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The leading electromagnetic (e.m.) and strong isospin-breaking corrections to the = — utu[y] and
K™ — pTu[y] leptonic decay rates are evaluated for the first time on the lattice. The results are obtained using
gauge ensembles produced by the European Twisted Mass Collaboration with Ny = 2 + 1 + 1 dynamical
quarks. The relative leading-order e.m. and strong isospin-breaking corrections to the decay rates are
1.53(19)% for x,,, decays and 0.24(10)% for K, decays. Using the experimental values of the 7, and K,
decay rates and updated lattice QCD results for the pion and kaon decay constants in isosymmetric QCD,
we find that the Cabibbo-Kobayashi-Maskawa matrix element |V,,| = 0.22538(46), reducing by
a factor of about 1.8 the corresponding uncertainty in the particle data group review. Our calculation of
|V | allows also an accurate determination of the first-row Cabibbo-Kobayashi-Maskawa unitarity relation
[Vial? + Vs> + [Viup|? = 0.99988(46). Theoretical developments in this paper include a detailed dis-
cussion of how QCD can be defined in the full QCD + QED theory and an improved renormalization
procedure in which the bare lattice operators are renormalized nonperturbatively into the regularization
independent momentum subtraction (RI’-MOM) scheme and subsequently matched perturbatively at

O(agmas(My)) into the W-regularization scheme appropriate for these calculations.

DOI: 10.1103/PhysRevD.100.034514

I. INTRODUCTION

In flavor physics, the determination of the elements of the
Cabibbo-Kobayashi-Maskawa (CKM) matrix [1], which
contain just four parameters, from a wide range of weak
processes represents a crucial test of the limits of the Standard
Model (SM) of particle physics. Inconsistencies with theo-
retical expectations would indeed signal the existence of new
physics beyond the SM and subsequently a detailed
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comparison of experimental measurements and theoretical
predictions would provide a guide toward uncovering the
underlying theory beyond the SM. For this to be possible
nonperturbative hadronic effects need to be evaluated as
precisely as possible and in this paper we report on progress
in improving the precision of lattice computations of leptonic
decay rates by including radiative corrections and strong
isospin-breaking (IB) effects. A summary of our results has
been presented in Ref. [2]; here we expand on the details of
the calculation and include several improvements, most
notably the renormalization of the four-fermion weak oper-
ators in the combined QCD + QED theory (see Sec. [V). We
also discuss in some detail how one might define the QCD
component of the full (QCD + QED) theory (see Sec. II).
Although such a separate definition of QCD is not required
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in order to obtain results computed in the full theory, it is
necessary if one wishes to talk about radiative (and strong IB)
“corrections” to results obtained in QCD. For this we need to
specify what we mean by QCD.

The extraction of the CKM elements from experimental
data requires an accurate knowledge of a number of
hadronic quantities and the main goal of large-scale
QCD simulations on the lattice is the ab initio evaluation
of the nonperturbative QCD effects in physical processes.
For several quantities relevant for flavor physics phenom-
enology, lattice QCD has recently reached the impressive
level of precision of O(1%) or even better. Important
examples are the ratio fx/f, of kaon and pion leptonic
decay constants and the K3 vector form factor f,(0) [3],
which play the central role in the accurate determination of
the CKM entries |V ,,/V 4| and |V |, respectively. Such
lattice computations are typically performed in the isospin
symmetric limit of QCD, in which the up and down quarks
are mass degenerate (m, = m,) and electromagnetic (e.m.)
effects are neglected (@, = 0).

Isospin breaking effects arise because of radiative correc-
tions and because m, # mg; the latter contributions are
usually referred to as strong isospin breaking effects. Since
both a,,, and (my — m,,) / Agcp are of O(1%), IB effects need
to be included in lattice simulations to make further progress
in flavor physics phenomenology, beyond the currently
impressive precision obtained in isosymmetric QCD.

Since the electric charges of the up and down quarks are
different, the presence of electromagnetism itself induces a
difference in their masses, in addition to any explicit
difference in the bare masses input into the action being
simulated. The separation of IB effects into strong and e.m.
components therefore requires a convention. We discuss
this in detail in Sec. II, where we propose and advocate the
use of hadronic schemes, based on taking a set of hadronic
quantities, such as particle masses, which are computed
with excellent precision in lattice simulations, to define
QCD in the presence of electromagnetism.

In recent years, precise lattice results including e.m. and
strong IB effects have been obtained for the hadron
spectrum, in particular for the mass splittings between
charged and neutral pseudoscalar (P) mesons and baryons
(see, for example, Refs. [4,5]). The QED effects were
included in lattice QCD simulations using the following
two methods:

(1) QED is added directly to the action and QED +
QCD simulations are performed at a few values of
the electric charge and the results extrapolated to the
physical value of a.,, (see, e.g., Refs. [5-7]).

(ii) The lattice path integral is expanded in powers of the
two small parameters o, and (m,; —m,)/Aqcp.
This is the RM123 approach of Refs. [4,8,9] which
we follow in this paper.

In practice, for all the relevant phenomenological appli-

cations it is currently sufficient to work at first order in the

small parameters a,, and (m, — m,)/Aqcp. The attractive
feature of the RM 123 method is that it allows one naturally
to work at first order in isospin breaking, computing the
coefficients of the two small parameters directly. Moreover,
these coefficients can be determined from simulations of
isosymmetric QCD.

The calculation of e.m. and strong IB effects in the
hadron spectrum has a very significant simplification in that
there are no infrared (IR) divergences. The same is not true
when computing hadronic amplitudes, where e.m. IR
divergences are present and only cancel in well-defined,
measurable physical quantities by summing diagrams
containing real and virtual photons [10]. This is the case,
for instance, for the leptonic z,, and K, and semileptonic
K 45 decay rates. The presence of IR divergences requires a
new strategy beyond those developed for the calculation of
IB effects in the hadron spectrum. Such a new strategy was
proposed in Ref. [11], where the determination of the
inclusive decay rate of a charged P meson into either a final
¢*v, pair or a final £*v,y state was addressed.

The e.m. corrections due to the exchange of a virtual
photon and to the emission of a real one can be computed
nonperturbatively, by numerical simulations, on a finite
lattice with the corresponding uncertainties. The exchange
of a virtual photon depends on the structure of the decaying
meson, since all momentum modes are included, and the
corresponding amplitude must therefore be computed non-
perturbatively. On the other hand, the nonperturbative
evaluation of the emission of a real photon is not strictly
necessary [11]. Indeed, it is possible to compute the real
emission amplitudes in perturbation theory by limiting the
maximum energy of the emitted photon in the meson rest
frame, AE,, to a value small enough so that the internal
structure of the decaying meson is not resolved. The IR
divergences in the nonperturbative calculation of the
corrections due to the exchange of a virtual photon are
canceled by the corrections due to the real photon emission
even when the latter is computed perturbatively, because of
the universality of the IR behavior of the theory (i.e., the IR
divergences do not depend on the structure of the decaying
hadron). Such a strategy, which requires an experimental
cut on the energy of the real photon, makes the extraction of
the relevant CKM element(s) cleaner.

In the intermediate steps of the calculation, it is neces-
sary to introduce an IR regulator. In order to work with
quantities that are finite when the IR regulator is removed,
the inclusive rate I'(PT — £ v,[y]) is written as [11]

(P* = £Fuely])
=TI+ Frl,t(AEy)
= Jim [Fo(L) = T5(L)] + lim 51,
-0 Hy =

+TY(AE,. 1)), (1)

034514-2



LIGHT-MESON LEPTONIC DECAY RATES IN ...

PHYS. REV. D 100, 034514 (2019)

where the subscripts 0,1 indicate the number of photons in
the final state, while the superscript pt denotes the pointlike
approximation of the decaying meson and p, is an IR
regulator. In the first term on the rhs of Eq. (1), the
quantities T'o(L) and T)(L) are evaluated on the lattice.
Both have the same IR divergences which therefore cancel
in the difference. We use the lattice size L as the
intermediate IR regulator by working in the QED; [12]
formulation of QED on a finite volume (for a recent review
on QED simulations in a finite box, see Ref. [13]). The
difference [I'y — )] is independent of the regulator as this
is removed [14]. As already pointed out, since all momen-
tum modes contribute to it, ['j(L) depends on the structure
of the decaying meson and must be computed nonpertur-
batively. The numerical determination of I'y(L) for several
lattice spacings, physical volumes, and quark masses is
indeed the focus of the present study.

In the second term on the r.h.s. of Eq. (1), P is a pointlike
meson and both I'} () and I'}'(AE,, 41,) can be calculated
directly in infinite volume in perturbation theory, using a
photon mass p, as the IR regulator. Each term is IR
divergent, but the sum is convergent [10] and independent
of the IR regulator. In Refs. [11,14], the explicit perturba-
tive calculations of [T + I'!'(AE,)] and I} (L) have been
performed with a small photon mass p, or by using the
finite volume respectively, as the IR cutoffs.

In Ref. [2], we have calculated the e.m. and IB corrections
to the ratio of K, and r,,, decay rates of charged pions and
kaons into muons [2], using gauge ensembles generated by
the European Twisted Mass Collaboration (ETMC) with
Ny =2+ 1+ 1 dynamical quarks [15,16] in the quenched
QED (qQED) approximation in which the charges of the sea
quarks are set to 0. The ratio is less sensitive to various
sources of uncertainty than the IB corrections to 7, and K,
decay rates separately. In this paper, in addition to providing
more details of the calculation than was possible in Ref. [2],
we do evaluate the e.m. and strong IB corrections to the
decay processes 7, and K,, separately. Since the corre-
sponding experimental rates are fully inclusive in the real
photon energy, structure-dependent (SD) contributions to
the real photon emission should be included; however,
according to the chiral perturbation theory (ChPT) predic-
tions of Ref. [17], these SD contributions are negligible for
both kaon and pion decays into muons. The same is not true
to the same extent for decays into final-state electrons (see
Ref. [11]) and so in this paper we focus on decays into
muons. The SD contributions to I'; are being investigated in
an ongoing dedicated lattice study of light and heavy
P-meson leptonic decays.

An important improvement presented in this paper is
in the renormalization of the effective weak Hamiltonian.
To exploit the matching of the effective theory to the
Standard Model performed in Ref. [18], it is particularly
convenient to renormalize the weak Hamiltonian in the

W-regularization scheme. The renormalization is per-
formed in two steps. First of all, the lattice operators are
renormalized nonperturbatively in the RI'-MOM scheme at
O(ay,) and to all orders in the strong coupling . Because
of the breaking of chiral symmetry in the twisted mass
formulation we have adopted in our study, this renormal-
ization includes the mixing with other four-fermion
operators of different chirality. In the second step, we
perform the matching from the RI'-MOM scheme to the
We-regularization scheme perturbatively. By calculating and
including the two-loop anomalous dimension at O (g, ),
the residual truncation error of this matching is of
O(emats(My)), reduced from O(aena,(1/a)) in our ear-
lier work [11].

The main results of the calculation are presented in
Sec. VI together with a detailed discussion of their
implications. Here, we anticipate some key results: after
extrapolation of the data to the physical pion mass, and to
the continuum and infinite-volume limits, the isospin-
breaking corrections to the leptonic decay rates can be
written in the form

[(z* = ptvly]) = (1.0153 £ 0.0019)TO) (z* - pFu,),
(2)

T(K* — p*vly]) = (1.0024 £ 0.0010)TO (K* — p*v,),
(3)

where ') is the leptonic decay rate at tree level in the
Gasser-Rusetsky-Scimemi (GRS) scheme which is a par-
ticular definition of QCD [19] (see Sec. II B 2 below). The
corrections are about 1.5% for the pion decays and 0.2% for
the kaon decay, in line with naive expectations. Taking the
experimental value of the rate for the K, decay, Eq. (3)

together with I'®) (K* — u*v,) obtained using the lattice
determination of the kaon decay constant we obtain
|V.s| = 0.22567(42), in agreement with the latest estimate
|V.s| = 0.2253(7), recently updated by the PDG [20] but
with better precision. Alternatively, by taking the ratio of
K,, and 7,, decay rates and the updated value |V,,| =
0.97420(21) from super-allowed nuclear beta decays [21],
we obtain |V, | = 0.22538(46). The unitarity of the first
row of the CKM matrix is satisfied at the per-mille level; e.g.,
taking the value of V,, from the ratio of decay rates and
|V.up|=0.00413(49) [20], we obtain |V,4|* + |V.|*+
|Vup|? = 0.99988(46). See Sec. VI for a more detailed
discussion of our results and their implications.

The plan for the remainder of this paper is as follows. A
discussion of the relation between the “full” QCD + QED
theory, including e.m. and strong IB effects, and isosym-
metric QCD without electromagnetism is given in Sec. II.
We discuss possible definitions of QCD in the full QCD +
QED theory, and in particular we define and advocate
hadronic schemes as well as the GRS scheme which is
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conventionally used [19]. In Sec. I, we present the
calculation of the relevant amplitudes using the RM123
approach. The renormalization of the bare lattice operators
necessary to obtain the effective weak Hamiltonian in the
W-regularization scheme is performed in Sec. IV, while the
subtraction of the universal IR-divergent finite volume
effects (FVEs) is described in Sec. V. The lattice data for
the e.m. and strong IB corrections to the leptonic decay rates
of pions and kaons are extrapolated to the physical pion
mass, to the continuum and infinite volume limits in
Sec. VI. Finally, Sec. VII contains our conclusions.
There are four appendices. The lattice framework and
details of the simulation are presented in Appendix A.
Appendix B contains a detailed discussion of the relation
between observables in the full theory and in QCD,
expanding on the material in Sec. II. An expanded dis-
cussion of the renormalization of the effective weak
Hamiltonian, including electromagnetic corrections, is pre-
sented in Appendix C, which contains a general discussion
of the nonperturbative renormalization in the RI’-MOM
scheme, and Appendix D in which issues specific to the
twisted mass formulation are discussed.

II. DEFINING QCD IN THE FULL THEORY
(QCD+QED)

Before presenting the detailed description of our calcu-
lation of leptonic decay rates, we believe that it is useful to
discuss the relation between the “full” QCD + QED theory,
that includes explicit e.m. and strong isospin breaking
effects, and QCD without electromagnetism (denoted in the
following as the full theory and QCD, respectively).

The action of the full theory can be schematically
written as

1 )
Sfull — ?SYM + SA + Z{Sl;m 4 mel;L}
§ f
+ ) _{SE" + meSy). (4)
14

Here g, is the strong coupling constant, SYM is a dis-
cretization of the gluon action, $4 is the preferred discre-
tization of the Maxwell action of the photon, Siii“ is the
kinetic term for the quark with flavor f, including the
interaction with the gluon and photon fields, m;S% =
mgy . gy(x)qs(x) is the mass term, S¥" and S are,
respectively, the kinetic and mass terms for the lepton ¢
(for details, see Appendix B). For fermion actions which
break chiral symmetry, such as the Wilson action, a
counterterm is needed to remove the critical mass and
myS7 has to be replaced with m,S¥ + m7S%. A mass
counterterm is in principle needed also in the case of the
lepton, but at leading order in «,,, the lepton critical mass
can be ignored.

