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In this work we develop a Lorentz-covariant version of the previously derived formalism for relating
finite-volume matrix elements to 2 4+ 7 — 2 transition amplitudes. We also give various details relevant for
the implementation of this formalism in a realistic numerical lattice QCD calculation. Particular focus is
given to the role of single-particle form factors in disentangling finite-volume effects from the triangle
diagram that arise when J couples to one of the two hadrons. This also leads to a new finite-volume
function, denoted G, the numerical evaluation of which is described in detail. As an example we discuss the
determination of the zz + J — zz amplitude in the p channel, for which the single-pion form factor,

F,(Q?), as well as the scattering phase, &,,, are required to remove all power-law finite-volume effects. The
formalism presented here holds for local currents with arbitrary Lorentz structure, and we give specific
examples of insertions with up to two Lorentz indices.
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I. INTRODUCTION

In recent years, interest in hadron spectroscopy has
increased significantly, primarily due to various experi-
mental discoveries of unconventional excitations." This
has led to an abundance of theoretical proposals as to the
underlying nature of the unexpected states. Possible
explanations range from multihadron molecules to compact
multiquark configurations, to kinematic singularities aris-
ing from specific Feynman-diagram topologies [1-5]. In
many cases, experimental data alone are not sufficient to
distinguish between available explanations, and thus many
questions remain unresolved.

In some cases, theoretical calculations can provide access
to experimentally unavailable quantities that may shed light
onto the structure of the quantum chromodynamics (QCD)
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spectrum. With this goal in mind, in this work we present a
detailed framework that will allow for the rigorous lattice-
QCD (LQCD) calculation of transition amplitudes, mediated
by electroweak or other external currents, involving two
hadrons each in the initial and final states. We abbreviate our
process of interest by 2 + 7 — 2, where each bold-faced 2
counts the QCD-stable hadrons in the state and 7 represents
a generic, local external current.

The approach discussed here is based on prior formalism
developed by two of us in Ref. [6].% In Sec. Il we present a
slightly modified version of this formalism in which all
infinite-volume quantities are Lorentz covariant and the
single-particle matrix elements that enter, abbreviated
1+ J — 1, are expressed in terms of standard Lorentz-
invariant form factors. After extracting the 2+ 7 — 2
transition amplitudes, one can proceed to determine form
factors as well as distribution functions® of bound states
or resonances that couple to the asymptotic states. From the
form factors and distribution functions, in turn, one can

This, in turn, was inspired and guided by the work of
Refs. [7-9].

*Distribution functions are accessed in lattice calculations via
spatially nonlocal operator insertions [10]. These may suffer from
further finite-volume effects associated with the size of the
operators as discussed in Ref. [11]. This class of effects is
not addressed by the present formalism and must be treated
separately.
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obtain various structural parameters, e.g., the charge or
even the gluonic [12,13] radius of a given state.

The primary reason why a nontrivial formalism is required
to extract multihadron observables from lattice QCD calcu-
lations is that the latter are performed in a finite spatial
volume, usually a cube defined with periodic boundary
conditions on the quark and gluon fields. This complicates
the determination of scattering and transition amplitudes,
because there is no simple relation between the finite-volume
QCD eigenstates and the asymptotic multiparticle states that
arise in the infinite-volume limit of the theory. However, in
certain cases, it is possible to derive relations between finite-
and infinite-volume observables. These have been imple-
mented with great success to access a wide variety of
scattering quantities directly from numerical LQCD calcu-
lations. See Ref. [14] for a recent review.

The most well-established such relation is that derived
by Liischer in Refs. [15,16] over three decades ago. In these
seminal papers he showed how elastic two-particle scatter-
ing amplitudes can be extracted from the finite-volume
energy spectrum below the lowest lying three- or four-
particle threshold. Since then, the idea has been generalized
to all possible two-body systems, in particular to multiple
two-particle channels built form any number of particle
species, including particles with any intrinsic spin [7,
17-32]. These formal ideas, together with significant algo-
rithmic developments, have resulted in a proliferation of
scattering amplitudes determined directly from lattice QCD
[33-46]. A key limitation to the methods currently being
implemented is the restriction to two-particle states, but the
formal extension to three-particle systems has received
significant attention recently and is progressing [47-52].

Similar developments have resulted in both perturbative
[53] nonperturbative [6-8,22,23,28,54—60] relations bet-
ween finite-volume matrix elements and electroweak
amplitudes. These have already been implemented in a
variety of LQCD calculations [56,61-68]. In particular,
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Refs. [66—68] extracted the py* — 7 electromagnetic form
factor by determining the energy dependence of the
corresponding amplitude, zzy* — 7.

In this work we turn our attention to the prospect of
determining 2 4+ 7 — 2 transition amplitudes from finite-
volume matrix elements. This was previously considered in
Ref. [6]. In contrast to that work, here we restrict attention
to kinematics such that only one two-particle channel
is open, and take the two particles in the channel to be
scalars. In addition, we only consider flavor-conserving
external currents, so that the initial and final two-particle
states contain the same particles. Just as in Ref. [6], the
two-particle states are composed of QCD-stable (pseudo)
scalars. Relaxing these restrictions to provide a Lorentz-
covariant formalism for any number of two-particle chan-
nels, including those with intrinsic spin, is expected to be
straightforward.

As in Ref. [6] in this work we derive a mapping between
finite-volume matrix elements of two-particle states and the
infinite-volume 2 4+ J — 2 amplitude. The result is sum-
marized by the flow-chart shown in Fig. 1. We find that,
given the following quantities:

(i) the two-particle finite-volume spectrum,

(ii) the 1+ J — 1 form factors,

(iii) the finite-volume two-particle matrix elements of 7,
one can systematically constrain the 2 + J — 2 amplitude
in the kinematic window in which only the accommodated
channel contributes. Our relation requires the generalized
Lellouch-Liischer factors [6,54,60], that enter multiplica-
tively in the conversion, as well as a new finite-volume
function, denoted G, that appears in an additive correction,
together with the single-particle form factor as well as the
two-to-two scattering amplitude.

A simple limiting case of our result is the one in which
the single-particle form factors vanish. In this limit the
finite-volume artifacts associated with the G function also
vanish, and one recovers a Lellouch-Liischer-like relation
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Road map of the formal approach outlined in this work. See also Fig. 2 of Ref. [6]. The four red arrows merging together

represent how the present approach combines various finite- and infinite-volume information to extract the 2 4+ 7 — 2 amplitudes.
Analytically continuing these to the resonance-pole location gives a robust, model-independent definition of the resonance form factor.
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in which the correction factor appears twice, once each for
the initial and final two-particle states. However, when the
single-particle form factors are nonzero, the term contain-
ing G is expected to give the dominant finite-volume
effects. In particular, the analysis of Ref. [53] showed that,
in the case of weak interactions, the finite-volume effects
on the ground-state 2 4+ 7 — 2 matrix element are given by
an expansion in powers of 1/ L. In these expressions, the
diagrams that appear as our G give 1/L? corrections while
all other terms contribute with additional powers of 1/L.
The purpose of this work is to improve certain technical
details of the formalism and to provide more concrete
information on the implementation procedure. We begin by
providing a covariant version of the formalism in Sec. II,
where we also discuss three key examples involving 7z
states.” Then, in Sec. III, we explain in detail our approach
for evaluating G and outline why this is more challenging
than the more-standard finite-volume functions relevant for
two-to-two scattering. In addition to the standard threshold
singularities, in this section we discuss and illustrate the
presence of triangle singularities in the G function. In
Sec. IV we conclude and provide an outlook for future
studies. Finally we include two appendixes: Appendix A
gives various details relevant for the derivation of the
improved formalism used here. Appendix B includes
various technical aspects regarding the evaluation of the
finite-volume functions discussed in the main text.

II. COVARIANT REPRESENTATION
OF THE FORMALISM

In this section we revisit the formalism derived in
Ref. [6] and present a modified form in which all
infinite-volume quantities are Lorentz covariant. We focus
here only on the final result, and in Appendix A we explain
the (minimal) modifications to the original derivation that
lead to this new form.

This section is divided into three subsections: In
Sec. I A we review the required notation and give the
quantization condition, as well as the generalized Lellouch-
Liischer matrix, for two-particle states in a finite volume.
Then, in Sec. II B, we provide a full description of our
covariant 2 + 7 — 2 formalism. Finally, in Sec. IIC, we
consider a handful of specific examples to show how our
general expressions reduce for a particular system with
specified quantum numbers.

A. Kinematics and the quantization condition

We denote the 4-momentum of the incoming state in
the finite-volume frame by P! = (E;, P;) and that of the

*In fact, the authors of Ref. [53] consider n + 7 — n matrix
elements.

*We previously presented some of these results and figures in
conference proceedings [69].

outgoing state by P = (E;, P;). The center-of-momentum
(c.m.) energies corresponding to these are then given by

Er=./P?=\/E?-P? and
«— [p2_ [ _p2
Ey=\/P: = [E2 P2 (1)

This also defines the metric used for the Minkowski-
signature 4-vector dot products throughout. Following
the notation of Ref. [22] we use * to indicate quantities
defined in either the incoming or the outgoing c.m. frame.
As explained below, we often use an i or an f index in
addition to the «, in order to completely specify the frame.

In this work we accommodate all values of 3-momenta
allowed by the periodic boundary conditions, i.e., P; =
2nd;/L and P; = 27d;/L where d; and d s are 3-vectors of
integers. The energies and 3-momenta can differ between
the initial and final states due to the momentum carried by
the external current, P’ — P [see Fig. 2(a)]. The physical

quantities discussed below depend on Lorentz scalars.
For most systems we will primarily be sensitive to
spacelike values of the momentum transfer, motivating
us to introduce

Q% =—(P; - P;)*, (2)

which is positive for spacelike P — P7.

As mentioned above, we restrict our attention here to
values of E} and E7 such that only a single two-particle
channel can propagate. Within the single channel consid-
ered, we accommodate both identical and nonidentical
scalars and allow these to be nondegenerate in the latter
case, with physical masses m; and m,. We assume,
however, that the current, 7, is flavor conserving so that
the same two particles appear in the initial and final state.®

We now turn to the kinematic variables describing
individual particles within the two-particle channel. For
the remainder of this subsection, take P* = (E,P) to
simultaneously represent the initial and final state 4-
momenta. Denoting the 3-momentum of particle 2 (with
mass m,) by k, the corresponding on shell 4-vector is
k* = (wy, k), where

(Ukz = \/kz + m%, (3)
with & = [k|.

Next note that, in order to satisfy the specified total
4-momentum (P*), particle 1 must carry P* —k* = (E —wy,,
P—k). Thus, for general k, one cannot simultaneously

®Given the results presented below, implementing the covar-
iant modification to the multichannel expressions of Ref. [6] with
flavor-changing currents should be straightforward, albeit tedious
and likely leading to index-heavy notation.
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FIG. 2. (a) The kinematics of the process considered, as described in the text. (b) The triangle diagram that appears due to the single
insertion of the external current. (c) The diagrammatic representation of the 2 + 7 — 2 transition amplitude, defined in Eq. (15). The
black circles depict the 2 — 2 scattering amplitude in the absence of the external current, and the crossed circles represent various
couplings to this current. Those with two hadronic external legs correspond to the standard 1 + 7 — 1 matrix element, while those with
four external hadrons represent diagrams that are two-particle irreducible in the channel carrying the total momentum. The solid lines
denote fully dressed propagators of the low-energy degrees of freedom (d.o.f.) (the hadrons). In the second line we separate this
into a contribution with on shell singularities together with the divergence-free amplitude. This relation is expressed algebraically in

Eq. (16) of the main text. (d) The diagrammatic representation of the new finite-volume function G

require that the particle momenta sum to P# and that particle
1 is on shell. The latter holds only when the temporal
component, £ — @y,, is equal to

To better understand when the on shell condition
(E — wy, = wpyy) 1s satisfied, it is useful to introduce
[Agl", = A (B) as a boost matrix with boost velocity
p =P/E. We then define

(4)

= (0, k*) = [Agl' K (5)

and observe

(6)

wty = \/k*? + m3,

where k* = |k*|.” By contrast, the 4-momentum of particle
1 boosts to

# kot = (B = oy, —k*) = (A (P = R, (7)

where we have used [Ag]* P* = (E*,0). We deduce that

the c.m. frame on shell condition is £* = w}, + w}, where

"It is worth emphasizing that the definitions of k* and k*
depend on (E, P), k and m, but not on m,. This asymmetry in the
definition is removed when both particles are on shell.

u,..u,» defined in Eq. (26).

ot =/ k*? + m?. (8)

The advantage of working in this frame is that the on
shell condition reduces to a constraint on the value of k*. In
particular the particle pair is on shell if and only if k* = ¢*
with the latter defined by

E*E\/q*Z—l—m%—b-\/q*z—l-m%. (9)

Finally, the initial or final state-indices must be applied to
all of these quantities once the total 4-momentum is
associated with a particular state. In particular if we take
P# — PY, then the corresponding quantities above become
wpias (Mgt K, KE, kY, @)y, of EF, qf. The only
quantities that do not inherit a frame index are the finite-
volume frame momentum, k, and the corresponding
energy, wy,.

With this notation in hand we now give the quantization
condition for two scalar particles in a finite volume. This is
written as a determinant condition involving the on shell
two-particle scattering amplitude, M (P?), represented as a
diagonal matrix in angular-momentum space. For any fixed
values of P and L, the finite-volume energy spectrum is
given by solutions to [22,28,32]

dettM(P*)~' + F(P,L)] = 0. (10)
This holds in the region 0 < E* < E}, where E} is the

energy of the lowest-lying multiparticle threshold that we
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ignore, which could be a two-, three-, or four-particle
threshold. The relation holds up to neglected corrections of
the form e™"L, where m is the physical mass of the lightest
d.o.f. in the theory.

The precise definition of M(P?) is given by
Mfm;f’m’(Pz) = 5ff’5mm’M(f)(P2)’ with
_ 8zE* 1

M (s) = , 11
(S) 5 q* COt(SM)(q*) _ lq* ( )

E*?=s

where 8)(g*) is the scattering phase shift, and & = 1/2 if
the particles are identical and £ = 1 otherwise.

The remaining ingredient is F(P, L), a matrix of finite-
volume geometric functions defined by

I &’k
Ffm;f’m'(P’L) = 5{?21(: B /W}
yfm(k*)y;”m’(k*>

20p11 201 (E — 0y — @pyy + i€)’
(12)

where
N N\
ym<k*>zmm<k*><?) o m)

In Appendix B 2 we review an efficient method to evaluate
this, based on analytic expressions for the integrals defined
using the cutoff functions introduced in Ref. [22].

To close this subsection, we introduce one additional
matrix in angular-momentum space,

. (E-E,)
E,,P.L)=1
RUEP.L)= I | =rp Ly + P |

(14)

where E, corresponds to a finite-volume energy level, i.e., a
solution to Eq. (10) and the factor in the denominator is to
be interpreted as a matrix inverse. This object, introduced
in this form in Ref. [60], is the generalization of the
Lellouch-Liischer factor [54] that relates finite-volume
matrix elements of two-particle states to the corresponding
infinite-volume decay and transition amplitudes. We stress
that this quantity is only defined at the finite-volume energies
and that it is a matrix carrying indices £'m’; £m, directly
inherited from F and M.

B. Relating finite-volume matrix elements
with 2+ 7 — 2 transition amplitudes

We are now ready to present our improved finite-volume
formalism. The approach that we advocate here differs
from that of Ref. [6] in two key ways.

First, the separation of singularities, required to disen-
tangle finite-volume effects in the 2 + 7 — 2 amplitude, is

done here using Lorentz invariant poles of the form
1/(k* —m?). In the previous work we instead used
1/[2w,(k° — wy)]. As long as we consistently modify the
pole form everywhere, it turns out that either choice is
valid. The advantage of the present approach is that it
ensures all infinite-volume quantities are Lorentz covariant
and also simplifies the form of the new finite-volume
function, G, arising due to the triangle diagram shown in
Fig. 2(b) and defined explicitly in Fig. 2(d) and in
Eq. (26) below.

