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A general scheme is presented for simulating gauge theories, with matter fields, on a digital quantum
computer. A Trotterized time-evolution operator that respects gauge symmetry is constructed, and a
procedure for obtaining time-separated, gauge-invariant correlators is detailed. We demonstrate the
procedure on small lattices, including the simulation of a 2þ 1D non-Abelian gauge theory.
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I. INTRODUCTION

Quantum simulations are motivated by inherent obstacles
to the classical, nonperturbative simulation of quantum field
theories [1]. Deterministic methods struggle with exponen-
tial state spaces. Sign problems stymie Monte Carlo methods
both at finite fermion density [2,3] and in real-time evolution
[4]. While large-scale quantum computers will greatly
enhance calculations in quantum field theory, for the
foreseeable future quantum computers are limited to
tens or hundreds of nonerror-corrected qubits with circuit
depths fewer than a 1000 gates—the so-called noisy
intermediate-scale quantum (NISQ) era. Along with hard-
ware development, theoretical issues impede full use of
quantum computers. Despite these limits, algorithms have
been demonstrated in toy field theories [5–12]. Viable
quantum simulations require addressing four interconnected
issues: representation, preparation, evaluation, and propaga-
tion. Proposals in the literature address one or more of these
topics. For gauge theories, additional complications arise
which we discuss here.
The first hurdle is the representation of a gauge field in a

set of qubits, or quantum register. While natural matchings
exist for fermionic fields [13–16], the digitization of a
bosonic field is nontrivial. This is reminiscent of the early
days of classical lattice field theory where memory resour-
ces limited calculations. Ideas include approximating by:

finite subsets [17,18], Fock-state truncation [12,19,20],
dual variables [21–26], optical representations [27], and
the prepotential formulation [28]. A common suggestion is
to limit the register to physical states by gauge fixing, at the
cost of increased circuit depth in the time-evolution,
although a practical method for non-Abelian theories
remains undescribed.
Given a register, the next concern is the preparation of

desired quantum states. In strongly coupled theories, how
the asymptotic states depend upon the fundamental fields is
unknown. Most methods focus on ground state construc-
tion. Examples include using quantum variational methods
[9,29], quantum phase estimation (QPE) [30–32], quantum
adiabatic algorithm (QAA) [33,34], and spectral combing
[35]. Some preparation methods require efficient real-time
evolution. Classical-quantum hybrid methods [11] and
dimensional reduction [36] have been proposed to initial-
izing thermal states. Simulations of scattering are hindered
by state preparation [37–42].
Evaluation of observables represented by a single,

Hermitian operator at a single time is straightforward. This
includes most static properties. Other observables, like time-
separated composite operators (e.g. parton distribution func-
tions) are more complicated. Naively, the first nonunitary
operator collapses the quantum state. One resolution intro-
duces ancillary probe and control qubits [43], which we use
here. QPE [30] has been used to compute linear response [6].
Another intriguing idea uses quantum sensors to implement
generating functionals [44]. A second problem arises from
state contamination. In Euclidean lattice field theory, we can
use imaginary-time evolution to separate states overlapping
with the same operator. Real-time evolution lacks this
separation, so we need novel methods to project onto desired
states, perhaps through a distillation-like technique [45].
In this work, we construct a method for mapping the

Hilbert space of a gauge theory onto the Hilbert space of a
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quantum computer, and simulating its propagation.
Propagating a system for a time t requires a unitary operator
UðtÞ ¼ e−iHt, which cannot be efficiently constructed on a
quantum computer. Instead, one Trotterizes the evolution
by UðtÞ ≈ ðe−iH t

NÞN which allows efficient simulation
[37–42,46]. Trotterized versions of UðtÞ exist for elec-
tron-phonon systems [12], the Abelian theories [8,10,
21–24,27,47–54], and non-Abelian theories [55–62].
Each depends on the register used.
Violations of gauge invariance in the time-evolution are

potentially introduced through noisy gates, digitization,
and Trotterization. To remedy these, [63] proposed using
oracles to project into the physical subspace. In this work,
we construct a Trotterized time-evolution without gauge-
fixing, for arbitrary gauge theories with coupled matter
fields. Gauge invariance is exactly preserved after
Trotterization. We connect this procedure to the transfer
matrix formalism [64–67]. The effect of noisy gates on
gauge-invariance are hardware-dependent, and we leave
this for future work. The error introduced by field digitiza-
tion can be treated without impacting the algorithm.
A final, overarching concern is renormalization. Work

in quantum computing [68,69] and elsewhere [70,71]
suggests that the renormalization factors may be cheaply
computed classically, allowing for the matching of the bare
parameters on the quantum computer to renormalized and
physical ones. In the context of the method considered here,
a mapping between the Trotterization and a Euclidean
action may allow renormalized couplings to be computed
efficiently on a classical computer with standard lattice
methods. The transfer matrix formalism naturally provides
such a mapping. Other quantum-computing based propos-
als exist as well [72,73].
This paper is structured as follows: in Sec. II we describe

the prerequisite registers and fundamental gates for our
construction. With these, Sec. III formulates gauge-
invariant UðtÞ for the gauge fields. Section IV links this
procedure to the transfer matrix formalism, and outlines how
renormalization may be performed classically. Section V
explains how nontrivial correlators may be computed.
Section VI and VII extend the formulation to include scalar
and spinor fields respectively. Section VIII demonstrates of
our method in the non-Abelian D4 theory and the Z2 theory
with staggered fermions. We conclude in Sec. IX.

II. PREREQUISITES

Developers of quantum algorithms assume idealized
qubits, and certain unitary gates operating on those qubits
(a sufficient universal gateset, for example, is the Hadamard
gate, the π

8
gate (T), and the controlled-not gate CNOT). This

follows a pattern in classical computing, where certain
constructs (e.g., floating-point numbers and arrays) are
assumed to specify an algorithm. The implication of this is
that any correct implementation of the primitive constructs
will do: the correctness of the quantum algorithm does

not depend on whether superconducting qubits or trapped
ions are used.
In this section, we describe a set of higher-level con-

structs that allows the simulation of a general non-Abelian
gauge theory. We outline how they might be implemented
in practice, from the lower-level qubit/gateset primitives.
Hopefully these specifications are helpful to focus the
implementation of those tools that are most critical.
We will simulate a theory with a gauge group G. The

central construct is the G-register, analogous to a classical
variable storing an element of G. The Hilbert space of an
ideal G-register is HG ¼ CG, the complex vector space
with one basis element jgi for every element g ∈ G.
(Equivalently, it is the space of square-integrable functions
from G to C.) The Hilbert space of multiple G-registers
is constructed as a tensor product, so a computer with N
G-registers has Hilbert space H⊗N

