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We study systematic uncertainties in the lattice QCD computation of the hadronic vacuum polarization
(HVP) contribution to the muon g − 2. We investigate three systematic effects: the finite volume (FV)
effect, the cutoff effect, and integration scheme dependence. We evaluate the FVeffect at the physical pion
mass on two different volumes of ð5.4 fmÞ4 and ð10.8 fmÞ4 using the PACS10 configurations at the same
cutoff scale. For the cutoff effect, we compare two types of lattice vector operators, which are local
and conserved (point-splitting) currents, by varying the cutoff scale on a larger than ð10 fmÞ4 lattice at
the physical point. For the integration scheme dependence, we compare the results between the coordinate-
and momentum-space integration schemes at the physical point on a ð10.8 fmÞ4 lattice. Our result for the
HVP contribution to the muon g − 2 is given by ahvpμ ¼ 737ð9Þð þ13

−18 Þ × 10−10 in the continuum limit, where
the first error is statistical and the second one is systematic.

DOI: 10.1103/PhysRevD.100.034517

I. INTRODUCTION

The muon anomalous magnetic moment ðg − 2Þμ has
been a key observable for a proof of predictability of
quantum field theory. We expect that there might be a sign
of the new physics beyond the standard model (BSM) in the
muon g − 2 anomaly, which is 3σ to 4σ deviation between
the standard model (SM) prediction and the BNL experi-
ment [1,2] suggested in 2004. In order to establish that
the ðg − 2Þμ experiments in FermiLab and J-PARC [3,4]
aiming at a factor of 4 to 5 improvement from the BNL
experiment is forthcoming. However, the high precision
experiments are not sufficient for the search of the BSM
physics [5] since the magnitude of theoretical uncertainty
in the SM prediction has not been comparable to that in
the new experiments yet. The biggest uncertainty left in
the SM prediction is coming from the hadronic vacuum
polarization (HVP) effect, which is the leading order of
the hadronic contribution to ðg − 2Þμ denoted by ahvpμ .

The phenomenological estimate of ahvpμ [6–11], which has
been employed in the SM prediction, is obtained by the
integrated hadronic R-ratio measured in an eþe− annihi-
lation experiment. Including several hadronic decay chan-
nels with a particular choice of the center-of-mass energyffiffiffi
s

p
window, in which the perturbative QCD is used forffiffiffi

s
p

≃ 2 GeV, ahvpμ is phenomenologically estimated at a
0.4% level of precision [12].
Lattice QCD (LQCD) is another approach to estimate

ahvpμ totally independent of the phenomenological estimate.
This is a theoretical calculation based on the first principle
of QCD, whereas the current precision of the LQCD
estimate is roughly an order of magnitude lower than the
phenomenological one, and it then does not satisfy accu-
racy to search the BSM physics (see a recent review [13]
and the references therein). The main difficulty of the
LQCD calculation is that, in the Euclidean space-time, the
detailed behavior of the HVP contribution with high
precision is required around the peak position of the
QED kernel, which is significantly below the hadronic
scale of ΛQCD. In such a low-energy region, corresponding
to a long distance in the coordinate space-time, it is not
an easy task to make a high precision measurement of
the HVP contribution because of the exponentially dimin-
ishing signal-to-noise ratio in a deeply infrared regime.
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In addition, the contribution of the ρ resonance state
decreases in this regime, while two-pion or three-pion
state contributions, which are possible decay modes of the
vector resonance, become prominent. This means that a
sufficiently large volume at the physical point, where the ρ
resonance has an open threshold and the multipion states
are allowed, is required in the LQCD calculation to
correctly estimate the HVP contribution. Furthermore,
it is imperative for LQCD to take account of the cutoff
effect to obtain ahvpμ in the continuum limit. So the LQCD
determination of ahvpμ at a subpercent precision is still a
challenging task.
Recent LQCD calculations [14–18] are carried out with

the aid of an estimate of effective models, for instance, the
chiral perturbation theory (ChPT) [19–21] or the Gounaris-
Sakurai (GS) parametrization [13,15], to correct the finite
volume (FV) effect on ð≲6 fmÞ3 boxes at a long distance. In
Ref. [17], the leading-order ChPT estimate is added to the
lattice result on a ð5.4 fmÞ3 box at the physical pion mass
taking higher-order contributions of Oðp4Þ as a systematic
error. Reference [16] employs a similar strategy to add the
ChPT estimate to the lattice results on ð6.1 − 6.6 fmÞ3
lattices around the physical pion mass but takes the
systematic error conservatively. In Ref. [15], the GS para-
metrization is used to fit the LQCD result of the vector
correlator on a roughly ð4 fmÞ3 lattice at the unphysical
pion mass (mπ ≥ 185 MeV) with the time-slice cut of
1.1 < tcut < 1.4 fm. References [14,18] take account of
only the two-pion contributions based on the analytic
estimate with ChPT.
As pointed out in our previous study [22], it is essentially

important to assess the FV effect in the LQCD calculation
of ahvpμ by employing the direct comparison between
different volumes at the physical pion mass without any
reliance on the effective models. We have made a direct
evaluation of the systematic uncertainty of the FV effect
using different volumes of ð8.1 fmÞ3 and ð5.4 fmÞ3 near the
physical pion mass (mπ ¼ 135–145 MeV). The difference
between the results on two volumes was found to be larger
than the ChPT estimate, though the statistical error was so
large that they are consistent within 1σ error bar. In this
article, we perform a more precise comparison with ChPT
using a lattice larger than ð10 fmÞ4 at the physical pion
mass, which are a subset of the PACS10 configurations [23]
generated by the PACS Collaboration. We also investigate
the lattice cutoff effect by comparing the results at two
different cutoffs of a−1 ¼ 2.33 and 3.09 GeV keeping the
physical volume larger than ð10 fmÞ4. We finally estimate
an extrapolated value of ahvpμ in the continuum limit and
compare it with other recent LQCD results.
This paper is organized as follows. In Sec. II, we explain

the notation and the LQCD methodology to calculate ahvpμ .
Lattice parameters and numerical method are explained in
Sec. III. The results for the FV effect and the lattice cutoff

effect are presented in Secs. IVA and IV B, respectively. In
Sec. IV C, we numerically check the consistency between
the results with the coordinate and momentum integration
schemes. In Sec. IV D, we discuss our result in comparison
with the phenomenological estimate and other recent
LQCD results. The conclusion and an outlook are sum-
marized in Sec. V.