Second, we treat the single-particle matrix elements in a
simpler way here than we did in Ref. [6]. Our approach
requires isolating the 1+ 7 — 1 matrix element in order
to express the finite-volume effects of the triangle diagram
[Fig. 2(b)]. In our previous publication, a complicated
scheme was presented to project the matrix element on
shell. Though correct, we have come to realize that this
procedure is unnecessary. The reason, as we explain in more
detail below, is that one can decompose the matrix elements
into kinematically determined tensor structures and form
factors. Projecting the kinematic factors on shell is unnec-
essary, and removing this step gives a simpler approach that
leads to the same infinite-volume observables.

We begin by introducing notation for the physical
2+ J — 2 matrix element that we are after [see also
Fig. 2(c)],

W, (P k'3 Pik) = (Pr ks 0ut| T, (0)[Pr ks in) oy
(15)

Here the initial and final states are standard two-particle
asymptotic states with the usual relativistic normalization
convention and J, .., (0) is a generic local current
insertion. As is shown in Fig. 2(a), the initial state is built
from particle 1 [with mass m; and on shell momentum
(P; — k)* satisfying (P; — k)?> = m?] and particle 2 [mass
m,, momentum k> = m3]. The final state is built from the
same pair, now carrying momenta P,—k' and k'
Following the discussion of the previous subsection, the
c.m. frame 3-momenta are denoted by k; and k and have
magnitudes equal to g7 and g} respectively. The label
“conn.” emphasizes that only fully connected diagrams,
those shown in Fig. 2(c), contribute to the definition of the
2 + J — 2 matrix element.

A consequence of the on shell constraints is that, once
total energy and momenta are fixed, the two-particle states
only have directional d.o.f., lA(,-* and R}. However, in
contrast to the scattering amplitude, M, for W a decom-
position in spherical harmonics is not useful. The direc-
tional d.o.f. sweep across pole singularities due to the
diagrams in the second line of Fig. 2(c), implying that the
decomposition is only defined in the sense of distributions.
More importantly, these long-distance singularities guar-
antee that higher partial waves will not be suppressed.
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The issue is easily resolved by removing the singular
terms before decomposing in harmonics. This was already
discussed in detail in Ref. [6] where the quantity Wy
was first introduced. In this work we define an alternative,
Lorentz-covariant  version of the divergence-free
amplitude with the same symbol [see again the second
line of Fig. 2(c)],*

i

Wdf;/ll"'”n = Wﬂl"'ﬂn - iM(Pf’ k,’ k)mwﬂlﬂn
i _
Wyow, 75753 IM(PL kLK), (16)
Hyp (Pi—k’)z—m%
where w, .., s the single-particle matrix element of the

external current, defined in detail below, and

ZM

M(Ps K k) =
f q;

(17)

Here P,(cos®) are the standard Legendre polynomials,

satisfying >0, 4nY7, (X)Y 4, (§) = (26 + 1)Po(X - §).

Unlike W, Wy; admits a uniformly convergent decom-

position in spherical harmonics,

Wdflﬂl‘“ﬂn (Pf, k’; Pi’ k)

2)Yfm (Rt*)’
(18)

— (/%
= 47[Y;,m/(kf )Wdf;ﬂl...ﬂn;ﬂm/;fm(sf, Siy

where s, = P} = E?, s, = P]% = E*Z, and the repeated
harmonic indices on the right-hand 51de are summed.
The subscript “df”, short for divergence-free, refers only
to the lack of kinematic singularities arising from a long
lived state between the 2 — 2 and 1 + J — 1 transitions.
In particular, as we show in Sec. III B 2 below, Wy; does
have so-called triangle singularities as a function of E7

and E%} associated with diagram of the kind depicted in

Fig. 2(b). These pose no problem to the harmonic decom-
position but must, of course, be understood in order to
successfully extract and interpret both Wy and W.

The scattering amplitude, /\_/l, is defined with powers
of (k*/q*), referred to as barrier factors. These must be
included due to the manner in which the factors of w, ...,
and M arise in the triangle diagram of Fig. 2(b). In
particular, the loop is summed over all finite-volume
momenta in such a way that the current insertion,

$This subtraction assumes that the current couples only to
particle 1. In the case that the current couple to both particles, two
additional terms must be subtracted. In particular, if the particles
are identical one must always subtract four terms in which the
propagators carry the four possible values of external momenta.
See Eq. (A19) as well as Ref. [6] for explicit expressions.

)26 + 1)P,(R} - k,)(k*> .

Wy, .u,» @S WEll as the external factors of M, are sampled
at off shell values of momenta (i.e., values for which
k* # m?). Nonetheless, the power-law finite-volume effects
are governed by the on shell values of w,, .., and M only,
and the off shell contributions can be absorbed into other
infinite-volume quantities. The catch here is that the on
shell projection, effected via k* — ¢*, amounts to replacing
k*“Y ,,,(k*) with ¢*Y,,,(k*). The latter has spurious
singularities near k* = 0, and thus more care is needed.
The inclusion of barrier factors resolves the issue.

The single-particle matrix element, w,, ..., , appearing in
Eq. (16), is a function of (P; — k, P; — k) in the first term
and (P, — k', P; — k') in the second. Using the first term as
a reference, the explicit definition is given in a three step
processes. First, the fully on shell version is defined via a
single-particle matrix element,

m Mn(Pf k,P; — k)

= <Pf - k’mlljﬂl“'ﬂn (0)|Pi

Second, this is formally continued to an off shell quantity in
the context of some generic effective field-theory. The latter
object is then decomposed into kinematic tensors and form
factors,

—k,my).  (19)

woll  (Py—k, Pi— k)

Illll

—ZK (k. Pp P FIQ% (Py = k)% (P — k)7,

(20)

where the sum runs over all possible tensor structures
for the given current. Third, and finally, a partial on shell
projection is performed to define the version of w,, ..., that
appears in Eq. (16). In this step we set the virtualities within
the form factors to be on shell [(P — k)?, (P; — k)* — m{]

and also set k% = w,, everywhere. We reach
Wy, (P =k, P; — k)

= ZKl(lJl)ﬂn <m’ k’ Pf’ Pl>|k0:(1)1\2f(j)(Q2)' (21)
J

This definition is not completely on shell because, within

K/, only, the virtualities (P; — k)? and (P; — k)* may
differ from m3.

In what follows we will consider sums and integrals
over the spectator momentum, k. With this in mind, it is
convenient to rewrite K,(,{)...ﬂn as a sum of terms that isolate
the dependence on this quantity,

K. (m.k, Py, P;

z /gjzﬂ Hn (Pf’P )’

(22)

034511-6
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where Cf,];),ﬁ___,,n (Ps., P;) has no indices for n’ = n and

K., (mk)=k, -k

HiHa Hn

ko=w)n " (23)
Here the superscript @ indicates that the 4-momenta in K%
are on shell. This will be important in Sec. III below, where
we introduce various off shell versions of K in our formulas
for evaluating G.

Having defined all of the infinite-volume quantities that
enter our formalism, we now turn our attention to the finite
volume. As mentioned in the Introduction, we restrict
attention to a finite cubic spatial volume, with periodicity
L applied to the fields in each of the three spatial directions.
In this setup, we consider a matrix element in which the
local current 7 is sandwiched between two finite-volume
states, each of which has the quantum numbers of the
two-particle system. As we demonstrate in Appendix A,
following the derivation of Ref. [6], this LQCD observable
is related to the infinite-volume 2+ J — 2 transition
amplitude via

(P, LI #n(0) [Py, L)(Py, LI #0(0)| Py, L)

1
- ETT[R(Pi’L)Wi],dfﬂ"(Pi’Pf’L)

X R(Py, L)W'o{" (Py. P L)), (24)
where W, 4 directly determines Wy, via
Wiat" (Py. Pi L) = Wi ™ (55,51, Q)

= Z zn: CU) bt iy (P, P)f9(0%)

J n'=0

X M(sp)GH# (P, Py, L)M(s;). (25)

In the case of distinct particles that both couple to the current
one must subtract two terms. In the second the particle labels
1 and 2 are swapped everywhere in the definition of G. In
addition, the fU)(Q?) will take on different values if the
particle species differs. These should be given a species label
in the case that the current couples to both. See Eq. (A22) as
well as Ref. [6] for explicit expressions. Finally, it is worth
commenting on the role of possible complex phases appear-
ing in Eq. (24). In the infinite-volume matrix element, and
therefore also in WV, 4, a complex phase can arise both from
the current insertion (e.g., a CP-violating phase) and from
the two-particle strong-interaction scattering phase shift.
However, in the finite-volume matrix element, only the
former appears and, if the current is Hermitian, then the
finite-volume matrix element is, by definition, purely real.
Equation (24) is consistent with these observations because
the strong phase cancels identically between R and W, g4,
leading to a perfect matching of any current-induced phase
on both sides of the equation. See Ref. [6] for further

discussion on this as well as techniques for determining
relative signs between matrix elements of distinct currents.
In these expressions we have suppressed angular-
momentum indices on R, Wj'y /", W™, M and
G i Each object carries the set £'m’;£m and these
are contracted between adjacent factors in the usual matrix
multiplication. The trace in Eq. (24) is also over this
angular-momentum space. Note, by contrast, that the index
set py - - u, is not summed but rather fixed to common
values for all objects appearing in these equations.
Finally, the matrix Gm-wn/(Pf’ P;, L) is defined dia-

grammatically in Fig. 2(d) and has the explicit form,
Gu,--~/4n;ffmf;fim,-(Pf’ Pi7 L)

= [%21; - / %] Ve,m, (K3)D(m, k)

x K/(:)l"'/‘n(m’ k)y;imi(k;)’ (26)
where
1 1
D(m,k) =
(m. k) 20, (Py — k)* — mi + ie
1
X ) (27)

(P; = k)* = mi + i€[g,—,,
This differs from the form presented in Ref. [6] due to the
aforementioned modifications: The poles are Lorentz
invariant and the 1 + J — 1 matrix element is expressed
in terms of tensor structures leading to K. Note that the
modifications to G are directly connected to those in the
definition of Wy, Eq. (16). We have altered these two
intermediate objects in such a way that W is unchanged.

C. Examples

In this final subsection we show how the construction
outlined above may be applied to specific, phenomeno-
logically well-motivated examples.

1 (n*7%) ;. +j, — (n*a),_,

We begin with the electromagnetic form factors of a
charged p meson. The p decays predominantly to the
vector-isovector zz state. Indeed for heavier than physical
light-quark masses (such that 4M, > M) and in the
isospin symmetric theory, this is the only possible QCD
decay channel. If the light-quark mass is further increased,
the two-pion threshold eventually exceeds the p mass
(2M, > M) and the latter becomes a stable particle. In
this case, one can extract the form factors of the p directly
from finite-volume matrix elements. See, e.g., Ref. [70].

To determine the analogous observable at quark masses
for which the p — zz decay occurs, it is necessary to first
extract the (772%),_; + j, — (772°),_, amplitude for a
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wide range of kinematic points. As depicted in Fig. 1, by
fitting the dependence of the initial- and final-state energies
to a functional ansatz, one may analytically continue these
amplitudes to the complex-valued pole to obtain the p
form factors. Detailing the steps of this continuation will be
the focus of future work. Here we focus on the extraction of
the (772%),_, + j, = (z*2°),_, amplitude for real nz
energies.

By interpolating isospin-one initial and final states
(I = 1,m; = £1), we project the system to a sector where
all even angular momenta vanish. Thus, regardless of the
values of P, and P;, we will always have a finite-volume
irreducible representation that contains J© = 17, with the
next contamination coming from J > 3. Taking the latter
to be negligible, we can approximate total angular momen-
tum as a good quantum number. However, even in this
simple case, the azimuthal component, m;, is not a good
quantum number in the finite volume. In general the
positive and negative helicity states mix, but one can
readily construct linear combinations of these that are
invariant under transformations of the cubic group or its
little groups [71].

Considering first the incoming state, we restrict attention
to a specified set of finite-volume quantum numbers: A;
and p;, labeling the irreducible representation and row
respectively, of the little group defined by P;. In addition we
assume that, within this irreducible representation, the
interactions are dominated by #; = 1 and a particular m;
value so that the matrices can be truncated to single entries.
Doing the same for the final-state, Eq. (24) becomes’

W’Ii,df;Afﬂf;Am,-(Pf’ Pi? L)
el&,I;I(q;> <Pf’ L’ Afﬂf|]” (O)|P17 L’ Allul> eiﬁ]l;l (C];)

R (P LYRE (P, L)[ 72

(28)

where 6L;! is the elastic scattering phase shift for 7z — 7z
in the p channel and

R (P.L)['?

_ 1 g [E* 0 | 4 o ]
_L3\/;|:E OE* (¢Aﬂ(E ’L)+57m (CI )) )
(29)

with ¢ (E*, L) defined for the irreducible representations

that couple to £ = 1 zz in, e.g., Ref. [60]. We stress that all
instances of E; and E; in these expressions are to be

“Note, the procedure for subducing the matrix elements onto
the appropriate symmetry group is discussed in detail in Ref. [6].
Although some of the details of the formalism has changed, this
aspect remains the same.

evaluated at any pair of finite-volume energies, E; (L)
and E; ,(L) respectively, satisfying Eq. (10). The factors
of e in Eq. (28) are associated with the rescattering
of the two pions both before and after the interaction
with the electromagnetic current. We have also introduced
W arduying, @ the subduced version of W 4. As
in Ref. [6], this can be obtained from
£, by rotating these into the helicity basis

discussed
le.df;ff
and then using the subduction matrices [71]. This sub-
duction procedure requires no approximation. However
each irreducible representation couples to an infinite
tower of partial waves, and only by neglecting these
above a certain maximum value does one reach useful
expressions.

Compared to Eq. (24), in Eq. (28) we have dropped
the trace, since we are ignoring all but one partial wave,
and have solved for WY ;. For the latter step there is a
potential sign ambiguity that one must address. Note that
RIGHP.L) = |Rf\j1(P,L)|e‘2i57"?1<q') as is shown, for
example, in Egs. (132)—(134) of Ref. [59]. The phases
in R)'(Py, L) and RE!(P;, L) precisely generate the
Watson phases within W/ (P, P;, L) as they must, since
the finite-volume matrix element is real. The remaining +
ambiguity is constrained by the known value in the Q% — 0
limit, but in certain cases a remaining ambiguity may
survive.

The final step is to convert this to the infinite-volume
quantity W/, via

mg

Wﬁf;/\f#f;/\im (Sf’ si- Q%)
= W] st gt (Prs Pis L) = [ (QF) M= ()
S [(Pf + Pi)ﬂGAfﬂf;A,-m(PfaPi?L)

=26} g (P Po LM (s,). (30)
The general form of Eq. (25) is overly complicated for this
application but still applies with f(1)(Q?) = f?(Q?) =
f»(Q?) corresponding to the usual (spacelike) pion form
factor. Here we have also used the standard relation,

(Pr=k;M,|j,(0)|Pi = kiM,) = (P; + P; = 2k),, f - (0).
(31)

In these expressions we are neglecting the electromag-
netic form factor of the neutral pion which is expected to
be small but nonzero for Q% # 0. Finally we remark that a
factor of i may appear in this relation depending on the
conventions for Euclidean or Minkowski gamma matri-
ces. As the same gamma factors appear in all terms of our
formalism changing conventions just amounts to multi-
plying both sides of p-indexed equations by a common
factor.
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2. (m*a®), +j, — (m*a’),

The electromagnetic current has both I =0 and 7 =1
components, but G parity guarantees that all matrix
elements of the isoscalar part between two zz states must
vanish. If we take the angular momentum to be uncon-
strained then the incoming zz state may, in general carry
isospin I; = 0, 1, 2. The isovector current then couples the
fixed incoming isospin as follows: [0 — 1], [1 - 0, 1,2]
and [2 — 1,2]. If we further restrict attention to |m;| = 1
states (i.e., 7 z° states) then this reduces to [1 — 1,2] and
[2 - 1,2]. An alternative way to distinguish these pos-
sibilities is by fixing orbital angular momentum: J =0 <
I=2andJ=11=1.