G .
For discrete groups, ideal G-registers are easy to imple-

ment by virtue of their finite number of elements; for
instance, an ideal Z2-register requires one qubit. For
continuous Lie groups [e.g. SUð3Þ], idealG-registers cannot
be made with any finite number of qubits—we must settle
for approximate G-registers (typically with Hilbert space
H̃G ¼ spanfjgigg∈G̃ for some subset G̃ ∈ G) which leads to
intrinsic discretization error. The tradeoff between number of
qubits and the size of discretization error will be crucial to
constructing efficient simulations near-term.
In this work, we consider only the case of ideal

G-registers. Complications arising from the discretization,
which may include the breaking of gauge invariance [63]
and difficulties with the definition of the kinetic and Fourier
gates are not considered here. A proposal for approximate
SUðNÞ registers that does not have these problems may be
found in [17,18].
For the Hamiltonians we consider, a set of useful

primitive gates defined on the G-register is: inversion,
matrix multiplication, trace, and the quantum Fourier
transform. The inclusion of matter fields requires additional
multiplication and Fourier transform gates, and an inner
product gate. A sample implementation for these operations
is specified in Appendix A for the D4-register case.
The inversion gate acts on a single register to produce the

register of its inverse group element. This is defined in the
fiducial basis by

U−1jgi ¼ jg−1i: ð1Þ

The other group operation is matrix multiplication, which
requires a two-register gate, defined by

U×jgijhi ¼ jgijghi: ð2Þ

Here we have U× implementing left multiplication, in
the sense that the content of the target register was multiplied
on the left. This is all that is required here. In general,
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the combination of U−1 and left-acting U× permits
right multiplication: U×;Rð1; 2Þ ¼ U−1ð1ÞU−1ð2ÞU×ð2; 1Þ
U−1ð2ÞU×ð1; 2Þ.
Most quantum gatesets—certainly all gatesets proposed

for practical use—contain the inverse of every gate as a
primitive. This makes it easy, given a circuit implementing
one unitary, to obtain a circuit implementing its inverse.
Therefore, if U†

× is available, U−1 is readily obtained with
the assistance of an ancillary register.
The trace of a plaquette appears in our gauge

Hamiltonian, and so to perform this operation we combine
with the matrix multiplication gate with a single-register
trace gate:

UTrðθÞjgi ¼ eiθReTr gjgi: ð3Þ

In our construction, the final gate required on the
G-register is the Fourier transform gate [74–76] UF.
This gate acts on a G-register to rotate into Fourier space.
It is defined by

UF

X
g∈G

fðgÞjgi ¼
X
ρ∈Ĝ

f̂ðρÞijjρ; i; ji ð4Þ

The second sum is taken over ρ, the representations ofG, and
f̂ denotes the Fourier transform of f. This gate diagonalizes
what will be the “kinetic” part of the Trotterized time-
evolution operator. After application of the gate, the register
is no longer a G-register but a Ĝ-register.
The G-register suffices for the representation of the

gauge field. In order to represent scalar matter fields, we
introduce the CN-register, where N is the dimension of the
fundamental representation1 of G. This register stores a
component of CN , and we will define gates allowing
transformation under elements ofG. As with theG-register,
it is only possible to implement a ‘truncated” CN register.
(For fermionic matter fields, the CN-register is unneeded,
and no truncation is necessary.)
Three gates are needed to make the CN-register useful in

a quantum simulation. The fundamental (or adjoint) multi-
plication gate U×;f is defined by

U×;fjgijϕi ¼ jgijgϕi: ð5Þ

The inner product gate, necessary for the field-theory
kinetic term (sometimes called the “hopping” term, to
distinguish it from the quantummechanical kinetic term), is
defined by

hϕ̃1ϕ̃2jUh·;·iðθÞjϕ1ϕ2i ¼ δϕ̃1

ϕ1
δϕ̃2

ϕ2
eiθ½ϕ

†
2
ϕ1þϕ†

1
ϕ2�: ð6Þ

The inner product is generally a complex number, but
this gate extracts only the real part while remaining
unitary. Happily, this is all required for simulation
of field theory, where only the linear combination
ϕ†
2ϕ1 þ ϕ†

1ϕ2 appear.
Lastly, the scalar Fourier transform gate is defined

analogously to UF above, except for CN : we notate this
UCN

F . The resulting register is a CN-register. Since the
quantum Fourier transform on CN factorizes into N
separate transforms on C, the implementation of UCN

F
consists of N separate calls to UC

F .

III. PURE GAUGE

In this section, we construct a time-evolution operator
suitable for the simulation of pure gauge theories on a
quantum computer. We take care to exactly preserve gauge
invariance (up to unavoidable gate errors and noise). We
take the standard approach, by discussing the Hamiltonian
formulation of the theory, and then Trotterizing the
Hamiltonian into a sum of pieces easily implemented via
the primitive constructs of Sec. II. This approach will be
extended in Sec. VI and VII to include scalar and fermionic
matter fields, respectively.
A similar approach to non-Abelian gauge simulation has

been discussed previously [54,59–62,77]. In this section,
we take care to work only with logical qubits and gates,
keeping the algorithm independent from the underlying
geometry of the quantum computer. Additionally, we avoid
the need for ancillary G-registers.
In the present work, we use the basis diagonalizing

the gauge field operators U, rather than their conjugate
momenta, unlike e.g. [55] in which the fiducial basis is
chosen to diagonalize the kinetic term of the Hamiltonian.
Our choice simplifies the calculation of plaquettes and
Wilson lines, as well as the inclusion of matter fields.
Additionally, simulations done in this “position” basis
correspond more closely to calculations performed in
classical lattice field theory.
We begin by reviewing the Hamiltonian formulation

of lattice gauge theory [78]. Each gauge link has a local
Hilbert space CG. Combined, the L links on our lattice
have Hilbert space H ¼ CG⊗L.
On a lattice with N sites, the space of gauge trans-

formations is GN , where one element of G must be
specified at each site. The transformation rule for a link
Uij from site i to site j isUij ↦ VjUijV

†
i . The linear action

of V ∈ GN on the Hilbert space is given by ϕðVÞ:

ϕðVÞjUij � � �i ¼ jVjUijV
†
i � � �i ð7Þ

Gauge invariance demands that two states differing
only by a gauge orbit be considered physically

1For matter in the adjoint representation, N is the dimension of
the adjoint representation.
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equivalent. The physical Hilbert space,2 then, is
HP ¼ CG⊗L=ϕðG⊗NÞ.
HP can be obtained from the larger space H by a

gauge-symmetrization operator, which acts as a projection
operator:

PjU12 � � �i ¼
1

jGjN
�Z

G
dV1

Z
G
dV2 � � �

�
jV2U12V

†
1 � � �i

¼ 1

jGjN
Z
GN

dVϕðVÞjUi ð8Þ

This discussion of the gauge-invariance of physical
states is equivalent to the imposition of Gauss’s law. An
implementation of the operator P for Uð1Þ is given by [63];
however our method does not require implementing P.
We define a Hamiltonian which acts on the entire space

H of the gauge theory, implicitly defining a “physical”
Hamiltonian on the subspace HP. As will be made clear in
later sections, this choice of Hamiltonian is motivated by a
desire to recover the Euclidean Wilson action.

