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We present results from a lattice QCD study of nucleon matrix elements at vanishing momentum transfer
for local and twist-2 isovector operator insertions. Computations are performed on gauge ensembles with
nonperturbatively improved Nf ¼ 2þ 1 Wilson fermions, covering four values of the lattice spacing and
pion masses down toMπ ≈ 200 MeV. Several source-sink separations (typically ∼1.0 to ∼1.5 fm) allow us
to assess excited-state contamination. Results on individual ensembles are obtained from simultaneous
two-state fits across all observables and all available source-sink separations with the energy gap as a
common fit parameter. Renormalization has been performed nonperturbatively using the Rome-South-
ampton method for all but the finest lattice spacing for which an extrapolation has been used. Physical
results are quoted in the MS scheme at a scale of μ ¼ 2 GeV and are obtained from a combined chiral,
continuum, and finite-size extrapolation. For the nucleon isovector axial, scalar, and tensor charges we find
physical values of gu−dA ¼1.242ð25Þstatðþ00

−31Þsys, gu−dS ¼1.13ð11Þstatðþ07
−06Þsys and gu−dT ¼ 0.965ð38Þstatðþ13

−41Þsys,
respectively, where individual systematic errors in each direction from the chiral, continuum, and finite-size
extrapolation have been added in quadrature. Our final results for the isovector average quark momentum
fraction and the isovector helicity and transversity moments are given by hxiu−d ¼ 0.180ð25Þstatðþ14

−06Þsys,
hxiΔu−Δd ¼ 0.221ð25Þstatðþ10

−00Þsys, and hxiδu−δd ¼ 0.212ð32Þstatðþ20
−10Þsys, respectively.
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I. INTRODUCTION

Nucleon matrix elements carry information on the
internal structure and properties of nucleons, which can
be related to a large variety of physical processes. Using
calculations within the framework of lattice QCD, these
matrix elements can be studied from first principles.
Considering local, isovector operator insertions and van-
ishing momentum transfer, the corresponding matrix ele-
ments give access to isovector nucleon charges. These can
be obtained from lattice QCD without the need to consider

contributions from quark-disconnected diagrams, which
are computationally particularly difficult.
For the isovector axial charge, the experimental value is

precisely known, i.e., gu−dA ¼ 1.2724ð23Þ [1], as it can be
measured from the β decay of a neutron into a proton, hence
providing a crucial test for lattice QCD. This has led to
considerable interest in computing the axial charge on the
lattice [2–17]. Recently, gu−dA has been included in the
FLAG review (Ref. [18]) together with the isovector scalar
and tensor charges of the nucleon.
Unlike the axial charge, the scalar and tensor charges,

which can contribute to the β decay of the nucleon through
nonstandard couplings outside the Standard Model (SM)
[19] and are important for interpreting the results of dark
matter searches [20], are much less well determined from
phenomenology. Therefore, in this case lattice QCD can
provide crucial input to searches for beyond the Standard
Model (BSM) physics. The tensor charge also enters in
searches for BSM sources of CP violation as it governs
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the contribution of quark electric dipole moments to the
neutron electric dipole moment [21]. Future experimental
results will likely improve the precision of pheno-
menological determinations of the tensor charge [22], which
should allow for future tests of predictions from latticeQCD.
Beyond nucleon matrix elements of local operators, there

are observables related to higher-twist operators, such as
parton distribution functions (PDFs). In particular, the
average quark momentum fraction of the nucleon is of
considerable phenomenological interest, as it contributes in
the gauge-invariant decomposition of the nucleon spin given
by Ji’s sum rule [23]. For twist-2 operator insertions, as
required for, e.g., the isovector average quark momentum
fraction and the second moments of helicity and transversity
PDFs, again lattice QCD can be used to compute the relevant
matrix elements, which are typically less well determined
than the ones related to local operators. Even higher
moments of PDFs would involve also higher-twist operators
rendering lattice calculations infeasible due to operator
mixing and further decreasing signal-to-noise ratios.
Excited-state contamination is one of the dominant

sources of systematic uncertainty in contemporary lattice
QCD calculations of nucleon matrix elements [24–28].
This is caused by an exponentially decreasing signal-to-
noise ratio making sufficiently large Euclidean time sepa-
rations to suppress such unwanted contributions from
excited states unaffordable in terms of computational cost.
Several approaches have been used in the past in an attempt
to tame these effects. They mostly rely on either explicitly
fitting excited states in two- and three-point functions
[11,29] for a given nucleon matrix element, or on perform-
ing a summation over the operator insertion [12,30,31] to
achieve additional suppression of excited-state contami-
nations. Here we investigate an approach to simultaneously
fit data for nucleon charges and second moments of PDFs
at multiple source-sink separations with a common, fitted
energy gap. While nucleon charges and moments of PDFs
are typically studied separately on the lattice, we find that
such a combined analysis has several advantages. First of
all, the spectrum and thus the energy gaps depend only on
the quantum numbers of the interpolating operators chosen
for the nucleon state, but not on the operator insertion itself.
Therefore, fitting a common energy gap allows us to fully
exploit correlations between different matrix elements. We
find that such simultaneous fits are much more stable
compared to fitting single observables with an energy gap
left free. Moreover, assuming sufficient statistics, the
convergence of the fitted gap towards its theoretical
expectation can be tracked as a function of the fit range
in our approach, and no additional assumption is required
with respect to the energy gap.
In this paper, we present physical results for the isovector

axial, scalar, and tensor charge of the nucleon, its average
quark momentum fraction, and the isovector moments for
the helicity and transversity PDFs from isovector twist-2
operator insertions. Some preliminary results have been

published in Refs. [32,33]. Since we consider only iso-
vector quantities, there are no contributions from quark-
disconnected diagrams. However, we are planning to add
isoscalar observables in a future publication; a first account
of related work can be found in Refs. [34,35].
This paper is organized as follows: InSec. IIwepresent the

setup for our lattice calculations, including anoverviewof the
ensembles, operators and matrix elements, technical details
on the calculation of two-point and three-point functions, as
well as a discussion of the renormalization required to obtain
physical results. Section III deals with the methods we
employ to ensure ground-state dominance in the desired
nucleonmatrix elements, which is required for the extraction
of physical observables from lattice data. Physical results
from chiral, continuum, and finite-size (CCF) extrapolations
are discussed in Sec. IV, and some concluding remarks are
contained in Sec. V. Additional technical details related to
renormalization have been moved to an Appendix.

II. LATTICE SETUP

A. Ensembles

Calculations have been performed on eleven gauge
ensembles provided by the Coordinated Lattice
Simulations (CLS) initiative [36]. These ensembles have
been generated with Nf ¼ 2þ 1 flavors of nonperturba-
tively OðaÞ-improved dynamical Wilson fermions and the
tree-level Symanzik gauge action. A twisted-mass regulator
has been introduced in the simulations to suppress excep-
tional configurations [37] and open boundary conditions in
time direction are employed to alleviate the issue of long
autocorrelations in the topological charge [38]. For further
details on the simulations we refer to Ref. [36].
An overview of the ensembles used in the present study

is shown in Table I. The ensembles cover four values of the
lattice spacing a and pion masses in a range of ∼200 to
∼350 MeV. Lattice volumes are chosen such that
MπL≳ 4, with the exception of the S201 ensemble which
has been included to enable a direct test of finite-size
effects. Values for the pion mass have been (re-)measured
for most ensembles on the same set of gauge configurations
that has been used in the calculation of nucleon matrix
elements; hence, they may slightly differ from the values
originally published in Ref. [36]. The only exception are
ensembles H102 and H105 at the coarsest lattice spacing,
for which we employ the values from Ref. [36]. However,
the precision of the values on the pion mass is, in any case,
not yet relevant to the present study.
In Table II we list the values of the lattice spacing,

corresponding to the four values of β in Table I, together
with values for the gradient flow scale t0=a2 introduced in
Ref. [39]. All results in Table II are taken from Ref. [40]
and we refer to this publication for further details on the
scale-setting procedure. In order to set the scale in our study
the physical value of t0 is required, which has also been
determined in Ref. [40]
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8t0;phys

q
¼ 0.415ð4Þstatð2Þsys fm; ð1Þ

through the physical quantity fπK ¼ 2
3
ðfK þ 1

2
fπÞ

employing Particle Data Group values for the pion
and kaon decay constant fπ ¼ 130.4ð2Þ MeV and fK ¼
156.2ð7Þ MeV [41].

B. Operators and matrix elements

In this study we aim at computing isovector axial, scalar,
and tensor charges that are related to the following local
dimension-three operators:

OA
μ ðxÞ ¼ q̄ðxÞγμγ5qðxÞ;

OSðxÞ ¼ q̄ðxÞqðxÞ;
OT

μνðxÞ ¼ q̄ðxÞσμνqðxÞ: ð2Þ

Additionally, we are interested in forward matrix elements
of twist-2, dimension-four operators

OvD
μν ¼ q̄γfμD

↔

νgq;

OaD
μν ¼ q̄γfμγ5D

↔

νgq;

OtD
μνρ ¼ q̄σ½μfν�D

↔

ρgq; ð3Þ

where f…g indicates symmetrization over indices with
subtraction of the trace and ½…� denotes antisymmetriza-
tion. Dirac matrices are labeled by γμ;5, σμν ¼ 1

2
½γμ; γν�. The

symmetric derivative D
↔

is defined as D
↔

μ ¼ 1
2
ðD⃗μ − D⃖μÞ.