In this way we identify four possible transitions involving
nt ¥ states, the p-wave to p-wave matrix element consid-
ered above as well as s to s, s to p and p to s. It turns out that
all four of these transitions are described by Egs. (28) to (30)
provided that we can neglect the effects of finite-volume
mixing with J > 2 states. The only modifications are that
one must generally project to different irreducible represen-
tations A to access the J =0 components and that the
scattering amplitudes must correspond to the isospin of the
state,

W’i,df;/\fﬂf,/\,ﬂ, (Py,P;,L)

_ ei&,l,j,i(q}) <Ef}n”PfﬂL;Af/’tf|jM (O)|Ei,mPi’L;Aiiui> eiéilrl;r(q;),

1 I;
RY, (PrLIRE, (PL)|1
(32)
with
W’éf;/\fﬂf,/\,ﬂ,- (sf. 5, ?)
= le,df;/\f;tf,/\iﬂi (Pp. P L) = fr (Q*) M (sy)
X [(Pf + Pi)”G/\f/lf,/\,'/l,'(Pf"Pl"L)
- 2Gl/4\_fﬂ_f,A,,4,(P_fv Py, L)IM(s;). (33)

3. Gluonic structure

Thirty years ago, Jaffe and Manohar identified a struc-
ture function that provides a measure of the gluon dis-
tribution within hadrons [72]. This has since lead to lattice
calculations of the leading moments of these distributions,
for example within the ¢-meson. Thus far, the calculations
are restricted to heavy quark masses where the ¢ is stable
within QCD [13,73]. Similarly, calculations of gluonic
moments for light nuclei are already underway, again for
values of the light quark masses that lead to the nuclei being
deeply bound [12]. The formalism presented here will
allow for future calculations closer to the physical point by
accommodating the finite-volume effects of loosely bound
as well as resonant states.

In order to extract the leading moment of the gluon
structure function, one must evaluate the traceless part of
the product of two gluon energy-momentum tensors
(O ~ G,pGp]. As one might expect, this is more com-
plicated than the case considered above in part because it is
a rank-two tensor. A starting point in extracting gluonic
moments of resonances from LQCD would likely be to
consider the p, discussed in Sec. II C 1 above. In this case,
the relation between the finite-volume matrix elements and
the transition amplitude is very similar to Eq. (28). The only
distinction arises in relating Wi and W} To do so one
must determine the scalar (G), vector (G*), and tensor
(G") contributions to the finite-volume G-function and
combine these with the relevant gluonic form-factors of the
single-pion state.

This concludes our discussion of the covariant formal-
ism. The aim of the section was to provide a procedure
by which three inputs: (i) single-particle form factors, (ii)
2 — 2 scattering amplitudes and (iii) finite-volume kin-
ematic functions, can be combined with finite-volume
two-particle matrix elements to extract the infinite-volume
2 + J — 2 transition amplitudes. In this recipe the ingre-
dient that remains most obscure is the new finite-volume
function G#1"#» (P £ P;, L), defined in Eq. (26). Thus, in the
next section, we give a detailed description of how this can
be efficiently evaluated numerically.

III. EVALUATING G(P;P;.L)

Our aim is to evaluate

Go(Py, Py L) = [%;—/%]wa(k;)

x D(m,K)Kg, .., (m.K)V; (k) (34)

where we have introduced the collective index o=
[y - pns € gmyp; €;m;]. We also take the convention that
if o is written as a low (high) index, then all of the Lorentz
indices it contains are also understood to be low (high). The
sum is straightforward to calculate numerically once a
cutoff function has been included. We comment here that
the ultraviolet divergences match between the sum and the
integral, meaning that the difference has an unambiguous
limit as the cutoff is removed and thus that G is a universal
quantity with no scheme dependence.

Evaluating the integral part of G° turns out to be
significantly more challenging. The integrand contains
singularities associated with on shell intermediate states
and, although these are perfectly integrable given the ie
pole prescription, numerical evaluations converge very
slowly for standard numerical techniques. Thus it is highly
advantageous to find analytical representations to the extent
possible.
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For the case of P; = Py, it turns out that one can provide
exact analytical expressions for the integral, as discussed
in the following subsection. For the generic case, with
P; # Py, we have not managed to obtain fully analytic
results. Instead, we write the integral as the sum of two
terms. The first includes all singularities and can be
evaluated analytically to the level of Feynman parameters.
The second is defined with a smooth integrand such that
standard numerical integration is effective. Our approach
for evaluating G in the case of P; # P case is detailed in
Sec. III B below.

A. P i =P f

The function G° simplifies considerably when the initial
and final momenta coincide, P; = Py = P, i.e., when the
momentum transfer vanishes, P — P} = 0. A particularly
helpful feature of these kinematics is that a natural
preferred frame emerges: the simultaneous rest frame of
the incoming and outgoing particles, in which the spatial
part of P vanishes.

Another consequence of P; = Py is that the product of
poles within D(m, k) becomes a double pole of the form,

1 1 2
. 35
2wy, ((P —k)? - m% + ie) (35)

0_
kK'=wi,

D(m.k) =

Focusing on the factor within parenthesis, note that this can
be rewritten as

1 0)22 1
(P—k)?>—m?+ie E* (¢*°—k*?+ie)
1
O(g*? — k*?), 36
g PO, (9

where k* and g*
rest frame.

If D(m, k) were to only contain a single pole, then, after
acting with the sum-integral difference, only the leading-
order, singular term would be relevant. This is because
the sum-integral difference of smooth functions leads only
to exponentially suppressed volume dependence that we
neglect. However, in this case the first two terms in the
expansion are important as they generate double and single
poles upon squaring. This leads to

G,(P.P.L) = L3Z /d%k] : 2 Ve (K7)

X Kip o, (M. K)V , (K5)D(m k" q*),
(37)

are defined with respect to the P

where

(0*2 1
kg ==L
(m- k- 4") = g (g T ey
1 1
38
2E*2( —k*? +ie)’ (38)

At this stage it is useful to decompose the angular
dependence within the tensors into a single set of spherical
harmonics,

yffmf (k*)Km 1 Hy (m7 k)y;m(k*)

- %an (B )Y (k7).

(¢* (39)

As we explain in Appendix B 1, C, (B, k*) can be
efficiently calculated by writing the factors within K“ as
boosted c.m. frame vectors, k* = [A_g]# k**. Such factors
can then be written as spherical harmonics and, using
Clebsch-Gordon coefficients, these can be combined with
the external factors of V, ,, (k*) and J; , (k*) to identify
the a final harmonic basis. As a final note, we stress that
it is possible to unambiguously separate the dependence on
p=P/E and k* within C,; i.e., one can vary k* while
holding # constant. This will be important for the manip-
ulations performed below.

The construction of C, 5 (B, k*) is discussed in detail
in Appendix B 1. As a specific simple example, here we
consider the case o = [; 10; 10]. The numerator within G,
is then

(q*)zylo(k*)kyyfo(k*)

=3(k™ (Al k. (40)

The current insertion, &, can be written as a combination of
¢ = 0and £ = 1 spherical harmonics. Combining this with
the two Z = 1 harmonics from the external states, one finds
that C, ;) is zero for J > 3.

The JM = 00 component only has a nonzero contribu-
tion in the &k component. Isolating this contribution and

substituting the definition of the boost matrix, we reach

P+
Cholf 1) = K200, (41
The remaining nonzero coefficients, arising for J < 3, take
a more complicated form in general, but simplify for P o Z.
If we additionally focus on the 4 = z component, then only
three coefficients survive

3\/_Ek 24/5 P?

*

Colp k) =Tk Gk = T o
6V7 E

Co (B k") = ——. 42

So(B, k) 35 B (42)

We revisit this case below to show how it enters our final
construction for G/,
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Returning to the main line of argument, we now
substitute Eq. (39) into the expression for G,(P,P,L),
Eq. (37), to reach

-ere e

% CGJM (ﬂv k ) k*‘,YJ
20,

G,(P,P,L)

w(k*)D(m.k*. q*).
(43)
The next step is to expand the k* dependence in the first

factor within the summand about the pole location,
|

Cn,JM(ﬂvk*) _ Ca,JM(ﬂ,q*) _ (q*2 _ k*z) 0 Ca,JM(ﬂa q*)
2w}, 2w}, dq** 2w},
+O[(g** = k**)?. (44)

In the second term we have rewritten the derivative with
respect to k*2 (to be evaluated afterwards at k*?> = g*?)
directly as a derivative with respect to g*2. This is possible
because C, sy (B, k*) has no implicit g*> dependence and it
is formally possible to vary ¢*, and thus E*, while holding
p constant.

Combining this with the definition of D(m, k*,
can show

q*) one

Coum(B k") = ©pn  Com(B.q") 1 o5 9 \ComlB.q*) 1
o D(m.k*.q*) = o, qc o, O *Z_k*ZO_
260]:2 (m ) 2E*2( k*Z + l€) ZE*Z + E*Z 8q*2 20);2 _ k*z +ie + [(q ) ]
(45)
Remarkably, the operator in parenthesis vanishes when acting on 1/wj, so that this reduces to
C ‘]M(ﬂy k*) = 0);2 C JM(ﬁ, q*) 60;2 6:1*200 JM (ﬂ’ C]*)
4 D ,k*, *) — o, _ ) 10 *2—](*20, 46
20);(:2 <m q ) 2E*2 (q*Z _ k*2 + i€)2 ZE*Z q*2 _ k*2 + je + [(q ) ] ( )
"Coum(B. ")
Ol(g*?* = k*?)"]. 47
E*Z Z k*Z + l€) + [(q ) ] ( )
It follows that Eq. (43) can be rewritten as
1 o} dPk*| VAzkTY 5y (k)
G,(P,P,L )>"C k2 / M= L (48
0( ) f+ff2E*2;Z "jM(ﬂ q )] |:L ;wld (27[)3 (q*Z_k*2+i€)n ( )

To reach our final form we make two additional modifications. First we introduce a cutoff function on the sum-integral
difference to enable effective numerical evaluation. Second, we reexpress our results in terms of dimensionless quantities
r* = k*L/(2x) and x = g*L/(2x). Then, shuffling around terms and introducing a new geometric function, we conclude

L2n -3

GG(P’P’L> ( f+rf’[ ZE*ZZ 2” 2n

where

2" (P.L,a) [Zwkz /d%*}
Wi
Varr*Y (¢ *)

x
(x2 —r*2 + le)

r —X2

(50)

These two equations give the main result of this subsection.
In Appendix B 4 we give some details about the evaluation
of Z(J’;JI(P, L,a). In Fig. 3 we plot Zy;&(P, L,a) for
P = (27/L)[001], for various values of J and two different
volumes.

LJ a—0

22)! EmZ{) (P, L, a)(=8,2)>

"Coum(B. "), (49)

[

We give two final comments concerning the new
kinematic function, Z("). First we note an advantage of
the decomposition over a single spherical harmonic per-
formed in Eq. (39). It is now straightforward to use the
symmetries of the finite-volume system to identify for

which values of JM, Z(J',’g, will be nonzero. This is
discussed in detail in Appendix B 5.

Second, we remark that the cutoff function used here is
designed with the property that the O(a) correction cancels
the pole and thus generates a smooth quantity within the
sum-integral difference. If, for example, one were to instead
use e=2"*=*") for all n values, this would still be formally
valid, but would lead to corrections of the form a/Lk,
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Example plots for Z(Jl,g, (top two panels) and Zﬁz, (bottom two). All curves show the function plotted versus E* for fixed spatial
(27/L)[001], for which only the M = 0 components are nonzero (up to M = 4). The real parts are shown as solid

curves and, for J = 0, the imaginary part is indicated with the dashed curve. As discussed in detail in Appendix B 5, for n = 1 the odd J
are exponentially suppressed and indistinguishable from zero on the plotted scale.

making it more difficult to estimate the @ — 0 limit. In fact
these can be systematically subtracted and, as we shown in
Appendix B 3, this proves to be an efficient alternative

approach for evaluating 1imaﬁ()z§’}&.

We close this subsection by returning to the specific case
discussed above, 6 = [ =1z;10;10] and P = (2z/L)[00d,].
Suppressing the arguments of Z("), the final result for G°
can be written as

1 oy 1 [_gyP? q*? 3V3E () _12V5P 1

G°(P,PL)=-——5—— |2y = Lz Z —

( ) *2 2E*2 47[2L |: 00 E* q2 +2 * + L 10 5 E* -t LZ 20 5 E* 20);2
1 o) L @ P* o + 7 50 23V3 E E o (23)22(2) 2V/5 P +(2n’)3z(2) 6V7 E
q*Z 2E*2 (2 00 E* q2 10 5 E* L2 20 5 E* q2 L3 30 35 E* .
(51)
|
Note that, in the case of mass-degenerate particles, One of the major complications is that the two poles do

Z% = 0 for all odd J. If the particles are at rest in the

finite-volume frame then all odd-J functions vanish as does
J =2. This holds for both n =1 and n =2 for both
degenerate and nondegenerate particles. [See again Ap-
pendix B 5.] In Fig. 4 we plot the real and imaginary parts
of G’fo;lo(P,P,L) for P = (2z/L)[001].

B. P; # P
We now turn our attention to the more challenging
general case of P; # Py. Note that this is realized if any
of the four components of the 4-vectors differ, in
particular also for P; =P, but E; # E;. As with
P; = Py, here the evaluation of the sum is straightfor-
ward, while the integral is significantly more challenging.

not coincide in general as one varies the integration
variable, k, but may overlap on a two-dimensional
subspace for certain choices of external momenta. The
contribution of this double-pole submanifold to the
integral must be treated with care.

Though we have not found a fully analytic determination
of the integral entering G°, we do have a recipe that gives
the desired quantity accurately and with high efficiency.
The approach is to rewrite the three-dimensional integral in
terms of a d*k integral plus a second d°k integral with a
smooth, singularity-free integrand. The four-dimensional
integral, which carries all of the singularity structure, can
then be reduced to a one-dimensional integral over a
Feynman parameter. The second, smooth term can directly
be evaluated using standard numerical integrators.
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FIG. 4. Example plots for G°(P;, P

L) for the case of P; = P, = (E,P) with P =

(27/L)[001]. The real parts are shown as solid

curves, and the imaginary parts (multiplied by a factor to make the functional form visible) are dashed. At all noninteracting energy
levels the function diverges as a double pole with a positive coefficient.

To give the relevant expressions, we first introduce an
extension of the cutoff function entering the definition of

Z(J',’& in the previous subsection,

H(a k) = e 60607 — pmalrP=d0P=) - (52)

’

where a=L*/(2z)*a and r}*(27/L)?* = k}?,
q;‘z, etc. We then write

x(2n/LY? =

G,(Ps, P, L) = ;grg)[Sa(@, Py, Py, L) = T,(a, Py, P;)],
(53)
where
S, (@, Py, P; aZH K)Vz 1, (K3)D(m, k)
X K;(fl iy (m’ k)yfimi (k:)’ (54)
) Vs .
T,y P) = [ {5 H@ )Y, (65)Dm k)
X Kial)l “Hn (m’ k)y;,zn,<k:) (55)

The sum can be evaluated directly as written, and thus we
make no further modifications to S,;. The remainder of this
section is dedicated to Z,.

1. Separation into I 4.,(P;.P;) and I y..(a.Py.P;)

As summarized above, our approach is to split the
integral into a singular part that can be evaluated semi-
analytically, denoted Z 4.,( Py, P;), and a smooth remainder
that is well-suited to numerical evaluation, denoted
Zyro(@, Py, P;). To proceed we define

i 1
k* —m3 + ie (P; — k)* — m} + ie
. 1
P;— k) —m? +ie’
( i 1

D.(m. k) =

(56)
and then introduce D,(m, k) via
dk®
2—DL.(m, k)= D(m,k) + D,(m, k).  (57)
n

In Appendix B 6 we give an explicit expression for D,. This
term mops up the contributions from the two P-dependent
poles in D.. Here the subscripts ¢ and r stand for covariant
and remainder, respectively. The idea is to perform the
integral of D, semianalytically and that of D, numerically,
and then to take the difference.

In these relations we have neglected the possible factors
of k, and the spherical harmonics multiplying D (m, k). To
include these, we first introduce a tensor, M, defined such
that

VypUn
(1w psC pmyi€im]

= yff"’lf (k;) Hi

K30y (m.K)
(M, )Yy, (KE), (58)

where N=n+7¢;+¢;. A more explicit definition, together
with various examples, is given in Appendix B 1. This
simply amounts to recasting the factors of k* within the
harmonics as boosted factors of k*.