H ¼ −
1

g2a

X
p

ReTr

� Y
hiji∈p

Uij

�
þ 4g2

a

X
hiji

π2ij

¼ HV þHK ð9Þ

The first term, HV , is a sum over spatial plaquettes p and
can be thought of as a potential term. The trace is taken in a
suitable representation of the gauge group G—for matrix
groups, this is typically the fundamental representation.
The second term, HK , is the quantum-mechanical kinetic
term describing the mechanics of a free particle moving on
the surface of G. Therefore, π2ij is the Laplace-Beltrami
operator on the surface G, and πin is the momentum
operator conjugate to Uij. This prescription gives us no

guidance for how to form the kinetic term of a discrete
gauge theory—this is addressed via the transfer matrix
formalism in Sec. IV.
Not only is the Hamiltonian gauge-invariant, but each

term is gauge-invariant. This is crucial, as it allows us to
Trotterize without breaking gauge invariance at any order
in Δt. A time evolution operator suitable for implementa-
tion on a quantum computer is then

UðtÞ ¼
Y
t=Δt

e−iHKΔte−iHVΔt: ð10Þ

Below, we will use the notation UðΔtÞ to indicate a single
Δt step. We now describe how the operators e−iHKΔt and
e−iHVΔt may be obtained. First, each part (kinetic and
potential) of the Hamiltonian consists of mutually commut-
ing, local terms, and each such term may be treated
individually and sequentially without approximation.
That is,

e−iHKΔt ¼
Y
hiji

Uð1Þ
K ði; jÞ and e−iHVΔt ¼

Y
p

Uð1Þ
V ðpÞ:

ð11Þ

Here, again because the factors commute, the order of

application of the Uð1Þ
V makes no difference to the final

result. The plaquette evolution Uð1Þ
V is constructed by first

preparing the product of the plaquette in an ancillary
register, and then operating on the ancillary with

UTrð 1
g2aÞ. U

ð1Þ
K is implemented by diagonalizing via UF,

and then applying a diagonal unitary:

Uð1Þ
K ði; jÞ ¼ UFUphaseU

†
F: ð12Þ

Circuits implementing Uð1Þ
K and Uð1Þ

V are shown in Fig. 1.
The implementation of Uphase depends strongly on the
group and the implementation of the G-register, but in all
cases it is a diagonal operator. The total gate requirements
for the propagation are shown in Table I.

FIG. 1. Circuits for the propagation of a pure-gauge lattice field theory. The first circuit implements Uð1Þ
K on four links (in general,

L links are needed). The second circuit shows the application of Uð1Þ
V to a single plaquette Re TrU†

13U
†
34U24U12, and must be applied to

every plaquette in the theory. Note that in these circuits, we use a doubled line to represent a G-register, rather than a single qubit.

2The Gribov ambiguity prevents us from unambiguously
assigning a single representative configuration to each gauge
orbit; however, we do not take that approach. Physical states
in the Hilbert space are not configurations, but formal linear
combinations of configurations, and these can be constructed
unambiguously.
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Note that UV involves multiple Uð1Þ
V , some of which

affect overlapping links. Because all potential operators

commute (indeed all Uð1Þ
V are diagonal in the fiducial basis),

the order they are performed in does not matter.
When preparing an initial state, it is important to ensure

that it lies within the physical subspaceHP. One procedure
for projecting onto the gauge-invariant states for an Abelian
gauge theory is provided in [63].
Although the preparation of the ground state jΩi is

beyond the scope of this paper, it is worth discussing that
common proposals typically require the time-evolution
operator UðtÞ as constructed in this section. Assuming
such methods are used, nonequilibrium physics can be
computed by preparing the ground state with UðtÞ, and then
evolving with a different time-evolution operator ŨðtÞ [11].
A typical expectation value of interest, accessible in such a
scheme, is

EðtÞ ¼ hΩjŨ†ðtÞÊ ŨðtÞjΩi ð13Þ

where Ê measures the expectation of a plaquette (i.e. the
energy density of the gauge field). Other expectation values
of interest are discussed in Sec. V below.

IV. THE LATTICE PATH INTEGRAL

Substantial insight into QCD has been achieved via
Euclidean-spacetime lattice methods on classical com-
puters. Accordingly, the Euclidean lattice path integral
occupies a dominant place in the QCD literature and the
minds of practitioners. This is in contrast to quantum
simulations where the Hamiltonian formulation appears
more natural. In this section, we connect the Hamiltonian
formalism to the Euclidean lattice path integral via a
transfer matrix. This implies an important practical conse-
quence: the determination of appropriate bare coupling
constants may be performed on a classical computer. This
procedure also guides us in constructing a Hamiltonian for
a discrete gauge theory (discussed in [79]).
Our formalism for the transfer matrix, T, slightly differs

from the usual one [64–67,80] in that T is defined on the
entire space H. The usual transfer matrix is defined only
on the physical Hilbert space, and may be obtained by

projection with P. In the course of performing this
projection, the lattice path integral with the Wilson action
is recovered.
The transfer matrix is an approximation to imaginary-

time evolution by one unit of time: T ≈ e−H. We construct
the transfer matrix in the fiducial basis of H from separate
kinetic TK and potential TV contributions via the split-
operator approximation

T ¼ T1=2
V TKT

1=2
V ð14Þ

where the potential term resembles the product of spatial
plaquettes as appears in the Wilson action

hŨ12 � � � jTV jU12 � � �i ¼ δŨ12���
U12��� exp

�
a0
ag2

X
x

WμνðxÞ
�
:

ð15Þ

Here a is the spatial lattice spacing, and a0 the temporal
spacing; we do not assume an isotropic lattice. We have
borrowed from lattice field theory the Wilson plaquette

WμνðxÞ ¼ ReTr½U†
x;xþν̂U

†
xþν̂;xþμ̂þν̂Uxþμ̂;xþμ̂þν̂Ux;xþμ̂�;

ð16Þ

and μ, ν are restricted to spacelike directions.
For the kinetic term there is no coupling between

different links, but it is related in lattice field theory to
plaquettes containing timelike links:

hŨ12 � � � jTKjU12 � � �i ¼
Y
hiji

e
a

g2a0
ReTr½Ũ†

ijUij�: ð17Þ

Note that, like the Trotterized real-time evolution,
½T; P� ¼ 0 due to the fact that TV and TK individually
commute with P.
When the transfer matrix is restricted to physical states, it

exactly reproduces the usual lattice path integral, with the
Wilson action.