II. METHODOLOGY

A. Momentum-space integration scheme

ahvpμ is given by the integral of the vacuum polarization
function (VPF) ΠðQ2Þ from zero to infinity in terms of the
spacelike momentum squared Q2

M ¼ −Q2 < 0:

ahvpμ ¼
�
αe
π

�
2
Z

∞

0

dQ2KEðQ2ÞΠ̂ðQÞ; ð1Þ

Π̂ðQÞ≡ ΠðQÞ − Πð0Þ; ð2Þ

KEðsÞ ¼
1

m2
μ
ŝZ3ðŝÞ 1 − ŝZðŝÞ

1þ ŝZ2ðŝÞ ; ð3Þ

ZðŝÞ ¼ −
ŝ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2 þ 4ŝ

p

2ŝ
; ŝ ¼ s

m2
μ
; ð4Þ

where Π̂ðQÞ is scheme independent due to a subtraction
of scheme-dependent Πð0Þ. The QED kernel KEðsÞ,
which is obtained by the one-loop perturbation with αe ¼
1=137.03599914 and mμ ¼ 105.6583745 MeV [24], has a

sharp peak at Q2 ≈ ð ffiffiffi
5

p
− 2Þm2

μ ¼ 0.003 GeV2, and a
rapid falloff for Q2 → 0. The vacuum polarization function
can be extracted from a factorization of the vacuum
polarization tensor ΠμνðQÞ, which is given by the Fourier
transformation of the vector-vector current correlator,

ΠμνðQÞ≡X
x

eiQxhVΓ
μðxÞVΓ0

ν ð0Þi¼ðQ2δμν−QμQνÞΠðQÞ;

ð5Þ

where the index Γ in the superposition of the vector current
Vμ denotes two choices of lattice operators. One is the local
current with Γ0 ¼ L,

VL
μðxÞ ¼ ZVq̄ðxÞγμqðxÞ; ð6Þ

with ZV being the renormalization constant, and the other is
the conserved current with Γ ¼ C,

VC
μ ðxÞ ¼

1

2
½q̄ðxþ aμ̂Þð1þ γμÞU†

μðxÞqðxÞ
− q̄ðxÞð1 − γμÞUμðxÞqðxþ aμ̂Þ�; ð7Þ

EIGO SHINTANI and YOSHINOBU KURAMASHI PHYS. REV. D 100, 034517 (2019)

034517-2



in the point-splitting form with the link variable UμðxÞ,
which preserves the lattice Ward-Takahashi identityP

μ∇�
μVμ ¼ 0 with the backward differential ∇�ðx; yÞ ¼

δx;y − δx−μ̂;y in the naive Wilson quark action. Note that
the lattice local vector current and conserved current are not
OðaÞ improved in this study. In Sec. IV B, we investigate the
scaling violation for both currents.
The expression of ΠμνðQÞ in Eq. (5) has extra contri-

butions of OððaQÞnÞ with n ≥ 2 due to the Lorentz
symmetry breaking on the discretized space-time in
LQCD. After subtracting these lattice artifacts [25–27],
Π̂ðQ2Þ computed with LQCD is consistent with the
perturbative representation of the Adler function [28] in
high Q2 > 1 GeV2 except for the nonperturbative objects
such as the d-dimensional operator condensate term given
by hOdi=Q2d appearing in the operator product expansion
(OPE) [29]. For the actual computation of ahvpμ , the LQCD
evaluation of the integral of Eq. (1) can be replaced by the
perturbative one in the highQ2 region from some particular
point of Q2

PQCD to infinity. Practically, the integrand for
Q2

PQCD > 1 GeV2 in Eq. (1) gives a minor contribution to

the total ahvpμ so that the OPE contribution should be
negligible. We will discuss it later.
In LQCD, we need to evaluate Πð0Þ by the extrapolation

of VPF to the zero-momentum limit. Since the minimum
momentum in LQCD is defined as Qmin ¼ 2π=L, a large
volume allows us to perform the qualified extrapolation
with less uncertainty of fitting procedures. Once Πð0Þ is
determined, the momentum integral of Eq. (1) is straight-
forwardly performed with the extrapolation function in the
low-energy regime, and we can add the perturbative QCD
formula in the high-energy regime of Q2 > QPQCD. As
pointed out above, the choice of Q2

PQCD > 1 GeV2 gives

only a minor contribution to the total ahvpμ .
In our analysis, the Q2 integral of Eq. (1) is split into the

fit region, the lattice data region, and the perturbative QCD
(PQCD) region:

½ahvpμ �Mom ¼
Z

Q2
fit

0

dQ2WqðQ2ÞΠ̂fðQÞ

þ 1

2

XQ2
n<Q2

PQCD

Q2
n¼Q2

fit

ðWqðQ2
nþ1ÞΠ̂latðQnþ1Þ

þWqðQ2
nÞΠ̂latðQnÞÞðQ2

nþ1 −Q2
nÞ

þ
Z

∞

Q2
PQCD

dQ2WqðQ2ÞΠ̂PQCDðQÞ; ð8Þ

WqðsÞ≡
�
αe
π

�
2

KEðsÞ; ð9Þ

Π̂latðQÞ ¼ ΠlatðQÞ − Πð0Þ; ð10Þ

where we define the lattice momentum Qn ¼ 2πn=L with
integer n ¼ f0; 1;…; L=a − 1g, and Π̂PQCD is an analytic
form in PQCD. Π̂fðsÞ≡ ΠfðsÞ − Πð0Þ is a functional form
with the fitting ansatz, which is used for the extrapolation of
the lattice data to obtain Πð0Þ. We utilize three types of
fitting functions,