Throughout this study we will work in Euclidean
spacetime. Besides, we introduce a compact notation for
which the matrix element of a given operator insertion
OX

μ1…μn with X ∈ fA; S; T; vD; aD; tDg and n Lorentz
indices reads

hNðpf; sfÞjOX
μ1…μn jNðpi; siÞi

¼ ūðpf; sfÞWX
μ1…μnðQ2Þuðpi; siÞ; ð4Þ

where uðpi; siÞ, ūðpf; sfÞ denote Dirac spinors with initial
(final) state momentum pi (pf) and spin si (sf).WX

μ1…μnðQ2Þ
on the right-hand side is an operator-dependent form factor
decomposition. For example, for the axial-vector current
one has

WA
μ ðQ2Þ ¼ γμγ5GAðQ2Þ − iγ5

Qμ

2MN
GPðQ2Þ; ð5Þ

where GAðQ2Þ, GPðQ2Þ are the axial and induced pseudo-
scalar form factor, Qμ ¼ ðiEf − iEi; q⃗Þ is the Euclidean
four-momentum transfer with q⃗ ¼ p⃗f − p⃗i and MN , the
nucleon mass. For further details on the relevant form factor
decompositions for generalized parton distribution functions
(GPDFs) we refer to Ref. [42].
Obtaining nucleon matrix elements in lattice QCD

requires the computation of spin-projected two- and
three-point functions as depicted in Fig. 1

C2ptðp⃗; tf − tiÞ ¼ Γαβ
0

X
x⃗f

eip⃗·ðx⃗f−x⃗iÞhJN;αðx⃗f; tfÞJ̄N;βðx⃗i; tiÞi;

ð6Þ

TABLE II. Values of the lattice spacing a and t0=a2 for each
value of β used in this study. Values are taken from Ref. [40]. The
first error is statistical, the second one systematic.

β a=fm t0=a2

3.40 0.08636(98)(40) 2.860(11)(03)
3.46 0.07634(92)(31) 3.659(16)(03)
3.55 0.06426(74)(17) 5.164(18)(03)
3.70 0.04981(56)(10) 8.595(29)(02)

TABLE I. Overview of ensembles used in this study. The error on the pion and nucleon masses include the error from the scale setting.
NHP and NLP denote to the number of high-precision (HP) and low-precision (LP) measurements on each value of tsep, respectively. The
column labeled “twist-2” indicates whether twist-2 operator insertions are available on a given ensemble. The statistics for the two-point
function are always the same as for the three-point functions.

ID β T=a L=a Mπ=MeV MπL MN=GeV NHP NLP Twist-2 tsep=fm

H102 3.40 96 32 352(4) 4.93 1.078(15) 7988 0 no 1.0, 1.2, 1.4
H105 3.40 96 32 278(4) 3.90 1.020(18) 4076 48912 yes 1.0, 1.2, 1.4
C101 3.40 96 48 223(3) 4.68 0.984(12) 2000 64000 yes 1.0, 1.2, 1.4

S400 3.46 128 32 350(4) 4.34 1.123(15) 1725 27600 yes 1.1, 1.2, 1.4, 1.5, 1.7
N401 3.46 128 48 287(4) 5.33 1.058(15) 701 11216 yes 1.1, 1.2, 1.4, 1.5, 1.7

N203 3.55 128 48 347(4) 5.42 1.105(13) 1540 24640 yes 1.0, 1.2, 1.3, 1.4, 1.5
S201 3.55 128 32 293(4) 3.05 1.097(21) 2092 66944 yes 1.0, 1.2, 1.3, 1.4
N200 3.55 128 48 283(3) 4.42 1.053(14) 1697 20364 yes 1.0, 1.2, 1.3, 1.4
D200 3.55 128 64 203(3) 4.23 0.960(13) 1021 32672 yes 1.0, 1.2, 1.3, 1.4

N302 3.70 128 48 353(4) 4.28 1.117(15) 1177 18832 yes 1.0, 1.1, 1.2, 1.3, 1.4
J303 3.70 192 64 262(3) 4.24 1.052(17) 531 8496 yes 1.0, 1.1, 1.2, 1.3
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CX
μ1…μnðq⃗; top − ti; tf − tiÞ
¼ Γαβ

z

X
x⃗f ;x⃗op

eip⃗
0·ðx⃗f−x⃗opÞeip⃗·ðx⃗op−x⃗iÞhJN;αðx⃗f; tfÞ

×OX
μ1…μnðx⃗op; topÞJ̄N;βðx⃗i; tiÞi: ð7Þ

In the case of the three-point functions, we employ
polarization in the z direction; i.e., we project with
Γz ¼ Γ0ð1þ iγ5γ3Þ, while for the two-point functions
Γ0 ¼ 1

2
ð1þ γ0Þ is used, effectively averaging over all three

spatial polarizations. For the two-point function we find
that the latter yields a slightly better signal-to-noise ratio
for, e.g., the resulting nucleon masses, than using Γz. The
proton interpolating field is given in position space by

JN;αðxÞ ¼ ϵabcðũTaðxÞCγ5d̃bðxÞÞũc;αðxÞ: ð8Þ

where C is the charge conjugation matrix, and we have
introduced Gaussian-smeared quark fields

q̃ ¼ ð1þ κGΔÞNq; q ¼ u; d: ð9Þ

The values for the parameters κG and N have been chosen
to correspond to a smearing radius of ∼0.5 fm for each
value of β. Furthermore, we apply spatial APE smearing
[43] to the gauge links entering the three-dimensional
Laplacian Δ, to improve the ground-state projection for
the relevant matrix elements and to gain additional noise
reduction.
For the following discussion we define the source-

sink separation tsep ¼ tf − ti and introduce the shorthand
t ¼ top − ti. Without loss of generality, we will assume that
the source time is zero, i.e., ti ¼ 0, corresponding to an
index shift in the actual calculation. Moreover, we demand
that the final state is produced at rest, i.e., p⃗f ¼ 0, q⃗ ¼ −p⃗i.
In momentum space the two- and three-point functions in
Eqs. (6), and (7) can then be written as

C2ptðq⃗; tsepÞ ¼ Γαβ
0 hJN;αð−q⃗; tsepÞJ̄N;βð−q⃗; 0Þi; ð10Þ

CX
μ1…μnðq⃗; t; tsepÞ ¼ Γαβ

z hJN;αð0⃗; tsepÞOX
μ1…μnðq⃗; tÞ

× J̄N;βð−q⃗; 0Þi: ð11Þ

Extracting the physical matrix elements requires the can-
celation of unknown overlap factors in the three-point

function, which in the case of vanishing momentum
transfer Q2 ¼ 0 can be achieved by forming the ratio

RX
μ1…μnð0⃗; t; tsepÞ ¼

CX
μ1…μnð0⃗; t; tsepÞ
C2ptð0⃗; tsepÞ

: ð12Þ

In the limit of large Euclidean time separations t and
tsep − t, the ratio turns into a plateau as it becomes
dominated by the ground state, i.e.,

lim
t→∞

lim
ðtsep−tÞ→∞

RX
μ1…μnð0⃗; t; tsepÞ ¼ const: ð13Þ

For the local operators in Eq. (2) one obtains the following,
asymptotic relations at large Euclidean times for the
isovector axial-, scalar-, and tensor charges gu−dA , gu−dS ,
and gu−dT :

RA
μ ð0⃗; t; tsepÞ → iδ3μgu−dA ; ð14Þ

RSð0⃗; t; tsepÞ → gu−dS ; ð15Þ

RT
μνð0⃗; t; tsepÞ → ϵ03μνgu−dT : ð16Þ

The decompositions for the isovector combinations of the
dimension-four operators in Eq. (3) lead to

RvD
μν ð0⃗; t; tsepÞ → m

�
δ0μδ0ν −

1

4
δμν

�
hxiu−d; ð17Þ

RaD
μν ð0⃗; t; tsepÞ →

im
2
ðδ3μδ0ν þ δ0μδ3νÞhxiΔu−Δd; ð18Þ

RtD
μνρð0⃗;t;tsepÞ→−

im
4
ϵμνρ3ð2δ0ρ−δ0ν−δ0μÞhxiδu−δd; ð19Þ

where in the GPDF notation of Ref. [42] we have defined
the isovector average quark momentum fraction hxiu−d¼
Au−d
20 ðQ2¼0Þ, helicity moment hxiΔu−Δd ¼ Ãu−d

20 ðQ2 ¼ 0Þ,
and transversity moment hxiδu−δd ¼ Au−d

T20 ðQ2 ¼ 0Þ. In the
actual calculation we always average over all contributing,
numerically nonidentical index permutations.

FIG. 1. Left panel: Nucleon two-point function. Right panel: Quark-connected nucleon (isovector) three-point function.
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C. Computation of two- and three-point functions

Apart from the actual generation of the gauge ensembles,
the computationally most expensive part of this study is the
calculation of two- and especially three-point functions in
Eqs. (10) and (11). Therefore, we employ the truncated
solver method [44–46] on most ensembles to reduce the
cost of the required inversions. The method is based on the
idea of using a (relatively) large number of low-precision
NLP inversions to obtain a statistically precise estimate of
the actual observable and only a small numberNHP of high-
precision measurements to correct for the resulting bias in
the final expectation value

hOi ¼
�

1

NLP

XNLP

i¼1

OLP
i

�
þ hObiasi;

Obias ¼
1

NHP

XNHP

i¼1

ðOHP
i −OLP

i Þ: ð20Þ

For the ensembles in Table I we typically observe a factor
∼2 to 3 improvement in computer time compared to using
only exact solves. The total numbers of low- and high-
precision inversions for each ensembles can be found in
Table I.
For the computation of three-point functions we perform

sequential inversions through the sink with the final state
produced at rest. Depending on the value of the lattice
spacing and the available statistics, we compute three-point
functions for at least three and up to five values of tsep. This
allows us to check the dependence on the source-sink
separation, which is instrumental in dealing with excited-
state contamination. The values of tsep in physical units are
shown in Table I. Note that we do not include values of tsep
smaller than 1 fm. For the initial (forward) propagator we
use point sources distributed on a single time slice in the
center bulk of the lattice. Typically, the actual position of
the source time slice ti (before performing the index shift
ti → 0) on a given ensemble is chosen such that tmin

sep ¼
T − 2ti holds for the smallest available value of the source-
sink separation tmin

sep . Since the ensembles used in this study
have been generated with open boundary conditions, this
choice guarantees that all operators remain sufficiently far
away from the boundaries in time, hence preventing further
contamination due to boundary effects. Finally, two-point
functions are generally computed on the same source time
slice ti and with the same statistics as the three-point
functions.