Z ¼ TrPTβ ¼ TrðPTPÞβ

¼
�Z

G
dU12 � � �

�
exp

�
1

g2
X

ReTr
Y

Uij

�
: ð18Þ

Here TrP denotes the trace over only the physical sub-
space HP. The inverse temperature is denoted β, and Z
is the Euclidean lattice approximation to the partition
function.
Now that we have a transfer matrix corresponding to the

Wilson action, we may connect it to the Hamiltonian. This
is done in detail by Creutz [80] for the gauge-fixed transfer
matrix, so we will only summarize the gaugefree result
(which is essentially the same) here. The potential part TV

TABLE I. Gate requirements for the propagation of a lattice
with NP plaquettes and L links, for a time T with time steps of
size Δt.

Gate Number

UF 2L T
Δt

Uphase L T
Δt

U−1 6NP
T
Δt

U× 6NP
T
Δt

UTr NP
T
Δt
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of the transfer matrix is exactly e−HV. The relationship
between the kinetic part HK of the Hamiltonian and TK is
more subtle. It is shown in [80] that, in the limit where the
temporal lattice spacing a0 is taken to 0, the kinetic part of
the Hamiltonian is recovered.
With amappingbetween theHamiltonian and lattice action

through the transfer matrix, the bare constants in Eq. (9) for a
desired renormalized, physical set of couplings are the same
as the lattice action ones. This is particularly important for
ensuring that Lorentz invariance is recovered in the con-
tinuum limit, but also allows us to perform simulations at
knownvalues of physical parameters. In particular, in a lattice
QCD simulation, the task of determining appropriate bare
parameters for a desired physical pion mass may be per-
formed cheaply on a classical computer, reserving the
quantum processor for the difficult real-time evolution.
Clearly, the Hamiltonian evolution on a quantum com-

puter is closely related to standard classical lattice simu-
lations. Indeed, the two differ only in: the discretization
of the gauge group (quantum computers have smaller
G-registers), whether the Trotterization is done in real or
imaginary time, and the exact form of the kinetic term. The
first difference can be removed by performing a classical
simulations with reduced precision, and the others are
reduced at small temporal lattice spacing.
In the case of the Trotterization Δt being equal to a, the

quantum evolution is simply an analytic continuation of the
usual isotropic lattice calculations performed in lattice
QCD. This implies that Lorentz invariance is recovered
in the continuum limit.
We conclude by exploiting this procedure to produce a

Hamiltonian for a discrete gauge theory—that is, a gauge
theory where the gauge group is a discrete group (such as
D4, demonstrated below), rather than a connected mani-
fold. In this case, the kinetic part of the Hamiltonian is
determined not by a Laplacian on a manifold, but can be
derived from the relevant portion of the transfer matrix by
taking a logarithm.

H ¼ HV þHK

where HV ¼ − logTV and HK ¼ − logTK; ð19Þ

where TV and TK are defined exactly as in Eq. (14). Note
that HK is only well defined if TK is positive-definite: this
fact is established for a general discrete group (with the
Wilson action) in Appendix B.
As a consequence of Schur’s lemma, the kinetic transfer

gate defined here is diagonal in the Fourier basis. This
implies that, where HK is obtained in this fashion, UK may
be easily implemented from UF.

V. CORRELATORS

Having constructed time-evolution for a pure gauge
theory, we now must show how observables of physical

interest may be obtained. In this section, we show how to
obtain a plaquette-plaquette correlator and the expectation
value of an arbitrary, temporally extended Wilson loop.
Such correlation functions serve as the nonperturbative
input to larger calculations, such as the determination of
parton distribution functions.
We accomplish both correlators by the technique set out

in [43]. To begin, we recall how one can compute an
expectation value of a unitary operator U [81] in a given
state jΨi. Introducing a single ancillary qubit, we construct
a controlled unitary operator UC, defined by

UCjΨij0i ¼ jΨij0i and UCjΨij1i ¼ UjΨij1i: ð20Þ

(Standard quantum gatesets make the construction of this
operator straightforward.)
Generally, the expectation value of U has both real

and imaginary parts. These must be measured separately.
A measurement of RehΨjUjΨi is given by initializing the
ancillary qubit to jþi≡ 1ffiffi

2
p ðj0i þ j1iÞ, performing evolu-

tion via UC, and then measuring σx on the ancillary qubit.

ðhΨj ⊗ hþjÞU†
Cð1 ⊗ σxÞUCðjΨi ⊗ jþiÞ ¼ RehΨjUjΨi:

ð21Þ

For ImhΨjUjΨi one performs the same process except
ending with a measurement of σy.
With this procedure in mind, we can show how to

compute a correlator of the form

hΨjUð−tÞWμ0ν0 ðx0ÞUðtÞWμνðxÞjΨi: ð22Þ

In QCD this Wilson plaquette correlator corresponds to a
glueball propagator. The operator in Eq. (22) is clearly not
unitary, so it cannot be directly evaluated by means of the
procedure described above. Instead, using the Hermiticity
of WμνðxÞ, we construct a parametrized family of unitary
operators. The derivatives of this family give the operator
of interest. Explicitly, this is done via a time-dependent
perturbation of the Hamiltonian:

Hϵ1;ϵ2ðτÞ ¼ H0 þ ϵ2δðτ − tÞWμ0ν0 ðx0Þ þ ϵ1δðτÞWμνðxÞ
ð23Þ

Time evolving forward in time with Hϵ1;ϵ2 , and back with
H0, allows us to measure the expectation value Cðϵ1; ϵ2Þ≡
hΨjUð−tÞUϵ1;ϵ2ðtÞjΨi. Differentiating twice with respect
to the perturbation yields the plaquette-plaquette correlator
as desired.

−
∂2Cðϵ1; ϵ2Þ
∂ϵ1∂ϵ2

����
ϵ1¼ϵ2¼0

¼ hUð−tÞWμ0ν0 ðx0ÞUðtÞWμνðxÞi:

ð24Þ
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In practice, this derivative must be obtained by finite
differencing, after computing Cðϵ1; ϵ2Þ for several small
values of ϵ. This approach is naturally extended to the
computation of k-time correlation functions, at the cost of
requiring the kth numerical derivative.
The terms WμνðxÞ added in the perturbation also appear

in the original Hamiltonian, and are readily implemented
with the primitive gates defined in Sec. II.
We can use the same method to compute the expectation

values of temporally extended Wilson loops, hReTrU†
ijðtÞ

Uijð0Þi. To do so, we decompose it into terms
hReð½U†

ijðtÞ�ba½Uab
ij ð0Þ�abÞi where a, b are color indices.