ðPadé ansatzÞ ΠPade½1;1�
f ðsÞ ¼ Πð0Þ þ sX0

sþ X1

; ð11Þ

ΠPade½2;1�
f ðsÞ ¼ Πð0Þ þ sX0

sþ X1

þ sX2; ð12Þ

ðLinear approxÞ Πlinear
f ðsÞ ¼ Πð0Þ þ sY; ð13Þ

with the fitting parameters Πð0Þ, X0, X1 X2. Note that
we use the same form of Padé approximation as in
Refs. [15,30].

B. Coordinate-space integration scheme

As an alternative approach, we consider the vector-
vector current correlator in the coordinate space:

CðxÞ ¼
X
μ

hVμðxÞVμð0Þi; ð14Þ

where the summation over the same component of sink and
source vector currents is taken. With the use of CðxÞ, ahvpμ

can be expressed as follows1:

ahvpμ ¼
�
αe
π

�
2
Z

d4xCðxÞ
Z

∞

0

dω2KEðω2Þ 4π
2

3ω2

�
eiQx − 1

−
ω2

2
lim
ε2¼0

�X
μν

ð−xμxνÞ
ε2

PμPν

����
Pμ≠0;Pν≠0;ε¼jPj

�	
ω¼jQj

:

ð15Þ

Here there is a degree of freedom for a choice of four
components in the momentum Qμ satisfying Q2 ¼ ω2. If
we take one component as nonzero and others as zero, i.e.,
Qμ ¼ fQρ ¼ jQj; Qμ≠ρ ¼ 0g, ρ ¼ fx; y; z; tg, Eq. (15) is
simplified as

ahvpμ ¼
�
αe
π

�
2
Z

dxρC̄ρðxρÞ
Z

∞

0

dω2KEðω2Þ 4π
2

ω2

×

�
eiωxρ − 1þ ω2x2ρ

2

	
; ð16Þ

where we define

1See the Appendix for the derivation.
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C̄ρðxρÞ ¼
X
μ≠ρ

Z �Y
σ≠ρ

dxσ

�
hVμðxÞVμð0Þi: ð17Þ

This is a formula called time-momentum representation
(TMR) [31], in particular, with the choice of the time
direction for xρ.

2 It is consistent with the Lorentz-covariant
coordinate-space representation [32] if the coordinate-
space integral in Eq. (15) is transformed into the spherical
and radial integrals.
In LQCD, we perform a discretized coordinate-space

summation of the correlator on the finite lattice volume
defined as

½ahvpμ �latðrcutÞ ¼
1

2

Xrcut=a−1
r=a¼0

½CΓΓ0 ðrÞWrðrÞ

þ CΓΓ0 ðrþ aÞWrðrþ aÞ�; ð18Þ

WrðrÞ ¼ 8α2e

Z
∞

0

dω
ω

KEðω2Þ½ω2r2 − 4sin2ðωr=2Þ� ð19Þ

with

CΓΓ0 ðxÞ ¼
X
μ

hVΓ
μðxÞVΓ0

μ ð0Þi; ð20Þ

where r, which denotes a distance from the source point,
is regarded as the generalized expression of xρ in Eq. (16),
and thus CΓΓ0 ðrÞ represents C̄ρðxρÞ on the lattice. This
procedure introduces the systematic uncertainties due not
only to the discretized summation but also to the truncation
at some finite distance rcut.

3

As we will explain below, the lattice used in this study
is symmetric, and its spatial/temporal extension is large

enough to control the finite volume effect and the backward
propagation state (BPS) effect investigated in Ref. [22].
We can perform the integral of Eq. (16) [summation of
Eq. (18)] for each direction of ρ ¼ x, y, z, t, which allows
us to increase the statistics by 4 times without much
computational cost.

III. CALCULATION DETAILS

A. Configurations

We use two subsets of the PACS10 configurations, which
are generated with the stout-smeared OðaÞ-improved
Wilson-clover quark action and Iwasaki gauge action
[33] on 1284 and 1604 lattices (the spatial extension L
and temporal extension T are symmetric) at β ¼ 1.82 and
2.00, respectively. In addition, we also employ the gauge
field configurations on a 644 lattice at β ¼ 1.82, which are
copied in the temporal direction extending T=a to 128 in
the FV study. Lattice parameters for these configuration
sets are summarized in Table I. We investigate the FVeffect
using the 1284 and 644 lattices at the same lattice spacing,
and the study of the cutoff effect uses the 1284 and 1604

lattices with the fixed physical volume.
The detailed description of the configuration generation

on the 1284 and 644 lattices was already given in Ref. [23].
Here we explain the configuration generation on the 1604

lattice at β ¼ 2.00. We employ the stout-smearing param-
eter ρ ¼ 0.1, and the number of the smearing steps is 6,
which are the same as in the case of the 1284 lattice at
β ¼ 1.82 [23]. The improvement coefficient of cSW ¼ 1.02
is nonperturbatively determined by the Schrödinger func-
tional (SF) scheme following Ref. [34]. The hopping
parameters for the light (degenerate up-down) and strange
quarks ðκud; κsÞ ¼ ð0.125814; 0.124925Þ are carefully
adjusted to yield the physical pion and kaon masses
ðmπ; mKÞ ¼ ð135.0 MeV; 497.6 MeVÞ with the use of
the cutoff of a−1 ¼ 3.09 GeV (a ¼ 0.064 fm) [35] deter-
mined from the Ξ mass mΞ ¼ 1.3148 GeV. The hopping
parameter for the charm (only valence quark) is set to
κc ¼ 0.110428 on 1284 lattice, and κc ¼ 0.11452 on 1604

lattice adjusted to the physical point.
The degenerate up-down (ud) quarks are simulated

with the domain-decomposed hybrid Monte Carlo
(DDHMC) algorithm [36,37] on the 1604 lattice. The ud

TABLE I. Summary of the lattice parameters for the gauge field configurations used in this work.

