð5.11� 1%Þ × 10−4 5.11 × 10−4

mμ 0.106� 1% 0.106
mτ 1.78� 1% 1.78
jVusj 0.225� 1% 0.223
jVubj ð3.65� 0.12Þ × 10−3 3.62 × 10−3

jVcbj ð4.21� 0.08Þ × 10−2 4.17 × 10−2

1It should be stressed that the number of operator coefficients
can exceed the number of observables without sacrificing
predictivity because we work in an effective field theory
framework where these coefficients are not free parameters,
but are constrained by the requirement that they remain consistent
with naive dimensional analysis. As in the seminal work of
Ref. [2], as well as Ref. [11], this is imposed via the terms in the
χ̃2 function that incorporate a preference for coefficients with
magnitudes between 1=3 and 3. This choice eliminates the
consideration of unnatural effective theories, including those
that are not consistent with a perturbative operator expansion.
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where ϵab, a, b ¼ 1, 2 is the Clebsch-Gordan matrix that
allows one to combine two 20 representations of T 0 into a
10. Setting the ϕ flavon to its vev, one obtains

LYa ¼−½−d3ϵQ̄2Hd3Rþd5Q̄3Hd3R− l4ϵL̄3He2Rþ l5L̄3He3R�

×
vseia=vsffiffiffi
2

p
MF

þH:c: ð3:4Þ

Performing the usual nonlinear field redefinition of the
third generation fermions

d3R → e−ia=vsd3R; L̄3 → e−ia=vs L̄3; ð3:5Þ
we remove the axion entirely from the Yukawa sector, but
instead induce derivative interactions coming from the
original fermion kinetic terms. For the charged fermions,
one finds

L ⊇
∂μa

vs

�
d̄iγμðK†

dÞi3ðKdÞ3j
ð1þ γ5Þ

2
dj

þ ēiγμðU†
eÞi3ðUeÞ3j

ð1 − γ5Þ
2

ej

�
: ð3:6Þ

Here Kd (Ue) is the right-handed (left-handed) rotation that
diagonalize the Yukawa interactions, where in our con-
ventions a generic Yukawa matrix Y would be diagonalized
by Y ¼ ULYdiagU†

R. Notice that the axion interactions with
the fermion mass eigenstates are in general not diagonal
and therefore induce flavor-changing neutral currents
(FCNC) at tree level. Flavon FCNCs are very well con-
strained experimentally [25,26] and we will discuss these
constraints in the next subsection. See Refs. [27–29] for
other axion models with FCNCs at tree level.
While our phenomenological bounds will come from the

couplings in Eq. (3.6), we give the axion couplings to two
gauge fields here for completeness. After the anomalous
chiral rotation in Eq. (3.5), the axion reappears in an
effective interaction with the gluon field strength and its
dual, namely

L ¼ αs
8π

a
vs

NDWGa
μνG̃

aμν: ð3:7Þ

With the charge assignments of Table I, we obtain the
domain-wall number

NDW ¼
�
2
X
i

Xi
Q −

X
i

Xi
u −

X
i

Xi
d

�
¼ 1; ð3:8Þ

where the Xa represent the U(1) charges for left-handed and
the right-handed fermion fields. Since NDW ¼ 1, there is
one minimum of the axion potential. We identify the axion
decay constant as

fa ¼ jvs=NDW j: ð3:9Þ

The PQ charge assignments give rise to Uð1ÞY2 Uð1ÞPQ and
SUð2Þ2Uð1ÞPQ anomalies and therefore axion couplings to
hypercharge and electroweak gauge bosons are induced,
namely

L⊇
g02

32π2
a
vs
ð2NBÞBμνB̃μνþ g2

32π2
a
vs
NWWa

μνW̃aμν: ð3:10Þ

Rewriting this piece of the Lagrangian in the gauge boson
mass eigenstate basis one obtains the axion couplings to
photons

Lγa ¼
αEM
8π

a
vs

ð2NB þ NWÞFμνF̃μν ð3:11Þ

where in this model one obtains

NB ¼ 3

�
2
X
i

�
1

6

�
2

Xi
Q −

X
i

�
2

3

�
2

Xi
u −

X
i

�
−
1

3

�
2

Xi
d

�

ð3:12Þ

þ 2
X
i

�
−
1

2

�
2

Xi
L −

X
i

ð−1Þ2Xi
e ¼

5

6
; ð3:13Þ

NW ¼
X
i

Xi
L þ 3

X
i

Xi
Q ¼ 1; ð3:14Þ

and thus the ratio of the electromagnetic to color
anomalies is

2NB þ NW

NDW
¼ 8

3
: ð3:15Þ

As noted in other flavored axion models that make the same
prediction for this ratio [14], this is consistent with the
predictions of the simplest Dine–Fischler–Srednicki–
Zhitnitsky (DFSZ) axion models [23,24].