We can use this to derive a perturbed Hamiltonian

Hab
ϵ ðτÞ¼H0þϵ2δðτ− tÞRe½U†

ij�baþϵ1δðτÞRe½Uij�ab
þ ϵ̃2δðτ− tÞIm½U†

ij�baþ ϵ̃1δðτÞIm½Uij�ab; ð25Þ

which can be utilized in a correlator Cabðϵ1; ϵ̃1; ϵ2; ϵ̃2Þ≡
hΨjUð−tÞUab

ϵ ðtÞjΨi We now take the difference of two
second derivatives of the resulting correlator:

−
� ∂2

∂ϵ1∂ϵ2 −
∂2

∂ϵ̃1∂ϵ̃2
�
ϵ¼0

Cabðϵ1; ϵ2; ϵ̃1; ϵ̃2Þ

¼ RehUð−tÞ½U†
ij�baUðtÞ½Uij�abi: ð26Þ

Summing over the a, b yields the desired, gauge-invariant
trace. The imaginary part can be obtained similarly.
For many gauge groups, the different correlators

hðU†
ijðtÞÞbaðUijð0ÞÞabi are related by gauge symmetry.

Consequently, for these gauge groups, the correlator in
Eq. (26) need only be evaluated for one particular selection
of a and b, as all the other terms will be equal. In particular,
this is true for D4 (simulated below) and SUðNÞ in the
fundamental representation.
The perturbation introduced, unlike the one used for

plaquette-plaquette correlators above, is not gauge-
invariant, meaning that the state during this time evolution
does not lie within the physical subspace HP. Also unlike
the plaquette-plaquette perturbation, this perturbation con-
tains terms not present in the original Hamiltonian, and
requires gates not specified in Sec. II. The gates required
are diagonal (in the fiducial basis) phase gates on individual
G-registers.
This method can also compute a nongauge-invariant

expectation value, e.g. hTrUikðtÞUijð0Þi where j ≠ k.
Provided the initial state is correctly prepared, this expect-
ation value must be 0.

VI. SCALAR FIELDS

Here we extend our Hamiltonian construction to include
scalar matter fields which transform in a D-dimensional
representation of G. The Hilbert space defined in Sec. III is

extended via tensor product to include D scalar degrees
of freedom at each site. The new Hilbert space is
H ¼ ðHGÞ⊗L ⊗ ðHSÞ⊗N , where HG is the one-link
Hilbert space defined above, N is the number of sites,
andHS is the one-site Hilbert space. ForHS, it is convenient
to work in the basis of occupation number, writing
HS ¼ spanfjn1 � � � nDi∶ni ¼ 0; 1;…g. This is different
from classical lattice field theory where scalars are typically
represented in a basis diagonalizing the field operator or
integrated out, but is more natural for quantum simulations.
As before, we first consider how gauge transformations

act on H. A gauge transformation is still specified by
Vi ∈ G at each site i. The gauge links still transform as
Uij ↦ VjUijV

†
i , and the scalar fields transform (in the

fundamental) via ϕi ↦ Viϕi. In this way, ϕ†
jUijϕi is

gauge-invariant. The action of a gauge transformation V
on the Hilbert space is

jU12 � � �i ⊗ jϕ1 � � �i ↦ jðV2U12V
†
1Þ � � �i ⊗ jðV1ϕ1Þ � � �i:

ð27Þ

The gauge-symmetrization operator is still defined by
Eq. (8), but acts on the expanded Hilbert space.
To represent the physical Hilbert space on a quantum

computer, we now make use of the CN-registers trans-
forming under G. For the scalar fields we consider, the
Hamiltonian is

H ¼ β
X
p

ReTr

� Y
hiji∈p

Uij

�
þ 1

2

X
hiji

π2ij

þ 1

2

X
i

∇2ϕi þ
m2

2

X
i

ϕ†
iϕi þ

1

2

X
hiji

jϕj − Uijϕij2:

ð28Þ

Although we assume scalar interactions only to order ϕ2,
the generalization to higher-order couplings is trivial and
introduces no complications into what follows. We con-
struct a Trotterized time evolution operator, just as in
Sec. III, by decomposing into potential and kinetic terms.

The new gates required for the scalar fields are Uð1Þ
M

(implementing the mass term), Uð1Þ
H (implementing the

hopping term), and Uð1Þ
K;scalar. These are defined by

Uð1Þ
M ðiÞ ¼ e−iΔtðdþ

m2

2
Þϕ†

i ϕi ; ð29Þ

Uð1Þ
H ði; jÞ ¼ e−iΔtReðϕj;UijϕiÞ; and ð30Þ

Uð1Þ
K;scalarði; jÞ ¼ e−iΔt∇2

: ð31Þ

Note that the mass and hopping gates commute, as both are
diagonal in the fiducial basis. The same-site ϕ†

iϕi terms
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generated by the hopping term of the Hamiltonian have
been absorbed into the mass gate, assuming a square lattice
of dimension d. These gates, together with the pure-gauge

Uð1Þ
V;K , are combined to form

UV ¼
Y
p

Uð1Þ
V;gaugeðpÞ

Y
i

Uð1Þ
M ðiÞ

Y
i;j

Uð1Þ
H ði; jÞ ð32Þ

UK ¼ ⨂
hiji

Uð1Þ
K;gaugeði; jÞ ⊗ ⨂

i
Uð1Þ
K;scalarðiÞ: ð33Þ

With these, the full time-evolution operator for a single
time step is

UðΔtÞ ¼ UVUK ð34Þ

A single time step, therefore, consists of five steps on the
quantum computer:
(1) For each plaquette, compute the plaquette product

and apply UTrðΔt=g2aÞ. This implements UV;gauge.

(2) For each link, apply the scalar hopping gate Uð1Þ
H .

(3) For each site, apply the scalar mass gate Uð1Þ
M .

(4) For each link, apply the kinetic gate Uð1Þ
K;gauge.

(5) For each site, apply the scalar kinetic gate Uð1Þ
K;scalar.