To incorporate K7 .., , note that D, receives two con-
tributions, one each from the poles at K = E 7+ @pg —

and k° = E; + wp ;; — ie. [The third pole, at k° = wy, — ie,
generates the term we are after, D(m, k).] We thus define
dk®
D, (m.k) = 99 X . mr), (59
' Ertwp 1 27
Kl (m,K) =k, - NIRRT (60)
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where the integral here is a closed clockwise contour
encircling the pole indicated. The definitions with an i
subscript are given by making the replacement [ — i
everywhere, and explicit expressions for D,;(m,k) and
D,;(m, k) are given in Appendix B 6. With these quantities
in hand, Eq. (56) generalizes to

dK®
B Deln KK, ()

= D(m,K)K® ., (m.K) + Ky, (m.K). (61)

Here the integral on the left-hand side is a closed clockwise
contour encircling the three poles below the real axis, and
we have also introduced

Koy (m,K) = Dy (m, K)KY, o, (m,K)
+D,(m,K)Ki, _, (m.K). (62)

The next step is to address the issue of ultraviolet
convergence for these integrals. Equation (55) is manifestly
convergent, due to the inclusion of the cutoff function
H(a, k). But to reach an integral that can be evaluated
analytically it is convenient to introduce a second form of
ultraviolet regularization. We explain the approach first for
the special case of two indices, N = 2. Here the integral has
a logarithmic divergence that can be removed by taking
Eq. (61) and subtracting from this the same equation
defined with m;, — A,

0
[ 5 el ) = DA KK, 0

= [D(m, K)Ky, (m,K) — D(A, K)KY ,, (A, k)]
+ VCV§D1”2 (m’ k) - ICV;Vll/z (A’ k)} (63)

The regularization scale, A, is chosen so that the integrands
that depend on it are smooth functions of k£ with no need
for an ie prescription. This holds for any A satisfying 2A >
max|[E}, Ef] though in practice it is useful to take the cutoff
well above this minimum value. On the left-hand side of
Eq. (63) we have used that, for N = 2, the k° integral can be
extended to the entire real axis, with a vanishing arc at

J

nj

&’k

negative complex infinity. We additionally note that, as a
result of the subtraction, the left-hand side and also both
square bracketed terms on the right-hand side vanish as
1/|k[> in the limit |k| — co. These thus give convergent
integrals with respect to d°k.

This approach can be extended to any number of k,
factors, simply by forming more complicated linear com-
binations to cancel all divergent powers,

dko nj
B K

Jj=0
= DALKIKY L (A1) + D €Ky (A K),
=0
(64)

where we have introduced ¢y = 1 and Ay = {m, m,}. As
above, for j > 0 we take A; such that the corresponding
integrands are smooth functions of k (Ao > max[E}, E7]).
In all cases, the linear combinations are constructed such
that (i) the k° integral extends to the entire real axis with a
vanishing contribution from the arc at negative complex
infinity, and (ii) the left-hand side and each of the two
sums on the right-hand side give convergent integrals
with respect to d°k. In the following we sometimes refer
to this as a Pauli-Villars-like regulator. We give a general
algorithm for forming these linear combinations in
Appendix B 8.

The final step is to multiply both sides of Eq. (64) by the
cutoff function and solve for the desired integral, defined in
Eq. (55). We deduce

I{;(&, Pf’ Pl) = I.A;(T(va Pl) +IN;6(a, Pf’ Pi)’ (65)

where

nj

e d*k
Tarlbr. Py =M™ [ 03 D00,
=0

(66)

Tyo(@ Py Py = MY [ / S [H@K) = 11> ¢/ [DAL KKy (A K) + Koy (A K]

(21)°

-/ <d;7k>3H<a,k>;Zj;chmj,k)Kzau.yN(Aj’k)‘/ = H<a’k)ﬁc"’c’”‘"'””“"’k)]' o

Equations (65)—(67) are the main results of this subsection.
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We emphasize here that the integrands in the definition
of Z, are smooth for all real k, and the integrals are
ultraviolet convergent. For the second and third terms this
follows from the fact that H(a, k) decays exponentially,
together with the observation that /C, is a smooth function,
as is D(Aj, k) for j > 0. For the first term, smoothness is
guaranteed because [H(a@, k) — 1] vanishes at the pole and
ultraviolet convergence follows from the careful construc-
tion of the linear combination. As the integrands are smooth
and the integrals are convergent, Z.,(a, Py, P;) is well
suited to numerical evaluation.

It is instructive to consider a few specific examples of
this construction, beginning with n =0, #; = ¢, =0, in
which no factors of k, appear in the numerator of Z,,. In this
case the integrals are directly convergent, without any need
for additional subtraction terms [i.e., the sum over j in
Eq. (64) reduces to the j = 0 term]. Equations (66) and (67)
then reduce to

4
T4(P;.P) = / %Dc(m,k), (68)
IN’(&,Pf,Pi)
Pk _
= [ SaDOm ) +Dyyon.) D) -1
V5
- / G @D, () Dm0 (69)

This no-index version of 7, is plotted in the left panel
of Fig. 5.

We emphasize here that 7 ,,, and thus also the original
integral, diverges in the @ — 0 limit. This is because in the
original integral the covariant propagators are evaluated at
on shell k (k* = m?), so the propagators scale as 1/|k| and
the integrand as d°k /|k|*. In other words the convergence

2.0 25 3.0 35
Etfm

of Z 4 is always better than that of the original integral by
two powers of k, resulting from the off shell integration of
k*. For fixing the subtraction scheme in Egs. (66) and (67),
it is only necessary that Z 4 be rendered finite. [See also
Appendix B 8.]

We close with one final example: ¢ = [ = 0;10; 10],
corresponding to a factor of },yky)j, in the numerator.
This leads to an 7 4., integral with an integrand scaling as
d*kk? /K5, i.e., diverging as log A. Performing a single
subtraction of the same integral with m — A is therefore
sufficient to render the result finite. In fact, to improve the
numerical evaluation of Z,.,, and to test our general
method, here we choose to make two subtractions. As
explained in Appendix B 8, one possible choice is to add an
integral evaluated at A = 3m (with coefficient —35/27) and
a second at A = 6m (with coefficient 8/27). Implementing
this in Egs. (66) and (67) leads to convergent forms of Z 4.,
and 7, respectively, with integrands scaling as dk/ K.
1 ., in this scheme is plotted in the right panel of Fig. 5.

As we include additional factors of k, the expressions
complicate, first because we need additional terms in the sum
over j (to maintain convergent integrals) and second because
the numerical integrals depend on multiple vector compo-
nents. However, we find that no conceptual issues arise and
the task amounts to coding Eq. (67) with an efficient
numerical integrator. We give some details on our approach
in Appendix B 6, but consider Z .,(a, P/, P;) as a numeri-
cally known function for the remainder of the main text.

Thus it remains only to evaluate Z 4, ..,, (Pf, P;), to
which we now turn.

2. Evaluating T 4.,(Py.P;)

We first use the tensor M, """, introduced in
Eq. (58) above, to define a version of 7, with no
spherical-harmonic indices,

P, =1[001] mL=6
P;=[001] a=1/3
o =[10;10; u = 0]
A =3m Ay =6m

03\ E=mm—
2.0 25 3.0 35
Etfm

FIG. 5. Examples of the numerical integral Z§.(@, Py, P;), plotted as a function of £} with all other arguments fixed. In the left panel
we consider the case of ¢, my = ¢;, m; = 00 with no factors of k, in the numerator. For these kinematics the function requires no
subtractions, and we directly evaluate 7 5 at & = 1/3%, for fixed external 3-momenta and evenly spaced values of E?, as indicated. In the
right panel we plot the function with a numerator factor of 3(k*)%k,. In this case one requires Pauli-Villars-like subtractions, as
described in the main text and summarized in the legend.
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T 4o(Py. P) = MG VT 4y (P, P). (70)

The integrals on the right-hand side can then be written as

T ges, oy (Ppo Pi _hch T gepr oy (Prs Pis A}, ), (71)
where
d*=ok i 1 1
T s (Pr Pium,8) = : : K, ok, 72
diwr-vy (P> Pio m, 6) /(2n)4‘5k2—m%Jrze(Pf—k)z—m%+le(P,-—k)2—m%+l€ ! N (72)

Here we have used the fact that the sum over j gives a convergent integral and is thus equal to the 6 — 0 limit of the integral
in 4 — 0 dimensions. Then, at fixed delta, one can exchange the orders of summation and integration, leading to Eq. (71).

To evaluate the integral in Eq. (72), we first perform the standard Wick rotation on the k° integration contour
(counterclockwise to the imaginary axis) and similarly rotate the time components P; ; and P ,. We then make the variable
redefinitions,

ko = ikgp, Pro=1iPgyo, Pio=1iPg,o, (73)
to reach
&k 1 1 1
L aino(Pr,Piym,6) =&, ., kg, kpy., 74
A N( ! ) é: P / (2”)4_5 k%* + m% (PE,f - kE)Z -+ m% (PE,i - kE)Z + m% Eu Ewy ( )

0 0
=& o ——TX(P;, P;,m,5)|,_,, 75
51/1 vy 18121 l@){'};” ( f m )|)( 0 ( )

(i)Pa0t o and the momenta but rather are

where &, .., = 0. Note here that the indices are not contracted between &, ...,/
held fixed on both sides of the equation.
In the second step we have introduced the generating functional,

d*kp erte 1 1
T4(P,, P,y m, o) E/ L . (76)
! (27)*0 ki + m3 (Py — k)* + mi (Pe; — kg)* + m7
As we show in Appendix B 7, this reduces to
—x 4 HOT(1—n+6/2)
—iy-(xP;+yP;) (){ 2n—2-6
2P promd) =[x [ dyerirs Z Al amrn MOmx (77)

where IZ{MDN(PfyPism’é)
0 9
M(m,x,y)* = (1 —x—y)m3 + (x + y)m} — x(1 — x)s; :—i())( ey I*(Pp. Piym,5)|,—.  (79)
vy vy

—y(1—y)s; +xy(Q* + sp+s;) —ie.
(78)
Taken together, Eqs. (77)—(79) give the main result of this

In these results we have analytically continued back to
real P;y and Py and expressed all quantities in terms of the
4-vectors Py amd P; as well as the Lorentz invariants
Q> =—(P;—Ps)% s; = P} ands; = szc. The correspond-
ing analytic continuation of Eq. (75) is given by

subsection.

As above, it is instructive to consider Z 4 for
N =0, ie., with no factors of k, in the numerator. In
this case Eq. (79) is evaluated with no y-derivatives and
gives
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7 (Pf,P‘ m, s)
(1+6/2) y
- (47)> TAN2=82

As noted at the end of the previous subsection, this
integral is convergent in the 6 — O limit and simplifies to

M(m. x, y)2+5 (80)

A (Pf,P,,m 0

47: / /‘x [y —yy(x )}1[y y-(x)]

where we have substituted

M(m,x,y)* = s;[y =y (0)][y —y_(x)].  (82)

with
(A+ VA% + B+ ie) (83)

Azl+m§_m%_x(Q2+s'f+si), (84)
Si

l\)\'—

m3 —x(m3 —m?}) —x(1 —x)s;

B=-4 (85)

Si

The final analytic step is to evaluate the integral with
respect to y. We do so via the identity

/l—x dy
o y—(f(x) Eie)

= 10g‘ Lf)’ + iarctan (%W)
+ farctan (%)
= Lo [f(x)], (86)

where in the second equality we have introduced a short-

hand for the result of the integral. Note that, as long as

Imf(x) is nonzero, we can safely set e =0 in these

expressions. In the case that the imaginary part does vanish,

then we use the relation lim,_, arctan(a/e) = sign[a|z/2.
Applying this to Eq. (81) we deduce

1
T 4(Py.Prm.0) = A dxFO(x), (87)

where F(! (x) [also given in Eq. (B98)] is

In this case Imy, (x) = —Imy_(x) = ImV/A? + B/2. Thus
the substitution lim,_arctan(a/e) = signjajz/2 is only
needed when the argument of the square root is positive.
As we explain in detail in Appendix B 9, evaluating the
remaining integral over x reveals that, in addition to the
branch cut singularity at threshold, Z 4(P, P;) also has
triangle singularities that arise whenever P, and P; take
on values for which all three particles in the triangle of
Fig. 2(b) can go on shell.

More precisely, we show in Appendix B9 that the
singularity locations are governed by the discriminant of
the polynomial A? + B = ax* + bx + c, given by

X(sp,s;, Q%) = b* — 4ac
=mi((sy—s;)* + Q*(2m3 —mi + 57+ 5,))
— Q*(m§ —m3(Q* + 57+ 5;) + 545,).
(89)

Critical kinematics are realized whenever X((s 250 2) =0,
so that A2 + B = (x — x.)?, and in addition, x. and y. =
v, (x.) fall in the integrated range. It can be shown that
these conditions are equivalent to the ones found using
Landau’s singularity classification [74].

At values of P, and P; satisfying these conditions, the
real part of Z 4 has a step-function discontinuity of a height,

Disc(Z 4) = ! , (90)

16 (Pi'Pf>2_sfsi

and the imaginary part shows a logarithmic divergence.
In Fig. 6 we illustrate how these singularities form in the
e — 0 limit of the ie pole prescription. In Fig. 7 we show
the singularity structure as a function of E} for various
fixed values of E}. In particular one sees that, for
subthresold E%, Z 4 is a smooth function away from the
two-particle production threshold. As E} approaches 2m a
step forms in ReZ 4 and ImZ 4 develops a log divergence.
Then, as E; is further increased, the location of the
singularity in E} moves towards and eventually collides
with the two-particle threshold.

To complete this subsection we would like to comment
on the behavior of this singularity for some special set of
kinematics. First, in the case of identical initial and final
3-momenta, i.e., P; =P;, 7, does not have any other
singularities apart from those arising at threshold, and
therefore the G-function will not exhibit a triangle singu-
larity. This is consistent with our analysis of the P, = P;
case, and with the numerical example shown in Fig. 8. In
other words, given that all the external momenta in the
triangle diagram are time-like, the condition of all three
internal propagators to be on shell cannot be realized.
A second example is the special case of m; = m, and
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E

% 20 Ef =2.05m
< P; = [000]
! Py = [001]
Cgi mL =6

g 00

20 2.02

m?ImZy x 10?
[N}
ot

20 2.02 2.04 2.06 2.08
Etfm

FIG. 6. The real and imaginary parts of 7 4, generated using the
single-parameter integral of Eq. (87), with m; = m, and all other
kinematics as indicated in the legend. The fixed external coor-
dinates are chosen such that a singularity arises at E} . ~2.07,
while the threshold branch cut appears at 2m as it should. As
explained in the text, the discontinuity is induced when a pole in
the Feynman parameter, x, crosses into the integrated region. We
vary the value of € (in the ie pole prescription) to illustrate how the
singularity arises as € — 0.

s; =s; = s. Solving X(s,s,0%) =0 in this simple case
leads to a singular manifold given by

02— —45(1 —#). (91)

In this case it is easier to visualize that this condition is
equivalent to that of all three intermediate particles in the
triangle diagram, Fig. 2(b), going on shell. (See also
Refs. [75,76].)

This concludes our discussion of Z 4 within the main
text. In Appendix B 10 we extend the results here by
explicitly evaluating 7 4, , Z 4,,,, and Z 4,,,,,,. For these
integrals we find that the above-threshold discontinuities
persist, but are milder when factors of k, appear in the
numerator.

3. Examples of G°(P;.P;.L)

Having discussed the integral entering G’(Py, P;, L) in
great detail we are now ready to put everything together
and evaluate the complete function. We do so for two
different examples of external kinematics. First, in Fig. 8,
we consider the case of P; =P, = (22/L)[001] with
o = [p =0;10;10]. Then, in Fig. 9 we take P; = [000]
and P, = (27/L)[001] with ¢ = [00;00], i.e., with no
numerator factors. In both cases we fix mL = 6 and plot
ReG? for all values of E} and E7} in the region of interest.

As explained in the figure captions, each example
illustrates important issues and features that arise. In
Fig. 8 we consider various diagonal slices of the E7, E}

:
L !