Refs. L=a [L] T=a [T] a−1 (GeV) mπ (MeV) # configs.

PACS10 [23] 128 [10.8 fm] 128 [10.8 fm] 2.333(18) 135 21
160 [10.3 fm] 160 [10.3 fm] 3.087(30) 135 40a

[22,23] 64 [5.4 fm] 64 [5.4 fm] 2.333(18) 139 187
[22] 64 [5.4 fm] 128b [10.8 fm] 2.333(18) 139 86

aFour rotational degrees of freedom are taken into account. Originally ten configurations were generated.
b
644 gauge configurations are copied in the temporal direction, extending T=a to 128.

2We will not call “TMR” for Eq. (17), alternatively saying
“coordinate-space representation” since the word “time” may be
confusing.

3On the lattice, since the momentum is discretized, the mo-
mentum integral in Eq. (19) should be replaced as the summation
of lattice momentum squared of ω2 ¼ P

μð2πnμ=LμÞ2 for
nμ ¼ ½0; Lμ − 1�, while we naively use the momentum integral
as the continuum. This assumption may also introduce additional
systematic uncertainty, but taking the continuum limit and infinite
volume limit will not be a concern.
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quark determinant is separated into the UV and infrared
(IR) parts after the even-odd preconditioning. We also
apply the twofold mass preconditioning [38,39] to the IR
part by splitting it into F̃IR, F0

IR, and F00
IR. This decom-

position is controlled by two additional hopping parame-
ters: κ0ud ¼ ρ1κud with ρ1 ¼ 0.9997 and κ00ud ¼ ρ1ρ2κud with
ρ2 ¼ 0.9940. F̃IR is derived from the action preconditioned
with κ0ud. The ratio of two preconditioners with κ0ud and κ00ud
gives F0

IR. F
00
IR is from the heaviest preconditioner with

κ00ud. In the end, the force terms consist of the gauge force
Fg, the UV force FUV, and the three IR forces F00

IR, F
0
IR,

and F̃IR. The IR forces are obtained with the mixed
precision nested BiCGStab method for the quark solver
[40]. We adopt the multiple timescale integration
scheme [41] in the MD steps. The associated step sizes
are controlled by a set of integers ðN0; N1; N2;
N3; N4Þ: δτg ¼ τ=N0N1N2N3N4, δτUV ¼ τ=N1N2N3N4,
δτ00IR ¼ τ=N2N3N4, δτ0IR ¼ τ=N3N4, δτ̃IR ¼ τ=N4 with
τ ¼ 1.0. Our choice of ðN0; N1; N2; N3; N4Þ ¼ ð8; 2; 2;
2; 20Þ for the 1604 lattices results in 82% acceptance
rates. The strange quark is simulated with the RHMC
algorithm [42] by choosing the force approximation range
of ½min;max� ¼ ½0.000190; 1.90� with NRHMC ¼ 10, and
δτs ¼ δτ00IR for the step size.
The renormalization constant ZV for the local vector

current operator in Eq. (6) depends on the lattice cutoff
scale. We obtain ZV ¼ 0.95153ð76Þ at a−1 ¼ 2.33 GeV
(β ¼ 1.82) with the SF scheme [43], and ZV ¼ 0.9673ð19Þ
at a−1 ¼ 3.09 GeV (β ¼ 2.00) from the nucleon form
factor. Note that we observe good consistency between
the results of ZV determined by the SF scheme and the
nucleon form factor [44]. The physical observables are
measured at every ten trajectories on 1284 and 644, and
every five trajectories on 1604. The statistical error is
estimated by the jackknife analysis with 1, 4, and 5
jackknife bin sizes for the 1284, 1604, and 644 lattices,
respectively [23].

B. AMA with deflated SAP preconditioning

The precision of the light flavor vector-vector current
correlator in the IR regime, which is the small Q2 region
in Eq. (1) or the long distance region from the source
location in Eq. (18), has the vital importance to achieve
a less than 1% level of accuracy for ahvpμ with LQCD.
As in the previous study [22], we utilize the optimized
all-mode-averaging (AMA) technique [45–47] to make
an efficient calculation of the vector-vector current
correlator in LQCD. For the AMA approximation
[22,47], we use the parameter set illustrated in Table II.
As shown in Refs. [22,47], the combination of AMAwith
the deflated Schwartz alternative procedure (SAP) pre-
conditioning [48] achieves the remarkable performance on
the large lattice, and it then allows us a precise calculation
of ahvpμ , especially in a long distance region. In fact, the

condition number in the AMA method with the deflated
SAP preconditioning does not have large volume
dependence [22] since the low mode is effectively elim-
inated by the projection with a deflation field so that the
computational cost to solve the light quark propagator
does not increase even if the lattice size is enlarged.
Although the computational cost of generation of deflation
fields is increased in a large lattice size, it takes only a few
percent of the total computational cost [22] in deflated SAP
preconditioning. This provides us with another advantage
to avoid consuming large storage space to save the low-
lying mode.
In the left panel of Fig. 1, we show the volume scaling for

the relative error of the correlator at the physical pion mass.
This is more robust test of volume scaling than the previous
study [22], where there might be possible contamination
due to the pion mass difference between two volumes.
From this plot, one can see that the ratio of the relative error
between the 644 and 1284 lattices has a consistent behavior
with the expected scaling value of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
643=1283

p
in a long

distance region t≳ 1.5 fm, which means that the use of a
large volume can significantly reduce the statistical error,
especially for the IR regime. As illustrated in the right panel
of Fig. 1, we also observe the universal behavior for the
relative error of the vector-vector current correlator at
different cutoff scales on the same physical volume. This
feature is also expected from the volume scaling hypothesis
for the statistical error.