This is the general algorithm for time-evolving gauge fields
in the presence of matter. Before moving on to discuss
scalar field correlators, we note that the transfer matrix
discussion of Sec. IV could be repeated here, including the
scalar fields, to connect the evolution of the quantum
computer to a classical, Euclidean spacetime path integral.
Thus, renormalization calculations again may be performed
classically.
Steps 1 and 4 above are the same as for a pure-gauge

simulation. Step 2 requires two calls to U×;f, two calls to
U−1, and one call to Uð·;·Þ. Step 3 is a register-implemen-
tation dependent diagonal phase gate. Step 5, analogous to

the implementation of Uð1Þ
K;gauge, entails 2N calls to UC

F and
N diagonal phase gates per site, where N is the dimension
of the scalar’s representation.
The procedure for computing plaquette correlators is the

same as in Section V.
The construction of Sec.Vmaybegeneralized to obtain the

gauge-invariant two-point function of a fermion, connected
by a Wilson line: hψ̄ðy; tÞWψðx; 0Þi. However, for a general
Wilson line, this construction requires one derivative to be
taken at every time slice. As the derivatives must be taken via
finite differencing, this is not a plausible method for comput-
ing these correlators, even in the far future. Constructing a
more efficient method remains an open problem.

VII. FERMION FIELDS

Here we consider the inclusion of spinor matter fields,
which can be done in the same manner as was discussed

above for scalar fields. Also as before, the representation of
fermionic fields on the quantum computer will not match
that on a classical computer, where they are typically
integrated out. In the implementation of spinor fields on a
quantum computer, while the register is trivial to specify
and exact, a significant technical difference emerges: the
fundamental operators provided on most digital quantum
computers are bosonic, meaning that operators acting on
different qubits will commute with each other. For spinor
fields, we want fermionic operators, which anticommute
at different physical sites. We will translate commuting
operators into anticommuting operators via the Jordan-
Wigner transformation, paying the price that local fer-
mionic operators are generated by nonlocal bosonic
operators. More efficient, albeit complex, schemes, relating
local fermionic operators to more local bosonic operators
have been devised [14–16].
The Hilbert space of a gauge theory with d-component

fermions can be written H ¼ ðHGÞ⊗L ⊗ ðHFÞ⊗dN , where
there are L links, N sites, and HF ¼ spanfj0i; j1ig is the
Hilbert space of a single fermion on a site.3 Note that, as a
consequence of the exclusion principle,HF can be put on the
quantum computer without approximation or truncation.
Writing the Hamiltonian using operators that obey the

standard fermionic anticommutation relations is easily
accomplished in the absence of gauge fields via the
Jordan-Wigner transformations [13]: each fermionic oper-
ator pair is given an index from 1 � � � dN, and the ith
operators are constructed from bosonic operators ai and a

†
i :

ψ i ¼ σðzÞ1 � � � σðzÞi−1ai and ψ†
i ¼ σðzÞ1 � � � σðzÞi−1a

†
i : ð35Þ

In the presence of gauge fields, we must ensure that the
fermionic operators obey the appropriate gauge transfor-
mation law. To be concrete, consider when the fermions
transform in the fundamental of SUð3Þ. Then at each site i,
for each spinor index α, there are three annihilation and
creation operators, which must transform under gauge
transformations as

ψa
αi ↦

X3
b¼1

gabψb
αi ð36Þ

where a, b are color indices. There are now three times as
many fermion operators, as for each site and each spinor,
there must be three different fermionic degrees of freedom.
This may be accomplished if the bosonic operators a; a†

from which the fermions are constructed transform in the
fundamental of SUð3Þ. Thus each operator has a color
index, and aa ↦ gabab. Crucially, no change to the Jordan-
Wigner procedure is needed since the σ-matrices are

3As a consequence of writing the fermionic space as a tensor
product, the fermionic operators will be nonlocal.
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independent of the gauge group (however the σ matrices do
inherit the color index).
With fermionic operators constructed, the time-evolution

operator is constructed in a similar fashion to that from
Sec. VI above.

Uð1Þ ¼ UVUK

where UV ¼
Y
p

Uð1Þ
V;gaugeðpÞ

Y
i;j

Uð1Þ
V;spinorði; jÞ

and UK ¼ ⨂
hiji

Uð1Þ
K;gaugeði; jÞ ⊗ ⨂

i
Uð1Þ
K;spinorðiÞ; ð37Þ

The key difference is that the spinor kinetic and potential
operators are derived from the Dirac equation. The gov-
erning Hamiltonian is now

H ¼ β
X
p

ReTr

� Y
hiji∈p

Uij

�
þ 1

2

X
hiji

π2ij

þm
X
i

ψ̄ iψ i þ
X
hiji

ψ̄ jUijψ i ð38Þ

and the single-site and single-link evolution operators are
defined as before:

Uð1Þ
V;spinorðiÞ ¼ e−iΔtmψ̄ iψ i

Uð1Þ
K;spinorði; jÞ ¼ e−iΔtψ̄ jUijψ i ð39Þ

An implementation of Z2 fermions is demonstrated in
Sec. VIII.

VIII. DEMONSTRATION

In this section we present two concrete demonstrations
of the method described above: first, a two-plaquette
theory with the discrete, non-Abelian gauge group D4,
and second, a Z2 gauge field coupled to fermions. For all
our simulations, we work in units where the lattice
spacing is a ¼ 1. We perform classical simulations of a
quantum computer using QISKIT [82,83] in order to
demonstrate the correctness of the implementation.
These calculations are performed without modeling of
realistic noise sources, corresponding to a perfect, error-
free quantum computer. As will be discussed below,
the number of entangling gates required for a single
Trotterization step is comparable to the total number used
in state-of-the-art quantum simulations [84], and attempt-
ing to run on a current quantum computer or using a
realistic noise model would be impractical.
We simulate the D4 gauge field on the two-dimensional

lattice shown in Fig. 2. This lattice represents the smallest
two-dimensional lattice which cannot be reduced to a one-
dimensional theory. The simulation requires a four D4

registers, and uses a total of 14 qubits: 12 for physical

degrees of freedom, and 2 ancillary qubits. Note that, for
brevity, we have broken with the notation of previous
sections, in referring to a link not by the source and sink
sites, but instead with a single direct index 0…3.
We define a trace on D4 (not uniquely specified by the

group structure) by embedding D4 into Uð2Þ, and defining
the trace via the fundamental representation of that Lie
group. The embedding of D4 < Uð2Þ is generated by the
elements σx and iσz. The lattice action for this model is

S ¼ −
1

g2
X
t

ðReTr½U†
2ðtÞU†

0ðtÞU3ðtÞU0ðtÞ�

þ ReTr½U†
3ðtÞU†

1ðtÞU2ðtÞU1ðtÞ�Þ −
1

g2
X
PT

ReTrPT;

ð40Þ

The last term is a sum over all temporal plaquettes on the
2þ 1 lattice. The resulting Hamiltonian is

H ¼ ReTr½U†
2ðtÞU†

0ðtÞU3ðtÞU0ðtÞ�
þ ReTr½U†

3ðtÞU†
1ðtÞU2ðtÞU1ðtÞ� −

X
i¼0…3

logTð1Þ
K ðiÞ

ð41Þ

where logTð1Þ
K is the one-link kinetic term, determined as

discussed in Sec. IV.
The starting state of our D4 simulation is the gauge-

invariant projection of the eigenstate of the operators Ui,
where all links have been assigned to the identity matrix.
We evolve the system for t ¼ 10 with two different
Trotterization time steps, one of Δt ¼ 0.2 and one of
Δt ¼ 0.5. With the larger Trotterization, errors build up
more quickly, becoming noticeable at large times. The
circuits used are detailed in Appendix A. In total, the
quantum simulation of Fig. 3 entailed ∼200 entangling
gates per Trotterization time step. This is roughly the
resources recently used to compute the ground state energy
of the water molecule [84]. Figure 3 shows the average
plaquette energy of the left plaquette, as a function of time.
The only systematic error is Trotterization, as there is no
noise on the simulated quantum computer.