D. Renormalization

Unlike hadron masses which are renormalization group
invariants, matrix elements as given in Eq. (4) typically
require renormalization. To this end we have performed the
nonperturbative renormalization for the relevant operators
using the Rome-Southampton method [47] at each lattice

spacing except for the finest one. The reason for this is
that at lattice spacings of a≲ 0.05 fm topological charge
freezing is expected to become a severe issue, hence
simulations with periodic boundary conditions as required
by the Rome-Southampton method are not feasible in such
a setup. Our results are summarized in the top portion of
Tables III and IV for local and twist-2 operators, respec-
tively. They are all given in the MS scheme at a scale of
μ ¼ 2 GeV and we have included results for both irreduc-
ible representations for the twist-2 operators. For the
renormalization of the twist-2 matrix elements that are
actually computed in our study we require only one of the

irreps in each case, i.e., ZMS
v2b, Z

MS
r2a and ZMS

h1a for hxiu−d,
hxiΔu−Δd and hxiδu−δd, respectively. For further details of
our renormalization procedure and associated notation, we
refer to the Appendix.
For the required values of the renormalization constants at

our finest lattice spacing at β ¼ 3.7, we have resorted to
extrapolations, introducing a further source of uncertainty.
The numerical results from this procedure are summarized in
the bottom lines of Tables III and IV for local and twist-2
operators, respectively. The errors for the extrapolated values
have been scaled by a factor of 10 to account for the
systematic uncertainty of this procedure. Examples of the
extrapolations are shown in Fig. 13 in the Appendix,
indicating that the final error is estimated very conservatively.
Nevertheless, even allowing for a generous error margin

on the extrapolated Z factors may not entirely disperse all
doubts concerning the reliability of this procedure; how-
ever, in the case of the axial-vector matrix element we
have performed a thorough cross-check using the results
for ZA determined from the chirally rotated Schrödinger
functional [48], which are available for all four values of
β used in our study. This offers the possibility for cross-
checking the validity of the extrapolation that we applied in
the case of β ¼ 3.7 from the perspective of the final,
(combined) continuum extrapolation. Moreover, this alter-
native renormalization method allows for a more consistent
OðaÞ improvement in the case of gu−dA . We will validate our
extrapolation for ZA by a detailed comparison with
Schrödinger-functional results in Sec. IV B.

TABLE III. Renormalization factors corresponding to the three
local operator insertions used in this study. Results are obtained
from the Rome-Southampton method and given in the MS
scheme at a scale of μ ¼ 2 GeV (where applicable). Statistical
and systematic errors have been added in quadrature. Values for
β ¼ 3.7 are obtained by an extrapolation.

β ZA ZMS
S ZMS

T

3.40 0.7533(18) 0.6506(82) 0.8336(35)
3.46 0.7604(16) 0.6290(82) 0.8475(33)
3.55 0.7706(14) 0.6129(81) 0.8666(33)

3.70 0.7879(33) 0.575(18) 0.900(7)
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The values of ZSF
A used in this study have been collected

in Table V together with results for the improvement
coefficient bA taken from Ref. [49] as well as values of
κcrit determined in Ref. [50]. The final, OðaÞ-improved
renormalization factors are then dependent on the bare
coupling constant g0 as well as on the quark mass mq ¼
1
2a ð 1κq − 1

κcrit
Þ where q ¼ l, s and the average quark mass

m̄ ¼ 1
3
ð2ml þmsÞ

Zimp
A ðg20; mq; m̄Þ ¼ ZAðg20Þð1þ amqbAðg20Þ þ 3am̄b̃Aðg20ÞÞ:

ð21Þ

The last term depends on an additional improvement
coefficient b̃A for which results have not been published
for all four values of β. However, it is formally ofOðg40Þ and
hence likely to be suppressed. Moreover, it has been found
in Ref. [49] at the coarsest lattice spacing for ensemble
H102 that the value of b̃A is indeed compatible with zero,
albeit with large statistical errors. Therefore, we will drop
this term from our analysis.

III. GROUND-STATE DOMINANCE

It is a well-established fact that nucleon structure
calculations in lattice QCD are hampered by excited-state
contamination [16]. This is caused by a signal-to-noise
problem preventing the use of sufficiently large source-sink
separations in the calculation of nucleon three-point func-
tions. Therefore, in practice it is not feasible to directly

extract a reliable ground-state plateau value from lattice
data for the ratio in Eq. (12). We have investigated several
approaches to deal with excited states and extract the final
observables.

A. Multistate fits

Our main approach to tackle excited-state contamination
in nucleon structure calculations are multistate fits to lattice
data for the ratio in Eq. (12). Inserting complete sets of
states in the two- and three-point functions in Eqs. (10)
and (11) their spectral representation can be parametrized as

C2ptðq⃗; tsepÞ ¼
X∞
k¼0

akðq⃗Þe−Ekðq⃗Þt; ð22Þ

CX
μ1…μnðq⃗; t; tsepÞ ¼

X∞
k¼0

X∞
l¼0

AX;kl
μ1…μnðq⃗Þe−Ekð0⃗Þðtsep−tÞ−Elðq⃗Þt;

ð23Þ

in terms of observable-independent energies Ekðq⃗Þ and
observable-dependent factors akðp⃗Þ, AX;kl

μ1…μnðq⃗Þ containing
amplitudes and further kinematical expressions. The exact
form of the latter will not be relevant for our purposes
in this section. Moreover, suppressing all indices related
to the operator insertion by introducing the shorthand
Aklðq⃗Þ ¼ AX;kl

μ1…μnðq⃗Þ and defining

Ãklðq⃗Þ ¼ Aklðq⃗Þ=Aminðk;lÞ minðk;lÞðq⃗Þ; ð24Þ

the three-point function in Eq. (23) can be rewritten as

CX
μ1…μnðq⃗; t; tsepÞ ¼

X∞
k¼0

Akkðq⃗Þe−Ekð0⃗Þðtsep−tÞ−Ekðq⃗Þt

×

�
1þ

X∞
l¼kþ1

ðÃklðq⃗Þe−Δklðq⃗Þt

þ Ãlkðq⃗Þe−Δklð0⃗Þðtsep−tÞÞ
�
; ð25Þ

where we have introduced the energy gaps Δklðq⃗Þ ¼
Elðq⃗Þ − Ekðq⃗Þ. Assuming vanishing momentum transfer

TABLE IV. Renormalization factors corresponding to the twist-2 operator insertions used in this study. Results are
obtained from the Rome-Southampton method and given in the MS scheme at a scale of μ ¼ 2 GeV and values for
both irreps of each operator (cf. the Appendix for notation) have been included. Statistical and systematic errors
have been added in quadrature. Values for β ¼ 3.7 are obtained by an extrapolation.

β ZMS
v2a ZMS

v2b ZMS
r2a ZMS

r2b ZMS
h1a ZMS

h1b

3.40 1.105(10) 1.117(10) 1.097(10) 1.134(10) 1.138(12) 1.147(12)
3.46 1.122(10) 1.129(10) 1.115(10) 1.148(10) 1.157(12) 1.167(12)
3.55 1.157(10) 1.161(10) 1.150(10) 1.180(10) 1.196(12) 1.205(12)

3.70 1.209(23) 1.204(23) 1.203(22) 1.224(23) 1.253(27) 1.262(27)

TABLE V. Axial-vector renormalization factors ZSF
A from the

Schrödinger functional method as given in Ref. [48], improve-
ment coefficients bA from Ref. [49] and values for κcrit as
determined in Ref. [50]. In the notation of Ref. [48] we choose
Zl
A;sub from the L1 constant line of physics for ZSF

A . Statistical and
systematic errors have been added in quadrature.

β ZSF
A bA κcrit

3.40 0.75485(68) 1.71(11) 0.1369115
3.46 0.76048(80) 1.49(20) 0.1370645
3.55 0.76900(42) 1.38(12) 0.1371726
3.70 0.78340(43) 1.26(09) 0.1371576

TIM HARRIS et al. PHYS. REV. D 100, 034513 (2019)

034513-6



q⃗ ¼ 0 as required in our actual calculation and suppressing
all occurrences of zero momenta in the notation the
expression is further simplified to become

CX
μ1…μnð0⃗; t; tsepÞ

¼
X∞
k¼0

Akke−mktsep

�
1þ

X∞
l¼kþ1

Ãklðe−Δklt þ e−Δklðtsep−tÞÞ
�
;

ð26Þ

where we made use of the fact that Ãklð0⃗Þ ¼ Ãlkð0⃗Þ for the
current insertions we consider. Keeping only terms involving
the lowest gap Δ ¼ Δ01, one arrives at the following
expression for the ratio in Eq. (12):

RX
μ1…μnð0⃗; t; tsepÞ ¼ ĀX;00

μ1…μn þ ĀX;01
μ1…μnðe−Δt þ e−Δðtsep−tÞÞ

þ ¯̄AX
μ1…μne

−Δtsep ; ð27Þ

where we defined

ĀX;kl
μ1…μn ¼

AX;kl
μ1…μnð0⃗Þ
a0ð0⃗Þ

ð28Þ

and

¯̄AX
μ1…μn ¼ ĀX;11

μ1…μn − ĀX;00
μ1…μn ·

a1ð0⃗Þ
a0ð0⃗Þ

: ð29Þ

The first term on the rhs is then a (linear combination of)
form factor(s) at vanishing momentum transfer depending on
the operator insertion X and the spin projection in the
original three-point function; e.g., for X ¼ A and μ ¼ 3 for
our choice of projectors one finds that ĀA;00

3 gives the axial
charge. The expression in Eq. (27) represents our final fit
model, which has already been applied in a previous analysis

of lattice data with Nf ¼ 2 dynamical quark flavors in
Ref. [9]. In principle, it is possible to fit the model in Eq. (27)
leaving the gap as a free parameter; however, this requires
very precise data and leads to rather large errors on the
estimate for the corresponding observables. Still, from a
theoretical point of view it is desirable to apply such fits
without additional assumptions, in contrast to Ref. [9],
where the gap was fixed to Δ0 ¼ 2Mπ on each ensemble.
Therefore, we choose a more sophisticated approach, fitting
the model in Eq. (27) with a single free gap Δ to all
observables and for all available values of tsep simultane-
ously. This is possible because the gaps are only related to
the interpolating operators which are chosen the same for all
the nucleon matrix elements in this study. These simulta-
neous fits yield much more stable fits compared to fitting a
free gap to a single observable only. In fact, we find that they
often outperform simple two-state fits with a fixed gap with
respect to the resulting error on ĀX;00

μ1…μn as correlations in the
data are more thoroughly exploited.
Since the fit form in Eq. (27) is symmetric in t around

tsep=2 we explicitly symmetrize the data before fitting,
which leaves a fit range of t ∈ ½tfit; tsep=2� at each value of
tsep. Furthermore, we restrict ourselves to a consistent set of
source-sink separations for each value of β as listed in
Table VI. As a result, we drop the largest available source-
sink separation from the fit in a few cases. The data at these
additional, largest source-sink separations are typically
very noisy and do not affect the final results much within
errors, and dropping them entirely can lead to more stable
fits. This is especially so because the problem size is
reduced, and hence the estimate of the inverse covariance
matrix becomes more reliable.
When selecting time intervals for the simultaneous fits,

some care is required to ensure that the fitted gap is stable
under variation of the fit interval, since the excitation
spectrum is very dense. In the actual fits, we demand
Mπtfit ≥ 0.4 on all our ensembles, which we found to be a

TABLE VI. Parameters including correlated χ2=d:o:f: and p values and renormalized results for all six observables from simultaneous
fits on each ensemble. Note that the set of source-sink separations that has been used in the fits differs in a few cases from the full list of
available data given in Table I; see discussion in text.