At the level of precision to which we are currently
working it is only the full theory, as defined in Eq. (4),
which is expected to reproduce physical results and that is
therefore unambiguous. Nevertheless, a frequently asked
question is what is the difference between the results for a
physical quantity computed in the full theory and in pure
QCD, and how big are the strong isospin-breaking effects
compared to the e.m. corrections. We particularly wish to
underline that in order to properly formulate such questions
it is necessary to carefully define what is meant by QCD. It
is naturally to be expected that in QCD alone physical
quantities will not be reproduced with a precision of better
than O(ay,) =~ 1% and this of course is the motivation for
including QED. In order to define what is meant by QCD at
this level of precision, it is necessary to state the conditions
which are used to determine the quark masses and the
lattice spacing. The separation of the full theory into QCD
and the rest is therefore prescription dependent.

In Ref. [4], the subtle issue of a precise definition of
QCD has been discussed by using the scheme originally
proposed in Ref. [19], which we refer to as the GRS scheme
and which has been widely used [2,4,8]. In the following
and in Appendix B, we present an extended and detailed
discussion by introducing the hadronic schemes. Indeed, in
light of the fact that hadron masses can nowadays be
computed very precisely, we strongly suggest using had-
ronic schemes in future lattice calculations of QED
radiative corrections. At the end of this section, we discuss
the connection with the GRS scheme that we had adopted at
the time in which this calculation was started and that, for
this reason, has been used in this work. A summary of the
ideas discussed here has already been presented in
Ref. [22].

A. Renormalization of the full theory

The main difference in the steps required to renormalize
the full theory compared to the procedure in QCD is the
presence of a massless photon and the corresponding finite-
volume (FV) corrections which appear as inverse powers of
L, where L is the spatial extent of the lattice and the volume
V = L3. By contrast, in QCD for leptonic and semileptonic
decays, the FV corrections are exponentially small in the
volume. In the discussion below, if necessary, we imagine
that the chiral Ward identities have been imposed to
determine the critical masses m?r [23].

A possible strategy in principle is the following:

(1) Fix the number of lattice points N, e.g., T = 2aN
and L = aN, where T and L are the temporal and
spatial extents of the lattice and the lattice spacing a
will be determined later. (The specific choice T =
2L is convenient for illustration but not necessary for
the following argument.)

(2) Using a four-flavor theory for illustration, we now
need to determine the four physical bare quark
masses, the bare electric charge, and the lattice
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spacing. To this end, we need to compute six
quantities, e.g., the five dimensionless ratios’

aM

R,(aN;g,,e,m) = —"(aN;g,, e,m),
1(‘1 s, € ) alk[g) (Cl s, € )
aﬂlkﬂ
R N, s e, M) = N9 s €, )
2(61 9s, € ) aMQ (a Ys, € 1'1’1)
CZMD
R N, ,e,m = — N, ,e,m),
3 (‘1 gs, € ) tlj‘fgz (‘1 Js, € )
Mg+ —aM
R4(aN; gs, e, m) = M(aN;gs, e,m),
aMQ
Mo —aM
Rs(aN; g;, e, m) = M(dl\’;gs, e,m),
aMQ

(5)

as well as a dimensionful quantity, e.g., the mass of
the Q baryon, computed in lattice units, from which
the lattice spacing can be determined after extrapo-
lation to the infinite volume limit (see below),

aMy(aN; g,, e, m)

phys
MQ

Ry(aN; g, e,m) =

. (6)

where M2 = 1.672 GeV is the physical value of
the mass of the Q baryon. For illustration, we are
considering the masses of QCD + QED stable pseu-
doscalar mesons in the numerators of the dimension-

less ratios (5) and using M ghys to determine the lattice
spacing, but of course other quantities can be used
instead. For example, in the four-flavor theory that we
are considering here one can in principle avoid
potentially very noisy baryon observables by using
one of the charmed mesons masses already consid-
ered above to set the scale. The choice of setting the
scale with a charmed-meson observable could, how-
ever, generate significant cutoff effects and reduce the
sensitivity to the charm mass. In Egs. (5) and (6),
we have used aN instead of L to highlight that
the infinite-volume limit should be taken at fixed
lattice spacing (see Eq. (7) below). The quantity m
represents the vector of bare quark masses
m = {m,, my,mg,m.}. Note that in the RM123
strategy, since one works at first order in gy, it is
not necessary to impose a renormalization condition
to fix the e.m. coupling [4,8]. In this case, the electric
charge can simply be fixed to the Thomson’s limit,

ie., e = /4n/137.036, and R5 becomes a predict-
able quantity. For the remainder of this section, we
assume that we are working to O(a.y,) and only

considerthe fourratiosR; (i = 1,2,3,4)aswellas R
when discussing the calibration of the lattices. Notice
also that at first order in a,, the z° cannot decay in
two photons, so that it can also be used in the
calibration procedure (see Sec. III below).

(3) Up to this point the procedure is the standard one
used in QCD simulations. The difference here is in
the FV effects which behave as inverse powers of L.
We therefore envisage extrapolating the ratios R; to
the infinite-volume limit

Ri(g;, e,m) = lim R;(aN g, e, m),
i=0,1,2.3.4.5. (7)

(4) For a given discretization and choice of g,, the
physical bare quark masses, mPVs(g,), and the
electric charge, eP™(g,), are defined by requiring
that the five ratios R| ; ; 4 5 take their physical values

Ri(gs, €™ (g,), mP(g,) = RI™, i=1,2,3,4,5.

(8)

In practice, of course, depending on the specific
choice of the ratios R;, this will require some
extrapolations of results obtained at different values
of the bare quark masses and electric charge.

(5) The lattice spacing a at this value of g, can now be
defined to be

a(gs) = Ro(gs. €®™(gy). mP™(gy)).  (9)

Note that with such a procedure the bare parameters
and the lattice spacing a do not depend on the lattice
volume.

(6) At first order in isospin breaking, i.e., O(agy, My—
m,), the renormalization of the lepton masses is
performed perturbatively, by requiring that the on-
shell masses correspond to the physical ones. If one
wishes to go beyond first order, when hadronic
effects first enter, then the physical lepton masses
should be added to the quantities used in the non-
perturbative calibration. The bare lepton masses,
together with the other parameters, should be chosen
such that, in addition to satisfying the conditions in
Eq. (5), the lepton-lepton correlators decay in time as
e ™! where m, is the physical mass of the lepton .

In Eq. (7), we have taken the infinite-volume limit of the

computed hadron masses. By working in the QED;_ finite-
volume formulation of QED, if for each hadron H the FV
corrections of order O(e?/(MyL)?, ¢*) can be neglected,
then the extrapolation to the infinite-volume limit can be
avoided by making use of the formula [5,12] (similar

'An alternative procedure to determine the bare electric charge . - ;
would be the evaluation of the hadronic corrections to a leptonic formulae also exist for other finite-volume formulations of

observable. the theory [24])
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aMH(L;gs» e,m)

aMpy(gs. e.m)

1 1
—1- ? ’
KaemeH{ZLMH(gwe’m) +L2M%-1(gsv e,m)}

(10)

where ey is the charge of the hadron H and «x =
2.837297(1) is a known universal constant (independent
of the structure of the hadron H). Equation (10) can be used
to determine the infinite-volume mass of the hadron H from
the value measured on the finite-volume L3, up to correc-
tions of order of O(e?/(myL)?, ¢*). [In any case, even if
one wishes to study the behavior with L by performing
simulations at different volumes, the subtraction of the
universal terms O(e?/(MyL)) and O(e*/(MyL)?) using
Eq. (10) is a useful starting point; the residual leading
behavior of hadronic masses is then of O(e?/(MyL)?, e*).]

B. Defining observables in QCD

The procedure discussed in Sec. Il A provides a full
framework with which to perform lattice simulations of
QCD together with isospin-breaking effects including
radiative corrections. Nevertheless, one may wish to ask
how different are the results for some physical quantities in
the full theory (QCD + QED) and in QCD alone. We stress
again that, under the assumption that isospin breaking
effects are not negligible, QCD by itself is an unphysical
theory and requires a definition. Different prescriptions are
possible and, of course, lead to different results in QCD. In
this section, we propose and advocate hadronic schemes,
based on the nonperturbative evaluation of a set of hadronic
masses in lattice simulations and contrast this with schemes
based on equating the renormalized strong coupling and
masses in some renormalization scheme and at a particular
renormalization scale which have been used previously.

We recall that the QCD action is given by

1 .
SAP =SSN DS oSy (1)
0 f

where the kinetic term only includes the gluon links and the
subscripts 0 indicate that the bare coupling and masses are
different from those in the full theory of Eq. (4). Indeed, the
two theories have different dynamics that, in turn, generate
a different pattern of ultraviolet divergences. The difference
in the bare parameters of the two theories, for all schemes
used to define QCD, can in fact be ascribed to the necessity
of reabsorbing the different ultraviolet singularities. In what
follows, we present two different approaches to making the
choice of the parameters g, and m (. Explicit details of the
lattice action, discretized using the Wilson formulation for
the fermions for illustration, are presented in Appendix B 1.

1. Defining observables in QCD: hadronic schemes

In hadronic schemes, we choose a value of g, and deter-

mine the bare quark masses mj"* and the lattice spacing aj
imposing the same conditions as for the full theory for the
ratios Ry . 4 evaluated at vanishing electric charge, i.e.,
following steps 1-5 in Sec. II A without imposing any
constraint on the ratio Rs. We repeat that, for illustration we
define the bare quark masses and lattice spacing using the
five ratios R;, but other hadronic quantities could be used
instead, both in the full theory and in QCD. These
parameters differ by terms of order O(a.y,) from those
in the full theory. For this discussion, we make the natural
and convenient choice gy = g,. (In order to make the
perturbative expansion in Eq. (B11), the difference g, —
go should be less than O(a,).) With this choice, the lattice
spacings in QCD (a,) and in the full theory (a) are therefore
given by

To illustrate the procedure, imagine that we wish to
calculate an observable O of mass dimension 1, for
example, the mass of a hadron which has not been used
for the calibration. The generalization to other cases is
straightforward and presented in Appendix B. At a fixed
value of g, = gy, we denote the best estimate of the
observable O, which is the one obtained in the full theory,

by OP"S, and that obtained in QCD as defined above by
OQCD,

orhys = (a0)™ and OUP = LOOPCD.

p 2 (13)
We define the difference of the two as being due to QED
effects, SOEP = OPhys — OQCD | There are three contribu-
tions to SOFP:

(1) The first contribution comes from the fact that the
covariant derivatives in the kinetic terms in Eqgs. (4)
and (11) are different. This generates the diagrams in
the correlation functions which contain the explicit
exchange of virtual photons.

(2) The second contribution comes from the fact that the
bare quark masses appearing in Eqgs. (4) and (11) are
different. The corresponding quark-mass counter-
terms must therefore be inserted into the correlation
functions used to determine OP"*, We stress that the
need to include quark-mass counterterms is generic
and arises from the requirement that the conditions
being used to determine the quark masses must be
satisfied both in the full theory and in QCD (for the
hadronic scheme being used for illustration we
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impose that the conditions in Eq. (8) are satisfied in
both theories).

(3) Finally, we must account for the difference in the
lattice spacings da = a —ay in the full theory
and QCD.

Combining these contributions, we arrive at

50)CP 5
(0OFZ % (gy0)oce,  (14)
ap a(z)

Ophys — OQCD +

where we have combined the contributions to the correlation
functions from the exchange of virtual photons and from the
insertion of the mass counterterms into (a,50)P.

The detailed derivation of Eq. (14) is presented in
Appendix B but some further comments may be helpful
here. The first term on the righthand side is one that can be
calculated within QCD alone. It has a well-defined con-
tinuum limit as does the sum of all the terms in Eq. (14).
This term allows us to define what is the difference between
QCD (defined as above) and the full theory in the hadronic
scheme: QP = ophys — QQCD,

An important feature of the RM123 approach which we
follow in the numerical study presented below, is that the
O(aey) terms are computed explicitly and so we do not
have to take the difference between numerical calculations
performed in the full theory and in QCD. Each of the terms
on the right-hand side of Eq. (14) is calculated directly. We
now explain the procedure in some more detail by assum-
ing that terms of order O(a?,,) are negligible (the extension
to higher orders in a,,, is straightforward).

(1) Correlation functions corresponding to diagrams
with the exchange of a virtual photon and to the
insertion of the mass counterterms are already of
O(aen) and are calculated directly in QCD. The
term proportional to the time separation in the
correlation functions gives us the mass shift My,
(i=1,2,3,4)and 6Mq for the five masses (or mass
differences) in the ratios R; (i = 1,2, 3,4) in Eq. (5);

(2) In the hadronic scheme being used for illustration,
we impose the condition that the four ratios R; =
my /mg are the same in QCD and in the full theory.
This corresponds to requiring that

My, Mg
My Mg

0 (i=123,4). (15

The QED contribution to the left-hand side is
different from zero (and also ultraviolet divergent)
and we require the terms proportional to the counter-
terms to cancel this contribution. We therefore (in
principle) scan the values of the four mass counter-
terms omy = my—myq (f =u, d, s, ¢) until the
four conditions (15) are satisfied. Also, in this case
no subtraction of results obtained in the full theory
and in QCD is necessary.

(3) Finally, we determine the difference da = a — q; in
the lattice spacing. Having determined the bare
masses using item 2, we can calculate the shift in
the Q mass, 0Mq due to both QED and the mass
counterterms, and use Eq. (12). Since adMg is
calculated directly, there is again no subtraction.

We have devoted a considerable discussion to the

definition of the isospin-breaking effects due to electro-
magnetism, §O%P. Having done this, the subsequent
definition of the strong isospin breaking effects is straight-
forward. To do this however, we need to define the
isosymmetric theory (labelled by “ISO”) by imposing
appropriate conditions to determine the bare quark masses
and the lattice spacing. Since m, = my, in the Ny =2 +
1 + 1 theory we need to determine only three quark masses
and hence we only need three conditions, e.g., we can use
the ratios R, 3 in Eq. (5) to determine the physical bare
quark masses. For the determination of the lattice spacing,
we have two options. The simplest one is to work in a mass-
independent scheme and set the lattice spacing in the
isosymmetric theory, a{>°, equal to the one of QCD with
m, # my, i.e., ab® = ay. Notice that this choice is fully
consistent with renormalization because the ultraviolet
divergences of the theories that we are considering do
not depend on the quark masses. Note however, that they do
depend instead on the electric charge. The other option is
that we set the lattice spacing in the isosymmetric theory
by using R, in Eq. (9). The difference between the two
options is due to cutoff effects that disappear once the
continuum limit is taken consistently. The strong isospin
breaking correction §OS™® to the observable O can now be
defined by

50$IB — OQCD _ OISO, (16)
where OO = <a{’s:12)>lso is the value of the observable
0

obtained in isosymmetric QCD. With these definitions,
we have the natural relation OPMWYS = QSO 4 §OQFD 1
505, We underline however that SO depends on the
quantities used for calibration, both in four-flavor QCD and
in isosymmetric QCD.

2. Defining QCD: the GRS scheme

A different prescription, called the GRS scheme, was
proposed in Ref. [19] to relate the bare quark masses and
bare coupling of QCD (my, and go) to those in the full
theory (m, and gy). This prescription has been adopted in
Refs. [2,4,8]. In the GRS approach, instead of determining
the bare parameters of QCD by requiring that the chosen
hadronic masses in QCD are equal to their physical values,
one imposes that the renormalized parameters in a given
short-distance scheme (e.g., the MS scheme) and at a given
scale are equal in the full and QCD theories.
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A consistent procedure is the following:

(1) The full theory is renormalized by using a physical
hadronic scheme as discussed in Sec. II A. This
means that for each chosen value of g; we know the
corresponding physical value of the bare electric
charge eP$(g,) and of the lattice spacing a(g,).