C. Multihadron state contributions

Using our large lattice ensembles at the physical pion
mass, the multihadron state contributions, mostly the two-
pion state, are correctly involved in the vector-vector
current correlator. Figure 2 plots the effective mass of
the vector-vector current correlator with ðΓ;Γ0Þ ¼ ðL;CÞ
on each ensemble. The ρ meson is allowed to decay into
the energetic pions on those ensembles, since the two-pion
state energy 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ ð2π=LÞ2
p

is much lower than the ρ
meson mass mρ ¼ 770 MeV. We observe that the effective
mass goes down below 770 MeVaround t ≈ 1 fm and stays

TABLE II. The parameter of the AMA approximation on the
644, 1284, and 1604 lattices. The “SAP domain” column denotes
the size of the SAP domain, and the “Deflation” column denotes
the number of deflation fields on the deflated SAP precondition-
ing. “Iteration” denotes the stopping iteration of the general
conjugate residual (GCR) method.

Quark Lattice SAP domain Deflation Iteration

Light 644 44 30 5
1284 84 50 7
1604 104 50 7

Strange 1284 84 46 5
1604 104 30 5
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above the energy level of 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ ð2π=LÞ2
p

in the large t
region on each ensemble. This is a clear indication of the
existence of a lower energy state than the ρ meson mass in
the region of t≳ 1 fm, which is dominated by the multi-
hadron state contributions.

IV. NUMERICAL RESULTS

With the use of the gauge field configurations explained
in Sec. III, we perform a systematic study of uncertainties
stemming from the FV effect, the cutoff effect, and the
integration scheme dependence in the LQCD calculation of
ahvpμ . For the FV effect, we directly compare the results for
the coordinate-space integral of Eq. (18) obtained on the
L=a ¼ 128 and L=a ¼ 64 lattices at the same cutoff scale
of a−1 ¼ 2.33 GeV. The cutoff effect is investigated by
calculating the coordinate-space integral of Eq. (18) on the
1284 and 1604 lattices, keeping the physical lattice volume
constant. We also discuss the operator dependence of the
cutoff effect for the local and conserved vector currents.
Finally we examine the consistency between the coordi-
nate- and momentum-space integration schemes on the
1284 [ð10.8 fmÞ4] lattice at the physical pion mass.

A. Finite volume effect

Figure 3 shows the comparison of integrand in Eq. (18)
between the L=a ¼ 128 and L=a ¼ 64 lattices. For the
latter section, we extend T=a to 128 by copying the 644

lattice in the temporal direction so that we can eliminate the
BPS wrapping around the temporal direction observed in
our previous study [22] and discussed below. We remark
that, although the 644 lattice configurations are generated
at the same hopping parameter as for the 1284 lattice, the
measured pion mass mπ ¼ 139 MeV on the 644 lattice is
slightly heavier than mπ ¼ 135 MeV on the 1284 lattice
due to the FV effect [23]. In the right panel of Fig. 3, one
can see that the integrand has a clear tendency in which
the magnitude of the integrand increases when L=a is
enlarged from 64 to 128. The left panel of Fig. 4 plots the
FV effect defined as
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ΔFV ¼ ½ahvpμ ðrcutÞ�lL=a¼128 − ½ahvpμ ðrcutÞ�lL=a¼64; ð21Þ

which shows that the magnitude is larger than the leading-
order ChPT, having the same sign as the ChPT prediction
[19]. In this figure, we also make a comparison using the
result for the 644 lattice. One can see that in the IR regime,
larger than rcut ¼ 2.3 fm, the BPS effect may be involved
in FV correction as an enlarged ahvpμ effect on 644, and it
then turns out to be additional systematic uncertainty. Use
of the extended temporal direction as 643 × 128 thus plays
an important role to avoid such a BPS effect from FV
correction. In order to clarify the discrepancy, we plot the
ratio of the FVeffect between LQCD and ChPT at each rcut
in the right panel of Fig. 4. One can observe that the LQCD
data tend to become larger than the ChPT prediction from

r ≈ 1 fm, and this tendency does not change even if rcut
increases, though the statistical error becomes larger.
The discrepancy of FV effect between LQCD and ChPT

in the light quark sector is estimated as

Δlat
FV=ΔChPT

FV

¼
�
2.16ð66Þ ½at rcut ≃ 2.0 fm on 644 lattice�;
1.74ð71Þ ½at rcut ≃ 2.6 fm on 643 × 128 lattice�;

ð22Þ

on L ¼ 5.4 fm at the physical pion mass. Comparing
T=a ¼ 64 and 128, as one can also see in Fig. 4, even
at r ≃ 2 fm, there is a significant contribution of BPS
regarded as an additional FV effect. Our result in Eq. (22)
indicates that the actual FVeffect tends to be larger than the
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ChPT prediction, which may provide useful information
on other recent LQCD results using ChPT or another
analysis to correct the FV effect for ahvpμ on ð4 to 5 fmÞ3
box [14,16–18].4
The similar analysis is made for the strange quark sector

½ahvpμ �s. Figure 5 shows little FV effect for ½ahvpμ �s, as
expected from the fact that the strange quark mass is much
heavier than the light one.