A. Constraints from meson decays

As can be seen from the axion couplings to fermions in
Eq. (3.6), our model predicts flavor violating processes,
e.g., heavy meson decays like Kþ → πþa. The branching
fraction for a generic meson two-body decay P → P0a is
given by [12]

BRðP → P0aÞ ¼ 1

64πΓðPÞ
jðKdÞ†i3ðKdÞ3jj2

f2a

×m3
P

�
1 −

m2
P0

m2
P

�
3

jfþð0Þj2 ð3:16Þ

where P ¼ ðq̄iqÞ, P0 ¼ ðq̄jqÞ and the indices ij denote the
constituent quarks. The function fþðq2Þ is the form factor
from hadronic physics calculations and q ¼ qP − qP0 is the
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momentum transfer to the axion; one may take q2 ≈ 0 as the
axion is very light. The axion mass is the same as a QCD
axion, ma ≈ 6 × 10−6 × ð1012 GeV=faÞ eV [12]; we will
see that the strongest bounds presented later in this section
imply ma ≲ 10−4 eV, while the neutrino model discussed
in the next section corresponds to ma ≈ 7 × 10−9 eV.
Experimental bounds on different heavy mesons decays

are summarized in Ref. [12]. In Table III, we quote the most
relevant of these constraints and indicate the relevant
experimental references. The precise numerical bounds
that follow from the fit presented in Sec. II B are displayed
in the last column of this table.
To understand our results qualitatively, it is useful to

parametrize the rotation matrices that correspond to the fit
in Table II in terms of powers of the Cabibbo angle
λ ≈ 0.22. We find numerically that Kd and Ue have the
qualitative form

Kd ∼

0
B@

1 λ λ5

λ 1 1

λ 1 1

1
CA and Ue ∼

0
B@

1 λ λ5

λ2 1 1

λ2 1 1

1
CA: ð3:17Þ

The relevant combinations that determine the results in
Tables III and IV are

ðK†
dÞi3ðKdÞ3j ∼

0
B@

λ2 λ λ

λ 1 1

λ 1 1

1
CA and

ðU†
eÞi3ðUeÞ3j ∼

0
B@

λ3 λ2 λ2

λ2 1 λ

λ2 λ 1

1
CA: ð3:18Þ

The strongest bound in this model comes from the heavy
meson decay Kþ → πþa giving

fa > 6.3 × 1010 GeV: ð3:19Þ

Given the identification fa ¼ jvs=NDW j ¼
ffiffiffi
2

p jρjMF, we
can translate this to a bound on the flavor scale

MF > 3.2 × 1012 GeV: ð3:20Þ

Axion mixing with neutral hadronic mesons does not lead
to competitive bounds and will not be discussed here. See
Ref. [12] for a treatment of these effects.

B. Constraints from lepton decays

From the axiflavon couplings in Eq. (3.6) one can
also compute the branching fraction for leptonic decays,
namely [12]

BRðei → ejaÞ ¼
1

32πΓðeiÞ
m3

i

f2a
jðU†

eÞi3ðUeÞ3jj2
�
1 −

m2
j

m2
i

�3

:

ð3:21Þ

The most stringent bound comes from the decay μþ → eþa
giving fa > 1.7 × 108 GeV, which is not competitive with
our earlier bound from charged kaon decays, Eq. (3.19).
One can also find bounds from lepton decays with a

photon in the final state but it turns out that these are not
stronger than the bounds we have already considered.

TABLE IV. Experimental constraints on the branching fractions of lepton decays (second column), derived bounds on the axion decay
constant times flavor rotation matrix elements from Ref. [12] (third column) and lower bound on the axion decay constant using the
predicted numerical values from out fit (fourth column).