(2) The renormalization constants (RCs) of the strong
coupling constant and of the quark masses are
computed in a short-distance mass-independent
scheme both in the full theory and in the theory
at vanishing electric charge.

(3) In order to set the bare parameters of QCD at a given
value of the lattice spacing, we now chose a
matching scale y and impose that the renormalized
strong coupling constant and the renormalized quark
masses are the same as in the full theory. In practice,
we might want to simulate QCD at the same values
of the lattice spacing used in the full theory
simulations. In this case, the matching conditions are

9(1) = Z,(0, 9o, algs)1) 90

Z,(eP™(gy), gg» a(gs)1)gs = G(u)
z

z

my(u) = Z,, (0, go. algo)m)my.o(go)
= m/-(ephys(gs)’gs’a(gs)ﬂ>mf(gs)
~ iy ) (1)

where ~ indicates quantities in the QCD + QED
theory. Notice that quarks with the same electric
charge have the same RC, e.g., Z,, (e, g,.u) =
Z,, (e, gy, u), and that the quark mass RC at vanishing
electric charge is flavor independent, Z,, (0, go. u) =
Z,,(9o- 1)-

(4) In order to define isosymmetric QCD by using this
approach, the bare up-down quark mass is deter-
mined from

i () + g (u)

Zm (90, a(gs):u)mud,O(gO) = 2 . (18)

Some remarks are in order at this point. The GRS scheme
is a short-distance matching procedure that can also be used
to match the theories at unphysical values of the renor-
malized electric charge and/or quark masses with the
physical theory.

By following the procedure outlined above, one can
perform lattice simulations of the full theory and of
(isosymmetric) QCD at the same value of the lattice
spacing but, consequently, at different values of the bare
strong coupling constant. This is different from the strategy
outlined in the previous subsection where, by using
hadronic schemes, it was more natural to choose the same
value of the bare strong coupling at the price of having two

different lattice spacings. The absence of the lattice spacing
counterterm (see Eq. (14) above) in the GRS scheme
is compensated from the presence of the counterterm
(1/g5 —1/g2)S™ originating from the difference of the
bare strong coupling constants in the two theories.

A remark of some practical relevance concerns the
possibility of implementing hadronically the GRS scheme.
To this end, note that in the GRS scheme the dimensionless
ratios R; will not be equal to the corresponding physical
values and the difference can be parametrized as follows:

RIQCD-GRS _ Rll?hys“ + €FRS), (19)

where the €RS are order O(a,,) and depend on the chosen

matching scheme and also on the chosen matching scale.

Once the ¢SRS (and hence the R¥P*%) are known, for
example from a particularly accurate lattice simulation,
then they can be used in other lattice computations. The
bare quark masses are then determined by requiring that the
R; in (isosymmetric) QCD reproduce RZQCD “ORS as given by
Eq. (19), and, at this stage, the GRS scheme can be
considered to be a hadronic one as it is defined in terms
of nonperturbatively computed quantities (in this case
meson masses). We stress however that this requires prior
knowledge of the ¢SRS,

Of course, other schemes are also possible. In general,
the ¢; provide a unifying language to discuss the different
schemes for the definition of (isosymmetric) QCD in the
presence of electromagnetism; in physical hadronic
schemes the ¢; = 0 while in the GRS and other schemes
they are of order O(a,, ). For later use, we make the simple
observation that two schemes can be considered to be
equivalent in practice if the ¢; in the two schemes are equal
within the precision of the computations.

Although the GRS scheme is perfectly legitimate, we
advocate the use of physical hadronic schemes in future
lattice calculations. For lattice simulations of physical
quantities, a nonperturbative calibration of the lattice is
necessary in general, but the renormalization required for
the GRS conditions in Eq. (17) is not generally necessary
(except perhaps for the determination of the renormalized
coupling and quark masses themselves). Now that hadronic
masses are calculated with excellent precision in lattice
simulations and their values are well known from exper-
imental measurements, it is natural to use hadronic
schemes. By contrast, the renormalized couplings and
masses are derived quantities which are not measured
directly in experiments. In spite of this, as explained above,
at the time that our computation was started we chose to use
the GRS scheme. Of course, the physical results in the full
theory do not depend on this choice.
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3 A
KT
u vy
FIG. 1. Feynman diagram for the process K™ — £"v,. In the

effective theory, the interaction is given by a local four-fermion
operator denoted by the two full dots in the figure.

III. EVALUATION OF THE AMPLITUDES

At first order in a,, and (m, — m,)/Aqcp, the inclusive
decay rate (1) can be written as

L(P* = £57,y])
= TP [1 + 6Rp] + Olagy, (my —m,)?,
aem(md - mu)]’ (20)

where I'P is the tree-level decay rate given by

GZ m2 2 02 o
o — Sy, P (1= 555 ) A1)
P

and ME,O) and ffoo) are the mass and decay constant of the
charged P-meson mass defined in isosymmetric QCD in the
chosen scheme.

The decay constant f g)) is defined in terms of the matrix

element of the QCD axial current Ag)) (in the continuum) as
Ag» = (0|7270759:|P) EfJ(DO)Mg))’ (22)

where the initial state meson P(?) is at rest. The decay rate is
obtained from the insertion of the lowest-order effective
Hamiltonian

G
Hy = 7%"2]:;201

= %V;qz(%n(l = 75)q) @y (1 =ys)¢),  (23)

as depicted in the Feynman diagram of Fig. 1, where the
decay of a charged kaon is shown as an example. At lowest
order in a,,, the two full dots in the figure represent the two
currents in the bare four-fermion operator

0, = (%r,(1 =75)q1) [Ty (1 = 75)E), (24)

whereas at order a,,, they will denote the insertion of the
renormalized operator in the W regularization as defined
in Sec. IV.

In order to compare our results for the e.m. and strong
IB corrections to those obtained in Ref. [25] and adopted

by the PDG [20,26] however, we will use a modified
expression,

C(P* = *0,[y])
= ]"(0) : [] + 6RP] + O[aezmv (md - mu)z’ aem(md - mu)]’
(25)

where I'®) is given by

2

G2 m2\ 2 )
ro — —F|V |2m2 (1 __b’) [f(o)] Mp, (26)
87 9192 4 M% P P

and Mp is the physical mass of the charged P-meson
including both e.m. and leading-order strong IB
corrections.

The quantity 0Rp encodes both the e.m. and the strong
IB leading-order corrections to the tree-level decay rate. Its
value depends on the prescription used for the separation
between the QED and QCD corrections, while the quantity

L(P* = 5 0[y))

G2 2 )
NV a1~ )" M

F3 = P(1+6Ry)  (27)

9192

is prescription independent [27] to all orders in both a.y,
and (my —m,).

The quantity F, may be used to set the lattice scale
instead of the Q baryon mass. The physical value F2™* can
be obtained by taking the experimental pion decay rate
[(z~ — po,[y]) = 3.8408(7) - 107 s7! from the PDG [20]
and the result for |V 4| = 0.97420(21) determined accu-
rately from super-allowed p-decays in Ref. [21].
Consequently, one may replace Mo with F, [as the
denominator of the ratios R, 4 in Eq. (5)], M+ with
M o in the ratio R; (when working at leading order in ay,)
and set the electron charge directly to its Thomson’s limit
(instead of using the ratio Rs), namely

aM o
R,(aN;g,,e,m) = a}_’; (aN;g,, e,m),
aM go
R,(aN; g, e,m) = oF. (aN; g,,e,m),
aMp
Ri(aN;g,,e,m) = ~(aN; g, e,m),
3( 9, ) aF, ( 9, )
aMK+ —aMKU

R4(aN; g,,e,m) = (aN; g5, e,m).  (28)

aF,

Note that for the present study we were unable to use Mg,
to determine the lattice spacing because the corresponding
baryon correlators were unavailable. The choice of using
F . instead to set the scale clearly prevents us from being
able to predict the value of |V ,4|. This is one of the reasons
why we advocate the use of hadronic schemes with hadron
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masses as experimental inputs for future lattice calcula-
tions. However, as already explained above, in this work we
renormalize the QCD theory using the same set of hadronic
inputs adopted in our quark-mass analysis in Ref. [28],
since we started the present calculations using the RM123
method on previously generated isosymmetric QCD gauge
configurations from ETMC (see Appendix A). The bare
parameters of these QCD gauge ensembles were fixed in
Ref. [28] by using the hadronic scheme corresponding to

MPTAS — 13498 Mev,  MOTLAS = 494.2(3) MeV,

and fFLAG = 130.41(20) MeV, while Mg)s) was chosen
to be equal to the experimental D/ -meson mass, M pt =

1969.0(1.4) MeV [20]. Note that in the absence of QED
radiative corrections F, reduces to the conventional

definition of the pion decay constant f SIO>' The superscript
FLAG has been used because the chosen values of three of
the four hadronic inputs had been suggested in the previous
editions of the FLAG review [3]. For this reason, we refer to
the scheme defined from these inputs as the FLAG scheme.

We have calculated the same input parameters (28) used
in the FLAG scheme also in the GRS scheme (correspond-

ing to the MS scheme at 4 = 2 GeV) obtaining® M”RS =
135.0(2) MeV, ME?)’GRS = 494.6(1) MeV, Mg)j,mzs _

1966.7(1.5) MeV, and £"9RS = 130.65(12) MeV (see
Eq. (111) in Sec. VI below). Therefore, the values of the
inputs determined in the GRS scheme differ at most by
~0.15% from the -corresponding values adopted in
Ref. [28] for the isosymmetric QCD theory and the
differences are at the level of our statistical precision.
Thus, the result of our analysis of the scheme dependence
can be summarized by the conclusion that the FLAG and
GRS schemes can be considered to be equivalent at the
current level of precision. Nevertheless, we have used the
results of this analysis to estimate the systematic error on
our final determinations of the isospin breaking corrections
ORp induced by residual scheme uncertainties (see the
discussion at the end of Sec. VI).

In light of this quantitative analysis, given the numerical
equivalence of the two schemes at the current level of
precision, in the rest of the paper we shall compare our
results obtained in the GRS scheme with the results
obtained by other groups using the FLAG scheme and
we shall not use superscripts to distinguish between the two
schemes.

The correction R p, defined in Eq. (25), is given by (see
Ref. [11])

*These values differ slightly from those obtained in Ref. [8],
since we have now included the nonfactorizable corrections of
order O(agma) (with n > 1) to the mass renormalization con-
stant [see the coefficient Z2t in Eq. (40) and in Table I below).
We take the opportunity to update Eqgs. (8), (10), (14), and (15) of
Ref. [8] with €,0 = 0.01(4), exo = 0.01(2), SMp+ + M po =
1.7(1.0) MeV, and SMp: = 2.3(4) MeV.

e M 6Ap _SMp =
SRp = 1og<—22> + 22— = 2= + 0Tp (AE,),

(29)

where

(i) the term containing log(M%/M%,) comes from the
short-distance matching between the full theory
(the Standard Model) and the effective theory in
the W regularization [18];

(ii) the quantity 5F£Ft)(AEJ,) represents the O(dey)
correction to the tree-level decay rate for a pointlike
meson [see Eq. (1)], which can be read off from
Eq. (51) of Ref. [11]. The cut-off on the final-state
photon’s energy, AE,, must be sufficiently small for
the pointlike approximation to be valid;

(iii) 6Ap is the e.m. and strong IB correction to the decay
amplitude P — Zv with the corresponding correc-
tion to the amplitude with a pointlike meson sub-
tracted [this subtraction term is added back in the
term STV (AE,); see Eq. (1)].

(iv) 6Mp are the e.m. and strong IB corrections to the
mass of the P meson. The correction proportional to
26Mp/ Ml([?) is present because of the definition of
f 59) in terms of the amplitude and of the meson mass
in Eq. (22).

Since we adopt the qQED approximation, which neglects
the effects of the sea-quark electric charges, the calculation
of 8Ap and 6Mp only requires the evaluation of the

u Yy
(@)
o+ 5 A
Kt < Kt <
U vy vy
(b) (©)

(d) (e

FIG. 2. Connected diagrams contributing at O(a,,) to the
K" — ¢*v, decay amplitude, in which the photon is attached to
quark lines: (a) exchange, (b),(c) self-energy, and (d),(e) tadpole
diagrams. The labels are introduced to identify the individual
diagrams when describing their evaluation in the text.
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ng

K+

(a)

FIG. 3.

5 i
K+ CQ <
u I/f
(b)

Connected diagrams contributing at O(ag,,) to the K — ¢*v, decay amplitude corresponding to the insertion of the

pseudoscalar density related to the e.m. shift of the critical mass, 5m;r“, determined in Ref. [8].

connected diagrams. These are shown in Figs. 1-5 for the
case of Ky, decays. At O(a.,) the diagram in Fig. 1
corresponds to the insertion of the operator renormalized in
the W-renormalization scheme.

In Eq. (29), 0Ap and 6Mp contain both the e.m. and the
strong IB leading-order corrections

5Ap =AY +8AFP + > 8AL+8AL + ALY, (30)
i=J,T.P.S

SMp = M5 + " oM}, (31)
i=J,T,P.S

where A} is the e.m. correction from both the matching
of the four-fermion lattice weak operator to the W-
renormalization scheme and from the mixing with several
bare lattice four-fermion operators generated by the break-
ing of chiral symmetry with the twisted-mass fermion
action which we are using. Both the matching and the
mixing will be discussed and calculated in Sec. IV. As
already pointed out, the renormalized operator, defined in
the W-renormalization scheme, is inserted in the diagram of
Fig. 1. As for the diagrams of Figs. 2-5, which are already
of order O(a.y,) and O((m, —m,)/Aqcp), it is sufficient
to insert the weak current operator renormalized in QCD
only.

In Egs. (30) and (31), the quantity SAE (SM3B)
represents the strong IB corrections proportional to
my —m, and to the diagram of Fig. 4(b), while the other
terms are QED corrections coming from the insertions of
the e.m. current and tadpole operators, of the pseudoscalar
and scalar densities (see Refs. [4,9]). The term SA} (SM+)
is generated by the diagrams of Figs. 2(a)-2(c), A% (M%)
by the diagrams of Figs. 2(d) and 2(e), SAL (M%) by the
diagrams of Figs. 3(a) and 3(b), and 6A3 (5M3) by the
|

S ot S s
K+®< K*C@<
u vy L vy
(@ (b)
FIG. 4. Connected diagrams contributing at O(a.,) and

O(my —m,) to the K+ — £Tv, decay amplitude related to the
insertion of the scalar density (see Ref. [8]).

diagrams of Figs. 4(a) and 4(b). The term 5A§ corresponds
to the exchange of a photon between the quarks and the
final-state lepton and arises from the diagrams in Figs. 5(a)
and 5(b). The term 5A£‘Self corresponds to the contribution
to the amplitude from the lepton’s wave function renorm-
alization; it arises from the self-energy diagram of Fig. 5(c).
The contribution of this term cancels out in the difference
To(L) —TH(L) and could be therefore omitted, as ex-
plained in the following section. The different insertions
of the scalar density encode the strong IB effects together
with the counter terms necessary to fix the masses of the
quarks. The insertion of the pseudoscalar density is peculiar
to twisted mass quarks and would be absent in standard
Wilson (improved) formulations of QCD.

In the following subsection, we discuss the calculation of
all the diagrams that do not involve the photon attached to
the charged lepton line. The determination of the contri-

butions 5A4% and 645" will be described later in Sec. III B.