B. Cutoff effect

In Fig. 6, we plot CΓΓ0 ðrÞWrðrÞ in Eq. (18) at two
different cutoff scales of a−1 ¼ 2.33 and 3.09 GeV on the
same physical volume over ð10 fmÞ4 at the physical pion
mass. We compare the cutoff effect in two types of vector-
vector current correlators with ðΓ;Γ0Þ ¼ ðL;LÞ and (C, L)
for the sink and source vector current operators in Eq. (20).
We observe that CLLðrÞWrðrÞ at different cutoff scales well
agree with each other, whereas the sizable deviation is
found for CCLðrÞWrðrÞ from r ≃ 0.5 fm. Our LQCD
results show that the CLLðrÞ correlator has a smaller cutoff
effect than the CCLðrÞ one. In order to make a quantitative
measurement of the discrepancy between the two types of
the correlators, we plot the normalized difference defined as

ΔrðrÞ≡ 1 − CCLðrÞ=CLLðrÞ ð23Þ

in Fig. 7. The quantity shows a clear deviation from zero,
and its magnitude is reduced for the finer lattice. Around
r ≈ 1.5 fm, we obtain

Δrðr ≈ 1.5 fmÞ ¼
�
0.089ð3Þ ða−1 ¼ 2.33 GeVÞ
0.063ð1Þ ða−1 ¼ 3.09 GeVÞ ;

ð24Þ

and their ratio Δ1=a¼3.06 GeV
r =Δ1=a¼2.33 GeV

r ¼ 0.71ð3Þ is
comparable to the cutoff ratio of a−1

1284
=a−1

1604
¼

½2.333ð18Þ GeV�=½3.089ð30Þ GeV� ¼ 0.76ð1Þ (also see
the right panel of Fig. 7). This suggests that the LQCD
result with CCLðrÞ is affected by theOðaÞ correction due to
a significant cutoff effect on the conserved (point-splitting)
current.
In Fig. 8, we plot the rcut dependence for ½ahvpμ �latðrcutÞ in

the light and strange quark sectors. They asymptotically
reach constant values around rcut ≳ 3.5 fm without large
statistical fluctuation. In both the light and strange quark
sectors, ½ahvpμ �lat in the (L, L) channel at two cutoff scales
agree within 1σ statistical error, while there is a 10% to
11% cutoff effect to affect ½ahvpμ �lat in the (C, L) channel
at a−1 ¼ 2.33 GeV.
We summarize the scaling properties for ½ahvpμ �llat,

½ahvpμ �slat, and ½ahvpμ �clat at two cutoff scales and their con-
tinuum extrapolations in Fig. 9, where the LQCD results at
each cutoff scale are obtained by choosing rcut ≈ 3.5 fm.
One can see that the (L, L) channel has a rather small cutoff
effect, which is not significant in the currently statistical
precision, compared to the (C, L) channel in the light and
strange quark sectors. Note that the local vector current we
used here is not an OðaÞ improvement; however, in our
lattice setup, the OðaÞ cutoff effect for the local current
is automatically suppressed, and hence such an OðaÞ
improvement is not required. This is expected in that the
magnitude of cA, which is theOðaÞ improvement factor for
the local axial vector current, is almost zero when com-
puted by the SF scheme [43] on the same lattice setup, and
correspondingly cV will be a similar order of magnitude. In
addition, we check that the contribution of higher dimen-
sion operator q̄ð∂σÞμq, which is usually used for the OðaÞ
improvement of the local vector current, is an order of
magnitude smaller than that of the naive local vector
current. On the other hand, for a conserved current without
OðaÞ improvement, it is clear that the correction of the
OðaÞ cutoff effect is needed to reduce the cutoff uncertainty
even for our lattice setup. In our analysis, even though there
are only two variations of lattice cutoff, it would be
acceptable to use a constant fit of the (L, L) channel for
½ahvpμ �llat and ½ahvpμ �slat to take the continuum extrapolation,
and we omit the (C, L) channel to avoid the additional
systematic uncertainty due to a fitting with OðaÞ and a
higher cutoff correction.
The systematic error is evaluated by taking the maximum

difference between the central value obtained by the
constant fit and the linearly extrapolated values in the
(L, L) channels with the ansatz of the OðaÞ term, including
the error of the lattice cutoff itself. The magnitude of the
systematic error is comparable to that of the statistical one
in the light and strange quark sectors. For the charm quark
sector, the bottom panel of Fig. 9 shows the large cutoff
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4rcut ≃ 2.6 fm is the maximum point of the window method in
Ref. [17], and it then means that there still may be a large FV
correction.
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effect due to the OðamcÞ contribution, even in the (L, L)
channel. So we take the linearly extrapolated value in the
(L, L) channel as the central value in the continuum limit,
and its systematic error of theOða2Þ contribution is naively
estimated as ðc1aÞ2=c0, where c1 is defined in the fit
result of the linear extrapolation c0 þ c1a. Further analysis
of the cutoff effect in the charm sector will be done by
adding the data on one more fine lattice in the future. One
can see that the uncertainty of the cutoff effect is dominant
in the charm quark sector. For the total contribution of
½ahvpμ �llat þ ½ahvpμ �slat þ ½ahvpμ �clat, the uncertainty in the light
quark sector is still dominant.

C. Analysis of momentum-space integration
scheme on 1284 lattice

Compared to the coordinate-space integration scheme,
the momentum-space integration scheme is rather straight-
forward for performing the integral in Eq. (1) once Πð0Þ
is determined by the zero-momentum extrapolation of the
VPF [see Eq. (8)]. The advantage of this work over prior
ones [15,30,49–51] is that we can not only access the VPF
in the low-momentum region but also have high resolution
in terms of Q2 without resort to the twisted boundary
condition for the valence quark by using a large lattice size
larger than ð10 fmÞ4. Our large lattice is also useful for
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reducing the uncertainty due to zero-momentum extrapo-
lation and does not introduce the partially quenching effect
for the different boundary conditions between the sea and
valence quarks.
We plot the LQCD data of the VPF in each quark sector

in Fig. 10, where the fit results of the Padé approximation
of order [1,1] for the light and strange quark sectors using
Q2