Decay Branching ratio Bound (fa=GeV) Bound from fit

μþ → eþa <1.0 × 10−5 [33] >2.0 × 109jðU†
eÞ23ðUeÞ31j fa > 1.7 × 108 GeV

τþ → eþa <1.5 × 10−2 [34] >1.3 × 106jðU†
eÞ33ðUeÞ31j fa > 5.3 × 104 GeV

τþ → μþa <2.6 × 10−2 [34] >9.9 × 105jðU†
eÞ33ðUeÞ32j fa > 3.9 × 105 GeV

TABLE III. Experimental constraints on the branching fractions of heavy mesons decays (second column), derived bounds on the
axion decay constant times flavor rotation matrix elements from Ref. [12] (third column) and lower bound on the axion decay constant
using the numerical value of the matrix element from the fit presented in Sec. II B (fourth column).

Decay Branching ratio Bound (fa=GeV) Bound from fit

Kþ → πþa <0.73 × 10−10 [30] >3.45 × 1011jðK†
dÞ23ðKdÞ31j fa > 6.3 × 1010 GeV

K0
L → π0a <5 × 10−8 [31] >1.35 × 1010jðK†

dÞ23ðKdÞ31j fa > 2.5 × 109 GeV
B� → π�a <4.9 × 10−5 [32] >5.0 × 107jðK†

dÞ33ðKdÞ31j fa > 7.4 × 106 GeV
B� → K�a <4.9 × 10−5 [32] >6.0 × 107jðK†

dÞ33ðKdÞ32j fa > 2.8 × 107 GeV
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IV. NEUTRINO SECTOR

In this section, we consider how our model may be
extended to explain the observed neutrino masses and
mixing angles. In doing so, we face an immediate chal-
lenge: how can we explain two large neutrino mixing
angles in a theory where symmetry breaking is achieved
through two small parameters, ϵ and ϵ0, that are of order
10−2 and 10−4, respectively? A similar problem presents
itself when one considers the neutrino mass squared
differences. The smallness of the overall neutrino mass
scale can be explained via the seesaw mechanism; we will
implement a type-I seesaw mechanism below, involving
three right-handed neutrinos. Choice of the right-handed
neutrino mass scale allows us to fix one of the observed
neutrino mass squared differences, for example, Δm2

32;
what is then determined by the symmetry breaking param-
eters is the ratio Δm2

32=Δm2
21, which is found experimen-

tally to be 33.3� 1.03 [21], assuming a normal, rather than
inverted, neutrino mass hierarchy (which is the case on our
model). One would expect that the theoretical prediction for
Δm2

32=Δm2
21 is proportional to ratios of powers of ϵ and ϵ0;

if this quantity is notOð1Þ, then one finds typically that the
predicted value is either much too large or too small to
account for the experimental value. This is a consequence
of the small and distinctly hierarchical values of ϵ and ϵ0.
One cannot decouple the problem of the neutrino sector
from our results in the charged fermion sector because the
left-handed neutrinos must have the same flavor charge
assignments as their charged partners within each weak
SU(2) doublet. As a consequence, there is a real possibility
that the flavor structure of the theory might only be
consistent with neutrino masses and mixing angles that
are strongly hierarchical, which would make our previous
findings in the charged fermion sector of dubious value. It
is therefore important to demonstrate explicitly that an
extension to the neutrino sector (via appropriate charge
assignments for right-handed neutrinos) is possible that
avoids this problem. We present such a solution in this
section.
We note that if the ratio Δm2

32=Δm2
21 is approximately

independent of ϵ and ϵ0, then it is a function of the order one
coefficients in the theory alone. In this case, a value of 33.3
can be obtained for a rather mundane reason: The seesaw
formula tells us that the mass matrix of the light, left-
handed neutrino mass eigenstates is given by

MLL ≈MLRM−1
RRM

†
LR; ð4:1Þ

which implies that the eigenvalues ofMLL will typically be of
cubic order in quantities ofOð1Þ, either operator coefficients
or their inverse.Here,MLR represents theneutrinoDiracmass
matrix, whileMRR is the Majorana mass matrix for the right-
handed neutrinos. The numerator and denominator of
Δm2