A. Quark-quark photon exchange diagrams and
scalar and pseudoscalar insertions

The terms AL and M5 (i = J, T, P, S) can be extracted
from the following correlators:

1 - h
CH0) = 4y 3 OITL O 02)5 (=0} 0)AZ (1 2) " (32)
P
SCH(1) = Anaen (OO ()8 (X, =) O AT 3) 3 (33)
X,y
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K+

FIG.5. Connected diagrams contributing at O(a,,, ) to the K
the final-state lepton.

. s 5 ot
u vy U vy
(b) ©

— ¢, decay amplitude corresponding to photon exchanges involving

SCH(1) = dmaen 3 SmT - S (O (0)id, ()rsas H(E =030 4 (34)

f=h.r2 Xy

8CH (1)
Fif Lm 3

f
= dra 3 my o SO (5 (0) 7 (0)a 0]

f,—r>}|o>j;—i, (35)

where Aj} (yl , ¥2) is the photon propagator, J7,(x) is the local version of the hadronic (V — A) weak current renormalized in

QCD only,
() = 4,12y = 207 )y, (), (36)
Ji" is the (lattice) conserved e.m. current,’
1 _ . N N ,
=D er5 @) = i) U0y (v + ap) + 2p (v + ap) (1, + iT75) Ui(v) 4, (). (37)
f
and T} is the tadpole operator
1 _ ;
T (v) = Y ep5 @0 = irs) U0y (v + ap) = (v + ap) (7, + i7'75) U(v) g (v)]- (38)
7

In Egs. (32)-(35), ¢p(¥.—t) = igs, (X, —1)ysq, (¥, —1) is
the interpolating field for a P meson composed by two
valence quarks f| and f, with charges e e and e,e. The
Wilson r-parameters r and ry, are always chosen to be
opposite ry = —rs, (see Appendix A). We have also
chosen to place the weak current at the origin and to
create the P meson at a negative time —¢, where t and T — ¢
are sufficiently large to suppress the contributions from
heavier states and from the backward propagating P meson
(this latter condition  may be convenient but is not neces-
sary). In Eq. (35), Zm) is the mass RC in pure QCD, which
for our maximally twisted-mass setup is given by

*In our maximally twisted-mass setup, in which the Wilson r
parameters 7, and r;, are always chosen to be opposite ry, =
—ry, (see Appendix A), the vector (axial) weak current in the
physical basis renormalizes multiplicatively with the RC Z, (Zy)
of the ax1al (Vector) current for Wilson-like fermions, i.e., ZS» =
ZA and 2\ = = Zy (see Appendix D).

*The use of the conserved e.m. current guarantees the absence
of additional contact terms in the product j§™(v)j5™(v2).

I
an =1 /ZP , Where Z( ) is the RC of the pseudoscalar
density determined in Ref [28]. The quantity Z, is related
to the e.m. correction to the mass RC,

ZQCD+QED _ <1 _ %‘ZL)ZE,?) + O(aliab)

4
x (m>1,n>0) (39)

and can be written in the form
Zm = ZQEDZfaC‘, (40)

where ZQED is the pure QED contribution at leading order
in a,,, given in the MS scheme at a renormalization scale
by [30,31]

Zhen(MS, p) = eX(6log(au) — 22.5954),  (41)
where e is the fractional charge of the quark ¢, and Zfact
takes into account all the corrections of order O(a}) with
n>1.
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The quantity Z is computed nonperturbatively in
Sec. IV and represents the QCD corrections to the “naive
factorization” approximation Z{,C, = Z‘gED (.e., Zﬁfl‘“ =1)
introduced in Refs. [8,32].

Analogously, the term [5Ap[5® and [6Mp|>® can be
extracted from the correlator

2 = _f;fzﬁ
DT 01, 0)a,0)gh(E=0}10) 477

Xy

(42)

where, following the notation of Ref. [8], we indicate with
my and m, the renormalized masses of the quark with
flavor f in the full theory and in isosymmetric QCD only,
respectively. We stress again that the separation between
QCD and QED corrections is prescription dependent and in
this work we adopt the GRS prescription of Refs. [2,4,8],
where

mn,(MS, 2 GeV) + iy (MS, 2 GeV) = 271,,(MS, 2 GeV)
= 2m,4(MS, 2 GeV),
ny(MS,2 GeV) = my(MS, 2 GeV),
n.(MS,2 GeV) = m.(MS, 2 GeV).
(43)
Thus, in Eq. (42), the only relevant quark mass dif-
ference is i, — m,, = —(i, — m,y), whose value in the
(MS,2 GeV) scheme was found to be equal to 1.19
(9) MeV [8] using as inputs the experimental values of
the charged and neutral kaon masses.

Following Ref. [4], we form the ratio of 5Ci(¢) with the
corresponding tree-level correlator

C(1) = 3 (0TI, (0)¢}(F. ~1)}[0) 1{;— (44)

X

and at large time distances ¢, we obtain (i =J,

T,P,S,QCD)
SCi (1) >a (T-1)>a 5|GHAD]
0 0 0
(1) Gyl Ay
SMi [ o (T \ e™Mi't 4 oMy (1=0) 0T
T Mp {51 ©) © —1=-Mp 5.
M, 2 oMyt _ o=M, (T-1) 2
(45)
where
Gy’ = (0l (0)|P) (46)

is the coupling of the interpolating field of the P meson with
its ground state in isosymmetric QCD. The term propor-
tional to (SM;, in the r.h.s. of Eq. (45) is related to the e.m.
and strong IB corrections of the meson mass.

The function in the square brackets on the r.h.s. of
Eq. (45) is an almost linear function of 7. Thus, the
correction to the P-meson mass, 5Mj;, can be extracted

from the slope of the ratio §Ci,(t)/ Cg» () and the quantity
5|G»AL] from its intercept. As explained in Ref. [11], in
order to obtain the quantity §A} the correction 3G’ is
separately determined by evaluating a correlator similar to
those of Egs. (32)-(35), in which the weak operator
Jypp/Mp is replaced by the P-meson interpolating
field ¢p.

For illustration, in Fig. 6, we show the ratios C}; for the
charged kaon (P = K) obtained from the ensemble D20.48
(see Appendix A). The top panel contains the ratio

SCSB(1)/C (1), the ratio 5C%()/C(¢) is shown in
the middle panel, and the ratios 6C%(z)/ ng)(t) and
SCE(1)/ ng)(t) are presented in the bottom panel.

We find (i) the contributions SCL(r)/CY(r) and
sCR(1)/C ﬁ?) (1) are separately large, but strongly correlated,
since the tadpole insertion dominates the values of the e.m.
shift of the critical mass 5m}m (see Ref. [8]). In the chiral
limit, they would cancel, but at finite masses the sum is
small and linear in . Because of the correlations, it can
nevertheless be determined quite precisely (see the bottom
right-hand plot of Fig. 6) where the sum is presented on an
expanded scale. (ii) the time dependence of the ratio

5C%(1)/ Cg?)(t) is almost linear in the time interval where
the ground state is dominant.

B. Crossed diagrams and lepton self-energy

The evaluation of the diagrams 5(a) and 5(b), corre-
sponding to the term §A% in Eq. (30), can be obtained by
studying the correlator [11]

8Ch(1) = —4magn »_ (OIT {5 (0) 5™ (x1)¢bp(%. =) }/0)

X, X1,
em Esty—ip X
X A/w (xl’XZ)e ¢l —IpeXs

1(p,)y,(1 —75)87(0.x2)7,0(pr)

oo rol1 = r5)utr) 22,

(47)
where S7(0, x,) stands for the free twisted-mass propagator
of the charged lepton. For the numerical analysis, we
have found it to be convenient to saturate the Dirac indices
by inserting on the rh.s. of Eq. (47), the factor
[0(pe)vs(1 —ys)u(p,)], which represents the lowest order
“conjugate” leptonic (V — A) amplitude, and to sum over
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FIG. 6. Top panel: the strong IB correction sC¥2(¢)/C (1?) (1) for the charged kaon obtained on the ensemble D20.48 (see Appendix A).
The solid line is the “linear” fit (45) applied in the time interval where the ground state is dominant. Middle panel: contributions of the

exchange [2(a)] and self-energy [2(b)+2(c)] diagrams. The circles represent the sum [2(a)+2(b)+2(c)], i.e., the ratio 6C%(t)/ CE?)(t).
Bottom panel: contributions of the tadpole operator 6C£(t) / cﬁ? (1), i.e., diagrams [2(d)+2(e)], and of the e.m. shift of the critical mass

8CP(1)/CV(1), ie., diagrams [3(a)+3(b)]. The sum S[CL(f) + CE(1)]/C\Y (1), shown by the circles, is nonvanishing and it is
determined quite precisely (see the right-hand plot where it is presented on an expanded scale). Errors are statistical only.
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the lepton polarizations. In this way, we are able to study
the time behavior of the single function §C5(z).
The corresponding correlator at lowest order (O(a%,)) is

(1) = S (01T {74, (0)pp(F, ~)}0)a(p, )1,y

x (1 =rs)v(pe) {ﬂ(pf)yg(l - }/5)u(py)]‘p4—l; ,

(48)

In Eqgs. (47) and (48), the contraction between the weak
hadronic current J7,(0) [see Eq. (36)] and its leptonic
(V — A) counterpart gives rise to two terms corresponding
to the product of either the temporal or spatial components
of these two weak currents, which are odd and even under
time reversal, respectively. Thus, on a lattice with finite
time extension 7', for 1> a and (T —t) > a, one has

sy ez O ZéAf IXGI oMy o= ME (T,
p =0
(49)
where sy = -1, 51,3 =1 and
= Trly;(1 = ys)¢Zyo(1 —ys)vi] (50)

is the relevant leptonic trace evaluated on the lattice using
for the charged lepton the free twisted-mass propagator and
for the neutrino the free Wilson propagator in the P-meson
rest frame [p§ = (Mp,ﬁ)].

Similarly, for the lowest-order correlator, one has

(0)
a(T-t)»a G
(= 2A;<0)A§9)X'}’;’0[6_MSU’—e‘Mf)(T‘”L

P

(s1)

where Ag)) is the renormalized axial amplitude evaluated on

the lattice in isosymmetric QCD in the P-meson rest frame,
namely

200012717591 |1P0) = 6,049 (52)

The effect of the different signs of the backward-
propagating signal in Eq. (49) can be removed by intro-
ducing the following new correlators:

1 5cf(z—1)—5cf(z+1)
aCy(n) = 5 { et + FHU =K
e"r —eMpP
t>a,(T—-t)>a 20 G<0> ©
—>5A}<XP‘ P(()) €_Mf’ t’
2M )
0 £(0
Cf(())(t):l{cf(o)<) <)(t—1)—CP()(t+1>}
P = P
2 MY _ oMy

AT—P1>a (0)
r>a,(T—1)> A(O)Xfo Gp

e (53)
VN

where

LSS s atiyt
SAY = WZ SAGIXY. (54)

P j=0

Thus, the quantity 5A% /Ag)) can be extracted from the

plateau of the ratio 5C%(r)/C5"
tions, viz

(1) at large time separa-

661{(1‘) r>a,(T—t)>a 5A1f;
—_ f O _0 .
(1) Ay

(55)

Note that the diagrams in Figs. 5(a) and 5(b) do not
contribute to the electromagnetic corrections to the masses
of the mesons and therefore the ratio (55) has no slope in ¢
in contrast to the ratios (45). Moreover, the explicit
calculation of Xg‘j on the lattice is not required.

In terms of the lattice momenta ap, and ap,, defined as

ap, = | Y sin® (apa), (56)
k=123

apy, =2 Z sin < pfk) (57)
k=123

the energy-momentum dispersion relations for the charged
lepton and the neutrino in the P-meson rest frame are
given by

N 1 p2 + a*pl/4
aE, = 2arcsinh {E \/a m + @by + a'py/ ] (58)

1+ a*p2/2
ak, = arcsinh(ap,). (59)

The three momentum of the final-state lepton p, (p, =
—p,) must be chosen to satisfy the equation

E,+E =M. (60)
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Thus, for any given simulated P-meson mass Mg)), the
three-momentum p, = |p,|(1,1,1) is calculated from
Eq. (60) and is injected on the lattice using nonperiodic
boundary conditions [33,34] for the lepton field. A simple
calculation yields

X450 = Trlyo(1 = y5)¢€y0(1 — ys)vi]

= 8ap,[sinh(aE,) — ap,). (61)

In Fig. 7, we show the correlators Cﬁ(o)(t), S5Ch(1),
Ch (1), and 6Cl(t) for 7, decays, multiplied by the
e d 5C4(1) for x,, d Itiplied by th
ground-state exponential. These were obtained on the
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gauge ensembles A40.24 and D30.48 of Appendix A.
The subtraction of the backward signals, needed for
extracting directly the quantity 6A% given by Eq. (54), is
beneficial also for extending the time region from which
A% (as well as the ratio 54%/A') can be determined.

The quality of the signal for the ratio 6C%(r)/ C’;)(())(t) is
illustrated in Fig. 8 for charged kaon and pion decays into
muons for the case of the ensembles B55.32 and D30.48.

The calculation of the correction due to the diagram 5(c) is
straightforward, since it is obtained by simply multiplying the
lowest order amplitude, AS)O), by the one-loop lepton self-
energy evaluated on the lattice.
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FIG. 7. Time dependence of the correlators v (1) (left panels) and 6C%(t) (right panels) for 7, decays. These are given in lattice
units and multiplied by the ground-state exponential and were obtained from gauge ensemble A40.24 (top panels) and D30.48 (bottom

panels). The blue squares represent the correlators 5C%(¢) and C‘,ﬁ(o) (1) given by Egs. (53) and (53). Errors are statistical only. For details
of the simulations, see Appendix A.
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FIG. 8. Results for the ratio 5(_,”;,(t)/C";,(0) (1), given by Eq. (55),
for K, and 7,, decays obtained from the gauge ensembles
B55.32 (top panel) and D30.48 (bottom panel). The vertical
dashed lines indicate the time region used for the extraction of the

ratio A% /ASJ(D. Errors are statistical only.

IV. RENORMALIZATION OF THE EFFECTIVE
HAMILTONIAN AND CHIRALITY MIXING

In this section, we provide the basic formalism to derive
the e.m. corrections to the RCs nonperturbatively; further
details of the calculation will be presented in a forthcoming
publication [29]. This procedure relates the bare lattice
operators to those in the RI'-MOM (and similar) renorm-
alization schemes up to order O(a,,,) and to all orders in «.
We also improve the precision of the matching of the weak
operator O, [see Eq. (24)] renormalized in the RI’-MOM
scheme to that in the W regularization by calculating the
coefficient of the term proportional to a.na, log(M3,/u?)
in the matching coefficient. Using the two-loop anomalous
dimension thus determined, we can evolve the operator to
the renormalization scale of My,. Following this calcula-
tion, the error due to renormalization is reduced from order
O(demag(1/a)) to order O(aema,(My)).

The effective Hamiltonian, including the perturbative
electroweak matching with the Standard Model [18], can be
written in the form

G Xom M -re;
B B

where the term proportional to the logarithm has been
already included in Eq. (29) and O} ™¥(My,) is the
operator renormalized in the W-regularization scheme,
which is used to regularize the photon propagator. Since
the W-boson mass is too large to be simulated on the lattice,
a matching of the lattice weak operator O; to the
W-regularization scheme is necessary. In addition, for
lattice formulations which break chiral symmetry, like
the one used in the present study, the lattice weak operator
O, mixes with other four-fermion operators of different
chirality.