ID tsep=a used tfit=a χ2=d:o:f: p gu−dA gu−dS gu−dT hxiu−d hxiΔu−Δd hxiδu−δd
H102 12,14,16 5 0.957 0.504 1.129(14) 0.92(06) 1.033(15) � � � � � � � � �
H105 12,14,16 5 1.271 0.131 1.101(24) 0.70(12) 1.005(16) 0.223(13) 0.255(09) 0.270(08)
C101 12,14,16 4 0.755 0.906 1.204(35) 0.94(10) 0.966(34) 0.165(33) 0.218(19) 0.196(45)

S400 14,16,18,20 4 1.188 0.084 1.130(22) 0.98(09) 1.014(19) 0.210(13) 0.245(12) 0.254(18)
N401 14,16,18,20 5 1.523 0.001 1.186(22) 0.89(07) 1.047(14) 0.202(13) 0.228(11) 0.237(16)

N203 16,18,20,22 6 0.894 0.754 1.195(26) 1.27(13) 0.976(27) 0.161(27) 0.193(29) 0.195(34)
S201 16,18,20,22 5 1.098 0.224 1.011(32) 0.89(18) 0.948(52) 0.211(21) 0.233(33) 0.247(42)
N200 16,18,20,22 5 0.964 0.592 1.160(16) 1.06(07) 0.996(16) 0.198(10) 0.236(08) 0.246(11)
D200 16,18,20,22 6 1.209 0.088 1.188(25) 0.99(13) 0.940(20) 0.189(14) 0.230(14) 0.234(21)

N302 20,22,24,26 6 1.536 0.000 1.148(21) 1.11(09) 0.961(28) 0.196(15) 0.202(19) 0.205(26)
J303 20,22,24,26 8 0.892 0.757 1.160(19) 0.96(09) 1.021(18) 0.206(09) 0.245(10) 0.252(14)
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reasonable compromise between the statistical precision
and the suppression of further excited states. On some of
the ensembles, however, due to the high statistical precision
achieved, it is necessary to be more restrictive and leave out
further data points. The final choices of tfit=a can be found
in Table VI together with the resulting correlated χ2=d:o:f:
and p values, as well as the renormalized results for the
individual observables on each ensemble.1 Demanding at
least a consistent lower bound on tfit in units of Mπ is
motivated by the expectation that the lowest gap for our
ensembles will typically be close to 2Mπ . On ensembles
with large enough statistics it is actually possible to track
the convergence of the gap as a function of tfit, which
allows us to further corroborate the choice of tfit in these
cases. This is illustrated in Fig. 2 for two of our ensembles
(C101, N203). Clearly, in both cases the value of Δ
approaches 2Mπ within errors, which are increasing with
Mπtfit. Keeping in mind that we are not actually interested
in a precise determination of the value of the gap itself,
we generally choose the fit range such that the gap has
converged within statistical errors (at least on ensembles
for which it can be sufficiently tracked) while statistical
precision still allows for a stable fit and a meaningful
extraction of the final observable.
The goal of our simultaneous multistate fits is to

suppress the residual excited-state contamination to a level
which is no larger than the statistical precision. These fits
can be systematically improved by
(1) increasing statistics while choosing more restrictive

bounds on tfit,
(2) adding further terms in the fit corresponding to

additional terms in Eq. (26), provided one has
sufficient statistics to retain a stable fit,

(3) including further observables, which we found to
stabilize the fits and reduce the resulting error.

Besides, it is possible to use similar fits beyond the case of
vanishing momentum transfer, by removing the assumption

of symmetric plateaux. A fit model analogous to Eq. (27)
can be derived for this case, although it will contain
additional amplitudes and gaps due to the momentum
transfer. Finally, we remark that from a theoretical point
of view these simultaneous fits also supersede earlier
attempts using a fixed gap as used in Ref. [9] with
statistically much less precise data.

B. Summation method

Ignoring all but the very first term for the ratio on the rhs
of Eq. (27) corresponds to a constant fit to the ratio data,
which is also known as the plateau method. In principle,
one can test the convergence of the plateau method by
comparing results for several increasing source-sink sep-
arations (see [51,52]). However, due to the exponential
decrease of the signal-to-noise ratio for the nucleon at
increasing time separations, such a test is not feasible with
our available statistics. Instead of explicitly fitting excited-
state terms for the ratio in Eq. (27) as discussed in the
previous section, it is also possible to achieve additional
suppression of excited states by appropriate summation
over the operator insertion in time. This so-called summa-
tion method was first introduced in Ref. [30]. Here we
consider the version with explicit summation of the ratio
RX
μ1…μnð0⃗; t; tsepÞ over time slices t [16,53] which yields

Xtsep−tex
t¼tex

RX
μ1…μnð0⃗; t; tsepÞ ¼ cXμ1…μn þ ðtsep − 2tex þ aÞ

· ðĀX;00
μ1…μn þ ¯̄AX

μ1…μne
−ΔtsepÞ

þ fXμ1…μne
−Δtsep þ � � � : ð30Þ

Restricting ourselves to the terms present in Eq. (27),
the constant cXμ1…μn and the coefficient fXμ1…μn both receive
contributions proportional to ĀX;01

μ1…μn related to transition
matrix elements involving the ground state and the first
excited state. In order to avoid contributions from contact
terms, one (two) time slice at both ends is excluded
from the sum for local (twist-2) operators, i.e., tex ¼ 1

FIG. 2. Behavior of the fitted gap Δ in Eq. (27) as a function of the variable Mπtfit representing the lower bound on the fit range.
Left panel: Ensemble C101; right panel: ensemble N203.

1Note that for the purpose of this table we have consistently
applied results from the Rome-Southampton method as given in
Tables III and IV.
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for X ∈ fA; S; Tg and tex ¼ 2 for X ∈ fvD; aD; tDg. The
desired ground-state matrix element ĀX;00

μ1…μn can be obtained
from a linear fit to the lattice data for the lhs using several
values of tsep. Clearly, the leading correction ∼e−Δtsep on the
rhs of the above expression is then more strongly sup-
pressed by the larger time extent tsep compared to the
leading correction ∼e−Δt in the case of a naive plateau fit to
the data for the ratio itself. In the left column of Fig. 3,
examples of fits for gu−dA , gu−dT , and hxiu−d are shown for the
N203 ensemble.
In our current setup, such summation method fits are

dominated by the smallest source-sink separations, which
exhibit the smallest statistical errors. Again, this is a
consequence of the aforementioned signal-to-noise problem.

Moreover, the efficacy of the summation method is restricted
by the total number of different values of tsep and the fact
that data at consecutive source-sink separations tend to be
strongly correlated. Typically, these issues lead to larger
statistical errors for the summation method compared to the
plateau method or multistate fits. Therefore, we consider the
summation method only as a cross-check rather than a stand-
alone method to obtain final numbers.
Besides, we observe deviations from the linear behavior

in Eq. (30) on ensembles with large statistics and including
five values of tsep. While hardly visible by eye, the values in
the left column of Fig. 3 exhibit nonlinear curvature and
lie systematically below the fitted result for tsep > 20a.
Still, on most ensembles our data are well described by the

FIG. 3. Overview of results for gu−dA , gu−dT and hxiu−d from the summation method and simultaneous fits on ensemble N203.
Left column: Linear fits with error bands for the summation method as given in Eq. (30). Right column: Renormalized lattice data for all
values of tsep=a together with results from the summation method and simultaneous fits. Note that the simultaneous fits use data for all
six observables, while in the case of the summation method separate fits were performed for each observable.
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linear fits, albeit within the rapidly increasing errors at
larger values of tsep. For our current setup, the summation
method works best for the statistically precise axial and
tensor charges. In principle, the results from the summation
method might still depend on the source-sink separations
used, however, it is not possible to systematically test this
effect with the available number of source-sink separations
and effective statistics by, e.g., leaving out the smallest
source-sink separation.
In Table VII, we have included the results from the

summation method for all six observables on each ensem-
ble. Overall we find rather good agreement with the results
from the simultaneous fits in Table VI, although the errors
for the summation method are significantly larger for the
local operator insertions. An example for this is shown in
the right column of Fig. 3 where we have plotted the lattice
data together with results from the summation method and
a simultaneous fit for selected observables on ensemble
N203. Note that for the summation method we have always
used all available values of tsep. For the scalar charge and
the twist-2 operator insertions we observe some fluctua-
tions when comparing the two methods. In particular, the
summation method fails completely for gu−dS on H105
yielding a negative value, which is clearly due to insuffi-
cient statistics. The simultaneous fits still give a reasonable
result in this case as they exploit correlations between the
different matrix elements.
In general, there is no obvious global trend in any of the

observed deviations between the summation method and
simultaneous fits. However, it appears that there is typically
a larger spread in the results from the summation method.
This is still true even for the twist-2 operator insertions
for which the relative statistical precision is more similar to
that of the simultaneous fits than in the case of local operator
insertions. However, this behavior is more or less expected
because the summation method only uses data for a given
observable while the two-state fits are stabilized by fitting all
matrix elements simultaneously. This is another important

reason why the simultaneous multistate fits are our preferred
method to deal with excited-state contamination.