= 50 ?}

< i

£ 00 ~

' ' 22 23 ' '

S

—

X

g

E

0.0 f T T T T )
1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6
Ei/m

FIG.7. The real and imaginary parts of Z 4, generated using the

single-parameter integral of Eq. (87), evaluated piecewise in
order to work exactly at ¢ =0 as described in the paragraph
containing Eq. (86). As indicated, the various curves correspond
to fixed values of E}, chosen to illustrate the behavior of the

triangle singularity. For Ef < 2m, 7 4 is a smooth function of E}
away from threshold. As E} approaches threshold from below,
ReZ 4 forms a step-function singularity and ImZ 4 a logarithmic
divergence. When E7 is then further increased, this singularity
moves to lower values of E%, eventually colliding with the

threshold cusp.

plane. We find that the result for Ef = E%, which can be
found with the P; # P, method via interpolation, is in
perfect agreement with the P; = P result determined by
combining the various Zj,, functions. This provides a
strong check on the two different methods. Figure 8 also
illustrates that double poles arise along the E} = E7 line,
but these split to single poles as the slice is rotated away
from this singular choice.

In addition, Fig. 8 illustrates the results of using the
Pauli-Villars-like regulator to separate the integral into Z 4
and 7 . As discussed towards the end of Sec. III B 1, the
original integral contains a factor scaling as Y;gk*) o ~
|k|? in the numerator leading to a log A divergence in Z 4.
Following Appendix B8 we handle this by evaluating
Egs. (66) and (67) with {A, Ay} = {3m,6m} and
{c1, ¢} ={-35/27,8/27}. This removes not only the
divergence but also a dk/k> term in the integrand to further
optimize the numerical convergence of Z,,. We already
gave the result for 7, in this prescription in the right panel
of Fig. 5. Here the result is combined with the sum and Z 4
to reach G°. With all building blocks summed together,
the dependence on the Pauli-Villars parameters, A;, cancels
(between Z 4 and Z,r) as does the dependence on the
smooth cutoff parameter, &, (between Z s and the sum).

Turning now to Fig. 9, this result displays two additional
features of G°. First we see that, when P; and Pf differ, the
noninteracting two-particle poles appear in different loca-
tions for E7 and E%. Interactions shift the finite-volume

034511-18



FORM FACTORS OF TWO-HADRON STATES FROM A COVARIANT ...  PHYS. REV. D 100, 034511 (2019)

40 Pl _ Pf B [001] ,’/ U k J k J U
mL =6 s
o =[10;10; u = 0] \ »
35 ' EEE I I
* { U
_f 304 |l =
m 0
- 1 ‘ ( (
Y U
"""""""""""""""""
2.0 e =] F (
[-0.15,-0.10] w
—11
3.0 N
2.0 2.5 3.0 35 10
Ef/m — Effm
K2

FIG. 8. Contour plot representation of ReG’l‘g;?O(P ¢, P;, L) forP; = P; = [001] and mL = 6. The grey diagonal dashed lines in the left

panel indicate slices defined by E} = s(Ef —2m) + 2m, for s = 1.0, 0.8, 0.6. We plot ReG* along these slices in the right panel as
indicated. The top right panel corresponds to P, = P;, and the plot matches Fig. 4 well within the expected e~ discrepancies. Here we
also separately show the contributions from Z 4 (dashed orange) and the remaining contribution to ReG” (dashed red).

P*[OOO]

P1=001 _

i

o = [00:00

e ———

u //
—0.051 i
~0.151 /
—0.054 ‘
—0.151

2.0 25 3.0 3.5 225 20 21 22

FIG. 9. Contour plot representation of ReGg.g(P . P;, L) for P; = [000], P, = [001] and mL = 6. Allowing the spatial momenta to
differ means that the finite-volume spectrum must be different for the incoming and outgoing states, as is apparent from the different
positions of the poles, corresponding to noninteracting levels (vertical and horizontal dashed lines in the left panel). Another feature of
differing spatial momenta is the appearance of triangular singularities, emphasized in the middle and right panels. On the far right we
plot three slices, running over the step discontinuity in ReG®°.

energies away from these singularities so that G°, like the
Lellouch-Liischer factors, will generally be evaluated away
from the divergent locations. However, as with all finite-
volume kinematic functions, this implicit knowledge of the
noninteracting spectrum is a key ingredient in the all-orders
correction of the scattering-state volume effects.

034511-

Second, we see the appearance of triangle singularities
inherited through 7 4. Such features are simply part of the
correct definition of G°. Indeed, because the singularity
structure is directly induced by the infinite-volume diagram
of Fig. 2(b), it also appears within the infinite-volume
2 + J — 2 transition amplitude itself. The steps, cusps and
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log divergences of G° are present in both W and Wy
for exactly the same kinematics. Thus, understanding the
features is crucial to extracting and interpreting the infinite-
volume observables that we are after. We discuss the role
of discontinuities within the transition amplitude in more
detail in future work.

IV. CONCLUSION

In this work we have presented a modified version of the
finite-volume formalism for studying 2 + J — 2 transition
amplitudes. This is closely related to the approach of
Ref. [6], but differs in that all infinite-volume quantities
are Lorentz covariant and the 1 + 7 — 1 matrix elements
have been reformulated in terms of standard form factors.
As explained in Sec. II B and Appendix A, the new result is
reached by making minor adjustments to the derivation
presented in Ref. [6]. For example, in that work finite-
volume effects are expressed as sums over poles of the form
1/2w; (k° — @y)], and here the same effects are expressed
via invariant poles, 1/(k*> — m?).

These changes lead to a modified form of the finite-
volume function, denoted G, with an added benefit that the
new form is easier to evaluate numerically. As described in
Sec. III B 2, the Lorentz covariant structure allows us to
write the integral appearing in G in terms of Feynman
parameters. This reduction is also crucial to revealing the
analytic structure of G, including the triangle singularities
described in great detail Sec. III B 2 and Appendix B 9, and
illustrated in Figs. 6, 7 and 9. We also recall that the form
of G presented in Ref. [6] carries four sets of spherical
harmonic indices, resulting from a cumbersome description
of the 1+ 7 — 1 matrix elements. By contrast, our
improved expression carries only the angular momentum
indices of the external states, together with Lorentz indices
to describe the current insertion.

To avoid proliferation of flavor and channel indices,
in this work we restricted attention to kinematics for
which a single channel of two scalar particles is open.
Accommodating multiple channels is straightforward given
the results of Ref. [6]. Incorporating particles with spin has
yet to be considered for these types of observables and is
the subject of future work. This final generalization is of
great importance given the phenomenological interest in
two-nucleon matrix elements [77,78]. From our previous
experience with spinning particles [6,32], we expect that
the extension will be relatively straightforward.

Looking to less trivial extensions, it would be of great
interest to extended these ideas in order to develop an
approach for extracting nonlocal matrix elements of two-
particle systems. This would make it possible to extract
distribution functions of resonant states, following the
methods of Refs. [10], and would open the possibility
for lattice QCD calculations of two-body contributions to
double-beta decays [79,80]. Matrix elements of nonlocal
operators suffer from different types of finite-volume

artifacts. These depend crucially on whether the operators
are displaced in Euclidean time, as in Ref. [81], or in a spatial
direction, as considered for example in Ref. [11]. Finally,
extensions of this work to energies for which three or more
particles can go on shell should be feasible in the future,
especially given the recent progress in understanding the
finite-volume spectrum of three-particle states [47-52].
Returning to the present formalism, several open ques-
tions persist that we plan to address in future work. For
example, Wy, is defined using the partial-wave basis, while
the form factors of resonances or bound states are more
naturally described using Lorentz decomposition. It is
always possible to relate the partial-wave and Lorentz bases.
However, due to the reduction of rotational symmetry in the
finite-volume, we do not expect a one-to-one correspon-
dence between the finite-volume matrix elements and the
different Lorentz components of WWg;. For example, in the p
channel with nonzero spatial momenta in the finite-volume
frame, the different helicity components mix to different
finite-volume irreducible representations. This means that
the components are sampled by different finite-volume
quantization conditions and thus at different energies. As
a result, just as is done in the analysis of coupled-channel
scattering [40—45], it will be necessary to perform global fits
of the matrix elements using Eq. (24). This requires a
detailed understanding of the analytic structure of these
amplitudes in which triangle singularities play a crucial role.
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APPENDIX A: DERIVATION OF THE
COVARIANT FORMALISM

In this Appendix we describe how the derivation of
Ref. [6] must be modified to give the covariant version of
the formalism, presented in Sec. IIB above. As in our
previous derivation, we restrict attention to a finite cubic
spatial volume, implemented by requiring all fields to have
periodicity L in the three spatial directions.

Within this setup we introduce a finite-volume three-
point function, C7~*(Py, P;), defined as the sum over all
possible diagrams connecting the initial and final states
to the inserted current. See also Fig. 10(a). For E,*,E;

below the next multihadron threshold (such that only a
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(a) The finite-volume three-point correlator used to derive the 2 + 7 — 2 formalism. All symbols common to Fig. 2 have

FIG. 10.

o

the same definition. The open circles, new to this figure, denote Bethe-Salpeter kernels, defined to include all diagrams besides the
s-channel two-particle reducible set, shown explicitly. The two-particle loops shown explicitly are evaluated in a finite volume as
indicated with the V label. (b) The finite-volume loop within the correlator that leads to the appearance of the G-function.

single two-particle channel can propagate), all volume
effects scaling as a power of 1/L are captured by the
skeleton expansion shown in the figure. Here the label V
within the loops stands for volume and denotes that the
diagrams are defined with the spatial momenta summed
over the discrete set allowed by the periodic boundary
conditions, k = 2zn/L with n a 3-vector of integers. The
corresponding diagrams in an infinite volume are given by
replacing these sums with integrals and are represented by a
loop with no label.

The powerlike volume effects of C77?(P, P;) are
encoded in the skeleton expansion of Fig. 10(a), built
from fully dressed hadron propagators (indicated by the
simple black lines) and two-particle Bethe-Salpeter kernels
(indicated by open circles). The vertices with a current
insertion are given by the same diagrammatic set defining
propagators and kernels, but with the current attached at all
possible locations. In the kinematic window of interest, the
difference between the finite- and infinite-volume defini-
tions of propagators and kernels as e™"L.

The setup here is identical to that of Ref. [6]. Indeed the
only modifications required are in the evaluation of the
two-particle loop, in which the current couples to one of
the two particles. The relevant diagram is shown in
Fig. 10(b). To explain how the analysis is altered, we
begin by recalling the finite-volume reside of this diagram,
given in Eq. (27) of Ref. [6],

B Ak
Graron, = |53~ | | g P-4 =0

szffﬂ( f_k,Pl_k>A( I_k>

x iR" (Pis ) |10— g, - (A1)

Here L(P; k) and R'(P; k) are generic end cap
functions to be replaced with Bethe-Salpeter kernels or
the overlap to the interpolators in the final derivation. In
contrast to Ref. [6], we define G Ly, With these end caps
accompanied by factors of i. The difference arises because
we formulate the derivation here with Minkowski momenta
(in contrast to the Euclidean conventions of the previous
publication). In this setup the i factors give a more natural
extension to the Bethe-Salpeter kernels, multiplied by this
factor due to the weight, ¢S, in the quantum path integral.
Our second notational modification is to represent the
1+ J — 1 insertion with a set of Lorentz indices and to

make explicit that the quantity is off shell, i.e., that
(Py— k)% (P; —k)* #m}. [See also Egq. (20) above.]
Our third and final alteration is to restrict attention to a
single channel, thus removing the a and b indices from
Eq. (27) or Ref. [6].

We now express L(Ps,k), RT(Ps, k) and wot, (P, —
k,P; —k) in terms of their on shell counterparts, plus
corrections. For the end cap functions this is done exactly
as in Ref. [6], by first defining

‘C(Pf qf Z \/_Yffmf kf)ﬁffmf(Pf)
Cymy

R (PH q*k* Z Van Yfm k*)lR’;[m,(Pi)’ (AZ)
£im;

and then recombining the components with the ).,
harmonics defined in Eq. (13),

on va nyfmf ‘Cb’fmf(Pf)
Cymy
Rgn P k* ny im; f}n( ) (A3)
Cim;

With these in hand we introduce the 6 operator as follows:

L(Pp. k) 10—, = Lon(Pr.K7) + [L3](Pp k). (A4)

RY(P;. k) o =R (Pi.k}) + [SRT](P1. k). (A5)

=W
These results match Eqs. (41) and (42) of Ref. [6], up to
the minor notational differences discussed above. A key
property that we will use below is that [L5](P/, k) vanishes
like (P — k)* — m{ in the on shell limit, and [§R'](P;, k)
vanishes like (P; — k) — m3.

We now imltate this separation with the 14+ 7 — 1
insertion and in doing so introduce the first major differ-
ence as compared to our earlier work. Beginning with
Eq. (20) of the main text, above, we introduce the shorthand
ky = P;—k and k; = P; — k to write

ol (kg ki) = > Ky, (k Py, P FO(Q2 K3, 12).

J

(A6)
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We now follow the approach introduced in the main text by
only projecting the scalar form factors, fU), to their on shell
values. To understand the idea note that

Q% K5, k) = fUQ% P + 12 —
+ K2

2E (ukz,P2

—2E; a’kz]’ (A7)

where co,:{ is the temporal component of k**/, given by
boosting k# = (wy,, k) to the P, = 0 frame, and w}j is the
f — i analog.

The key point is that, when expressed in this way, f/)
has no dependence on ﬁ} or ﬁf. Thus there is no need to
decompose in harmonics, nor to include barrier factors. The
on shell projection is simply

f(j)(Q2> = f(j)(Q27 mi,my) = fo [-] kr=qy.ki=q}> (A8)
foff on(Q2 k2> = f(j)(Qz’ k)zf’ m%) = f<J) [ ’ } r=qr (A9)
oo (@2 43) = fD(Q% b 1) = fI]: ey (A10)

To avoid clutter we have suppressed the arguments on the
right-hand side, identical to those of Eq. (A7). We stress
here that the on shell projections are subtle in that k is used
to define two separate variables k7 and k7. The separation is
unambiguously given by whether the original k appears in
k; =Py —k or k; = P; — k. With the induced k]*(- and k}
dependence, it is possible to separately project the initial
and final states on shell via k} — ¢} and k} — g3
respectively.

We next form linear combinations of the on and partially
off shell form factors in direct analogy to Eq. (37) of
Ref. [6] to reach

FO(Q% K3, k) = fU(Q?) + 6V (Q?)

+fV(Q*)5+68fV(Q%)s. (Al

The individual terms on the right-hand side are defined by
analogy to Eqs. (38)—(40) of Ref. [6] and have the explicit
form,

5F(Q) = fih (0% K3) = FU(Q?),  (Al2)
FO02)5 = fY) (0% k) = FU(QY),  (A13)

SfU(Q*)5 = fU(Q% k. ki) + FU(Q%) =
— 1 G2 K2) = FD(Q2).

foff on(Q2 kz)
(A14)

Note that functions with a § on the left side (right side)
also depend on k7 (k7), but we keep this dependence
implicit to avoid clutter. As in Ref. [6], the key point here
is that 6 appearing on either side of the function indicates
that the latter vanishes in the on shell limit, scaling as
k7 —mji (for & on the left) and as ki —mj (for delta on
the right).
It now remains only to separate the propagators by
defining
A(K?) =

D(K?) + S(k?), (A15)

where

i

D) = 5—F—,
(k) K* —m? +ie

(A16)

is the noninteracting covariant propagator. Our conventions
are such that A(k?) has unit residue at the single particle
pole, implying S(k?) is smooth and finite near k* = m?.
This form of separation, in which D(k?) remains Lorentz
invariant, is the second key distinction relative to our earlier
formalism.

At this stage we have separated the end caps [Eqgs. (A4),
(A5)] the single-particle form factor [Eq. (A11)] and the
covariant propagator [Eq. (A15)] into on shell terms plus
corrections. Substituting these four identities into Eq. (A1)
then gives the analog of Eq. (43) of Ref. [6]. The final step
is to rearrange terms according to singularity structure. Of
the 64 terms [reached by multiplying four binomials as well
as the form-term separation of £(/)] all but 17 are smooth at
both poles and thus give only exponentially suppressed
contributions to the sum-integral difference. Those that are
singular break into three classes, eight with only the
1/ (k7 +m? — ie) singularity, eight with 1/(kj + m?* — ie),
and a single maximally singular term that leads to the
appearance of G°(Py, P;,L).