A. The renormalized weak operator in the
W-regularization scheme

In order to obtain the operator renormalized in the
W-regularization scheme, we start by renormalizing the
lattice four-fermion operator O, defined in Eq. (24) in
the RI-MOM scheme [35], obtaining ORY(y), and then
perturbatively match the operator OX () to the one in the
W regularization [11],

- M .
0V y) =2 (M ). ) O ). (63

The coefficient ZVRY (M, /u, o, (1), Qe ) can be computed
by first evolving the operator in the RI’scheme to the scale
My, and then matching it to the corresponding operator in
the W scheme. The coefficient can therefore be written as
the product of a matching coefficient and an evolution
operator

My
ZW-RI (7 » A (lu) ’ aem)

_ ZW-RI’(Las(MW),aem)URI’(MW,ﬂ,aem). (64)

Below we will only consider terms of first order in ., and,
therefore we will consistently neglect the running of a.,.

We note that the original bare lattice operators and
0)""8(My,) are gauge invariant, and thus the correspond-
ing matching coefficients are gauge invariant. This is not
the case for OR' (4) that instead depends not only on the
external states chosen to define the renormalization con-
ditions, but also on the gauge. Consequently, the matching

coefficient ZWVRI (% ,a,(pt), @) and the evolution oper-

ator URV(My,, u, a) are in general gauge dependent.
However, at the order of perturbation theory to which
we are working, the evolution operator turns out to be both
scheme and gauge independent.

In the following, we discuss in turn the matching
coefficient, ZVRV' (1, a,(My), @), the evolution operator
UR' (M, u, &gy, and the definition of the renormalized
operator OX!' (1), which will be obtained nonperturbatively.
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®

(i)

The matching coefficient. At first order (one loop)
in Qep,

2R (1 ay (My). o) = 1+ 22 CVR,
T

(65)
where the strong interaction corrections for the
RI'-MOM operator vanish, at this order, because
of the Ward identities of the quark vector and axial
vector currents appearing in the operator O; in the
massless limit. We recall that we currently do not
include terms of O(ay(My)d.y) in the matching
coefficient ZWVRL,

The evolution operator. The evolution operator
UR' (My,, u, apy) is the solution of the renormaliz-
tion group equation

, 0 0 .
+ﬁ<a57aem) URI (MW’/"aacm)

6 o2 oa,

- 7(“5’ aem)URI’ (MW’ H, aem)’ (66)
where UR' (M, u, ay,) satisfies the initial condi-
tion URV(My,, My, aen) = 1, (@, a) is, in gen-
eral, the anomalous dimension matrix [36,37],
although in our particular case it is actually a number
(and not a matrix), and f(a,, @.,) is the QCD f
function,

dog a? al re gy,
ﬂ(aS’aCm) dlog//l ﬂO )B ( ) ( )
(67)
with
2 38
ﬂ():ll—ng, ﬁl 102_?Nf7
8 Ny,
e — 2 (N, +=2), 68

where N denotes the number of active flavors, and
N, and N, denote the number of uplike and down-
like active quarks, respectively, so that Ny = N+
N, We may expand y(a,, a.,) in powers of the
couplings as follows:

2
_% 0, % (1), %m (0)  %%m (1)
?’(a.svaem)—4ﬂ7’s +(4ﬂ)27s + 4 Ve +(4ﬂ)2 Vse s
(69)
where ygl) has been previously calculated in

Ref. [38]. In the case of the operator O, both y§0>

(1)

and y; ' vanish, whereas

(iii)

034514-18

=2 W =42 (70)

It can be demonstrated that, in addition to the leading
anomalous dimension 7/20), yg) is also independent of
the renormalization scheme; thus, in particular it is
the same in RI’and in the W-regularization schemes.

It is then straightforward to derive URY (My,, 1, Qe )

Aem ( )lOg MW
47r u?

as(ﬂ)aem (1) M%}V
T anp e

Aem ay(p) M3,
=1+22( 1- 1 — .
T < 4n > 0g</42

(71)

URI’ (Mw,//t,(lem) =1-

Note that at this order the evolution operator is
independent of the QCD g function. This is a
consequence of the fact that the QCD anomalous
dimension vanishes for the operator O.
Combining Egs. (63)-(65) and (71), we obtain
the relation between the operator O; in the W-
regularization scheme and the one in the RI’scheme,

OV (M) = {1  Zem [2 <1 - %’?) log <AZ—§V)

4n
r o Lot (1)

which is valid at first order in a, and up to (and
including) terms of O(ag,a,(My)) in the strong
coupling constant.

The renormalized operator in the RI’-MOM scheme.
When we include QCD and e.m. corrections at
O(dem), the operator O, on the lattice with Wilson
fermions mixes with a complete basis of operators
with different chiralities. In addition to O, the
mixing involves the following operators:

05 = oy (1 + 15)q1 D7, (1 = v5)Z.
Ogare — 62(1 — }/5>q1175(1 + 75)f’
O = gy (1 +75)q1v,(1 +y5)¢,

Ols)are — 6_120/“/(1 + ys)qlﬂfaﬂy(l + Vs)f- (73)

The mixing is a consequence of the explicit chiral
symmetry breaking of Wilson-like fermions on the
lattice. Therefore, the renormalized operators in the
RI’-MOM scheme, OX" (1), with 0= (04, ...05),
can be written in terms of bare lattice operators
abare (a) as
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O (u) = Zo(ua)0™™(a), (74)

where Zy(ua) is a5 x 5 renormalization matrix. We
note that in pure QCD the operator O mixes only
with O,, with scale independent coefficients,
whereas the full 5x 5 renormalization matrix is
necessary in general when e.m. corrections are
included.

We find it particularly convenient to rewrite Eq. (74) in

the form

5RI’ _ 7QED [( ZQED)—I Zo ( 7QCD )—1 ] 7QCD 5bare
= ZQEDRZACD O, (75)

where Z9CP is the mixing matrix in pure QCD (corre-
sponding to a,, = 0), and

ZOED = | 4 S AZOED (76)

is the pure, perturbative QED mixing matrix (correspond-
ing to a, = 0). In Eq. (75), we have introduced the ratio

Zem ) (77)

R = (ZQED)—IZO(ZQCD)—I =1+ 2
T

so that, at first order in o, Eq. (75) is written as
R = l—i—je—m(AZQED ) |ZePg e (78)
zr

The ratio R encodes all the nonperturbative contribu-
tions of order O(a.,a¥) with n > 1, other than the
factorizable terms given by the product ZEPZQCP  |n
other words, if Z, were simply given by Z, = ZQEPZQCD
at first order in o, then # would be zero. The case n = 0
thus corresponds to the factorization approximation that
was first introduced in Refs. [8,32].

In this work, the ratio R has been computed non-
perturbatively on the lattice to all orders in @, and up to
first order in a.y,. Introducing this ratio R in the non-
perturbative calculation is useful since by using the same
photon fields in the lattice calculation of Z,, and Z2FP, the
statistical uncertainty due to the sampling of the photon
field is significantly reduced. Note that the ratio is also free
from cutoff effects of O(a.,a"). The nonperturbative
calculation of R, in terms of the matrix #, is described
in Appendix C, and all the details and results will be
presented in a forthcoming publication [29].

As already mentioned, pure QCD corrections in Eq. (78)
only induce the mixing of the operator O; with the operator
O,. This mixing produces the renormalized QCD operators

(2G| = gy (2 — Z0ys) g1ty (1 — 15)2,

= bar _ 0 0 -
(2P0, = goy(Zy) + 2V ys|a1Der, (1 = 15)¢,
(79)

KR
I

which, similarly to the corresponding continuum operators,
belong, respectively, to the (8,1) and (1,8) chiral repre-
sentations with respect to a rotation of the quark fields
[23]. These are the combinations entering on the r.h.s. of
Eq. (78).

When we include the e.m. corrections at O(a.y,), the
matrices AZ?FP and 7 in Eq. (78) induce, in general, the
mixing of 0% with the full basis of operators in Eq. (73). As
shown in Appendix D, however, in the twisted-mass
formulation used in this paper, the only relevant chirality
mixing is the one between the operators O; with O,.
Indeed, the mixing coefficients with the operators O; and

0, are found to be odd in the parameter 7 = r 1, = —r, 7y,
defined by the product of the Wilson r parameters of the
valence quarks and the lepton (with r, = —r; in our

procedure). Therefore, taking the average over the values
of the parameter 7 (with 7 = 4+1) when computing the
amplitude, eliminates the mixing with O3 and O4. More-
over, the matrix element of the operator Os between a
pseudoscalar meson and the vacuum vanishes, so that the
mixing with the operator O5 cannot contribute to the decay
rate. Therefore, Eq. (78) for the renormalized operator OR"
simplifies to

, Ao
oY (u) = |1 +E(AZQED(H0)11 +n(ua, a(1/a));)

x Of(a) + 32 (AZFP + n(a,(1/a))12) 05 a).

(80)

where we have explicitly indicated the dependence of the
various terms on «, and the renormalization scale. Since the
mixing of the bona fide (8,1) operator O} with O} is a
consequence of the explicit chiral symmetry breaking of
Wilson-like fermions on the lattice, the corresponding
coefficient is due to lattice artefacts and can only be a
function of the lattice bare coupling constant a,(1/a) [23].

B. Complete expression for the matching coefficients

We are now in a position to collect the results of the
previous subsection in order to provide the final expression
relating the renormalized operator O} "¢ in the W regu-
larization to the lattice bare operators O; and O, at first
order in ;. Combining Eqgs. (72) and (80) and choosing
u = 1/a as renormalization scale in the intermediate
RI'-MOM scheme, we obtain
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Ow i (MW)
- 0f(a) + 22 [2(1- 20/ ) gty )

OV AZP(1 /) (/)] 0@

aem
# a2 la1/a)| 08 (81
Using the results of Ref. [11], obtained in perturbation
theory at order O(a?), we have determined the values for
the matching and mixing coefficients,

CVRC — _57825 + 1.2373¢,
AZZP(1/a) = —9.7565 — 1.2373¢,
AZTP = —0.5357, (82)

where £ is the photon gauge parameter [£ = 0(1) in the
Feynman (Landau) gauge]. It is worth noting that the
renormalized operator in the W-regularization scheme is
gauge independent, at any order of perturbation theory. In
particular, as shown by Eq. (82), at first order in a,,, and at
zero order in «,, the gauge dependence of the matching
coefficient of O cancels in the sum CWRI' 4 AZZP —
—15.539. By contrast, for the matching coefficient of 0%,
the two terms AZ%ED
independent.

When inserted into the expression for amplitude for the
decay P — £v, the term of order a,,, of the renormalized
operator O, ™8(My,) of Eq. (81), namely 50" ™ (My,) =
0" *¥(My,) — O%, provides the contribution denoted as
SAY in Eq. (30),

and 75, are separately gauge

(0|Tr{80) ™8 (M) Zyo(1 — y5)v}|P©)
Xf,O
P

AW = — . (83)

where X ;';,0 is the leptonic trace defined in Eq. (61). We then
note that Of and O} entering in Eq. (81) give opposite
contributions to the tree-level amplitude, i.e.,

<0|Tr{0)1{270(1 - 75)1/}|P(0>>

—(0|Tr{ O4Zy0(1 = y5)u} [P0y = —AYX%0,  (84)

with Al([?) given in Eq. (52). Therefore, after averaging the
amplitude over the values of the parameter 7 = +1, in order

to cancel out the contribution of the mixing with O; and
04, one obtains

SAY = ZWreeg ) (85)

with

ZW-reg

= % [2 <1 - #) log(a®M?,)

—15.0032 + 511 (a,(1/a)) = np(ay(1/a))|.

(86)

As already noted, the contribution 5AYDV of the matching
factor at order a,, to the decay amplitude, expressed by
Egs. (85) and (86), is gauge independent. It then follows
that also the order a,,, contribution of the bare diagrams to
the amplitude, expressed by the other terms in Eq. (30), is
by itself gauge independent. Therefore, we can numerically
evaluate the two contributions separately by making differ-
ent choices for the gluon and the photon gauge in the two
cases.” In particular, we have chosen to compute the
matching factor ZV°¢ of Eq. (86) in the Landau gauge
for both gluons and photons, because this makes
RI’equivalent to RI up to higher orders in the perturbative
expansions. On the other hand, in the calculation of the
physical amplitudes described in Sec. III (and already
computed in Ref. [2]), we have used a stochastic photon
generated in the Feynman gauge, which has been adopted
also in the calculation of T (L) in Ref. [14].

As discussed in Ref. [11], when we compute the
difference I'y(L) — T (L) in Eq. (1) at leading order in
Qem» the contribution from the lepton wave function RC
cancels out provided, of course, it is evaluated in I'y(L) and
[P (L) in the same W-regularization scheme and in the
same photon gauge. Since th(L) has been computed in
Ref. [14] by omitting the lepton wave function RC
contribution in the Feynman gauge, we have to subtract
the analogous contribution from Eq. (86) in the Feynman
gauge. The QCD and QED corrections to the lepton wave
function RC at O(a,,) factorize, so that their contribution
does not enter into the nonperturbative determination of the
matrix 7, which only contains, by its definition, non-
factorizable QCD + QED contributions. Therefore, as dis-
cussed in Ref. [11], the subtraction of the lepton wave
function RC only requires the replacement of ZV7™¢ in
Eq. (86) by the subtracted matching factor

; 1
2V = 70— S AZ)E, (87)

where

3Tt should be noted, however, that while ZV™¢ of Eq. (86) is
gauge independent at any order of perturbation theory, its actual
numerical value may display a residual gauge dependence due to
higher order terms in the nonperturbative determination of 7y,
which are neglected in the perturbatively evaluated matching
coefficient.
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Az _ O%m [ log (a®M3},) — 13.3524].  (88)
T

The final expression to be used in Eq. (30) is therefore

SAY = ZWreeg ), (89)
with
~ a 5 _al/a)
ZW—reg _ —em Z_0 S 1 2 M2
An Kz An > og(a”My)

—8.3270 + 1 (as(1/a)) = nia(as(1/a))|. (90)

To make contact with the factorization approximation
introduced in Refs. [8,32], we rewrite Eq. (90) as

FW-reg — fact | Z’\;V:-(r)eg ) (91)

where ZnW:'(r)eg is the result in the factorization approximation
(i.e., with n = 0),

W-reg _ em 5
-G

as(l/a) 2012
5 2 i >1og(a My,) —8.32701,

(92)

and Zf is the factor correcting the result for ZW"°¢ to
include the entries of the matrix # determined in Ref. [29],

act — %_m’?u(as(l/a)) —nia(as(1/a))
Zhet =1 4 ir ngeg . (93)

The values of the coefficients anz'geg and Zf2° are collected

in Table I for the three values of the inverse coupling j
adopted in this work and for = 1/a. In the same table, we
also include the values of the coefficient Zft correspond-
ing to the nonfactorizable e.m. corrections to the mass RC
[see Eq. (40)], evaluated in Ref. [29]. The two methods M1
and M2 correspond to different treatments of the O(a’u?)
discretization effects and are described in Ref. [28]. The
difference of the results obtained with these two methods
enters into the systematic uncertainty labeled as ();yp,, in
Sec. VI below. The results in Table I show that the
nonfactorizable corrections are significant, of O(12%-
25%) for ZW™°¢ and even larger, O(40%—60%), for Z,,,.
We close this section by noting that Eq. (29) implies that
the contribution to R from the matching factor in Eq. (89)
is 2Z%"2 Such a term is mass independent. Thus, as
already pointed out in Ref. [2], all the matching and mixing
contributions to the axial amplitude in Eq. (30) cancel
exactly in the difference between the corrections corre-
sponding to two different channels, e.g., in Ry — 6R.
A similar cancelation also occurs in the difference between
the corrections to the amplitudes corresponding to the

TABLE I. Values of the coefficients Z,,W:'(r,eg [see Eq. (92)] and
7 [see Eq. (93)] calculated for the three values of the inverse
coupling f adopted in this work and for 4 = 1/a. In the fourth
and sixth columns, the values of the coefficient Zfﬁ,‘“ correspond-
ing to the nonfactorizable e.m. corrections to the mass RC in the
MS(2 GeV) [see Eq. (40)] are shown. The evaluation of the RCs
in the RI’-MOM scheme has been carried out in Ref. [29] using
the methods M1 and M2 of Ref. [28] (see Appendix A).