fit ≤ 0.05 GeV2 and the linear function for the charm

quark usingQ2
fit ≤ 0.065 GeV2 are also shown. We observe

that the VPFs in the light and strange quark sectors have
stronger slope around the zero-momentum region than in
the charm quark sector. As shown in Fig. 10, the Padé
approximation of lowest order of [1, 1] well describes
such a lattice data with reasonable χ2=dof < 1 in the
correlated fit. Although we employ a narrow fit range
close to zero momentum, Fig. 11 shows that the fit function
agrees with the Q2 dependence of the LQCD data up to
Q2 ¼ 0.4 GeV2, which is far beyond the fitting range. This
behavior indicates that the lowest Padé approximation,
which consists of single pole dominance, is a reasonable
approximation in the IR regime. Since the VPF multiplied
by the weight function Wq in Q2 ≥ 0.5 GeV2 gives a tiny

contribution to the total ahvpμ , as mentioned in Sec. II A, we
evaluate the integral without the PQCD part [the third term
of Eq. (8)] in our analysis. In fact, the LQCD data of
integrals larger than Q2 ≈ 0.5 GeV2 are below 0.5 × 10−10,
corresponding to less than 0.1% for ahvpμ (see the right panel
of Fig. 11), and it is then negligible. Therefore we hereafter
estimate ahvpμ using integrals up to Q2 ¼ 0.5 GeV2.
Since the integrand has a sharp peak structure signifi-

cantly below the minimum momentum squared Q2
min ≈

0.013 GeV2 allowed for our ensemble (see Fig. 11), the
integral in Eq. (8) is sensitive to the extrapolation procedure
from Q2

min to zero. We employ the linear extrapolation and
the Padé approximation of order [1,1] and [2,1]. Figure 12
compares the results of ½ahvpμ �Mom obtained by both extrapo-
lation methods while varying the fitting ranges fromQ2

min to
Q2

fit. In the case of linear extrapolation, the results of
½ahvpμ �Mom show significantQ2

fit dependence due to a higher-
order term than OðQ2Þ even in Q2 ≈ 0.013 GeV2, except
for the charm quark sector. On the other hand, we observe
little Q2

fit dependence for ½ahvpμ �Mom with the Padé approxi-
mation of order [1,1] and [2,1] up to Q2

fit ¼ 0.235 GeV2 in
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the light quark sector. We find that, even with different Q2
fit

and different orders of Padé approximation, the result in the
momentum-space integration scheme is in good agreement
with ½ahvpμ �CLlat ðrcutÞ at rcut ¼ 3.5 fm within 1.5σ error, and
this is thus a consistency test for the scheme independence.
We also find that the systematic uncertainty due to fitting
with the Padé approximation is negligible in our study on
the L ¼ 10.8 fm lattice.
Here we notice the strong Q2

fit dependence for the results
in the strange quark sector that appear in Fig. 12. In this
case, an extra lattice cutoff effect of OðamsðaQÞ2Þ, which
is not described by the naive Padé approximation, may arise
in the strange quark sector. More detailed study will be
needed in the future.
In contrast to the 1284 lattice, Fig. 13 shows the

significant Q2
fit dependence for the results with both

extrapolation methods on the 644 lattice since the low
Q2 data has coarse resolution on this lattice. Our LQCD
study suggests that the lattice size with L ¼ 5.4 fm at the
physical pion mass, corresponding to mπL ¼ 3.8, is not
large enough for the momentum-space integration scheme
to obtain a reliable result of ahvpμ because of large FV
correction.
We remark that the statistical precision of the result for

½ahvpμ �Mom is more easily obtained than that for ½ahvpμ �lat. This
is because of a noise cancellation in Π̂ðQÞ between the
extrapolated Πð0Þ and ΠðQÞ, which are highly correlated
with each other. In addition, in the momentum-space
integration scheme, we do not need to introduce the
truncation of the integration range corresponding to the
IR truncation rcut in the coordinate-space integration
scheme. This indicates the possibility that once we have
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low Q2 data covering a peak position of Wq (Q2 ∼
0.003 GeV2), for which we need to prepare a box size 2
times larger than in this study, we can obtain a high
precision result with smaller statistical and systematic
errors than the coordinate-space integration scheme.

D. Discussion

We obtain the connected ahvpμ in the light, strange, and
charm quark sectors at the physical point:

ahvpμ ¼

8>><
>>:

673ð9Þð11Þ × 10−10 ½light�
52.1ð2Þð5Þ × 10−10 ½strange�
11.7ð2Þð1.6Þ × 10−10 ½charm�

; ð25Þ

where the first error is statistical for ðΓ;Γ0Þ ¼ ðL;LÞ with
the constant fit, and the second one is systematic for the
uncertainty in the continuum extrapolation explained in
Sec. IV B. We find that the statistical and systematic errors
for the light quark sector gives the leading contribution to
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fit dependence in zero-momentum extrapolation with linear function and Padé approximation for the VPF in (top panel)
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error (dashed) of the result in the coordinate-space integration scheme with rcut ≈ 3.5 fm.
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FIG. 13. The same as Fig. 12 but on a 644 lattice.
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the total error. The contributions from the strange and
charm quark sectors are minor effects.
Here we make two remarks:
(1) Our choice of rcut ≈ 3.5 fm in the coordinate-space

integration scheme, which is larger than the 3 fm
value employed in Refs. [16,17], is large enough to
control the IR truncation. In Figs. 6 and 8, we
observe that the integrand has a nonzero value of
23ð10Þ × 10−10 at rcut ≈ 3 fm in the ðΓ;Γ0Þ ¼ ðL;LÞ
channel on the 1284 lattice, and the integral is still
increasing, while the integrand is consistent with
zero at rcut ≈ 3.5 fm, and the integral does not
depend on rcut even if we use a larger rcut. High
precision data on a lattice larger than ð10 fmÞ4 at the
physical point allow us to evaluate the integral with
the IR truncation effect under control.