IV. CHIRAL, CONTINUUM, AND FINITE-SIZE
EXTRAPOLATION

Obtaining the final, physical results requires a combined
chiral, continuum, and finite-size extrapolation to account
for unphysical quark masses and the fact that lattice
simulations are performed at finite values of the lattice
spacing and at finite volume. To this end we have tested
several fit Ansätze guided by chiral perturbation theory. For
any given quantity QðMπ; a; LÞ, the fit models used in this
study are derived from the following expression:

QðMπ; a; LÞ ¼ AQ þ BQM2
π þ CQM2

π logMπ þDQanðQÞ

þ EQ
M2

πffiffiffiffiffiffiffiffiffiffi
MπL

p e−MπL; ð31Þ

by an appropriate selection of nonzero fit parameters A, B,
C, D, and E. We will label fit models by their correspond-
ing combination of nonzero fit parameters, e.g., “ABD”.
The first term on the rhs represents the observable in the
SUð2ÞF-chiral, continuum, and infinite-volume limit,
while the second and third terms describe the leading
chiral behavior. In the case of the axial charge, the
coefficient CgA of the term containing the chiral logarithm
is known analytically [54,55],

CgA ¼
−g∘A

ð2πfπÞ2
ð1þ 2g

∘2
AÞ: ð32Þ

The leading continuum behavior is observable dependent,
i.e., by default we have nðQÞ ¼ 1 for unimproved observ-
ables, while in case of the axial and the scalar charge
we assume nðgAÞ ¼ nðgSÞ ¼ 2 since additional counter-
terms at OðaÞ do not contribute to the corresponding
operators at vanishing momentum transfer. The last term

TABLE VII. Renormalized results from the summation method for all six observables. Here we have used data from the full set of
available source-sink separations as listed in Table I.

ID tsep=a used gu−dA gu−dS gu−dT hxiu−d hxiΔu−Δd hxiδu−δd
H102 12,14,16 1.166(55) 0.70(29) 1.006(59) � � � � � � � � �
H105 12,14,16 1.23(10) −0.21ð57Þ 0.922(88) 0.179(26) 0.249(29) 0.233(31)
C101 12,14,16 1.173(35) 0.91(26) 1.019(29) 0.200(10) 0.201(12) 0.259(11)

S400 14,16,18,20,22 1.151(56) 1.13(21) 1.048(49) 0.220(12) 0.246(15) 0.258(15)
N401 14,16,18,20,22 1.321(64) 1.47(29) 1.131(51) 0.190(15) 0.193(15) 0.195(20)

N203 16,18,20,22,24 1.197(28) 1.41(10) 1.032(22) 0.194(06) 0.239(07) 0.243(08)
S201 16,18,20,22 0.97(14) 1.35(75) 1.09(15) 0.197(29) 0.176(35) 0.192(41)
N200 16,18,20,22 1.187(60) 1.26(31) 1.063(47) 0.181(11) 0.223(15) 0.250(28)
D200 16,18,20,22 1.193(68) 1.46(46) 0.929(56) 0.127(16) 0.200(17) 0.196(23)

N302 20,22,24,26,28 1.039(60) 1.27(22) 0.934(47) 0.179(13) 0.193(15) 0.217(16)
J303 20,22,24,26 1.218(73) 0.98(37) 0.988(66) 0.187(16) 0.247(21) 0.195(24)
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on the rhs of Eq. (31) describes the leading finite-size
behavior; see Ref. [56].
As regards the term containing the chiral logarithm, we

find that it does not describe our data at all. In the case of the
axial charge, we have tested both possible choices, i.e.,
including the analytically known coefficient in Eq. (32) and
leaving it as a free parameter of the fit for model ABCDE.
Using the analytical expression we arrive at an implausibly
small value of gu−dA ¼ 1.143ð21Þstat. Besides, we observe a
large cancellation between the chiral logarithm and the term
∼M2

π for which the coefficient is otherwise compatible with
zero. This seems to indicate that our data are not really
sensitive to the chiral logarithm. Leaving the parameter
free in the fit yields a more plausible result of gu−dA ¼
1.275ð62Þstat, however, with a much larger statistical error.
Moreover, the fitted coefficient CgA comes out with the
wrong sign compared to the analytical expectation in
Eq. (32). This is similar to what has been found in an
earlier, two-flavor study in Ref. [9]. As a result we do not
include this term in our final fit model. We remark that
excluding data withMπ > 300 MeV does not remedy any of
these issues: the corresponding results gu−dA ¼ 1.178ð35Þstat
and gu−dA ¼ 1.31ð15Þstat have larger statistical errors, but
the qualitative features remain unchanged. Given that the
applicability of baryonic Chiral Perturbation Theory in the

mass range studied here is by no means established, we do
not necessarily expect an Ansatz incorporating Eq. (32) to be
superior.

A. Test of finite-size effects for gu− dA

In the left column of Fig. 4 we show the chiral and
continuum behavior for gu−dA obtained from fitting model
ABD, i.e., without including a finite-size term. The lattice
data in the upper and lower panel have been corrected to
vanishing lattice spacing and to physical light quark mass,
respectively. The resulting behavior is very flat in both M2

π

and a2. Nevertheless, a significant spread in the data remains
around the blue extrapolation bands. This is reflected by
a prohibitively bad value of χ2=d:o:f: for this fit, i.e.,
χ2=d:o:f: ≈ 4.067. In particular, there is one outlier that lies
far below all other data points. This data point belongs to
ensemble S201 which is the only ensemble with MπL ≈ 3.
Since it has been generated with the same input parameters
as N200 apart from the spatial volume, we can perform an
explicit finite-size test in this case. With respect to the
continuum extrapolation shown in the lower panel we find

gu−dA;S201½a ¼ 0.06426 fm;Mπ ¼ Mπ;phys� ¼ 1.033ð37Þstat
ð33Þ

FIG. 4. Chiral behavior (upper row) and continuum behavior (lower row) for gu−dA . Left column: Results from CCF fit model ABD, i.e.,
not including finite-size corrections. Right column: Results from model ABDE including finite-size corrections. Lattice data in each
panel have been corrected using parameters from the corresponding fits for all extrapolations apart from the one given by the blue band.
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and

gu−dA;N200½a ¼ 0.06426 fm;Mπ ¼ Mπ;phys� ¼ 1.180ð23Þstat;
ð34Þ

respectively. This very significant difference can be attrib-
uted to finite-size effects. For the plots in the right column of
Fig. 4 we show the chiral and continuum behavior from fit
model ABDE, i.e., including a finite-size term, which greatly
reduces the scattering of results around the extrapolation
bands. In fact, it entirely removes the spread in the values for
S201 and N201 which now read

gu−dA;S201½a ¼ 0.06426 fm;Mπ ¼ Mπ;phys;MπL ¼ ∞�
¼ 1.217ð25Þstat ð35Þ

and

gu−dA;N200½a ¼ 0.06426 fm;Mπ ¼ Mπ;phys;MπL ¼ ∞�
¼ 1.207ð24Þstat; ð36Þ

respectively. We also find that the quality of the fit is greatly
improved, resulting in χ2=d:o:f: ≈ 0.573. Moreover, the
introduction of the additional fit parameter barely increases
the statistical error on the final results. We remark that we
find finite-size effects to be relevant for all observables.
However, it is only for the statistically precise axial charge
that we observe such a significant improvement in the
resulting value of χ2=d:o:f: when switching from model
ABD to ABDE. The finite-size extrapolation for gu−dA from
model ABDE after taking the continuum limit and extrapo-
lating to the physical pion mass is shown in Fig. 5.
For the final CCF extrapolation, we hence adopt model

ABDE and perform the required fits using a bootstrap
procedure with Ns ¼ 10000 samples. To this end, we apply
resampling for the values of Mπ, the individual results for
the observables as well as for all quantities that are only β

dependent such as renormalization factors, t0=a2 and
t0;phys. The latter enters the analysis only to fix the physical
value of Mπ in units of MeV. For the physical pion mass,
we use the FLAG value in the isospin limit Mπ;phys ¼
134.8ð3Þ MeV [57], reflecting the fact that we impose
isospin symmetry and neglect electromagnetic effects in
our simulations. The bootstrap procedure allows us to
propagate all individual errors and accounts also for
correlations introduced in the fit by β-dependent quantities
such as renormalization factors and factors of t0=a2. In fact,
t0=a2 and unimproved renormalization factors are quark-
mass independent and hence 100% correlated at any given
β. In case of the quark-mass dependent OðaÞ-improved
values of ZSF

A the correlation of these values at fixed β
remains very large. The systematic errors on renormaliza-
tion factors, t0=a2 and t0 are added in quadrature to the
respective statistical errors before the resampling such that
they are propagated into the final error estimate as well.
Therefore, the resulting errors are not purely statistical,
however, the effects of these systematic uncertainties are
very small compared to the actual statistical errors on the
final results.

B. Study of systematics related to renormalization

Another potential source of uncertainty concerns the
renormalization factors at β ¼ 3.7 determined via the
Rome-Southampton method. As discussed in Sec. II D
and in the Appendix, the corresponding values have been
obtained from an extrapolation. Moreover, the results for the
Z factors do not account for discretization effects of OðaÞ
proportional to the quark mass. This may introduce residual
OðaÞ artifacts for gu−dA and gu−dS even though no additional
counterterms arise involving derivatives of quark bilinears.
Therefore, we have carried out additional tests to further

corroborate our results for the CCF extrapolation of gu−dA
from fit model ABDE, as detailed in Table VIII. Since
gu−dA is the statistically most precise observable, it is also
expected to be the most sensitive one with respect to the
aforementioned issues. Besides, for the axial-vector current
insertion, renormalization factors are available from the
Schrödinger functional approach [48] for all four values of
β including the mass-dependent factor in Eq. (21). This
allows us to conduct an explicit consistency check in this
case. A graphical overview of the ten variations can be
found in Fig. 6.
The first six of these variations all assume that the

leading lattice artifacts are of Oða2Þ in the CCF fit model
ABDE. They can be divided into three subgroups corre-
sponding to the employed renormalization factors, i.e., the
Rome-Southampton method and the Schrödinger func-
tional, where the latter may include the mass-dependent
factor or not. This allows us to test for the agreement of the
two renormalization schemes and for possible deviations
caused by ignoring mass-dependent counterterms in ZA.