Method M1 Method M2

W-reg fact fact fact fact
B z" z Zfa z Zfa

1.90 0.00542 (11) 1.184 (11) 1.629 (41) 1.126 (7) 1.637 (14)
1.95 0.00519 (10) 1.172 (9) 1.514 (33) 1.123 (5) 1.585 (12)
2.10 0.00440 (7) 1.160 (6) 1.459 (17) 1.136 (4) 1.462 (6)

meson P decaying into two different final-state leptonic
channels.

V. FINITE VOLUME EFFECTS AT ORDER O(a,,)

The subtraction T'y(L) — T (L) in Eq. (1) cancels both
the IR divergences and the structure-independent FVEs,
i.e., those of order O(1/L). The pointlike decay rate I} (L)
is given by

(L) = <1 +2je—mY$(L)>r;£ee, (94)
JT
where
YO(L) = by log(MpL) + by + 21— 22
b3
O(e™MrL), 95
+ary o) (95)

with the coefficients b; (j = IR, 0, 1, 2, 3) depending on the
dimensionless ratio m,/M p and given explicitly in Eq. (98)
of Ref. [14] (see also Ref. [39]) after the subtraction of the
lepton self-energy contribution in the Feynman gauge. An
important result of Ref. [14] is that the structure-dependent
FVEs start at order O(1/(MpL)?). Consequently, the
coefficients b, in the factor Y%(L) are “universal,”
i.e., they are the same as in the full theory when the
structure of the meson P is considered.’

Equation (30) is therefore replaced by

BAp = BAY + A + 3 6AL +0AG — Y(L)AY,
i=J,T,P,S

(96)

where 6A} is given by Eq. (89).

SNotice that the decay rate in the full theory, Ty(L), can be
affected also by nonuniversal FVEs of order O[1/(MpL)"] with
n > 4 that do not appear in I'}'(L).
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FIG.9. Results for the corrections R, and 0R g for the gauge ensembles A40.20, A40.24, A40.32, and A40.40 sharing the same lattice
spacing, pion, kaon, and muon masses, but with different lattice sizes (see Table II). Top panel (a): the universal FVEs, i.e., the terms up
to order O(1/MpL) in Eq. (95), are subtracted for each quantity. Bottom panel (b): the same as in (a), but in addition to the subtraction of
the universal terms, bgt /(M PL)z, where bgt is the pointlike contribution to b, in Eq. (95), is also removed. The solid and dashed lines are
linear fits in 1/L2. The maximum photon energy AE, corresponds to the fully inclusive case AE, = AEP™P = Mp(1 - m2/M%)/2.

In order to study the FVEs in detail, we consider four
ensembles generated at the same values of f and quark
masses, but differing in the size of the lattice; these are the
ensembles A40.40, A40.32, A40.24, and A40.20 (see
Appendix A). The residual FVEs after the subtraction
of the universal terms as in Eq. (96) are illustrated in the
plots in Fig. 9 for 6R,, and 0R in the fully inclusive case,
i.e., where the energy of the final-state photon is integrated
over the full phase space. In this case, AE, = AEP™P —
Mp(1 —m2/M%)/2, which corresponds to AE;™K ~
235 MeV and AE;™”" ~29 MeV, respectively. With a
muon as the final state lepton, the contribution from
photons with energy greater than about 20 MeV is
negligible and hence the pointlike approximation is valid.
In the top plot, the universal FV corrections have been
subtracted and so we would expect the remaining effects
to be of order O(1/(MpL)?) and this is indeed what
we see.

In the bottom plot of Fig. 9, in addition to subtracting the
universal FVEs, we also subtract the contribution to the
order O(1/(MpL)?) corrections from the pointlike con-
tribution to b,, which can be found in Eq. (3.2) of Ref. [39].
We observe that this additional subtraction does not reduce
the O(1/(MpL)?) effects, underlining the expectation that
these effects are indeed structure dependent.

It can be seen that after subtraction of the universal terms
the residual structure-dependent FVEs are almost linear in
1/L?, which implies that the FVEs of order O(1/(MpL)?)
are quite small; indeed they are too small to be resolved
with the present statistics. Nevertheless, since the QEDy,
formulation of QED on a finite box, which is adopted in
this work, violates locality [13], we may expect that there
are also FVEs of order O(a*/L?) [39]. We have checked
explicitly that the addition of such a term in fitting the
results shown in Fig. 9 changes the extrapolated value at
infinite volume well within the statistical errors.
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A more detailed description of the full analysis, includ-
ing the continuum and chiral extrapolations, is given in the
following section. As far as the FVEs are concerned, the
central value is obtained by subtracting the universal terms
and fitting the residual O(1/L?) corrections to

Kp K%
(MpL)

(97)

where K p and K’ are constant fitting parameters and E is
the energy of the charged lepton in the rest frame of the
pseudoscalar P [see Eq. (98) below]. Such an ansatz is
introduced to model the unknown dependence of b, on the
ratio my/M p. For the four points in each of the plots of
Fig. 9, m,/Mp takes the same value, but this is not true for
all the ensembles used in the analysis. We estimate the
uncertainty due to the use of the ansatz in Eq. (97) by
repeating the same analysis, but on the data in which, in
addition to subtracting the universal terms in Eq. (95), we
also subtract the term b5'/(MpL)?, where b is contribu-
tion to b, from a pointlike meson [39]. Since bgt depends
on my/Mp, the result obtained with this additional sub-
traction is a little different from that obtained with only the
universal terms removed and we take the difference as an
estimate of the residual FV uncertainty.

VI. RESULTS FOR CHARGED PION AND KAON
DECAYS INTO MUONS

We now insert the various ingredients described in the
previous sections into the master formula in Eq. (29) for the
decays 77 — pTu[y] and Kt — utufy].

The results for the corrections R, and SR are shown in
Fig. 10, where the “universal” FSEs up to order O(1/L)
have been subtracted from the lattice data (see the empty
symbols) and all photon energies [i.e., AE, = AEY™P —
Mp(1 —m’/M%)/2] are included, since the experimental
data on 74, and K, decays are fully inclusive. As already
pointed out in Sec. I, structure-dependent contributions to
real photon emission should be included. According to the
ChPT predictions of Ref. [17], however, these contributions
are negligible in for both kaon and pion decays into muons,
while the same does not hold as well for decays into final-
state electrons (see Ref. [11]). This important conclusion
needs to be explicitly validated by an ongoing dedicated
lattice study of the real photon emission amplitudes in light
and heavy P-meson leptonic decays.

The combined chiral, continuum, and infinite-volume
extrapolations are performed using the following SU(2)-
inspired fitting function:

SRp = Ry + RY 10g(m,g) + Ry mq + Rg)mid + Dpa’
K K5

P max,P
ot O AR, (98)

+

where m,; = p,s/Zp and p,, is the bare (twisted) mass
(see Table IT in Appendix A below), Ef, is the lepton energy

in the P-meson rest frame, Rﬁ?)'(l)'(z) , Dp, Kp and Kf, are

free parameters. In Eq. (98), the chiral coefficient Rl(ﬁ() is
known for both pion and kaon decays from Ref. [40]; in
QED the coefficients are

) Aem () Aem
R} =— (3 -2X), RY%Y = — X,
Az (3 ) K 4 (99)

while in qQED they are

— 100
A 9 7 9 (100)

RY) = Zem (3 —Qx) RY = —jem§X,
where X is obtained from the chiral limit of the O(ay)
correction to Mii [i.e., (‘SM;‘;i = dna, X3 + O(m,y)]. In
Ref. [8], we found X = 0.658(40).

Using Eq. (98), we have fitted the data for SR, and 6Rg
using a y2-minimization procedure with an uncorrelated y?,
obtaining values of y?/d.o.f. always around 0.9. The
uncertainties on the fitting parameters do not depend on
the y* value, because they are obtained using the bootstrap
samplings of Ref. [28] (see Appendix A). This guarantees
that all the correlations among the data points and among
the fitting parameters are properly taken into account.

The quality of our fits is illustrated in Fig. 10. It can be
seen that the residual SD FVEs are still visible in the data
and well reproduced by our fitting ansatz in Eq. (98).
Discretization effects, on the other hand, only play a minor
role.

At the physical pion mass in the continuum and infinite-
volume limits, we obtain

5R2hys = +0.0153 ( 1 6) stat4-fit (4)input (3)

X (6)FVE(2)disc(6)qQED
= +40.0153(19),

chiral

(101)

hys
5RII)( * = +0'0024(6)slat+fit(3)input(1)chiral(S)FVE(2)disc
X (6)qQED

= 40.0024(10), (102)
where
(i) ()garsie indicates the uncertainty induced by the
statistical Monte Carlo errors of the simulations and
its propagation in the fitting procedure.
(i) ()inpuc is the error coming from the uncertainties of
the input parameters of the quark-mass analysis
of Ref. [28].
(ii1) ()epirar is the difference between including and
excluding the chiral logarithm in Eq. (98), i.e.,
taking R, #0 or R, = 0.
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FIG. 10. Results for the corrections R, (top panel) and Rk (bottom panel) obtained after the subtraction of the “universal” FSE
terms up to order O(1/L) in Eq. (95) (empty markers). The full markers correspond to the lattice data corrected by the residual FSEs
obtained in the case of the fitting function (98) including the chiral log. The dashed lines are the (central) results in the infinite volume
limit at each value of the lattice spacing, while the shaded areas identify the results in the continuum limit at the level of 1 standard
deviation. The crosses represent the values SR2™" and SR%™" extrapolated at the physical point m”¥*(MS, 2 GeV) = 3.70(17) MeV

[28]. The blue dotted lines correspond to the values SRE™® = 0.0176(21) and 5R?<hy * = 0.0064(24), obtained using ChPT [25] and
adopted by the PDG [26].

(iv)

)

(vi)

()pyg is the difference between the analyses of the
data corresponding to the FVE subtractions up to the
order O(1/L) alone or by also subtracting the term
proportional to b5 /(MpL)?> (see Fig. 9 and the
discussion toward the end of Sec. V).

()gisc is the uncertainty coming from including
(D # 0) or excluding (setting D = 0) the discretiza-
tion term proportional to @’ in Eq. (98).

()4qEp is our estimate of the uncertainty of the QED
quenching. This is obtained using the ansatz (98)
with the coefficient R, of the chiral log fixed either
at the value (100), which corresponds to the qQED

approximation, or at the value (99), which includes
the effects of the up, down, and strange sea-quark
charges [40]. The change both in SRE™ and in
SRE’(hyS is ~0.0003, which has been already added in
the central values given by Egs. (101) and (102). To
be conservative, we use twice this value for our
estimate of the qQED uncertainty.

Our results in Eqs. (101) and (102) can be compared with

the ChPT predictions SRE™ = 0.0176(21) and SRE™ =
0.0064(24) obtained in Ref. [25] and adopted by the PDG
[20,26]. The difference is within 1 standard deviation for

SRP™YS while it is larger for 6R1;<hys. Note that the precision
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of our determination of SRE™® is comparable to the one

obtained in ChPT, while our determination of 5RII)<h " has a
much better accuracy compared to that obtained using
ChPT; the improvement in precision is a factor of about 2.2.
We stress that the level of precision of our pion and kaon
results depends crucially on the nonperturbative determi-
nation of the chirality mixing, carried out in Sec. IV by
including simultaneously QED at first order and QCD at all
orders.

As already stressed, the correction 6Rp and the QCD

quantity f S)) separately depend on the prescription used for
the separation between QED and QCD corrections [27].

Only the product f;o)\/ 1 4+ 6Rp is independent of the
prescription and its value, multiplied by the relevant
CKM matrix element, yields the P-meson decay rate.
We remind the reader that our results (101) and (102)
are given in the GRS prescription (see the dedicated
discussion in Secs. II B and III) in which the renormalized
couplings and quark masses in the full theory and in
isosymmetric QCD coincide in the MS scheme at a scale of
2 GeV [19]. We remind the reader that, to the current level
of precision, this GRS scheme can be considered equivalent
to the FLAG scheme.

Taking the experimental values I'(z~ — u~7,[y]) =
3.8408(7) x 10" s™' and (K~ — u~0,[y]) = 5.134(11) x
107 s~! from the PDG [20] and using our results (101) and
(102), we obtain

TNV al = 127.28(2),,(12),, MeV = 127.28(12) MeV,

(103)

exp

£y, | = 35.23(4)00(2)y MeV = 35.23(5) MeV,

(104)

exp

where the first error is the experimental uncertainty and the
second is that from our theoretical calculations. The result
for the pion in Eq. (103) agrees within the errors with the

updated value £\|V 4| = 127.12(13) MeV [20], obtained
by the PDG and based on the model-dependent ChPT
estimate of the e.m. corrections from Ref. [25]. Our result
for the kaon in Eq. (104), however, is larger than the

corresponding PDG value fg?) |V.us| = 35.09(5) MeV [20],
based on the ChPT calculation of Ref. [25], by about 2
standard deviations.

As anticipated in Sec. I and discussed in detail in Sec. III,
we cannot use the result (103) to determine the CKM
matrix element |V ,,|, since the pion decay constant was
used by ETMC [28] to set the lattice scale in isosymmetric
QCD and its value, f 5[0) = 130.41(20) MeV, was based on
the determination of |V,,| obtained from super-allowed /3
decays in Ref. [42]. On the other hand, adopting the best
lattice determination of the QCD kaon decay constant,

9 = 156.11(21) MeV [3,43-45],” we find that Eq. (104)
implies
V.| = 0.22567(26)

33),, = 0.22567(42),  (105)

exp (

which is a result with the excellent precision of ~0.2%.

Since the nonfactorizable e.m. corrections to the mass
RC (see the coefficient Zt in Table I) were not included in
Ref. [2], we update our estimate of the ratio of the kaon and
pion decay rates,

SROIS — SRV _ SREM™S — _0.0126(14).  (106)

Using the pion and kaon experimental decay rates, we get

0
| Vus | fg
Vaal £

= 0.27683(29),,,(20),, = 0.27683(35). (107)

ex(
P

Using the best Ny = 2 + 1 + 1 lattice determination of the
ratio of the QCD kaon and pion decay constants,

£97 79 = 1.1966(18) [3,43-45], we find

|VMS|
|Vud|

=0.23135(24),,,(39),, = 0.23135(46).  (108)

exp (

Taking the updated value |V ;| = 0.97420(21) from super-
allowed nuclear beta decays [21], Eq. (108) yields the
following value for the CKM element |V |

V.| = 0.22538(24),,,(39),, = 0.22538(46),  (109)

exp

which agrees with our result (105) within the errors. Note
that our result (109) agrees with the latest estimate
|V.s| = 0.2253(7), recently updated by the PDG [20],
but it improves the error by a factor of approximately 1.5.
Taking the values |V,,| = 0.00413(49) [20] and |V 4| =
0.97420(21) [21], our result in Eq. (109) implies that the
unitarity of the first row of the CKM matrix is confirmed to
better than the per-mille level,
|Vud|2 + |Vus|2 + ‘Vub|2 = 099988(46) (110)
With the same value |V, = 0.97420(21) from super-
allowed nuclear beta decays [21], our result (103) implies

for the QCD pion decay constant (in the GRS prescription)
the following value:

"The average value of fy+ quoted by FLAG [3] includes the

strong IB corrections. In order to obtain f}? therefore, we
have subtracted this correction which is given explicitly in
Refs. [43-45].
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1) =130.65(12) 0y 1 (3)y,, MeV = 130.65(12) MeV,

(111)

exp +th

which, as anticipated in Sec. II1, agrees within the errors with

the value f,(zo) = 130.41(20) MeV adopted in Ref. [28] to set
the lattice scale in the isosymmetric QCD theory. This
demonstrates the equivalence of the GRS and PDG schemes
within the precision of our simulation.