32=Δm2
21 then each depend on terms that are of sixth

order in quantities that are Oð1Þ, with each typically falling
somewhere between 1=3 and 3 in absolute value, given our
earlier assumptions. Noting that 1.86 ≈ 34, one can under-
stand how easy it is to take input matrices with coefficients
that are of Oð1Þ and still obtain a mass-squared-difference
ratio that is consistent with the experimental value. This
observation is relevant to our solution below.
We introduce three right-handed neutrinos that are

uncharged under the Peccei-Quinn symmetry and have
T 0 × Z3 charges

ν1R ∼ 10−; and ν2;3R ∼ 100: ð4:2Þ

The Dirac and Majorana mass matrices have the following
T 0 × Z3 × Uð1Þ transformation properties

MLR ∼
� 20− 20þ 20þ

10þþ1 100þ1 100þ1

�
and

MRR ∼

0
B@

10− 10þ 10þ

10þ 100 100

10þ 100 100

1
CA;

ð4:3Þ

where we have indicated U(1) charges with a subscript.
This leads to the textures

MLR ¼ vffiffiffi
2

p

0
B@

b1ϵ 0 0

0 b2ϵ b3ϵ

b4ρϵ0 b5ρ b6ρ

1
CA; and

MRR ¼

0
B@

c1ϵ0MF c2ϵ0MF c3ϵ0MF

c2ϵ0MF M22 M23

c3ϵ0MF M23 M33

1
CA: ð4:4Þ

Here the bi and ci areOð1Þ coefficients. Since the elements
labeled M22, M23 and M33 in MRR are each flavor-group
invariant, they do not necessarily have to be at the same
scale as MF, or as each other. For the purposes of
demonstrating the viability of the neutrino sector, we will
take these elements to be at the scale ϵ0MF, so that MRR
takes the form

MRR ¼ ϵ0MF

0
B@

c1 c2 c3
c2 c4 c5
c3 c5 c6

1
CA≡ ϵ0MFM̃RR: ð4:5Þ

In other words, with this choice, the right-handed Majorana
matrix is a complete arbitrary matrix with Oð1Þ entries,
M̃RR, times the scale ϵ0MF. The Dirac mass matrix also has
considerable freedom. Noting that our earlier fits indicated
ρ ≈OðϵÞ, we can redefine the coefficients b5 and b6, and
drop the 13 entry, which is higher order. Then we see that
MLR is approximately of the form
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MLR ≈
vϵffiffiffi
2

p

0
B@

b1 0 0

0 b2 b3
0 b5 b6

1
CA≡ vϵffiffiffi

2
p

�
b1 0

0 ỸLR

�
; ð4:6Þ

where ỸLR is an arbitrary, two-by-two matrix with Oð1Þ
entries. The 10 free parameters in Eqs. (4.5) and the
approximation shown in (4.6) are more than sufficient to
obtain the desired values of Δm2

32=Δm2
21, as well as

sin2 θ12, sin2 θ13 and sin2 θ23, while maintaining Oð1Þ
operator coefficients. The dependence of the output on
products of the coefficients allows numerical values like 33
(the experimental value of Δm2

32=Δm2
21) or 1=33 (very

close to θ213) to arise without fine tunings. We note that the
form of Eq. (4.6), with a nonvanishing 1-1 entry, is a
consequence of the different charge assignment for the
first-generation right-handed neutrino field. This entry of
MLR originates from a charge conjugated 20þ flavon; in T 0,
as in SU(2), 2 ∼ iσ22�, which flips the relative location of
the doublet vev in the first two columns of MLR.
An example of a viable parameter set for the neutrino

sector is shown in Table V. The neutrino mixing angles are
defined via a standard parametrization of the Pontecorvo–
Maki–Nakagawa–Sakata (PMNS) matrix, which we call U
below,

U ¼ U†
eUν; ð4:7Þ

where Ue (Uν) is a unitary matrix that diagonalizes the
charged lepton (left-handed Majorana) matrix following
our earlier convention, i.e., MLL ¼ UνM

diag
LL U†

ν. We can
extract the mixing angles via the relations

sin2θ13 ¼ U2
13; sin2θ23 ¼ U2

23=ð1 −U2
13Þ and

sin2θ12 ¼ U2
12=ð1 −U2

13Þ: ð4:8Þ

For the purpose of illustration, we fix ϵ, ϵ0 and ρ, as well as
the coefficients li appearing in the charged lepton Yukawa

matrix, to the values that were obtained in our previous
global fit of the charged fermions, Table II. A viable choice
of neutrino sector parameters bi and ci is presented in
Table V. These were obtained by defining a χ̃2ν for the
neutrino sector that takes into account the neutrino observ-
ables listed in the table and also places weight on the
neutrino-sector coefficients being Oð1Þ, in analogy to our
approach in the charged fermions. This function can be
used to diagnose when a good-enough parameter choice
has been obtained.
Since the right-handed neutrino mass scale is set by