(2) The scaling properties presented in Sec. IVB are
similar to the domain-wall fermion case [17], though
the computational cost is much lower for Wilson-type
quark action. The continuum extrapolation is straight-
forward and theoretically robust forWilson-type quark
action compared to the staggered fermion case [16,53].

In this paper, we concentrate on the connected HVP
diagram, while there are some missing diagrams of the

isoscalar contribution with the disconnected diagram and
the isospin breaking (IB) term due to the QED correction.
Referring to the recent work in Refs. [16,17], we con-
servatively add the systematic error of the quark discon-
nected diagram contribution as a −2% effect, and the
IB effect as a þ1% error to the total contribution. We then
find that

ahvpμ ¼ 737ð9Þð þ13
−18Þ × 10−10; ð26Þ

where the first error is statistical and the second one
represents the total systematic error obtained in the quad-
rature. The magnitude of the error is still 2.7%, in which the
systematic error, mainly due to the uncertainty of discon-
nected diagram, is more than 2 times larger than the
statistical one. Compared to other lattice results (Nf ≥ 3)
(see Fig. 14), our value is consistent with the results by the
RBC-UKQCD [17] and BMW [16] collaborations, while
we find slight tension with recent results of the ETMC [18]
and HPQCD [14] collaborations, and 2σ deviation from
the phenomenological estimates [10,11]. Our result seems
to favor the “experimental” ahvpμ , which is defined as the
difference between the BNL experimental value of aμ and
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FIG. 14. (Left panel) Summary plot of the connected ahvpμ in the light quark sector ½ahvpμ �l and (right panel) the full result of ahvpμ in
comparison with recent LQCD results (Nf ≥ 3) of the BMW [16], ETMC [18], HPQCD [14], and RBC-UKQCD [17] collaborations,
and phenomenological estimate obtained with the experimental R-ratio by DHMZ [10] and KNT [11]. The shaded vertical band shows
the experimental ahvpμ estimated as the difference between the BNL experimental value of aμ and the theoretical value with QED and EW,

including the light-by-light scattering contribution. The error bar for ½ahvpμ �l in this work represents the combined error with the statistical
one and the systematic one due to the cutoff effect. Additional uncertainties of the missing disconnected diagram and the IB effect are
included in the error bar of ahvpμ in this work.
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the theoretical calculation with QED and electroweak
gauge symmetry (EW), including the light-by-light scatter-
ing contribution in Ref. [12].

V. SUMMARY

We have studied the systematic uncertainties in the
LQCD calculation of ahvpμ on PACS10 gauge configurations
which have a greater than ð10 fmÞ4 box size at the physical
point with two different lattice cutoffs. This study and a
previous work [22] are the direct LQCD calculations
without use of any ansatz or reliance on any effective
models. The optimized LQCD calculation of HVP on a
sufficiently large lattice size at the physical point allows us
to access the deep IR regime where the contributions of
multihadron states become manifest. Our study points out
that such contributions may be larger than the estimate in
the leading order of ChPT. In Fig. 14, we observe that our
result of ahvpμ is relatively larger than that of other LQCD
studies. The reason for such a tendency may be due to the
discrepancy between LQCD and ChPT (or related phe-
nomenological models) including only a two-pion state
contribution, which was applied to evaluate the FV cor-
rection in other LQCD studies, as discussed in Sec. IVA.
We have also investigated the lattice cutoff effect in the
coordinate-space integration scheme using data at two
different cutoffs. We find that the cutoff effect is tamed
for the local vector current on our gauge configurations.
Furthermore, the momentum-space integration scheme on a
L > 10 fm lattice yields high quality data for a VPF close
to Q2 ¼ 0, which substantially reduces uncertainty in the
zero-momentum extrapolation. With a careful study of the
extrapolation procedure dependence, we have confirmed
the consistency between the results in the momentum- and
coordinate-space integration schemes.
The total error for the result of ahvpμ is 2.7%, of which the

statistical error is 1.2% and the remaining is the systematic
uncertainty. We plan to reduce both the statistical and
systematic errors with additional calculations, including
one finer lattice, disconnected diagram, and QED effect in
the future. Here we will point out the possibility that the
momentum-space integration scheme with L > 20 fm cov-
ers the peak position of kernel function in the low Q2

regime, so it could be a rigorous test for the LQCD scheme.
We leave that for future work.
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APPENDIX: THE DERIVATION OF
COORDINATE REPRESENTATION

The Fourier transformation of Eq. (14) is defined as

GðQÞ ¼
Z

d4xeiQxCðxÞ ¼ 3Q2ΠðQÞ: ðA1Þ

Π̂ in Eq. (2) can be represented as

Π̂ðωÞ ¼ 1

3ω2
GðωÞ − 1

3ω2
GðωÞ

����
ω¼0

; ðA2Þ

where the second term is expanded as

1

3ω2
GðωÞ

����
ω¼0

¼ 1

3ω2

�
Gð0Þ þ 1

2
ω2G00ð0Þ þOðω4Þ

	
;

ðA3Þ

and we obtain

Π̂ðωÞ ¼ 1

3ω2
GðωÞ − 1

3ω2
Gð0Þ − 1

6
G00ð0Þ: ðA4Þ

In general, the second derivative of G with respect to
ω ¼ jQj can be expressed as

G00ðωÞ

¼
Z

d4xeiQx

�X
μν

ð−xμxνÞ
ω2

QμQν
eiQxCðxÞ

����
Qμ≠0;Qν≠0

	
ω¼jQj

;

ðA5Þ

where the terms with odd power of xμ vanish in the
coordinate integral. By substituting the above equation
into Eq. (1), we can obtain Eq. (15).5See http://luscher.web.cern.ch/luscher/openQCD/.
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