In a recent paper [46], the hadronic contribution to the
electroweak radiative corrections to neutron and super-
allowed nuclear 8 decays has been analyzed in terms of
dispersion relations and neutrino scattering data. With
respect to the result V,;, = 0.97420(21) from Ref. [21], a
significant shift in the central value and a reduction of the
uncertainty have been obtained, namely V,;, = 0.97370(14)
[46]. The impact of the new value of V,,; on our determi-

nations of V,, and f;ro) is V,, =0.22526(46) and

fﬁ,‘” = 130.72(12) MeV, i.e., well within the uncertainties
shown in Eqs. (109) and (111), respectively. On the contrary,
the first-row CKM unitarity (110) will be significantly
modified into
|Vud|2 + |Vus|2 + |Vub|2 = 099885<34)’ (112)
which would imply a ~3.4¢ tension with unitarity. A
confirmation of the new calculation of the radiative correc-
tions made in Ref. [46] is therefore urgently called for.
Before closing this section, we comment briefly about the

comparison between our result SRE™* = 0.0024(10) and the

corresponding model-dependent ChPT prediction 5R‘;<h =
0.0064(24) from Ref. [25]. The latter is obtained by adding a
model-dependent QED correction of 0.0107(21) and a
model-independent next-to-leading strong IB contribution
equal to —0.0043(12). Our result on the other hand, obtained
in the GRS prescription, stems from a QED correction equal
to 0.0088(9) and a strong IB term equal to —0.0064(7) (see
also Ref. [47]). The difference between our result and the
ChPT prediction of Ref. [25] appears to be mainly due
to a different strong IB contribution. Thus, in the present
Ny =2+ 1+ 1 study, we confirm for the strong IB term a
discrepancy at the level of about 2 standard deviations,
which was already observed at Ny = 2 in Ref. [4].

VII. CONCLUSIONS

In this paper, we have presented the details of the first
lattice computation of the leading e.m. and strong IB
corrections to the z7t — p"vand K™ — p'v leptonic decay
rates, following a method recently proposed in Ref. [11].
This expands significantly on the discussion of Ref. [2],
where the results and a brief outline of the calculation had
been presented. The results were obtained using the gauge
ensembles produced by the European Twisted Mass
Collaboration with Ny =2+ 1+ 1 dynamical quarks.

Systematics effects are evaluated and the impact of the
quenched QED approximation is estimated.

The effective weak Hamiltonian in the W-regularization
scheme appropriate for this calculation is obtained from
the bare lattice operators in two stages. First of all, the
lattice operators are renormalized nonperturbatively in the
RI'-MOM scheme at O(a,,) and to all orders in the strong
coupling a;. Because of the breaking of chiral symmetry in
the twisted mass formulation, we have adopted this
renormalization which includes the mixing with other
four-fermion operators of different chirality. In the second
step, we perform the matching from the RI -MOM scheme
to the W-regularization scheme perturbatively. By calculat-
ing and including the two-loop anomalous dimension at
O(aema;,) [38], the residual truncation error of this match-
ing is of O(dema,(My)), reduced from O(a.,a,(1/a)) in
our earlier work [2,11].

The evaluation of isospin breaking (IB) “corrections”
raises the question of how QCD without these corrections is
defined. Since IB corrections change hadronic masses and
other physical quantities, a prescription is needed to define
QCD, whether isosymmetric or not, and in Sec. II and
Appendix B we discuss this issue in detail. In particular, the

correction dRp and the QCD quantity fg)) separately
depend on the prescription used for the definition of

QCD [27]. Only the product fﬁ?&/ﬁ is independent
of the prescription and its value, multiplied by the relevant
CKM matrix element, yields the P-meson decay rate. In this
paper, we chose to follow the conventionally used GRS
prescription (see the dedicated discussion in Secs. II B and
II) in which the renormalized couplings and quark masses
in the full QCD + QED theory and in isosymmetric QCD
coincide in the MS scheme at a scale of 2 GeV [19]. For
future studies, however, we advocate the use of “hadronic
schemes” in which QCD is defined by requiring that a set of
hadronic quantities (for example, a set of hadronic masses)
take their physical values in QCD and in QCD + QED.

The main results of the calculation are presented in
Sec. VI together with a detailed discussion of their
implications. In summary, after extrapolation of the data
to the physical pion mass, and to the continuum and
infinite-volume limits, the isospin-breaking corrections to
the leptonic decay rates can be written in the form,

T(x* = pFrely]) = (14 6RE)IO (2* - ptvy)
= (1.0153 £0.0019)I(z* - p*u,),
(113)
L(K* = puly]) = (1 + SREY)INO (2% — )
€.0024 +0.0010)TO(K* = ptv,),
(114)

where I'¥) is the leptonic decay rate at tree level in the GRS
scheme [see Eqgs. (101) and (102)]. These results can be
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compared with the ChPT predictions SRE™* = 0.0176(21)

and 5RII’<h * = 0.0064(24) obtained in Ref. [25] and adopted
by the PDG [20,26]. The difference is within 1 standard

deviation for SR2™®, while it is larger for 5R§’<hys. We also
underline that our result |V ;| = 0.22538(46) in Eq. (109),
together with the value of V,; determined in Ref. [21] and
|V .| from the PDG [20], implies that the unitarity of the
first row of the CKM matrix is satisfied at the per-mille
level [see Eq. (110)].
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APPENDIX A: DETAILS OF THE SIMULATION
The gauge ensembles used in this work are those

generated by ETMC with Ny =2+ 1+ 1 dynamical

TABLE IL

quarks and used in Ref. [28] to determine the up, down,
strange, and charm quark masses. We use the Iwasaki
action [48] for the gluons and the Wilson Twisted Mass
Action [41,49,50] for the sea quarks. In the valence sector,
we adopt a nonunitary setup [51] in which the strange quark
is regularized as an Osterwalder-Seiler fermion [52], while
the up and down quarks have the same action as the sea.
Working at maximal twist such a setup guarantees an
automatic O(a) improvement [50,51].

We have performed simulations at three values of the
inverse bare lattice coupling  and at several different lattice
volumes as shown in Table II. We allow a separation of 20
trajectories between each of the N, analyzed configura-
tions. For the earlier investigation of finite-volume effects
(FVEs), ETMC had produced three dedicated ensembles,
A40.20, A40.24, and A40.32, which share the same quark
masses and lattice spacing and differ only in the lattice size
L. To improve such an investigation, which is crucial in the
present work, we have generated a further gauge ensemble,
A40.40, at a larger value of the lattice size L.

At each lattice spacing, different values of the light sea-
quark masses have been considered. The light valence and
sea quark masses are always taken to be degenerate. The
bare mass of the valence strange quark (au,) is obtained, at
each f, using the physical strange mass and the mass
RCs determined in Ref. [28]. There the “FLAG” hadronic

scheme was adopted in which the pion and kaon masses in
isosymmetric QCD are equal to M;O)’FLAG = 134.98 MeV

and M?’FLAG = 494.2 MeV, and the lattice scale is fixed

Values of the valence and sea bare quark masses (in lattice units), of the pion and kaon masses for the Ny =2+ 1+ 1

ETMC gauge ensembles used in Ref. [28] and for the gauge ensemble, A40.40 added to improve the investigation of FVEs. A separation
of 20 trajectories between each of the N, analyzed configurations. The bare twisted masses p,, and y5 describe the strange and charm
sea doublet as in to Ref. [41]. The values of the strange quark bare mass ay,, given for each S, correspond to the physical strange quark
mass m™* (MS, 2 GeV) = 99.6(4.3) MeV and to the mass RCs determined in Ref. [28]. The central values and errors of pion and kaon
masses are evaluated using the bootstrap procedure of Ref. [28].

Ensemble s V/a* N Aoy = Alyy ay, aps aj M, (MeV) My (MeV) M, L
A40.40 1.90  40° x 80 100 0.0040 0.15 0.19 0.02363 317 (12) 576 (22) 5.7
A30.32 323 x 64 150 0.0030 275 (10) 568 (22) 39
A40.32 100 0.0040 316 (12) 578 (22) 4.5
A50.32 150 0.0050 350 (13) 586 (22) 5.0
A40.24 243 x 48 150 0.0040 322 (13) 582 (23) 3.5
A60.24 150 0.0060 386 (15) 599 (23) 4.2
A80.24 150 0.0080 442 (17) 618 (14) 4.8
A100.24 150 0.0100 495 (19) 639 (24) 53
A40.20 203 x 48 150 0.0040 330 (13) 586 (23) 3.0
B25.32 1.95 323 x 64 150 0.0025 0.135 0.170 0.02094 259 (9) 546 (19) 34
B35.32 150 0.0035 302 (10) 555 (19) 4.0
B55.32 150 0.0055 375 (13) 578 (20) 5.0
B75.32 80 0.0075 436 (15) 599 (21) 5.8
B85.24 243 x 48 150 0.0085 468 (16) 613 (21) 4.6
D15.48 2.10 483 x96 100 0.0015 0.1200  0.1385  0.01612 223 (6) 529 (14) 34
D20.48 100 0.0020 256 (7) 535 (14) 39
D30.48 100 0.0030 312 (8) 550 (14) 4.7
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by the value £\ ¢ = 130.41(20) MeV for the physical

pion decay constant. In the charm sector instead, the D,-

meson mass MEJ) was chosen to be equal to its exper-

imental value M+ = 1969.0(1.4) MeV [20]. The values
of the lattice spacing are found to be a = 0.0885(36),
0.0815(30), 0.0619(18) fm at = 1.90, 1.95, and 2.10,
respectively.

The two valence quarks ¢; and g, in the P meson are
regularized with opposite values of the Wilson r parameter
(ry = —ry) in order to guarantee that discretization effects
on the P-meson mass are of order O(a’uAqcp). The lepton
is a free twisted-mass fermion with Wilson parameter r,
and its mass is taken fixed at the physical muon value
my = m, = 105.66 MeV [20]. The regularization of the
(massless) neutrino is irrelevant and it is taken to be a free
fermion field.

In this work, we made use of the bootstrap samples
generated for the input parameters of the quark mass
analysis of Ref. [28]. There, eight branches of the analysis
were adopted differing in the following:

(i) The continuum extrapolation adopting for the
matching of the lattice scale either the Sommer
parameter r, or the mass of a fictitious P meson
made up of two valence strange(charm)-like quarks.

(i) The chiral extrapolation performed with fitting
functions chosen to be either a polynomial expan-
sion or a ChPT ansatz in the light-quark mass.

(iii) The choice between the methods M1 and M2, which
differ by O(a?) effects, used to determine the mass
RC Z,, = 1/Zp in the RI -MOM scheme.

APPENDIX B: RELATING OBSERVABLES IN
THE FULL THEORY AND IN QCD

In this appendix, we provide the detailed derivation of
the relation between observables calculated in the full
theory (QCD + QED) and in QCD (in the absence of
QED). We start by a discussion of the separation of the
QCD action from that in the full theory.

1. Actions of the full theory and of QCD

The lattice action in the full theory given in Eq. (4) can
be written as

Sl = §QP + 75,0+ S+ 58U+ AS,  (BI)
14

where S,y = S50 + m,S7 and the counterterm S and the
QED vertices AS are given by

1
Sct_{g___} YM+Z{ m F—m) Scr+(mf ij)S h

s 0

(B2)

(B3)

AS = Z Skln km + Z Skm Skm
¢

We now consider these terms in detail using Wilson
fermions for illustration. The kinetic term for the quark
with flavor f, Sk, is given by

in va] + v*[UVf]
Si(" wa { 5 H .

v, [va]zv [va]}wf @,

(B4)

where Wy is the quark field, while U u and Vf# are the QCD
and QED gauge links, respectively. Specifically

Vf,ﬂ (x) _ e—iefeAM(x)’ (BS)

where e is the charge of the quark with flavor f in units of
the positron charge. The forward and backward derivatives
are given by

VLUV s () = U,V () (- ) = wry(x) - and
(B6)
ViUV Jys(x) = yp(x) = Ui(x = )V, (x = @)y (x = ).
(B7)
The leptonic action is given by
) WVl + ViV
Sl;m + Sm _ Zl/’t’ { f] 5 [ If’]
x,ell
V., [V ViV
N Nt

with y, being the lepton field. The renormalization of the
lepton masses is performed perturbatively, by requiring that
the on-shell masses correspond to the physical ones.

In QCD, the kinetic term only includes the gluon links so
that for Wilson fermions

\% Vv, [UV;
S?S*Zl//f { [ ]_; ll[U}_ M[U]Z M[U]}Wf(x)v

(B9)

and the derivatives are defined in Eqgs. (B6) and (B7) with
V;=1. Since for leptonic and semileptonic decays,
leptonic spinors are present even in the absence of
electromagnetism, it is also convenient to define the kinetic
action for free leptons,

\% vV, [1]V;
5 S, LTSI,

(B10)
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2. Relation between observables in the full theory
and in QCD

Physical observables are determined from correlation functions evaluated from lattice computations in the full theory. For
a generic observable O evaluated in the full theory up to O(a,,), we write

ul _ AL 2
. fU,A.l/ff.I/// e_St HO[Wf’ Ve, U’A] B fU,y/f e S fA,l//f € s Zfs{io{l -S4 - AS + @}O[Wf’ Ve, U, A}

(0)

where in the integrand O is a multilocal composite operator.
For a given choice of the strong coupling g,, the parameters
of the action, the bare quark masses, and the lattice spacing
are determined by imposing that a set of physical quantities
take their experimental values as explained in Sec. I A.
Physical quantities other than those used for the calibration
can now be determined unambiguously up to lattice
artefacts, which are removed by taking the continuum limit.

In general, the determination of physical observables
requires the processing of correlation functions of the form
of Eq. (B11). Hadronic masses, for example, are obtained
from the behavior in the time separation of two interpolat-
ing operators and the determination of hadronic matrix
elements may require the cancelation of interpolating
operators at the source and/or sink using a combination
of three- and two-point functions. The discussion in this
appendix concerns the evaluation of a generic correlation
function.

We now turn to the definition of correlation functions in
QCD defined in a generic scheme. For a generic observable
O, we define its value in QCD by

_§QCD Y
fU~Wf 4 $ fAA,lI/f e § Z//”S/‘UO[IIIf, YWe, U, A]

(0 =
fU,wf =S fA.W e—sA—Zme

s

(B12)

where the bare quark masses and the lattice spacing are
defined as discussed in Sec. II B. The free QED action is
included in the numerator and denominator of Eq. (B12)
since even without radiative corrections the physical
quantities such as I'(K4,) and I'(z,,) studied in this paper
are obtained by combining the results for hadronic matrix
elements obtained from QCD simulations with leptonic
spinors. Moreover, for other quantities, for example, the
long-distance contributions to the amplitude for the rare
kaon decay K™ — ztup, there are internal free lepton
propagators even in the absence of isospin breaking [53].