To give an explicit form for the single-pole terms we
need to introduce one final piece of notation. We define the
operator o4 via

[[E(Pf,k)A(k})wﬂ o (kg Ki)10as]
= STy, (m Kk Py P)[L(P . K)AGR) FO(Q2, 2, 12)

J

~Lon(Prk})DE) Y (0% )], (A17)

and similarly for d4; acting on the left.
We can make use of this to rewrite Eq. (A1) as
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. _ 1 d’k ; s
Gy = —Zf(’)(QZ)lﬁffmf<[sz: - /W} yffmf(k})D(m,k)K;(/])wun(m»k’Pf’Pi)y?imi(k?))lR}[m[
J

+ [[iL(P,-,k)A(k}) Wy, (kg k) ET)84]iF (P, L)iRT + iEiF(Pf,L)[édf[é“wmmﬂn(kf,ki)A(kf)iRT(Pi,k)]},

where D(m,K) is defined in Eq. (27). On the second line
the square bracketed quantities have been decomposed in
spherical harmonics and carry implicit indices that are
contracted with F(P, L), defined in Eq. (12). We have
included the inverted symmetry factor, £~' = 2 for identical
particles, to compensate the factor in the definition of F.
Note that this arises naturally from the fact that the current
couples to each of the two particles when these are
identical. This implies that Wy is defined with four
subtraction terms, given by coupling the current to each
of the four external propagators. When Wy is then
projected to definite angular momenta, these terms become
pairwise redundant leading to the factors of 2. In the case of
nonidentical particles that both couple one must sum over
the two choices of species mass within A(k]%) as well as the
|

(Pr—k)*—

Wati-s = Wiess, = IM(Py K k)

W1 M

(A18)

|
alternative mass assignments
{ml’ m2} - {mZ’ ml}'

Using Eq. (22), we can write the first term on the
right-hand side in terms of G, ., .z m:com (P, Pis L),

within  D(m,k), ie.,

defined in Eq. (26). Following the steps outlined in
Ref. [6], one finally arrives at Eq. (24)—the relationship
between the finite-volume matrix element and iWgg.y,,...., »
defined in Eq. (16). The latter emerges through the
identity 5de5df = Wdf‘

We close by giving explicit expressions for the case that
the current has a non-negligible coupling to both of the two
particles. When two distinct species, 1 # 2, each admit a
1+ J — 1 transition, then the definition of Wy, Eq. (16),
is replaced by an expression with four subtractions,

i _—
sy wliﬂl“‘ﬂn m l./\/l (P,‘, k, k/)

—iM(P; K Py = P;+ k)

i
— Wy ...
Zipy -y (Pi _ Pf + k’)2 _ m%

Here the wy,, ...,

iM(Pik,P;— Py + k).

(Py— P+ k> —m3 2

(A19)

in the bottom line have arguments (P, — P; + k, k) and (k', P; — P; + k') respectively. We have no

freedom to choose these once the external momenta are fixed.

The extra subtractions also lead to an additional G-dependent term in the relation between W, 4 and Wg,. But in this
expression, as a result of the sum, we do have the freedom to relabel the coordinates. With this in mind it is most convenient

to rewrite wy,, .., as a function of (P; —

Hn

k, P; — k) and decompose exactly as in the main text,

oy (P = k. Py = k) = ZKZM (m.K. Py, Py, (7). (A20)
K{) ., (m.k, PP, ZKZMI (. k)cgjw (PP, (A21)
This then allows us to write
W " (Py, Py, L) = W™ (si, 57, O ZZC et (p e P (D) M) Gy ™ (Pr. Pr L) M(Gs))]
Jj n'=0
£ P (P (07 M )Gl (P Py L) M)
i =0
J (A22)
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where Gy, is exactly equal to the quantity defined in
Egs. (26) and (27) of the main text and G, is the same but
with m; <> m, everywhere.

Turning to the case of identical particles here the relation
between Wy; and WV again has four subtractions, exactly as
in Eq. (A19). The four terms continue to be distinct due to
the four different momentum assignments. However, the
relation between W, 4 and Wy is exactly as Eq. (A19) of
the main text, a single G-dependent term with no symmetry
factors. This follows from the fact that identical particles
lead to a unique diagram of the form shown in Fig. 10(b)
and that this has no symmetry factor, even in the case that
the three hadrons in the loop are identical.

APPENDIX B: DETAILS FOR EVALUATING
THE FINITE-VOLUME FUNCTIONS

In the following subsections we collect various details
relevant for the evaluation of the two finite-volume
|

[A—ﬂ]yl M [A—ﬂ]/,tn b [4ﬂ(k*)fi+ff Yffmf (R*)k:]

k* Y} m; (k*)”kozw

functions that enter our formalism Fy,,.z,/(P,L) and
G°(P, P;.L).

1. Index gymnastics
We first discuss various identities for rearranging spheri-
cal-harmonic and Lorentz indices in the evaluation of
G(,(Pf, P;, L). Begin with the case of P; = Py, in particular
with Eq. (39) of the main text. Multiplying both sides by
(g*)%*’r and substituting the definition of Y,,,(k*), this
reduces to

4ﬂ<k*)fl+ff Yffmf(lz*)kﬂ] T klln Y;,vm;(lz*

= \/4_7TZCGJM(ﬂ’ k)Y gy (k7).
M

) |k0:wk2

(B1)

The first aim of this subsection is to use this result to derive
a useful expression for evaluating C, (B, k*).
Substituting the relation k, = [A_g] “k;, we reach

= Var)y Cosm(B.k)kY (k") (B2)

At this stage, the factor in square brackets is a simple polynomial in the coordinates k%, k and k7 with an additional
dependence on the magnitude entering through w},. Thus, for a given set of indices, one can readily determine an explicit
expression, and then use the orthogonality of the Y,s, to deduce

Coum(B.k*) = [Agl,m

As a specific example, we return to the case of 6 = [y = z;10; 10} and P =

these indices, Eq. (B3) reduces to

3

I
Cou(B.k*) = T (k*)* 28y / d cos 0% Y5, (0%)[cos’0* (Bym}, + yk* cos 0*)].

T

- [Ag),, oA ()t / Q" Y5 (R*)[Y g, (ROKS, - et V5 (R0,

(B3)

[00d. ], already discussed in the main text. For

(B4)

Here we have used the fact that, with p fixed to z, we only need to sum over one row of the boost matrix,
[A_g]*, = ($*7.0,0,7). The integrals are now trivial to evaluate. For example, the JM = 00 component reduces to

3 1
Chlb. k") = prrags o (k21 |

-1

Z

P
dcos 0*cos*0* = k**w}, R (B5)

where we have used f° = P°/E and y = E/E*. This matches Eq. (41) of the main text.
An alternative approach for determining C, s, (f, k*) is to note that the product of two spherical harmonics can be written

in terms of Clebsch-Gordon coefficients,

Yf]ml (k* Yfzmz k*

(B6)

2f3+ )an

£3my

and that each factor of k; can be rewritten using the identity,

Y, (k*) - Y (k)

(2¢, 4+ 1)(2¢, +
Z b )<f10f20|f30><f]m1f2mz|f3m3>mm3(k*>,

= V iy, <CU]:2Y()()(R*), k* s k*

V6

Yoy (k*) + Y, (k*) Yo >
_i\/g

K > 1%, (k)Y (k7). (B7)

‘m<2
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where the last equality defines 7%, (k*). Substituting this
into the left-hand side of Eq. (B2) leads to sums over
products of spherical harmonics on that side of the equation.
These can be pairwise combined using Clebsch-Gordon
coefficients, until the left-hand side is reduced to a sum over
a single harmonic. Then one can use the orthogonality of
spherical harmonics to match this, term by term, to the right-
hand side and thereby determine the values of C, ;;,(f8, k*).

We next consider the case of P; # P;. As explained in
the main text, here we find it more useful to convert

47
vyUy _
M[ﬂl"'ﬂn;ffmf;fimi] k, k”N o

The second, and final aim of this subsection, is to derive a useful expression for M,

@@ [(K3)Y o, (K],

indices in the other direction, i.e., to trade all dependence
on spherical harmonics for additional momentum 4-
vectors. The key distinction between this case and that
discussed above is that we no longer have a natural c.m.
frame. The rest frames of P; and P differ, and expressing
the integrand in either frame leads to ugly expressions.
This, together with the need to reach covariant expres-
sions that we can evaluate semianalytically, led us to
introduce M, ", in Eq. (70) above. The definition can

be reexpressed as

T kﬂn [(k:)f

)f’ml(l2 )] (B8)

vy Uy

First we introduce a new set of tensors, denoted 7, that allow us to express the right-hand side in terms of 4-vectors,

MY k, -k, =

[y p€ gt imi] N [¢pmy]

The exact definition of the T{[;;n

A Qe 4y J’f,k*f

[im;] Mo 7T

Y FTEY T A EEN il (B9)

”]aff can be inferred by comparing Eqs. (B8) and (B9). Note that they contain the v/4z/(g*)*

prefactors and also encode the combinations of k* components needed to form the various spherical harmonics. For

example V4zk* Y (k*)/q* = —\/_k; 5/ q* implies T/[llo]
tensor, Tf’ ] is closely related to 7%, , introduced above.

= v/3(0.0.0,~1)/g

*, since kj; = (wy,. —k*). The single-index

The final step is to boost all 4-vectors to the finite-volume frame. We deduce

VU

A1y 51y
[}h “'ﬂn;ffm/fimi]

[¢pmy] [Zim;] [Aﬂf](ll

Ve c+n+
[Aﬂf](lf Y X 6}‘1‘ o '5/4;1 X [Aﬂ} et [Aﬂi]yf;ylv

¢p+l Ve rtn
Jn (B10)

2. Evaluating F .0,y (P,L)

We next turn to the finite-volume matrix, F(P, L). For convenience we repeat the definition given in Eq. (12) above

Fpmprm (P, L) = 5[1413; - / (;ij:;}

Our aim here is to rewrite this in terms of Z(!). With this in mind, we first observe

Ffm zf”m’(P L)

where we have used the fact that 2wpy (E — @pyy

terms in the integrand that lead to exponentially suppressed volume dependence. The definition of Bj;,

— wy, + i€) can be replaced with 2E*(g*?

k*)y, (k*
yfm( )yfm( ) : . (Bll)
20p 2010 (E — @pyy — @y + i€)
e 1 [ 1 &k k* C+6'=1 2% \/Ar(k* )Y 10 (K*
¢ ZB[;;/I,K ] . _%Z_/ Dio ”2( ) 2JM(. ) (B12)
2E* (") |L° 4 (27)3 20, q** —k* +ie

— k*? + i€) /2w, up to smooth

fmt .
Zm:Z ] an be inferred

by comparing Egs. (B11) and (B12) and is given more explicitly by

[Emd'm'] __

BYr™ = iz / 453y (R*)[¥ 1 (k%)Y (K],

L e+
_(_1)\/ (27 +1)

where we have used Eq. (B6) to reach the last equality.

D £0£010) (me — i\ IM), (B13)
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The final step here is to note that the additional
barrier factor, (k*/q*)?+?~/, appearing in Eq. (B12),
can in fact be set to 1. This is justified because

(k*)?Y ;5;(K*) is an analytic function and because £ + ¢/ —

J >0 for all nonzero B[Jmfm] The latter point directly

follows from the explicit expression of the B[fmfm]

terms of the Clebsch-Gordon coefficients. As a result, the
difference (k*/q*)***~/ — 1 cancels the pole, leading
to a smooth summand and a suppressed sum-integral
difference.

Removing this extra factor, and reexpressing the
sum and integral with dimensionless coordinates, we
conclude

Ffm;f’m’(P’ L)

¢ [Em:'m']
= * BJM’
87’LE JZM

(2z)" 1
X L) igr&Z&,&,(P,L,a).

(B14)

3. a-dependence of Zy,’&
Here we explain our choice of cutoff function used in the

definition of Zg’;& Eq. (50), recalled here for convenience,

(n) - i, / 3 ]
Z P,L,a)= —ns - d’r
" (P.L.a) [Zw

\/4-_HV*JYJM(r*) e_a(r.z_x2>n (BIS)
(x2 _ r*2 + i€)n :
For n > 2 the integral and sum are individually conver-
gent in the limit @ — 0. Nonetheless, evaluating the sums
for various nonzero a and extrapolating a — O turns out
to be more efficient than saturating the @ = 0 expression
directly.

By including the power of n in the cutoff function,
e~*(=")" e ensure that differentiating with respect to
gives a smooth summand. This, in turn, implies that 9, Z(")
vanishes up to terms that are exponentially suppressed in
the volume,

02 (P.L,a)

Oa
S P,
(B16)
L\’ &Pk of, . .\
= (=1 = k2 iLn-k 4 k*JY k*
-(5) > [ G im0
— O(emL) (B17)

Using this result in an expansion about a = 0 then gives

zW(P.L.a) = 2V (P.L.0) + O(ae™™).  (BI8)

Of course, it is possible to define the Zy}‘,)] functions with

a milder cutoff function, for example,

Zln P L a)= [ E _‘01:2 - / d3r*}
JM( ) - 5
AV 477,'}"*']) JM(f*) e_a( *2 2)

U B19
(x* = r*? +ie)" (B19)

For n = 1 this equivalent to Z%}(P, L,a),but forn > 1 it
is a less useful prescription, due to an enhancement of the «
corrections,

Z00(P. L a) - 2)y(P,L,0)

—o[ S [or]

= a2 V(P L,0) + O(?).

O(a?),

4m” JYJM(f*)
_ *2+l€)n—1

(B20)

As Zy}v;l) (P, L,0) is itself a singular function forn > 1, we
deduce that the difference between the optimal version,
Z%}I (P, L,a), and the alternative, 2’5’2 (P, L, a) can take on
arbitrarily large values for any finite a.

In Fig. 11 we compare the a-dependence of ZS';&(P, L,a)

and ZS’}‘,),(P,L,O:) for n =1, 2, and show that the large
a-dependence of the latter is well described by Eq. (B20).
In the a — O limit the two prescriptions agree, but to
optimize the numerical evaluation we advocate the form of
Eq. (B15) and use only this definition throughout the
remainder of the text.

P
Re Z((m)

Re Z(()ﬁ)

(l)}

( Re[Z&ﬂ —aZy

E =3.5m
—61 P = [000
i
-8 . - )
0.0 0.5 1.0 1.5
o
FIG. 11. Dependence of Z(”> on the cutoff parameter a. Here

we plot the log of the magnitude of the residual where
AZ(a) = [Z(a) — Z2(0)]/Z(0). Comparing the top two curves
clearly shows that the cutoff function advocated in the main text,
Eq. (50), has a milder a dependence than the alternative form,

denoted 2(13\)4 and defined in Eq. (B19). The reason is that the
latter has a dependence with power-law L scaling. In fact, the
leading a behavior of Zﬁ}, is exactly given by Z(Jlja, and

subtracting this gives a highly improved result, as shown.
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4. Evaluating Z\%) (P.L.)

In this section we discuss the evaluation of ZS’,’&(P, L,a),
in particular the integral part of this quantity. As already
mentioned in Sec. III A, the integral entering Z(") vanishes
for all entries besides JM = 00, implying

=2

x e~ =) = 5084020 (x, @),

&1:2\/17;( )Y ()

(n)
Zo (P, L,
i a) o (X2 —r*? +ie)"

(B21)
where

e_{l(r:Z_XZ)n

2 (x, @) E47r/ drr*? (B22)
0

(X2 _ r*2 + l€)n .

For the single-pole function, Z()  this can be evaluated
analytically and takes the form,

2 (x,q) = 4x [— %ea"z
\ da

where Erfi(x) is the imaginary error function, defined by
dErfi(z)/dz = 2% /\/7 and Erfi(0) = 0.