FIG. 5. Finite-size extrapolation for gu−dA . Lattice data have
been corrected to the physical value of the pion mass and the
continuum limit using parameters from the fit. Therefore, the
corrected data points are highly correlated.
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Within each of these three groups, we have two variations
with and without including the data at the finest lattice
spacing. For results using ZA from the Rome-Southampton
method this serves as a cross-check that the extrapolation
required for the renormalization factors at β ¼ 3.7 is sound.
With respect to the results renormalized via the Schrödinger
functional method, we include this variation to be able to
disentangle effects which arise when removing data for the
finest lattice spacing from the continuum extrapolation and
effects related to a potential issue with the extrapolation of
ZA at β ¼ 3.7. The last three variations shown in Fig. 6
assume that the leading lattice artifact in the CCF fit is of
OðaÞ instead of Oða2Þ.
First, we find that the results using ZA from the Rome-

Southampton method and the Schrödinger functional are

in good agreement for the extrapolations linear in a2

(variations 1 to 6). Moreover, leaving out the data at
β ¼ 3.7 has a very similar effect on gu−dA when either
the Rome-Southampton method or the Schrödinger func-
tional approach is applied for the renormalization. This
leads to the conclusion that a systematic effect caused by
the extrapolation to β ¼ 3.7 for the Rome-Southampton
method must indeed be very small.
A comparison of variations f3; 4g to f5; 6g reveals that

the mass-dependent factor in Eq. (21) is completely
negligible within the current statistical precision; i.e., both
variations give practically identical results, demonstrating
that residual discretization artifacts of OðaÞ are extremely
small. This is also confirmed by the last three variations.
While replacing the Oða2Þ term by an OðaÞ term in the fit
generally leads to somewhat larger continuum results, this
behavior cannot be caused by the mass-dependent factor,
since the shift is very similar in both cases, as can be
inferred from variations 8 and 9.

C. CCF-related systematics and final results

In Fig. 7 we plot the chiral behavior for the three local
isovector charges after taking the continuum limit and
correcting for finite-size effects. The panels in the left
column show the extrapolation band together with the
original lattice data, which gives some indication for the
size of continuum and finite-size corrections. For the plots
in the right column the lattice data has been corrected for
a → 0 and MπL → ∞ using the parameters obtained from
the combined CCF fit. In general, the observed chiral
behavior is very mild and the corresponding slope with
respect to M2

π is often found to be compatible with zero
within errors. However, the corrections for leading lattice
artifacts and finite-size corrections are typically non-
negligible. A qualitatively similar picture is observed for
the matrix elements of the twist-2 operator insertions
in Fig. 8.
In order to estimate systematic effects in our CCF

extrapolations we consider the following three, distinct
variations of the fits for each observable:
(1) Excluding data with Mπ;cut > 300 MeV to test the

effect of neglecting higher-order terms in the chiral
extrapolation on our final results. Since the con-
vergence properties of baryonic χPT in the regime of
Mπ > 300 MeV are doubtful, such terms are poten-
tially a major source of systematic errors and even
more so at larger light quark masses.

(2) Excluding data at the coarsest lattice spacing
(β ¼ 3.4) to test the convergence of the continuum
extrapolation.

(3) Excluding data with MπL < 4 from the CCF fits
(ensembles S201 and H105) to test the stability of
the finite-size extrapolation.

These cuts in the data are chosen such that enough lattice
data points remain for a meaningful fit in all cases. Still, at

FIG. 6. Overview for results for gu−dA from different variations
of the CCF fit model, as detailed in Table VIII. Red symbols
denote results obtained using ZA from the Rome-Southampton
method. Blue and violet symbols represent data obtained using
ZA from the Schrödinger functional with mass-dependent coun-
terterms included and excluded, respectively. Filled symbols are
used for results obtained by fitting data at all four lattice spacings,
while open symbols are used for results when excluding data at
β ¼ 3.7. Circles and boxes refer to fitting a lattice artifact Oða2Þ
and OðaÞ, respectively.

TABLE VIII. Overview on results for gu−dA from different CCF
fits employing model ABDE and using data from simultaneous
fits. In the column labeled renormalization the tag “RIMOM”
refers to using renormalization factors from the Rome-South-
ampton method as in Table III, while “SF imp.” refers to using
improved renormalization factors from the Schrödinger func-
tional approach as defined in Eq. (21) and obtained from the data
in Table V. “SF” refers to using unimproved renormalization
factors from the Schrödinger functional approach.

Index nðgAÞ Renormalization β-cut gu−dA χ2=d:o:f: p

1 2 RIMOM none 1.242(25) 0.537 0.807
2 2 RIMOM <3.7 1.259(32) 0.498 0.778
3 2 SF imp. none 1.231(25) 0.532 0.810
4 2 SF imp. <3.7 1.251(32) 0.474 0.796
5 2 SF none 1.232(25) 0.561 0.788
6 2 SF <3.7 1.251(32) 0.503 0.493
7 1 RIMOM none 1.275(38) 0.577 0.775
8 1 SF imp. none 1.258(37) 0.574 0.778
9 1 SF none 1.256(37) 0.595 0.761
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least for the first two variations they result in significantly
larger errors than a fit to the full data set. For each of the
three variations we assign an additional systematic error to
the final results for each observable, which is given by the
difference of the result from the variation and the result
using the full set of data. These systematic errors for the
three variations are labeled “χ”, “cont” and “FS,” respec-
tively. However, it should be kept in mind that these
variations cannot be fully independent due to the simulta-
neous (and nonlinear) fits. For example, removing the
data at β ¼ 3.4 simultaneously removes one of the two

ensembles with the smallest pion mass (C101). Therefore,
this variation affects not only the continuum extrapolation
as intended but in addition may potentially alter the chiral
extrapolation in a rather unfavorable way, i.e., removing
data at the smallest available light quark masses. This is
why we believe that these estimates of systematic errors
are rather conservative. Nonetheless, we find that they are
typically of similar or smaller size than the statistical
errors, indicating that the final extrapolations are not
dominated by systematic effects at the current level of
statistical precision.

FIG. 7. Results from chiral and continuum model ABDE for local charges. Data on individual ensembles have been obtained from the
multistate fit model in Eq. (27). In the left column we show the chiral extrapolation together with the original data from Table VI, while
in the right column the lattice data have been corrected for the continuum limit and finite-size extrapolation using the corresponding fit
parameters. Therefore, the corrected data points in the right column are highly correlated within the same plot.
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Our final results for the local nucleon charges read

gu−dA ¼ 1.242ð25Þstatð−06Þχð−30Þcontðþ00ÞFS; ð37Þ

gu−dS ¼ 1.13ð11Þstatðþ07Þχð−06Þcontð−01ÞFS; ð38Þ

gu−dT ¼ 0.965ð38Þstatð−37Þχð−17Þcontðþ13ÞFS; ð39Þ

while for the lowest moments of the parton distributions we
obtain

hxiu−d ¼ 0.180ð25Þstatð−06Þχðþ12Þcontðþ07ÞFS; ð40Þ

hxiΔu−Δd ¼ 0.221ð25Þstatðþ01Þχðþ10Þcontðþ02ÞFS; ð41Þ

hxiδu−δd ¼ 0.212ð32Þstatð−10Þχðþ19Þcontðþ05ÞFS: ð42Þ

The remaining fitted parameters from the final CCF fit are
listed in Table IX. The corresponding χ2=d:o:f: and p
values can be found in Table X, where we have also
included the values for the three variations that have been
used to assign the systematic errors. In general, we observe
that our data are well described by the fit model. Only for
gu−dT we observe some tension, which might be related to
the chiral extrapolation. This is the only case for which a

FIG. 8. Same as Fig. 7 but for twist-2 operator insertions.
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cut in Mπ leads to a significant improvement of the fit.
None of the other applied cuts have an effect on the fit
quality, as can be seen from Table X. However, we cannot
exclude that the behavior observed for gu−dT is merely a
fluctuation in our data. Therefore, we prefer to quote the
final result from fitting the full set of data, which is
consistent with the choice for the other observables.

V. SUMMARY AND DISCUSSION

We have computed isovector nucleon axial, scalar and
tensor charges as well as the isovector average quark
momentum fraction, helicity, and transversity moments
on a set of eleven gauge ensembles using Nf ¼ 2þ 1

flavors of nonperturbatively improved Wilson fermions.
The ground-state contribution has been extracted from
simultaneous fits with a common, fitted energy gap.
Physical results were obtained using a simultaneous
extrapolation to the physical pion mass and the continuum
and infinite-volume limits.
Adding the (directed) systematic errors in quadrature,

our final results for the local charges can be summarized
as gu−dA ¼ 1.242ð25Þstatðþ00

−31Þsys, gu−dS ¼ 1.13ð11Þstatðþ07
−06Þsys,

and gu−dT ¼ 0.965ð38Þstatðþ13
−41Þsys. This is to be compared

to the Nf ¼ 2þ 1 FLAG average [18] of gu−dA ¼
1.254ð16Þð30Þ, and the Nf ¼ 2þ 1þ 1 FLAG averages
[18] of gu−dS ¼ 1.022ð80Þð60Þ and gu−dT ¼ 0.989ð32Þð10Þ.
A noticeable feature of lattice determinations of gA is that

the results from most collaborations are low compared to
the experimental value. Looking at our combined chiral,

continuum and infinite-volume extrapolation, we find that
this may potentially be explained by a conspiracy of
different correction terms, all of which tend to depress
the lattice value: while the chiral extrapolation is fairly flat,
both the continuum and the infinite-volume extrapolation
yield large positive corrections to the measured values,
which come on top of the positive correction from the
removal of the leading excited-state contaminations. Given
that all of these effects have the same sign, even small
remnants of each could considerably depress the value
extracted from lattice simulations.
For the twist-2 matrix elements, our final results can be

summarized as hxiu−d ¼ 0.180ð25Þstatðþ14
−06Þsys, hxiΔu−Δd ¼

0.221ð25Þstatðþ10
−00Þsys and hxiδu−δd ¼ 0.212ð32Þstatðþ20

−10Þsys.
There are no FLAG averages to compare to for these
observables, and lattice results with controlled errors are
scarce, especially so for the helicity and transversity
moments. In Fig. 9, we compare our result to other recent
determinations of GPDF moments. We note that our result
is based on a full chiral and continuum extrapolation, while
most of the other results were obtained at a single lattice
spacing and a single pion mass. The closest comparisons
for our results are hxiu−d ¼ 0.140ð21Þ (LHPC [17], Nf ¼
2þ 1), hxiΔu−Δd ¼ 0.205ð59Þ (RBC/UKQCD [58],
Nf ¼ 2þ 1), and hxiδu−δd ¼ 0.275ð26Þ (ETMC [13],
Nf ¼ 2þ 1þ 1).
There are a number of directions in which the present

study can be extended:
(i) It would be highly desirable to further increase

statistics on existing ensembles in a future study.