_Sl‘ull —«QCD A ASY
vaAsl//fvll/[ e val,/f e~ fA,y/,/ oS Zfsm{l — Set — AS—l—%}

. (B11)

[
Comparing Egs. (B11) and (B12), we arrive at

(O)M! = (0)%P — (05*) & = <0{AS - (AS)2}>QCD

2 conn

= (0)P + (50)QP, (B13)
where the subscript “conn” reminds that only connected
Feynman diagrams contribute: (00;).,, = (010,)—
(01)(0y).

There is one final subtlety which we must account for.
We need to convert the results obtained from simulations in
lattice units (i.e., in units of the lattice spacing) into values
given in physical units such as MeV. Equation (B13) is also
written in lattice units. Imagine that the observable O has
mass dimension n and rewrite Eq. (B13) with the lattice
spacing included explicitly,

(a"O)l = (a8 0)QCP + (al50)CP,  (B14)
where, since we are working to first order in isospin
breaking, in the second term on the right-hand side we
do not need to distinguish between the lattice spacing in the
full theory (a) and that obtained in QCD (a,). The quantity
which we wish to determine, (O)"!" in physical units, is
therefore given by
(ap0)CP N (aps0) P néa (

n+1

10) full _ _
) ag a; ay

a0)ecP,

(B15)

where da = a — ay. The three expectation values on the
right-hand side of (B15) are directly computed in QCD
simulations.

APPENDIX C: NONPERTURBATIVE
RENORMALIZATION IN THE RI’-MOM
SCHEME

In this paper, as explained in Sec. IV, we have renor-
malized the weak four-fermion operator O; nonperturba-
tively on the lattice to all orders in a; and up to first order in
aem- In this appendix, we describe the main steps of the

034514-29



M. DI CARLO et al.

PHYS. REV. D 100, 034514 (2019)

nonperturbative renormalization procedure at O(a.,,) and
we refer the reader to a forthcoming publication [29] for
further details and results.

Given the amputated Green function, A, of an operator
O computed in a given gauge between external states with
momentum p and a suitable projector on the relevant Dirac
structure, P, we define the projected Green function as

Lo(pa) = Tr[Ao(pa)Po). (C1)
In the RI’-MOM scheme, the renormalization constant
(RC) Zy(ua) is found by imposing the condition [35]

Zr,(ma)lo(pa)lp_,p =1, (C2)

where

Zr,(na) = Zo(pa)[ [ 2" (ua). (C3)
i

The Z; are the RCs of the external fields and the index f
runs over all external fields entering the expression of the
composite operator O. For the four-fermion operators
considered in this work, the RCs Z (ua) and the projected
Green functions ' (pa) are 5 x 5 matrices, the latter with
elements (I'p);; = Tr[Ap,Po,]. In QCD + QED, the RCs
Zo and Z; depend both on the strong and the e.m. coupling
constants.

Following the discussion of Sec. IV [see Egs. (75)-(78)],
we write the RCs of any composite operator, and in
particular of the fields, bilinear, and four-fermion operators,
in the generic decomposition

ED ED\ — CD\— CD
20223 [(Zg ) 120(23 ) 1]23

= [1 o (azgP ’70)] 23

_ (1 + Zem AZO) 73, (C4)

A

where Z%CD and Z%ED are the RCs of the operator O in pure
QCD and pure QED, respectively, and we have put

AZy = AZSP + . (C5)

The first term, AZ?)ED, in Eq. (C5) represents the pure QED
contribution to the RC at O(a.,, ), whereas 7, contains the
O(atem) nonfactorizable QCD + QED correction.

In terms of the QCD renormalized operators O%, as those
in Eq. (79), we define the QCD renormalized projected
Green function I}, and expand it at first order in dgp,,

% (na) = Z3P (ua)To(pa)l oo,
(04
=21, (na) [T (ua) + 7 AT o (ua)

acm
AT% (ua),

=1
+4ﬂ'

(Co)

where we have used the RI’-MOM renormalization con-
dition Z?(?D (ﬂa)l"gCD(,ua) =1 applied in the pure QCD
theory and defined

AT (ua) = Z2 P (ua) AT o (pa). (C7)

Using Egs. (C4) and (C6), we can rewrite Eq. (C2) at first
order in @, as

I = Zp, (ua)lo(ua) = 1 + =22 (AZr, (ua) + AT (ua)).
(C8)

which provides, in turn, the RI-MOM renormalization
condition at order @,

AZr,(na) = =A% (pa). (C9)
Using the expression of Zr- in Eq. (C3) in terms of Z, and
the external fields RCs, one also obtains

AZo(pa) = =A% (ua) + %ZAZf(,ua). (C10)
f

Thus, AZ, is expressed directly in terms of the O(aey)
contribution to the QCD renormalized projected Green
function A%, = ZEPAT, evaluated at p? = 42,

In the following, we describe a completely nonpertur-
bative determination of the RCs AZ(ua) to all orders in
a,. We will assume that all the relevant RCs of fields and
composite operators in pure QCD have been already
determined, by following the standard RI’-MOM renorm-
alization procedure. With appropriate modifications to the
kinematical conditions and projectors, the discussion can
readily be adapted to similar schemes, such as the sym-
metric momentum subtraction one [54].

In addition to the renormalization of the four-fermion
operator appearing in the Hamiltonian, the e.m. shift of the
quark masses (see Sec. III A) requires the knowledge of the
RC of the pseudoscalar density [4]. We therefore start by
discussing the nonperturbative renormalization of quark
bilinear operators.

1. Renormalization of the quark field and bilinear
operators

We start with the renormalization of the quark fields. The
e.m. corrections to a quark propagator can be represented
schematically in the form
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Qem
s SUP(p)AS,(p)SYP (p) =

(C11)
sl —gé g —mY] —@— F S —mg] —@— .
where the last two diagrams represent the mass and critical Wilson parameter counterterms [4].
The amputated one-particle irreducible two-point function is then given by

AT, (p) = =(S¥P(p)) " (S¥P(p)AS, (p)S¥P (p))(SP(p)) 7" (C12)

and the correction to the quark field RC in the RI’-MOM scheme is obtained, according to Eq. (C9), as

[ AYY ] A
AZ,=——Tr [7” g(”)} = — L (Z9Py-I7y [711 g“’)} . (C13)
12 P pr=u? 12 P Pr=u

The e.m. correction to the RC Z, of a generic bilinear operator Or = g,I'q;, where I" is one of the Dirac matrices
@ =1,9,y*,y*y,0"), is given by Eq. (C10), which in this case reads

1
AZy = —-AT% + 7 (82, +AZ,).

(C14)

Two kinds of corrections contribute to the amputated Green function: either the QCD Green function is amputated with the
e.m. corrections on the inverse propagators, or the correction to the Green function itself is amputated with QCD

propagators. Thus, we have

AT = (Z3P)12(Z3P) 12 ZEPTe[AA Py).

with

(C15)

AAp = Azqz(P)GgCD(P)}’s<SQCDT(P)>_1}’5 + <SQCD(P>>_IG?)CD(P)75AZ; (p)rs

+(SEP(p)) ' AGH(p)rs(SEPT(p)) s,

(C16)

where G is the nonamputated Green function and AG,, is given diagrammatically by

r r r
AGo (p) = /A\ + %\ 4 A ) (C17)
P p p p p p

In this work, we have used an improved method to compute
the first diagram in Eq. (C17), as well as all the diagrams
containing a photon propagator connecting different points.
In this method, some of the sequential propagators introduced
in Ref. [8] are summed in order to reduce the number of
inversions of the Dirac matrix. All details of the calculation
will be given in the forthcoming publication [29].

Before closing this subsection, we stress that in the
calculation of Zp and its e.m. correction AZp, the

Goldstone pole contamination has been taken into account
and subtracted. In pure QCD, at each p? and for each
combination of valence quark masses, y; and p,, the
amputated Green function has been fitted to the ansatz

C
F1Q3CD == AO + B()M%; +—0

, (C18)
M3

where Mp = Mp(py, o) is the mass of the pseudoscalar
meson composed of valence quarks of mass u; and u,.
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When including QED in the calculation, Eq. (C18) has to
be modified to take into account the e.m. correction to the
meson mass. By considering the ansatz in Eq. (C18) in
QCD + QED and expanding it in terms of a.,, one finds

AM?,

C
P P

where AM? is the correction to M% evaluated in Ref. [8].
Note, in particular, that AT'p also receives the contribution
of a double pole. In Eq. (C19), only the coefficients A;, By,
and C; need to be fitted, since the values of B and C, are
already obtained from the QCD fit in Eq. (C18). |

In Eq. (C20), AT’ is a matrix expressed by

CD\ — CD\ — CD
(AD)yy = (Z&P) 2P Y (Z87)uTrlANg, Po |

2. Renormalization of the four-fermions operators

We conclude this section by describing the calculation of
the RCs of the complete basis of four-fermion operators O;
(i=1,...,5), in the RI’-MOM scheme. In this case, the
renormalization condition (C10) for the renormalization
matrix at O(a,) reads

1
AZ, = —AT% + 3 (AZ, +AZ, +AZ,),  (C20)

where AZ, is only e.m. and can be computed in perturba-
tion theory. We remind the reader that this term is omitted
in the actual calculation since its contribution cancels out in

the difference I'y(L) — TH'(L).

(C21)

As in the case of bilinear operators, the correction to the amputated Green function gets two kind of contributions,

AN, = AX,, (P)Gg,.CDQ?)Ys<SQCDT(P>>_175 + <SQCD(P)>_1G8?D(P)}’5AZ;1 (P)rs

+(S¥P(p)) "' AGo, (p)rs(S¥PH(p))"'7s.

and in this case AG, is given by

(C22)

e
AGo,(p) = < S + +

p p P p p p (
< el 3R

The fermionic lines on the left-hand side of the diagrams in
Eq. (C23) represent the ingoing and outgoing light quarks. On
the right-hand side, the external charged antilepton and the
neutrino propagators are drawn for illustration but not actually
included in the calculation. For this reason, their amputation is
neglected in Eq. (C22). The lepton self-energy is not reported in
Eqg. (C23) since its contribution cancels out in the amputation.

APPENDIX D: MATCHING, CHIRALITY
MIXING, AND FERMION OPERATORS IN THE
TWISTED MASS REGULARIZATION

In the main text and in Appendix C, we have described
the renormalization of the relevant operators in the physical

C23)

basis. This discussion is valid for a generic Wilson-like
fermion regularization. In this appendix, we address instead
some important aspects peculiar to the twisted mass
fermions used in our numerical calculation. We derive,
in particular, the relations between RCs in the so-called
physical and twisted basis, for the bilinear and four-fermion
operators considered in this work.

The relevant observation is that the lattice action for
twisted mass fermions at maximal twist in the twisted basis
only differs from the standard Wilson fermion lattice action
for the twisted rotation of the fermion mass term. The two
actions become identical in the chiral limit. It then follows
that, in any mass-independent renormalization scheme, the
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RCs for twisted mass operators in the twisted basis are the
same as those of the corresponding operators with standard
Wilson fermions. It is customary to denote these RCs, for a
generic operator O, as Z. They are valid for both standard
Wilson and twisted mass operators in the twisted basis and
differ, in general, from the RCs for twisted mass operators
in the physical basis, that we denote here as Zg)).

At maximal twist, the rotation from the twisted to the
physical basis for both quark and lepton fields is given by

1 . 1 .
Giwisted = E(l +iysry)q.  Crvisted 275(1 +iysre)?,
(D1)

where ¢ and 7 are the quark and lepton fields in the
physical basis and r, and r, are the corresponding
rmparameters. In our simulations, we use opposite values
of the r parameter for the two valence quarks, r, = —r
(r; = £1). The quark and lepton bilinears then transform as

(@27, (1 £75)01 ] isea = Ti711G27, (1 £ 75)q1],
[@2(1 £75)q1 liwistea = [G2(1 £ 75)q1],
726, (1 +75) @1 ] isted = @20, (1 +75)q1]

57, (1 = 75)], g = %(1 — i) o, (1 - 15)),
D1+ 75)luvised = %(1 T ir) 51+ 75)7]

80, (1 4 75) ] pueg = %(1 L irg) o, (1 +75)7).

(D2)
|

V2

l .
(02)wisted = +ﬁ’”1(1 —iry)0,,

(Ol)twisted:_ rl(l_irf)Ol’

1 .

(03)wisted = 75(1 +iry) 03, O3
1 .

(04)wisted = 72(1 +irz) 0y, O,
1 .

(Os)wisted = 75(1 +iry)0s, Os

From Eqgs. (D2), one readily derives the relations
between the quark vector and axial vector current in the
two bases,

ir [@ayuysqi] =iriA,,
ir[qr.qi]=irV,,

(Vll )twisted = [627/4 q1 ]twisted =

(A,u)twisted = [QZY/AVSQI ]twisted = (D3)

which, in turn, determine the relation between the RCs in
the two bases,

V,=20v,=-ir/(A,)

—l.rIZA(Aﬂ) _ZAV;U

twisted — twisted —

~ 0 . 2 .
Au = ZI(A )A/l =i (V}t)twisted = _lrlzv(vu)twisted :ZVA;u
(D4)

where O denotes the generic renormalized operator. One

then sees from Eq. (D4) that the RC Zs)) of the vector
current in the physical basis, with r; = —r,, is simply the
RC of the axial current in the twisted basis, which in turn is

just Z, computed with Wilson fermions in the chiral limit.

Analogously, ng in the physical basis, with r| = —r,,

corresponds to Zy computed with Wilson fermions in the
chiral limit.

From the transformations (D2), one can also derive the
relations between the four-fermion operators O; — Os of
Egs. (24) and (73) in the physical and twisted basis,

i .
0, = +7§r1(1 +ir4)(01) wisted>

i

0, = —%rl(l +i72)(02) wisted

- % (1= i) (05

= \%(1 —ir7)(O04) wisted-

- % (1= ir) (05 e (D3)

We can then obtain the relation between the renormalization matrix in the physical basis, Z(©), and the corresponding matrix
Z for standard Wilson fermions. In particular, for the weak operator O, one finds
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, 0 i o i ,
0, = Z ZEJ)OJ‘ = %rl(l +ir)(01)wisted = 7§r1(1 + w).z Z1(0))wistea

:ﬁrl(l +i”f){ \/i"l

. 1 .
(1 =irg)(Z110y = Z150,) +—= (1 + iry) z Zl,iO./}

V2 j=345
=710, -Z,0, -7 Z Z,;0;, (D6)
j=3.4,5
with 7 = r;r,. Therefore,
0 0 0 _ 0 - 0 -
Zg 1) =27, Zgz) =—Zn, Z§3) = —TZy3, Z(14> = —TZy4, Z(15> =T (D7)

Equation (D7) shows in particular that the mixing coef-
ficients Zy3 14,15 for the operators O3 4 5 are proportional to
7 =r ry. Thus, we can eliminate the mixing with these
operators by simply averaging the numerical results over
the two possible values 7 = +1.

In order to illustrate the above point, using the results of
Ref. [11] obtained in perturbation theory at order O(a?),

|
the coefficients AZ%ED = ZE(;) /(aem/47) are explicitly
given in the physical basis by

AZEP = ~1.60727,
AZEP = 0.80367.

AZTP = 05357,

AZEP = 321437, (D8)
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