FIG. 2. The lattice geometry used for the D4 gauge simulation.
The plaquettes are given by U†

2U
†
0U3U0 and U†

3U
†
1U2U1. Dash

lines are used to indicate repeated links due to the periodic
boundary conditions.
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For the same lattice gauge theory, we also demonstrate
the procedure described in Sec. V for determining the
expectation value of a Wilson loop with temporal extent t:
hReTrU†

0ðtÞU0ð0Þi. Simulated results are shown in
Fig. (4). For the finite differencing, we perform simulations
with ðϵ1;ϵ2Þ¼ð0.1;0.0Þ;ð0.0;0.1Þ;ð0.1;0.1Þ, and the same
for the parameters ϵ̃1; ϵ̃2. As before, a Trotterization time
step of Δt ¼ 0.2 is used. While smaller ϵ is preferred
(smaller deformations improve the finite differencing
calculation), there is a tradeoff because the resulting smaller
finite difference requires a larger number of samples to be
collected, scaling like ϵ−2.
In order to test our technique with matter fields, we

simulated staggered fermions transforming in a Z2 gauge
field, in 1þ 1 dimensional spacetime. A similar model was
also simulated on a quantum computer in [10]. The lattice
Hamiltonian for this model is

H¼
XL−1
i¼1

�
1

2
σðxÞiðiþ1Þ þ

ð−1Þi
2

χ̄iþ1σ
ðzÞ
iðiþ1Þχi

�
þm

XL
i¼1

ð−1Þiχ̄iχi

ð42Þ

where the index i denote lattice sites, the sum is taken
over all pairs of adjacent sites, and χ is a one-component
fermionic operator.
Using the Jordan-Wigner procedure, we translate from

the fermionic operators χi into a set of bosonic operators σi:

χi ¼ σðzÞ1 � � � σðzÞi−1σi, where σi is the lowering operator for
site i. In one-dimension without periodic boundary con-
ditions, this results in a local bosonic Hamiltonian.

H ¼
XL
i¼1

�
−
m
2
ð−1ÞiσðzÞi þ σðxÞiðiþ1Þ

þ 1

4
ð−1ÞiσðzÞiðiþ1ÞðσðxÞi σðxÞiþ1 þ σðyÞi σðyÞiþ1Þ

�
: ð43Þ

There are two distinct families of bosonic operators: the σi
which live at a site and correspond to fermions, and the
σiðiþ1Þ on the link from site i to site iþ 1, corresponding to
the Z2 gauge field. The Trotterization of this Hamiltonian
takes four steps, corresponding exactly to the four terms in
Eq. (43). In this way full translational invariance (neglect-
ing the boundary) is maintained even in the approximated
evolution.
The starting state of this Z2 simulation is obtained by

projecting the j0000000i state to the gauge-invariant space,
and then applying the gauge-invariant excitation operator

χ†1χ
†
2σ

ðzÞ
12 . The number density of the leftmost site as a

function of t is shown in Fig. 5 where the simulated results
are compared to the exact values. Since we do not begin
in an eigenstate of the Hamiltonian, this is not constant.
The difference between the two is due to the Trotterization,
and as with the D4 simulation may be made systematically

FIG. 3. Simulation of a D4 gauge theory with two plaquettes.
The expectation value of one of the plaquettes is shown as a
function of t. The exact result is shown in black; sampled data
with Δt ¼ 0.2 (Δt ¼ 0.5) are shown in red (blue). Differences
between the simulated quantum calculation are due to sampling
error (estimated with error bars) and Trotterization.

FIG. 4. Expectation value of a temporal Wilson loop in D4

gauge theory, as a function of the time extent of the loop. For each
data point, a total of 2 × 105 measurements were collected. The
systematic errors (not shown) present are Trotterization and finite
differencing.

FIG. 5. Simulation of Z2 gauge theory with staggered fermions
on four sites. The expectation value of the number density at the
leftmost site as a function of t. A simulated quantum calculation
is shown in red. Differences with the exact result are due to
sampling error (100 samples per data point) and Trotterization.
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smaller by reducing the lattice spacing. This simulation
uses 8 qubits: 4 fermion sites, 3 gauge links, and a single
ancillary. For this lattice, 36 CNOT gates are used per
timestep, putting the simulation (slightly) out of reach of
present-day processors. A time step of Δt ¼ 0.6 is used
for T ¼ 30.

IX. DISCUSSION

In this work, we have given a general procedure to
construct a unitary time-evolution operator and timelike
separated correlation functions for use on an idealized
universal quantum computer. This construction ensures that
the Trotterization never mixes the physical and unphysical
stateswithin theHilbert space, provided that the requirements
of Sec. II are implemented exactly. Further, we show how
gauge-invariant correlators (including a temporal Wilson
loop) are constructed. We have demonstrated the efficacy
of the procedure by the implementation of two gauge theories
on a simulated quantum computer. Additionally, we have
discussed the classical procedure for determining the bare
couplings to be used in a quantum simulation.
Critically, we have defined a set of primitive constructs

which may be used in the construction of gauge theory
simulation. The practical and efficient implementation of
such registers and gates is an important open question in the
literature. Finally, future work must address the issue of
how the behavior of different noisy gates affects the mixing
of the physical and unphysical state, whether this can be
mitigated by special constructions or error-mitigating codes
within our construction, and indeed whether such mitiga-
tion is necessary.
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APPENDIX A: IMPLEMENTATION
OF A D4-REGISTER

The group D4 of isometries of the square is treated as a
subgroup of Uð2Þ generated by the matrices

�
i 0

0 −i

�
and

�
0 1

1 0

�
: ðA1Þ

The first matrix represents a π
2
rotation, and the second

represents reflection.