TABLE IX. Fitted parameters for model ABDE obtained from the final CCF fits in units of t0. Errors are statistical
only.

gu−dA gu−dS gu−dT hxiu−d hxiΔu−Δd hxiδu−δd
AQ 1.245(28) 1.10(12) 0.961(39) 0.181(27) 0.225(26) 0.218(35)

t−10 BQ −6ð11Þ 86(47) 11(11) −2.4ð8.7Þ −10.5ð9.0Þ −16ð13Þ
t
nðQÞ
2

0 DQ −0.0063ð31Þ −0.038ð13Þ 0.019(15) 0.008(10) 0.0082(93) 0.018(14)
t−10 EQ −398ð74Þ −507ð383Þ −176ð91Þ 61(50) 96(64) 119(82)

TABLE X. χ2=d:o:f: and p-values from fitting CCF model ABDE for all six observables. The first two data
columns contain the values for the final fit including all the data, while the remaining pairs of columns contain the
values for the three variations used to estimate systematics as discussed in the text.

Final fit Mπ < 300 MeV β > 3.4 MπL ≥ 4

Observable χ2=d:o:f: p χ2=d:o:f: p χ2=d:o:f: p χ2=d:o:f: p

gu−dA 0.537 0.807 0.524 0.666 0.1934 0.942 0.691 0.630
gu−dS 1.006 0.424 1.385 0.245 1.0567 0.376 1.149 0.332
gu−dT 2.539 0.013 1.611 0.185 3.4482 0.008 3.432 0.004
hxiu−d 1.062 0.383 1.118 0.340 0.8753 0.478 1.055 0.377
hxiΔu−Δd 1.555 0.156 1.382 0.246 1.6821 0.151 1.597 0.172
hxiδu−δd 1.202 0.301 1.297 0.273 1.1374 0.337 1.266 0.281
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Since the data at the smallest source-sink separation
is already extremely precise, the most effective
way to achieve this would be to include additional
measurements for the larger source-sink separations
such that effective statistics are comparable for each
source-sink separation. We expect such an increase
in statistics to greatly improve the simultaneous fits.
On the one hand, it will lead to a much better
determination of the excited-state-to-excited-state
term in Eq. (27), which will lead to even more
stable fits and smaller statistical errors. On the other
hand, it will allow us to further increase the value of
tfit and possibly even to drop the smallest source-
sink separation entirely, which should lead to an
additional reduction of the systematic error arising
from excited-state contamination.

(ii) We also plan to add additional ensembles, including
one with physical quark masses, in the near future.
This should allow us to further reduce the uncer-
tainty on the chiral extrapolation, and might help to
remedy the issue with fitting the chiral logarithm in
Eq. (31), particularly for gu−dA .

(iii) We are also working on computing the contributions
from disconnected quark loops in order to study the
isoscalar counterparts of the isovector quantities
considered here. This will also require the renorma-
lization of the corresponding singlet operators,
which may undergo mixing, adding a further level
of complexity.

Finally, we plan to extend our analysis beyond the case of
vanishing momentum transfer in order to study the iso-
vector (and eventually the isoscalar) form factors of the
nucleon. A study of the isovector electromagnetic and
axial-vector form factors is currently under way.
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APPENDIX: NONPERTURBATIVE
RENORMALIZATION

In this Appendix, we give further details of our renorm-
alization procedure, which follows closely that presented
for the case of the Nf ¼ 2 CLS ensembles in Ref. [64].

1. Setup

We employ the ensembles listed in Table XI, which we
fix to Landau gauge by minimizing

WðUÞ ¼
X
x

X
μ

tr½U†
μðxÞ þ UμðxÞ� ðA1Þ

FIG. 9. Comparison of our results for the twist-2 matrix elements
with other recent determinations (ETMC 17 [59], ETMC 15 [13],
RQCD 14 [60], LPHC 12 [17], and RBC/UKQCD 10 [58]).
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using the GLU library for Fourier-accelerated gauge
fixing [65].

a. Renormalization scheme

We use the RI’-MOM scheme [47,66] in Landau gauge,
with renormalization conditions

trCD½S−1R ðpÞSfreeðpÞ�jp2¼μ2 ¼ 12; ðA2Þ

trCD½hpjORjpihpjOjpi−1free�jp2¼μ2 ¼ 12; ðA3Þ

where trCD denotes a twelve-dimensional trace over color
and Dirac indices. Assuming multiplicative renormaliza-
tion SRðpÞ ¼ ZqS0ðpÞ, OX

R ¼ ZXOX, these conditions
imply that the renormalization factors are given by

Zq ¼
1

12
trCD½S−10 ðpÞSfreeðpÞ�jp2¼μ2 ; ðA4Þ

ZX ¼ 12Zq

trCD½ΛXðpÞΛX;freeðpÞ−1�jp2¼μ2
; ðA5Þ

where the bare vertex function ΛX is derived from the
bare Green’s functions GX and S0 via the amputation of its
external legs,

ΛXðpÞ ¼ S−10 ðpÞGXðpÞS−10 ðpÞ: ðA6Þ

The bare Green’s functions are measured using momen-
tum sources [66] to compute position-momentum propa-
gators SðyjpÞ ¼ D−1

yx eip·x, such that the bare propagator is
given by

S0ðpÞ ¼
�
1

V

X
x

e−ip·xSðxjpÞ
�
; ðA7Þ

the bare Green’s function for a local bilinear operator
OX

μ1…μnðxÞ ¼ ūðxÞΓX
μ1…μndðxÞ by

GX
μ1…μnðpÞ ¼

�
1

V

X
x

γ5SðxjpÞ†γ5ΓX
μ1…μnSðxjpÞ

�
; ðA8Þ

and the bare Green’s function of a one-link operator

OxD
μ1…μnρðxÞ ¼ ūðxÞΓX

μ1…μnD
↔

ρdðxÞ by

GxD
μ1…μnρðpÞ

¼
�

1

2V

X
x

½γ5SðxjpÞ†γ5ΓX
μ1…μnUρðxÞSðxþ aρ̂jpÞ

− γ5Sðxþ aρ̂jpÞ†γ5ΓX
μ1…μnUρðxÞ†SðxjpÞ�

�
: ðA9Þ

To reduce O(4) violation effects, we use only diagonal
momenta of the form p ¼ ðμ; μ; μ; μÞ, where twisted boun-
dary conditions ψðxþLνeνÞ¼ eiθνψðxÞ are employed to
allow access to arbitrarymomenta besides the Fourier modes.

b. Operators and irreps

In order to further reduce O(4) violation, we average over
the members l ¼ 1;…; K of H(4) irreps [67], correspond-
ing to replacing

trCD½ΛXðpÞΛX;freeðpÞ−1� ↦ 1

K

XK
l¼1

trCD½ΛX
l ðpÞΛX;free

l ðpÞ−1�

ðA10Þ

in Eq. (A5).
To ensure that the vector and axial-vector Ward identities

are respected, we further replace [66,68]

trCD½ΛXðpÞΛX;freeðpÞ−1�

↦
1

3

X
μ;ν

�
δμν−

pμpν

p2

�
trCD½ΛX

μ ðpÞΛX;free
ν ðpÞ−1� ðA11Þ

in the case of the vector and axial currents, X ∈ fV; Ag.
In the case of the one-link operators, there are two

inequivalent H(4) irreps in each case. For the vector and
axial-vector operators, there are a six- and a three-dimen-
sional representation in each case [69],

v2;aðτð6Þ3 Þ∶
�
OvD

fμνg ¼
1

2
ðOvD

μν þOvD
νμ Þj1 ≤ μ < ν ≤ 4

�
;

ðA12Þ

v2;bðτð3Þ1 Þ∶
fOvD

11 þOvD
22 −OvD

33 −OvD
44 ;O

vD
33 −OvD

44 ;O
vD
11 −OvD

22 g;
ðA13Þ

TABLE XI. The Nf ¼ 3 flavor ensembles with periodic boun-
dary conditions used to determine the renormalization constants for
this study. The ensembles labeled “rqcd.0XX”were made available
by the RQCD Collaboration as part of a joint NPR effort.