We now consider n > 1. Although we only require n = 2
for the present work, we find it instructive to consider all
values together. A consequence of the cutoff function,
together with the higher pole factors, is that we are not able
to evaluate Z((x,@) analytically for n > 1. Instead,
following our usual trick, we separate the expression into
two terms: one that can be evaluated analytically and
another that is smooth and converges rapidly under
numerical integration,

(B23)

20 (x,a) = 4z /oo dr*r*? + 6™ (x, ),

0 (x2 _ r*2 + i€>n

(B24)

_a(r*Z_XZ)n _ 1

20 (x,a) = 471'/00 dr*r*? e( 5
0

B26
x2 — r*2)n ( )

We close with a final remark concerning the n = 2 case,
of direct relevance for 2 4+ J — 2 transition amplitudes.
Here the relevant integral is

in?
EA(x,a) = — + 2@ (x,a). (B27)
X

Recalling x o< ¢* o /s =54, where s = P? is the c.m.
energy and sy, = (m; + m,)?, we deduce that for P; = Py,
G, generically has an inverse square-root singularity at
two-particle production threshold. This implies that Wy, as
well as W, must have the same singularity. This behavior is
visible in the values of Z%

we observe that 25‘,3,

threshold.

plotted in Fig. 3. In particular,
has a milder behavior near the

5. Symmetry constraints on Zy;&

To efficiently implement the formalism it is useful to
identify, based on symmetry arguments, the values of JM

for which Z%’V),(P, L,a) = 0. In this subsection we review
these constraints and discuss subtleties that arise for n > 1.
Our results are summarized in Table I.

We begin with P = [000]. The properties of the zero-
momentum zeta function are well-known [16,17], but we
still think it useful to review the arguments here, in order to
better understand the generalization to P # [000] and
n > 1. Note that the zero-momentum zeta function must
be unchanged if we flip r everywhere in the summand.
Taking the expression for JM # 00 we write

, ) — Z \/4_”((| - rl)jYJM(_f‘) e_a((_r>2_x2)n .

Z((E.0). L T ()

r

(B28)
Substituting Y3, (—=F) = (=1)’Y,(f) then  gives
ZW((E.0).L,a) = (=1)'ZV) ((E.0). L. a) implying that
the zeta function vanishes for all odd J. We can further

o272 n-1 ) .
— _lm Vx2 + 680 (x,a) (B25) rewrite the summand with (r,, ry, r.) = (—ry. r}, r,) and
n—
use Y, (0,7 — p) = Y;_3 (0, $) to show that ZJM((E, 0),
where L,a)= Z(an w((E,0),L,a). Similarly, a /2 rotation
TABLE I. Summary of the conditions under which Z f,’& =0.
P (n) my, my Z("> 0 Comments
[000] all general for all M ¢ 47, all J & 27, JM = 20 also 21, = 2\,
[00d,] all general for all M ¢ 47 also Z&",L = Z(J'QM
[0d,d.] all general z2m =z,
general 1 m; = m, for all J & 27 only up to O(eL)
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about the z-axis, together with the identity Y, (6, ¢ —
n/2) = e~™M7/2y (0, ¢) implies that M must be divisible
by 4 for the zeta function to be nonzero.

A final zero-momentum case worth mentioning is
JM = 20. To see that this vanishes as well, note that the
corresponding spherical harmonic is proportional to
3r2 — 2. The sum of this structure (times a function of
r?) over the integer set, r € Z°, is clearly identical to
the same with 3r2 — 2 or with 3,2 — /2. Thus 23 is
equally well defined by averaging the three possibilities.
But this gives a summand proportional to 3(rZ + r% + r?)—

3r> = 0, implying Z%) =0 as claimed. The conditions

under which Z%}, = 0 for P = [000] are summarized in the
first line of Table I.

We now turn to nonzero momenta of type P = [00d.]. As
this momentum type only breaks the symmetry in the z
direction, the invariance under (ry,ry,r.) = (=7 1y, 1;),
as well as the /2 rotation around the z-axis, give the same
constraints as for P = [000].'" Similarly, for P = [0d,d.],
flipping only r, gives the same relation as above.

By contrast, parity is broken for any nonzero momentum
so that the argument based on r — —r no longer holds. For
example, for m; =m, and P =[00d,], the summand

defining ZS’,’,}, now depends on

rr = (rx, Ty, —

This vector does not transform in a useful way under a flip
of r. Remarkably, in the degenerate-mass case, the single
pole functions, Zg& continue to vanish for all odd J. More
precisely, these are smooth functions with exponentially
suppressed volume dependence and thus scale as terms that
have been dropped in the derivation. As we now explain,
this is due to an accidental symmetry inherited from the
nonrelativistic system.

The following argument holds for all values of
P = (2z/L)d, and so we present the results for the general
case. The approach is based on the results of Ref. [22]
and we begin by recalling Egs. (62) and (66) from that
work,

2nd, [m?>L?
E*L | 47>

1/2 E
1'2:| + E rz) . (B29)

PL k*2 _q*Z
R -——— "9 Ry (B30
N =R~ Frrwr v Er2r L RL(B3O)
(x*> = r*? +ie) = ywzz/a}kz(xz — R*? + ie)
+ O[(x* = R**)?], (B31)

"°0f course, it is true in all cases that the sum over r € Z3 is
invariant under any octahedral transformation on r. The relevant
question is whether this leads to a useful constraint on Zjy;.

where R* = 77!(r — d/2). Here ri and r7 are the vector
components parallel and perpendicular to d. We have
also introduced the operator f/‘l(rﬁ,rl) = (y"rﬁ,rl).

(n)

Substituting these results into our definition of Z,; we find

[w_ <yw,:2> = VAn(R*)Y 1y (R")

(x> = R*> + ie)"

20 (P.La) =Y

r

+O((x* - r*z)l‘”)] .

Wi \ Wi

(B32)

Now note that, for n = 1, this function exhibits two
special features, both unique to the single-pole case. First,
the factors of wy,/wj, multiplying the pole exactly cancel;
second, the subleading term becomes a smooth function of
the summed coordinate, r. We thus reach

(1) N l v 4”(R*)JYJM(IA1*) —mL
2P La) = , Z PR 10 + O(emL).
(B33)

This simplified form, incidentally the form first derived
for the moving frame quantization condition [17], makes
the accidental symmetry that we are after manifest. In
particular, we can now use that the sum over r € Z° is
invariant under r - d —r. Under this transformation
R* - —R* leaving R* = |R*| unchanged. Thus every
factor in the summand is invariant except for ¥ ;,,(~R*) =
(=1)Y ;3 (R*). We deduce that, for odd J and degenerate

masses, Z% = O(e™L). However, the remaining sym-

metries do not survive due to the factor of 7! in the
definition of R*.

Finally we stress that the vanishing of odd J due to the
accidental symmetry only holds for n = 1. As is clear from
Eq. (B32), for all other n values, the ratio of omegas does
not cancel, leading to another factor that changes under the
r — d —r transformation. Thus, while the odd-J Z% have
no poles, for n = 2 the functions already exhibit the full
double-pole behavior. [See also Fig. 3.] In addition, for
n > 1, the subleading term contains a (n — 1)th order pole
that also generates an important contribution to the zeta
function.

At this stage we have completed all details relevant
for P; = P; and therefore turn to the more complicated
case of P; # P, beginning with the numerical integral
denoted Z ., (a0, Py, P;).

6. Evaluating Z /.. (a.P;,P;)

Here we give some further details on the evaluation of
Tyr5(a, Py, P;), defined in Eq. (67) of the main text. Recall
that this is a three-dimensional integral with a smooth
integrand, to be evaluated numerically. When added to the
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semianalytic expression, Z 4., it gives the full integral
entering the definition of G,.

The complication we wish to address here is that the
definition in the main text requires evaluating a large
number of integrals defined with factors of k, (but with
no spherical harmonics) in the integrand. These are then
contracted with the tensor MY ™™ to reach the final
expression. While highly advantageous for the analytic
integral, the Lorentz-index-based expressions lead to a
costly determination of 7 .. For example, for £, = £; = 1
and a single current index, the covariant form contains
factors of k, k, k,, that naively require the evaluation of
64 terms.

To improve this situation, it is preferable to move M,
back inside the integrals defining 7 yr.,, and thereby rewrite
the integrands to only carry the final ¢ index. This
procedure is a bit subtle, because the time components
of the k* are evaluated at various values. To proceed we
first recall that Z »/ , generally involves terms evaluated at the
physical masses, m, m,, together with regulating integrals
evaluated at some higher scale A;. For the physical-mass
terms, time components are evaluated at k° €
{wp, Er + wp 11 Ei + wp i1} and for the regulating inte-

grals at k%€ {,/kz—l—AZ.,Ef—F \/(Pr—K)*+ A3 E+

(P, —k)> + Af} Some of these four vectors are recom-

vy UN
c

bined into the harmonics, ),,, (k*), and, because the time
and space components mix upon boosting kj; = [Ag] “k,,
we end up with strange spatial components in some of the
harmonics.

n:

3 J
Iyola. Pp, P;) = / (521'”1; [H(a, k) — 1] ) cj[D(Aj

d3k " d3k
_/(2”)3 H(a’k)jZICjD(A/"k)Na(wk’Aj’k)—/WH(a,k)chICw(Aj,k),

where

Kro(A k) =D, (AK)ING(Ef + @p i1, A K) + D yi(A KN G(E; + @p g, AK).

To give concrete expressions it is convenient to define

No'(gk9 Aa k) = MI(;]WVN [kul e kUN|k0:Qk]
= yffm/ (k;,g)[ky] T ku,, |k°:9k]y;,m[ (k:Q)
(B34)

Here € represents any of the possible choices made for
the temporal component of the 4-vectors. In each of these
three cases, an implicit mass dependence enters and the
second argument, A, refers to this mass dependence. In the
following we will use m or A to indicate that the ws are
evaluated at their physical masses and Aj., to indicate
evaluation at an unphysical value m; = m, = Aj . In
short, the first two entries in NV, simply serve to indicate the
value at which all k° are evaluated. We stress that the tensor
M,V does not depend on these parameters but only on
the c.m. frame energies E} and E} as well as the boost
velocities f; and . Thus, the only modification to the

spherical harmonics is that they now depend on k*<,
defined via

(Q]:, k*’Q>M = [Aﬂ}ﬂv(gk, k)b (B35)
If we set Q; = @y, and A = m, then we exactly recover the
spherical harmonic definitions used everywhere else in
this work.

With our new numerator function in hand, we are ready
to give our final form for Z .,

k)N(r(wk’ Aj k) + ’Cr;ﬂ(Aj’ k)}

nj

(B36)
=0

(B37)

This is identically equal to the quantity defined in Eq. (67) of the main text. The only difference is that we have absorbed

M, inside the integrands, via the new function N .

To complete the specification we require explicit expressions for D,(m, k) and D,;(m, k),

1 1

1

Drf(m’ k) =

1 1
Dri(m’ k) =

- 2wp 1 (Ef + wPfkl)z —wpy (Ei = Ef — “’Pfkl)z - w%’,-kl

: (B38)

1

B 2wp i1 (E; + CUP,-kl)2 - a’%z (Ef—E; - wPikl)z - w%’./kl '

(B39)

The motivation for these quantities is discussed in the text around Eq. (59), where an implicit definition is also given.
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We close this subsection with one final simplification to
Z . We show that it is always possible to simplify the
numerical evaluation from a three- down to a two-
dimensional integral. To show this we must prove the
following key identity:

T o (@ P P = (A, o (Al
vy,
% Ij\l/ff’"flfimi (@, AgPr, AgP;).

(B40)

Begin the proof by considering the generic integral,

d*k
Xt (Py, Py) = / —<2”)4F(Pf,P,-,k)g(k,~*,k})k’“ ok

(B41)

assumed to be convergent. Here we have separated the
integrand into a Lorentz-scalar function, F, together with
an arbitrary function of the c.m. frame momenta, G. The
latter is also Lorentz invariant in the vacuous sense, i.e.,
because its arguments carry a frame label. Now act on both
sides with A4, on each index,

[Aﬂ}u]yl .o [Aﬁ]ﬂnvn‘)(blml/n (Pf’ Pl)

[ d% * K* #
=/Wf(Pf,Phk)g(ki’kf)[Aﬂ] v

X [Agln, kO ke, (B42)

To simplify the right-hand side we perform a change of
integration variable k* = [Ag]# k* and also define P/ =

[Agl, P4 and P = [Agl P,

[Aﬂ}ulvl . [Aﬂ]ﬂﬂl/nXUImDrx (Pf’ Pl)

4 /
/ LS L F (P PLKG(KE KK - K. (BA3)
(2z)*

Here we have used the Lorentz-invariance of the various
building blocks, including the fact that k; and k} must be
unchanged if we replace k, Py and P; with their boosted
counterparts. This result, which can be rewritten as

[Aﬂ]mul . [Aﬂ].un

XV D”(Pf, ) Xy u,,(P/ P/)

(B44)

is just a statement of Lorentz-covariance for X.

To conclude our demonstration of Eq. (B40) we note that
I =71 — 7 4 and that the two terms on the right-hand side
each satisfy the functional form of &', shown in Eq. (B41).
In the case of Z, the original integral defining G, one takes

F(Ps.Pi k) = O(K)(27)5(k* — m3)
y 1 1
(Py—k)> —m? +ie(P;—k)> —m} + ie’

(B45)

This function is only invariant under orthochronous trans-
formations, as is standard when one discards the antiparticle
pole, but this is sufficient for the present argument. For both 7
and Z 4 the spherical harmonics, as well as the cutoff function
H(a, k) can be absorbed into the definition of G. Again the
key point is that these objects are frame-independent because
they carry a frame label, k* (k, P) = k* (K, P"). We deduce
that Z ,, must satisfy Eq. (B44). Multiplying both sides by
A_p, we conclude Eq. (B40).

To see the power of this identity we take f =pf,,
implying
(A Py =Py = (EPY),  [Agl,P7=(E}0),  (B46)
and thus that only one external direction enters the integral.
In this case the integration coordinate is simply transformed
to k7. We are then left with

" _
I.Alff/m/fm(a’Pf’Pi) -

d3kl* * *U *V, % *
[Ag ), XZ / - Qu(IK 1KY - PV (KK K7V (KE) o0,

(B47)

[Ag

where the sum over k runs over all possible choices for the temporal component, as discussed above. The key point here is
that, once the spherical harmonics and the factors of k}* are factored out, the remaining integrand can only depend on k}
through its magnitude and a single angle. This is because no other direction is defined in the system once we have expressed
all coordinates in the rest frame of the incoming state.

Defining cosd = l%}' : f’/ and picking an arbitrary orientation for the azimuthal angle ¢, we reach

H1Hn

N;ffm/;fimi(a’ Pf’ Pl) = [A—ﬂi]#] o [A—ﬂi}un Up

dk? k*zd cosd 2a ” . .
X Z/ Qk(kz*’ COSQ)A d¢yffm_,c(k;)ki o 'ki nyfl_ml,(k,')

kFO =Qk . (B48)
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Here the ¢ integral can be evaluated analytically using the rotation properties of the spherical harmonics. Thus only the &
and 0 integrals need to be performed numerically.

7. Evaluating Z* (P;,P;m.5)

In this subsection we show how the generating functional, 7% (Pf, P;,m, &), defined in Eq. (76) of the main text, reduces
to the results given in Eqs. (77)—(78). We begin by inserting Feynman-parameter integrals into the definition to reach

(P Poms) =2 [ ax [ d kg i B49
) z’m - X )
(P / / (27)* [k +m* = 2k - (xPyp + yPig) + xP} p + yPi g (B49)
—x 4—5 ek
= 2/1dx/1 dyeiXE'(fovEﬂPﬂE)/ 4"k e ; (B50)
0 0 (27)*0 [k + M (m. x, y)*]?

where in the second line we have performed the shift ky — kg + (xP; g + yP; ;) and have introduced
M(m,x,y)* = (1 =x=y)ms + (x + y)mi +x(1 = x)P} o+ y(1 = y)P} g = 2xyPy - Pip. (B51)

Next note that the denominator of the integrand of Eq. (B50) is invariant under kp — —kg, implying that only even terms
in kg contribute to the integral. Expanding the exponential and keeping only the even powers, we find

IX(P P;,m 5) = 2/1 dx/l_x dyeiXE-(XPf'.E+fo.E) / d4_5kE Eoo: i)(E kE (B52)
JEERE s 0 0 (271,)4 5[k2 +mey 3’1:0 .