ϵ0MF, the neutrino mass squared differences (rather than
the ratio) can be used to determine the flavor scale. Using
either experimental value [21]

△m2
21 ¼ ð7.53� 0.18Þ × 10−5 eV2 or

△m2
32 ¼ ð2.51� 0.05Þ × 10−3 eV2; ð4:9Þ

we find that the solution in Table V corresponds to

MF ¼ 4.6 × 1016 GeV: ð4:10Þ

This is consistent with our axiflavon constraint in
Eq. (3.20).
Finally, it is worth pointing out that the predictions of

flavor models with small symmetry-breaking parameters in
the effective field theory approach come in the form of
powers of these small parameters. What is remarkable
about the present construction is that we have arranged the
final left-handed neutrino mass matrix to be immune from
the effects of these small parameters which give us the
hierarchies of the charged fermions, even though many of
the neutrino fields are nontrivially charged under the flavor
group. All that is left are order-one operator coefficients,
which may simply be random (in the spirit of neutrino
anarchy [35]) or fixed by other physics in the ultraviolet.

V. CONCLUSIONS

In this paper, we have studied a nonsupersymmetric
flavor model based on the double tetrahedral group, T 0.
Improving on earlier work by Carone, Chaurasia and
Vasquez [11], we formulate a simpler model that dispenses
with the triplet flavon S and eliminates some small
numerical coefficients that were assumed in one version
of the model to arise from unspecified physics at higher
energy scales. Moreover, by replacing one of the Abelian
discrete group factors by a continuous U(1) flavor sym-
metry, we endow the theory with a flavorful axion that
solves the strong CP problem. The flavorful axion decay
constant fa is related to the flavor scale MF (the cut off of
the effective theory) and falls roughly two orders of
magnitude beneath it. We present constraints on fa coming
from FCNC processes and find that the strongest lower
bound comes from the process Kþ → πþa, yielding

TABLE V. Example of a viable parameter choice for the
neutrino sector.

Parameters

ϵ ¼ 2.42 × 10−2, ϵ0 ¼ 9.75 × 10−5, ρ ¼ −1.38 × 10−2

b1 ¼ 1.66 b2 ¼ 1.07 b3 ¼ 2.10
b4 ¼ 1.11 b5 ¼ −0.891 b6 ¼ 1.61
c1 ¼ 2.91 c2 ¼ 1.04 c3 ¼ 0.662
c4 ¼ 1.21 c5 ¼ 1.37 c6 ¼ 1.44

Observable Expt. value from [21] Fit value
△m2

32

△m2
21

33.3� 1.03 33.8

sin2 θ12 0.307� 0.013 0.307
sin2 θ23 0.417� 0.025 0.444
sin2 θ13 ð2.12� 0.08Þ × 10−2 2.11 × 10−2
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fa > 1.2 × 1011 GeV. We show that the Yukawa matrices
predicted by the model provide a good fit to the observed
charged fermion masses and mixing angles, taking into
account the running from the flavor scale down to the weak
scale. We then successfully extend the model to the
neutrino sector, by introducing three generations of
right-handed neutrinos and employing a Type-I seesaw
mechanism to explain the smallness of the light neutrino
masses. By charging only the first generation right-handed
neutrino nontrivially under T 0, we show how the mass
matrix for the light neutrino mass eigenstates, which must
account for two large mixing angles and requires only a
modest hierarchy between the neutrino masses, can be
predicted by the same theory that yields the strong
hierarchies of the charged fermion Yukawa matrices. For

the particular extension to the neutrino sector presented
here, the flavor scale is roughly five orders of magnitude
higher than what is required to satisfy the flavorful axion
bounds. This suggests that flavor-changing signals from the
flavorful axion will not be easily observable unless addi-
tional symmetries are introduced to lower the scale asso-
ciated with the right-handed neutrinos.
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