ID β a=fm T=a L=a κ Mπ=MeV

rqcd.019 3.40 0.086 32 32 0.1366 600
rqcd.016 3.40 0.086 32 32 0.13675962 420
rqcd.021 3.40 0.086 32 32 0.136813 340
rqcd.017 3.40 0.086 32 32 0.136865 230

rqcd.029 3.46 0.076 64 32 0.1366 700
rqcd.030 3.46 0.076 64 32 0.1369587 320
X450 3.46 0.076 64 48 0.136994 250

B250 3.55 0.064 64 32 0.1367 710
B251 3.55 0.064 64 32 0.137 420
X250 3.55 0.064 64 48 0.13705 350
X251 3.55 0.064 64 48 0.13710 270
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r2;aðτð6Þ4 Þ∶
�
OaD

fμνg ¼
1

2
ðOaD

μν þOaD
νμ Þj1 ≤ μ < ν ≤ 4

�
;

ðA14Þ

r2;bðτð3Þ4 Þ∶
fOaD

11 þOaD
22 −OaD

33 −OaD
44 ;O

aD
33 −OaD

44 ;O
aD
11 −OaD

22 ; g
ðA15Þ

whereas for the tensor operator, there are two inequivalent
eight-dimensional representations [69],

h1;aðτð8Þ2 Þ∶ f2OtD
μfνρg þOtD

νfμρg;O
tD
νfμρgj1 ≤ μ < ν < ρ ≤ 4g;

ðA16Þ

h1;bðτð8Þ1 Þ∶ fOtD
122 −OtD

133;O
tD
122 þOtD

133 − 2OtD
144;

OtD
211 −OtD

233;O
tD
211 þOtD

233 − 2OtD
244;

OtD
311 −OtD

322;O
tD
311 þOtD

322 − 2OtD
344;

OtD
411 −OtD

422;O
tD
411 þOtD

422 − 2OtD
433g: ðA17Þ

c. Conversion to MS and RGI

The measured renormalization constants in the RI’-
MOM scheme at finite quark mass are then extrapolated
to the chiral limit using the Ansatz

ZXða; μ;MπÞ ¼ ZRI0-MOM
X ða; μÞ þ cXða; μÞðaMπÞ2: ðA18Þ

To convert the renormalization constants obtained in the
RI’-MOM scheme to the more commonly quoted MS
scheme, we use the three-loop continuum perturbation
theory results of Refs. [70–76] for the conversion factors

ZMS
RI0-MOMðμÞ. To check for lattice artifacts, we also deter-

mine the renormalization group invariant (RGI) values of
the renormalization factors using the three-loop MS β and γ
functions to remove the running with μ,

ZRGI
X ðaÞ ¼ ΔZMS

X ðμÞZMS
X;RI0-MOMðμÞZRI0-MOM

X ða; μÞ: ðA19Þ

2. Perturbative subtraction of lattice artifacts

The RGI renormalization factors are constructed to be
independent of the renormalization scale μ. Since, however,
we remove the running only at the perturbative level,
deviations are to be expected at small μ, where the running
coupling becomes large and perturbation theory breaks
down. At large μ, on the other hand, the running coupling is
small, and perturbation theory works well; any residual μ
dependence in this regime is therefore indicative of lattice
artifacts, which in practice can be quite sizeable.

a. General procedure

The use of lattice perturbation theory to reduce the
size of lattice artifacts by a perturbative subtraction has
been proposed in Ref. [77], and further explored in
Refs. [78–80]. Here, as in Ref. [64], we follow an approach
very similar to that of Ref. [67], subtracting all lattice
artifacts at Oðg2Þ by perturbatively expanding the renorm-
alization constants at finite lattice spacing and isolating the
lattice artifacts,

ZRI0-MOM
X ðμ; aÞ ¼ 1þ g2FXðμ; aÞ þOðg4Þ

¼ 1þ g2½γX0 logðμaÞ þ CX þDXðμ; aÞ�
þOðg4Þ; ðA20Þ

where γX0 is the analytically known anomalous dimension,
and DXðμ; aÞ is required to vanish in the continuum limit
a → 0. The lattice artifacts that we wish to subtract from
ZRI0-MOM
X are then given by

g2DXðμ; aÞ ¼ g2½FXðμ; aÞ − ðγX0 logðμaÞ þ CXÞ�;

where in many cases CX is analytically known, or else
can be obtained numerically using a fit to FXðμ; aÞ −
γX0 logðμaÞ in the limit a → 0. Figure 10 shows the
subtraction functions DXðμ; aÞ for the operators OX con-
sidered in this study at our coarsest lattice spacing of
a ¼ 0.086 fm; results at the other lattice spacings are
qualitatively very similar.
We can then define a subtracted renormalization constant

ZRI0-MOM;sub
X ðμ; aÞ ¼ ZRI0-MOM

X ðμ; aÞ − g2DXðμ; aÞ; ðA21Þ

and we expect the corresponding RGI renormalization
constant ZRGI;sub

X ðaÞ to show only very mild lattice artifacts
when considered as a function of μ.

FIG. 10. The subtraction functions DXðμ; aÞ for the operators
OX considered in this study at a lattice spacing of a ¼ 0.086 fm.
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b. Automated perturbation theory

Since the Feynman rules for lattice perturbation
theory are quite complex and do not usually allow for
an analytical evaluation of Feynman integrals, we employ
the HiPPy/HPsrc packages [81,82], which separate the
(complicated, action-dependent) Feynman rules from the
(action-independent) Feynman diagrams: the diagrams
are coded once and for all in an operator- and action-
independent fashion using the HPsrc library of Fortran 95
modules; these generic diagrams can then be evaluated
numerically for in principle arbitrary operators and lattice
actions. The automated derivation of the action- and
operator-dependent Feynman rules is performed in a
separate step using the HiPPy library of Python modules,
which takes a human-readable expression for an action or
operator as input and outputs the corresponding Feynman
rules in a machine-readable format suitable for use
with HPsrc.
In this manner, we have been able to reuse much of the

code written in the context of our study of nonperturbative
renormalization for the Nf ¼ 2 CLS ensembles [64], even
though the gluonic action used is different in the two- and
three-flavor cases.

c. Choice of coupling

To combine the perturbative and nonperturbative results,
we need to make a choice for the coupling. The bare
coupling g20 ¼ 6=β is well known to give generally rather
poor results. A widely used alternative is the boosted
coupling g2b ¼ g20=hPðg0Þi, where Pðg0Þ is the (nonpertur-
batively determined) value of the average plaquette. Using
the boosted coupling amounts to a partial resummation of
higher-order terms in the perturbative expansion. To better
control this resummation, the BLM coupling [83] g2BLM ¼
4παVðq�Þ can be used, where αVðqÞ is the coupling in the
potential scheme defined by the expression

VðqÞ ¼ −
4πCfαVðqÞ

q2
ðA22Þ

for the static potential, and q� is a process-dependent
typical momentum scale given by

logðq2�Þ ¼
R
d4qfðqÞ logðq2ÞR

d4qfðqÞ : ðA23Þ

We find that using the BLM coupling is highly efficient in
removing most of the lattice artifacts using one-loop lattice
perturbation theory. In Fig. 11, we show a representative
example, i.e., a comparison between the different couplings
in the case of the tensor renormalization constant ZRGI

T ; it
can clearly be seen that the use of the BLM coupling leads
to a nearly perfect subtraction of the (rather large) lattice
artifacts and is vastly superior in efficiency to the use of
either the bare or boosted couplings.

3. Systematic uncertainties

a. Final fits

To remove the residual μ dependence of the subtracted
RGI renormalization constants, we perform the fit

ZRGI;sub
X ða; μÞ ¼ ZRGI

X ðβÞf1þ dX1 g
8

MS
ðμÞg

þ dX2 ðβÞðaμÞ2ΔZMS
X ðμÞZMS

X;RI0-MOMðμÞ;
ðA24Þ

FIG. 11. Comparison of the unsubtracted and subtracted values
of the RGI tensor renormalization constant ZRGI

T , using the bare
coupling g0, the boosted coupling gb, or the BLM coupling gBLM
for the perturbative subtraction. It can be seen that the BLM
coupling is most efficient in removing the lattice artifacts, which
are otherwise very large.

FIG. 12. The final fit used to extract ZRGI
T for our three value

of β. The solid lines denote the fit ranges, whereas the dashed
lines indicate how the fit form of Eq. (A24) extrapolates beyond
the fit range, while the different colors correspond to the
different lattice spacings. Final fit results for ZRGI

T ðβÞ are shown
by the horizontal bands.
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where the β-independent term with coefficient d1
accounts for the use of three-loop continuum perturbation
theory in converting from the RI’-MOM scheme, and the
term with coefficient d2ðβÞ accounts for the use of the
perturbative subtraction leaving residual discretization
artifacts.
To keep both higher-order perturbative effects and lattice

artifacts small, the fit region should ideally satisfy

ΛMS ≪ μ ≪ a−1: ðA25Þ

Since we cannot realistically fulfil both of those inequalities
at the same time, we have chosen to take the lower end of
the window at μmin ¼ 3 GeV, but allow renormalization
scales as large as μmax ¼ 2.75a−1 in the fit, because we rely
on the perturbative subtraction of the leading artifacts.
An example of the resulting fits is shown in Fig. 12.

b. Fit variants

To explore possible sources of systematic error, we
employ the following fit variants:

FIG. 13. Extrapolation of the renormalization constants used in the final analysis to β ¼ 3.7. Shown are the values of ZX for the local
operators X ∈ fA; S; Tg (left column) and the one-link operators in irreps X ∈ fv2b; r2a; h1ag (right column) as measured at
β ∈ f3.4; 3.46; 3.55g, the linear fit in β with its error band, and the extrapolated value at β ¼ 3.7 with its tenfold inflated final error.
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(i) adding either a higher-order chiral term c̃ða; μÞ
ðaMπÞ4 or a finite-volume term dða; μÞe−MπL

to the chiral extrapolation (A18),
(ii) varying the value of aΛMS within the uncertainties of

ΛMS, and
(iii) narrowing the fit window by increasing the lower

bound on the fit intervals to μmin ¼ 4 GeV, or by
decreasing the upper bounds on the fit intervals
to μmax ¼ 2.5a−1.

Our final estimate of the systematic error is obtained
conservatively by adding the spreads from all three variants
in quadrature.

c. Extrapolation to β= 3.7

Since the RI’-MOM scheme is defined in terms of
quantities at well-defined four-momenta, it requires a
four-dimensional Fourier transform and thus implicitly relies
on the gauge ensembles being generated with periodic
boundary conditions in time. Because of the extreme critical
slowing down observed in quantities related to the global

topology, the generation of sufficiently large and properly
thermalized gauge ensembles with periodic boundary con-
ditions at β ¼ 3.7 is not feasible with currently existing
computer resources, and the existing β ¼ 3.7 ensembles
with open boundary conditions are not suitable for use with
RI’-MOM. While there are some proposals how to bypass
this issue [84,85], for this study we will rely on an
extrapolation of the measured renormalization constants to
β ¼ 3.7. Given three values of β at which we have data, we
use a linear extrapolation in β to obtain the central value, but
do not trust the errors from the fit to account for the full
uncertainty. We therefore very conservatively inflate them by
an ad hoc factor of 10 to cover the full range of uncertainty
involved in the extrapolation. The extrapolations for the
renormalization constants used in the final analysis are
shown in Fig. 13; it can be seen that the inflated error
covers the whole range in which the final value could
conceivably lie. As an alternative to a linear extrapolation in
β, we have also considered a linear extrapolation in g20, and
the results of both are compatible within their errors.
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