The D4 register is implemented with three qubits. The
state jabci corresponds to the matrix

��
0 1

1 0

��a�� i 0

0 −i

��
2bþc

: ðA2Þ

Thus, the two least-significant bits specify an amount of
rotation, to be followed by a flip if the most-significant bit
is 1. This establishes the isomorphism needed between CD4

and the three-qubit Hilbert space on a quantum computer.
It remains to describe the inversion, multiplication, trace,

and Fourier transform circuits. The inversion and multipli-
cation circuits are both equivalent to classical circuits (as they
consist exclusively of controlled-not gates), and are shown
in Fig. 6. The trace circuit is a three-qubit controlled phase
gate, defined by UTrðθÞj000i¼e−2iθ and UTrðθÞj010i ¼
e2iθ (with all other states picking up no phase).
Finally, the quantum Fourier transform which diagonal-

izes the D4 momentum operator is given by

F ¼

0
BBBBBBBBBBBBBBBB@

1ffiffi
8

p 1ffiffi
8

p 1ffiffi
8

p 1ffiffi
8

p 1ffiffi
8

p 1ffiffi
8

p 1ffiffi
8

p 1ffiffi
8

p

1ffiffi
8

p 1ffiffi
8

p 1ffiffi
8

p 1ffiffi
8

p −1ffiffi
8

p −1ffiffi
8

p −1ffiffi
8

p −1ffiffi
8

p

1ffiffi
8

p − 1ffiffi
8

p 1ffiffi
8

p − 1ffiffi
8

p 1ffiffi
8

p − 1ffiffi
8

p 1ffiffi
8

p − 1ffiffi
8

p

1ffiffi
8

p − 1ffiffi
8

p 1ffiffi
8

p − 1ffiffi
8

p − 1ffiffi
8

p 1ffiffi
8

p − 1ffiffi
8

p 1ffiffi
8

p

1
2

0 − 1
2

0 1
2

0 − 1
2

0

0 − 1
2

0 1
2

0 1
2

0 − 1
2

0 1
2

0 − 1
2

0 1
2

0 − 1
2

1
2

0 − 1
2

0 − 1
2

0 1
2

0

1
CCCCCCCCCCCCCCCCA

:

ðA3Þ

Rather than attempt to determine a quantum circuit by
hand (although general methods do exist [85–87]), we
perform a classical simulated annealing search to find a
short circuit that implements exactly this unitary within
the QISKIT gate set using Hadamard, CNOT, and π

8
-gates (T).

FIG. 6. Classical-inspired quantum circuits for D4 inversion
(top) and multiplication (bottom). The least-significant qubits are
shown on the top. For the multiplication circuit, the target register
is in the bottom three qubits.
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The circuit found is shown in Fig. 7. The annealing
algorithm will be detailed in a future work. Since the size
of F does not scale with volume, this method does not
suffer from an exponentially large physical Hilbert space.
After being diagonalized by the Fourier transform,

the kinetic gate corresponds simply to a phase gate on
the most-significant qubit, along with a phase gate on the
state j000i:

FUKðθÞF†jabci ¼ eiθ1χa¼b¼c¼0eiθ2ajabci: ðA4Þ

The constants θ1 and θ2 are coupling-dependent. For β ¼ 0.8,
the coupling used in this paper, we have θ1 ≈ 1.263 and
θ2 ≈ 0.409.

APPENDIX B: POSITIVE-DEFINITENESS
OF THE TRANSFER MATRIX

Here we provide a proof that the kinetic part TK of
the transfer matrix for a discrete gauge theory is

positive-definite to define a Hamiltonian, a fact used in
Sec. IV. Unlike prior proofs, we are concerned with
positive-definiteness on H, not just HP.
TK is the tensor product of single-link operators

TK ¼ ⊗
hiji

Tð1Þ
K ði; jÞ; ðB1Þ

and is therefore positive-definite as long as Tð1Þ
K is. The

single-link transfer matrix is defined by

hg̃jTð1Þ
K jgi ¼ eβReTr½ρ†ðg̃ÞρðgÞ�; ðB2Þ

where g, g̃ are the elements of G, ρ is a faithful repre-
sentation, and β is the inverse coupling. Therefore, our

proof need only establish that Tð1Þ
K is positive definite.

It is sufficient to show that hΨjTð1Þ
K jΨi > 0 for all

jΨi ≠ 0 in CG. We must establish that for any function
fðgÞ,

X
g;g̃∈G

f�ðg̃ÞfðgÞhg̃jTð1Þ
K jgi

¼
X
g;g̃∈G

f�ðg̃ÞfðgÞeβReTr½ρ†ðg̃ÞρðgÞ� > 0: ðB3Þ

We work order-by-order in β to see that each term is
bounded below by 0:

X
g;g̃∈G

f�ðg̃ÞfðgÞeβReTr½ρ†ðg̃ÞρðgÞ� ¼
X∞
n¼0

Xn
i¼0

βn

2nn! n
Ci

X
g;g̃∈G

f�ðg̃ÞfðgÞTr½ρ†ðg̃ÞρðgÞ�iTr½ρðg̃Þρ†ðgÞ�n−i ðB4Þ

where nCi are binomial coefficients. Each term indexed by n, i is non-negative:

X
g;g̃∈G

f�ðg̃ÞfðgÞTr½ρ†ðg̃ÞρðgÞ�iTr½ρðg̃Þρ†ðgÞ�n−i ¼
X
g;g̃∈G

f�ðg̃ÞfðgÞ
�X

a;b

ρ†ðg̃ÞabρðgÞba
�

i
�X

c;d

ρðg̃Þcdρ†ðgÞdc
�

n−i

¼
X

fag;fbg;fcg;fdg

����
X
g∈G

fðgÞρðgÞb1a1 � � � ρðgÞbiaiρ�ðgÞc1d1 � � � ρ�ðgÞcn−idn−i
����
2

≥ 0

ðB5Þ

where faðbÞg ¼ ðaðbÞ1;…; aðbÞiÞ and fcðdÞg ¼ ðcðdÞ1;…; cðdÞn−iÞ. It remains only to show that hΨjTð1Þ
K jΨi ¼ 0 is

impossible. For the inequality to be saturated, the following must hold for any n, i and any combination of matrix
components in fag; fbg; fcg; fdg.

X
g∈G

fðgÞρðgÞb1a1 � � � ρðgÞbiaiρ�ðgÞc1d1 � � � ρ�ðgÞcn−idn−i ¼ 0 ðB6Þ

As the representation ρ is faithful, the space of polynomials on G forms a complete basis, and thus Eq. (B6) establishes that
the inner product of fðgÞ with any vector in CG vanishes, implying that fðgÞ ¼ 0.

Therefore, for faithful representations ρ (such as the fundamental representation), Tð1Þ
K is positive-definite.

FIG. 7. Quantum circuit implementing the Fourier transform on
a D4 register. The least-significant qubits are on the top. Here, H
and T are the Hadamard gate and π

8
gate, respectively.
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