To further reduce the expression note that we can make the substitution (iyy - kg)*" = A,(—y%)"(k%)", where A, is a
normalization constant, to be determined. This holds because the integral over kg, - - - kg ,, (multiplied by a function of
k%) must be proportional to Oy * " Ouy,_ypn, T+ - Where the second ellipsis indicates a sum over all possible pairings.
Contracting with yg, - xg,, then gives the claimed form.

To determine the normalization, first consider the case of n = 1, corresponding to kg kg, — A, 5”,,k%5. Taking the trace
on both sides then gives A; = 1/(4 — §), where we are careful to consistently perform the calculation in 4 — & dimensions.
Similarly, for n = 2 one finds
0

Holy + 5# 1H4

6#2#3 . (B53)

SOy + 0
kE-Ml kE,[lz kE,y3 kE.ﬂ4 N Az(k%)z HiHo “ 3ty ﬂlﬂ33

First summing over y; = u, and then over pu3 = py gives A5 = (1/3)[(4 —6)* +2(4 - 8)].
The result for general n can be derived by first writing

_ lixe-ke)™ _ o expla(iye - k)]
o f o= [ a0 =0k [ s T B3

where in the second equality we have rewritten the integral with a dummy parameter a, to be set to zero after differentiation.
Next we multiply both sides by exp[—k%] and integrate with respect to dkzk3? to write

k2 4 -k

A,,/d4‘5kEexp[—k2] A, 2202 = 82"/d4—5kEeXp[ 2En+ 10)2(15" £] ‘ (B55)

(kz)"(—xE) a=0

Solving for A, and evaluating the remaining integral using Schwinger parameters, we deduce
An = 2 5/2 8(21”/d4 5kE/ dﬂ exp ﬂkz]exp[ kZ +la)(E kE”a 0> (B56)

1 ﬂn 1 i 2 aZZZ
:—8&”/ dﬂ /d4‘5k ex [— 145 (k +i ) - E , B57
el A Yol ] UG G vy B R Ll
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- r((nz)’?”!n! A “dpp Pty (B38)
_ (2n)! T(2-6/2)
4T +n-6/2) (B59)

In the second equality we have completed the square in kp,

and in the third we have integrated with respect to kz and

also evaluated the a derivative and set a = 0.
Substituting into Eq. (B52) then gives

1 1—x .
II(Pf’ Pi’ m, 5) = 2/ dx/ dye_w.(xprryPi)

W

Pf,Pl,m 5)
(B60)

where we have returned to the Minkowski signature for y,
P; and P; and have also defined

d* Ok i3
(27)*° [k + M (m, x, )]
(B61)

j”(Pf,Pi,m,&)E/

To conclude we simplify J" (P, P;, m,5) by evaluating
the momentum integral

J"(Py,Piym,5)
dQ;_s /00 3-8 k%”
= dkgk; ,
/(2,,)4-5 o F [+ M(m.x.y)

B 272912 /1 dcM(m, x, y)?
- (2n)*r(2-68/2) Jo 202

(B62)

3
)n+1—5/2 é‘ .
M(m, x,y)°

(B63)

X M(m, x,y)*"+29(1/¢ =1

In the second step we have integrated over d€2;_s and then
changed variables via k% = M?/{ — M?. The measure is
modified as 2kgpdky = —M?d{ /¢ with the integral now
running from ¢ = 0 to { = 1. The final factor in the second
line is just {3/MS = [k% + M?]73.

Evaluating the { integral via

C(a)(p)

1
_ Pyalgp-l _
Ad‘:(l S

we conclude

J"(Py, P;,m,5)
B 1 T(n+2-6/2)T(1-n+65/2)
2(4rx)?0/2 r2-:s/2)
X M(m, x,y)*"=27°,

(B65)

This directly gives Eq. (77) in the main text.

8. Determining ¢; and A;

As discussed in Secs. IIC 1 and IIC 2, an immediate
application of the proposed formalism is electromagnetic
reactions coupling two-pion states: (z*z°); +j, =
(z 0) For this case we require the function G, for
c=1¢ fmf,f ;m;] (no current index) as well as o=
[us € pmy; €;m;] (one index) for £, £y < 1. This requires
evaluating Z 4 (with no indices) through 7Z 4., ,,,,. This set
depends on only two scalar integrals, J 0 and J'. The
integral defining 7° is convergent so that we only need
the ¢g=1, Apg=m term; ie., no subtraction is
required. The integral defining J', by contrast, has a
logarithmic divergence (arising from d*kzk%/k%). This
is removed using the subtraction given in Eq. (63),
corresponding to ¢; = —1 with A; = A equal to any
value exceeding 2m.

Though the integrals of direct interest are rendered
convergent by (up to) one simple subtraction, we think
it useful here to give the recipe for general Z 4, ..., In a
nutshell the approach requires identifying the divergent part
of J" and, by substituting this into the relation t0 Z 4 ,,...,,,»
to identify an expression of the form,

IN/2)

Z C z‘dlv

%, 0, (PrPi8) = oy (Prs Pis A} 6).

(B66)

The coefficients ¢; and the scales A; are then tuned such
that this quantity vanishes. Note that | N/2| terms must be
tuned to vanish. This is because the integral 7 4, ..,
depends on the scalar integrals up to n = |N/2|. The
integral then scales as d*kzk%" /kS, and generates a series of
divergences of the form A?"=2, A>*=*, .. log(A), so a total
of n = |N/2] terms.

It turns out that one does not need to tune both the
regularization scales A; and the coefficients c;. We thus
choose the recipe of setting A; =2/"'A [A; = A,
Ay =2A, A5 =4A,---] and tuning only the n different
c; terms.

The latter is achieved by studying the 1/ terms.
In particular one can show that J" ~ M(m,x,y)*"=2/5.
Thus, for n = 1 the divergence is M(m, x, y)-independent
and is removed by setting ¢; = —1 as explained above.
For n = 2 the divergence scales as M(m, x, y)? leading to
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the linear combination M (m,x,y)> + c;M(A,x,y)?> —
(1+c¢;)M(2A,x,y)*> where we have already enforced
1 4+ ¢y + ¢, = 0. This leads to a cancellation in all terms
except for the explicit mass and A dependence,

M(m.x.y)? + ¢\ M(A.x.y)* = (1 + ¢;)M(2A. x.y)?

=m? 4+ A% —4(1 + ¢))A%, (B67)
and requiring this to vanish gives ¢; = [m? — 4A?]/[3A2].
Here we restrict our attention to the degenerate case,
my = m, = m. While the subtraction is always mass-
independent for integrals up to 74, ,,,,, beyond this
the scheme in the nondegenerate case becomes more
complicated.

Note that the choices of coefficients that remove 7>
divergences also automatically remove those in 7!. This
is because »_;c;M(A;,x,y)* contains both A;-dependent
and independent pieces. Thus the vanishing of
>ojc;M(A;,x,y)* guarantees that the same holds for
>_;¢j» and the latter is the condition for removing diver-
gences in J°.

As we now show, this pattern continues to all orders, so
that it is always sufficient to determine c¢; by tuning away
the highest 7" divergences. For the general-n, degenerate
case, the system that we need to solve is

> i [M(0,x,y)? + 4TIAYT = —[M(0, x,y)? + m?]",
j=1

(B63)
or equivalently,
Z c; Z C(n, k)M(0, x, y)2k4li=1)(n=k) A2(n=k)
=1  *=0
=— Z C(n, k)M(0, x, y)km>n=H) (B69)
=0
where C(n,k) ="' is the binomial coefficient. Defining

=Kk
v, =C(n,k)M(0,x,y)* and Ay;=4U-D0-0A2=k) " the

TABLEIL  Values of ¢; up to n = 5, assuming A; = 2/~ (3m).
This information is sufficient to calculate Gy,...,. ./ i for all
indices satisfying n + ¢, + ¢; < 10.

n C Cy Cc3 Cy Cs
1 -1

_3 8
2 27 27
3 _ 1001 286 14

729 729 729
4 _ 82225 16445 _ 4025 143
59049 39366 157464 472392
5 __ 37872835 5410405 _ 1853915 329329 _ 16445
27103491 12754584 68024448 816293376 13876987392

above relation becomes v A ;c; = vy (—m**) with repeated
indices summed. Dropping the v, from both sides, we

conclude that a solution is given by

1 1 1 1 c
A’ (2A)?  (4A)? (27-1A)? ¢
A* (2N (4A)* (2771A)4 cs

AZn (2/\)2" (4/\)2”
= -m* . (B70)

It is straightforward to invert this matrix and read-off the
values of ¢; to regulate an integral with any number of
indices. In Table II we give the values up to n =135,
assuming A; = 2/~'(3m).

Returning to the case of different masses, here one must
instead solve

i: € Z C(n, k)M (0, x, y) 2 Y4U=1) =k A2(n=k)

Jj=1 k=0

- _<<[M(0,X, y)2 + (1 — X — y)m% + (X -+ y)mﬂn»’
(B71)

where

(=2 [Cax [ dypxpyen it
(B72)

The key distinction is that x and y dependence now appears
in both M (0, x,y)? and the mass terms on the right-hand
side. Thus it is not possible to express the right-hand side
in terms of a matrix product in which {M(0, x, y)?) is
factored off. The upshot is that, in this case, the ¢; depend
on the kinematics s;, sy, qz, the masses m;, m, and the
generating parameter y. Again we stress that this is not of
immediate concern as it is only relevant for form factors
with many indices.

9. Triangle singularities within Z 4 (P;.P;)

In this Appendix we give a more detailed discussion
of the singularities that arise away from threshold in
T A(Py. P;), as summarized around Egs. (89) and (90) of
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the main text and in Figs. 6 and 7. The task is to study
discontinuities of the integral,

Ta(py. Py 0) = (s /dx/_x
7T

These arise when the three particles in the triangle loop of
Fig. 2(b) can all go on shell. As Landau described in
Ref. [74], the on shell condition is realized at critical points
(x¢,v.) of M(m,x,y)*> defined by three conditions:
OM(m,x.,y.)*/0x =0, OM(m,x.,y.)?/dy=0, and
M(m, x,,y.)? = 0. Since M (m, x,y)? is, at most, a second
degree polynomial in x and y, solutions to the three
conditions can be found analytically.

To see the role of these critical points in practice, we
integrate Eq. (B73) with respect to y, to reach

M(m, x, y)
(B73)

ZA(Pf,P,-,m,O):/O]dxF(1>(x), (B74)
where
P = (47t1)2s, Eﬂ[yyi((xx))] :yﬁ__eg_ Cl - (gs)
Lal[f(x)] = log| —;(; )f (%)
tacn( I ) (76)

with y, (x) = (1/2)(A + VA% + B + ie). Here A and B are
known functions of the kinematic variables and the
Feynman parameter x, defined in Egs. (83) and (85).

We next note that the three Landau conditions given
above are satisfied whenever A2 + B = 0 and, in addition
d[A? + B]/dx = 0. Noting that A>+ B is a quadratic
polynomial in x we see that the conditions are equivalent
to A’ + B « (x — x.)?. Before considering this special
case we take our general form and substitute A?> + B =

2((P; - Py)*/s7 —sp/si](x = x1)(x — xp),
1
3zﬂ2\/ (P, - Py)? = 55

[///}

L @] = L)
(x = xl)(x - xz)

IA(Pf,P,»,m,O) =

(B77)

For concreteness, here we have assumed (P; - Pf)2 /53—
sy/s; > 0. In addition we have split the integral in x into a

sum over regions where ImvVA? +B =0 (x € [0,x;] U
[x2,1]) as well as the region where it is nonzero
(x € [x1,x,]). This separation assumes 0 < x; < x, < 1.
If these are instead complex valued, or outside the range of
integration, then one can directly evaluate the integral over
the entire range. For general values of x; and x,, the integral
over each region is well defined even with ¢ = 0 and can be
directly evaluated.

The final case to consider is when the external kinemat-
ics are tuned to critical values Py = Py . and P; = P; . for
which x; =x, = x, € [0,1]. This is equivalent to the
Landau conditions mentioned above and corresponds to
the apex of the (x —x;)(x — x,) parabola sitting on the
x-axis. Perturbing the kinematics in one direction shifts the
parabola down, opening a finite region of [x|, x,]| that must
be integrated in isolation. Perturbing the kinematics in the
other direction shifts the parabola upwards, causing the
roots to become complex such that we can directly integrate
x from 0 to 1. We now demonstrate that, as one approaches
Py . and P; . from the side of real x, x,, the integral f;‘f dx

has a nonzero limit due to a singularity in the integration
range. As a consequence, the limit has a different value
when approached from opposite sides. This manifests as a
step singularity in the real part of Z 4. In addition, the
imaginary part diverges as 10g [Py — P(i).c|-

The magnitude of the discontinuity is given by evalu-
ating the integral between x; and x,, for kinematics such
that 0 < x; < x, < 1, and then taking the limit x;, x, — x,.
This can easily be done by noting that, in this region, y_ (x)
and y_(x) are complex conjugates of each other so that the
integrand simplifies to

Disc(Z 4) = / " dxFO (x)

1 1 / X2
dx-
(47:) i Jx, ilmy
Rey,
Imy, |/
Next we note that, as x; approaches x,, Imy, goes to zero.
Thus it is natural to expand in this quantity,

I-x-R
i arctan |~~~
Imy,

+ arctan [ (B78)

, 11 fe 1 Imy,
Disc(Z4)=—— | d -
isc(Z.) (47)% s; /xl xImyJr (” 1 —x—Rey,
Imy.,
- o((1 2 ). B79
R+ Ol(imy. ) (B79)

We see that only the first term will contribute in the limit
X; = X, and that it only contributes when y. =y, (x.)
is in the y integration region, ie., 0 <y.<1—x,
Evaluating the remaining integral, we conclude
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. _ Ll X » T _ 1 1 X2 5 T
Disc{Za) = (47)*s; A . Imy,  (47)* \[(Pi- Pp)? = sps; /x] ‘ Vi =x)(x—x) (50
= ! . (B81)

16 (Pi'Pf)z—SfSi

10. Evaluating Z 4 (P;.P;) through Z 4, , .. (P;.P;)

Here we provide compact expressions here for the 7 4.,(Py, P;) integrals with up to three Lorentz indices. Starting with
Egs. (77) and (79) one can show

Ty, (Ps Piym) = Ps, TOD(Ps P om) + Py, U2 (Py, Prom), (B82)

IA;D]UZ(Pf’Pi’m) = Pf.u]Pf,DZI(Z’U(Pf’Pi’m) + Pi,I/lPi,I/ZI(Z.Z)(Pf’Pi7m) +P[i.u]Pf,vz]I(zj)(Pf’th)

—%I(“)(Pf,P,-, m). (BS3)
T psnirs(Py Piom) = Py Pp o, Pr, IOV (P Piom) + Py, Py, Pi, T3 (P, Prom) +2P[f’/1vaz 1y L3V (P, Piym)
1 1 1
+ 2P[z v Pl uzpf,v.g]IBA)(Pf’ Piv m) - gg[uluzpf,u3]z-<3 5)(Pf’ Pl’ m) vluzpi,y3]I<3'6)(va Pi’ m)’

(B84)
where the brackets in the indices denote a sum over permutations, even when the indices are identical. The definition is such
that, for n indices within a pair of square brackets, the sum runs over n! terms (some of which may vanish). Some examples
include

PioPio)=2ProPio,  PiroProPio)=6P5oPio,  PipiPig=PpiPia+PsoPiy,  gooPii=2900Pi1-  (B8S)
Here we have introduced the notation Z(") where the indices just index the integrals needed and do not describe a
property of the integrand (i.e., Z("™ is just the mth integral needed to evaluate the n-index version of Z ). We now define

the set of relevant quantities and also give useful expressions for evaluation.
To evaluate 7 4, (P, P;, m) we require

1
ZUN(Ps, P m) 3)/ dx/ dyxJ%(Ps, P;,m,0) = / dx xF(x), (B86)
0

1—x 1
ZU2(Ps,Pom) = / dx/ dyyJ°(Ps, Pi,m,0) = / dx F?) (x). (B87)
0

For Z 4,,,,(Ps, P;,m) we need

ZCD(Ps, Piym) = / dx/ dyx>*JO(Ps, P;.m, 0):/)1dxx2F(1)(x), (B88)
T02(p,. P,.m) = T(3) /O L / T dy 2 70(P,. Prm.0) = A L ax FO)(x), (B89)
Z@3(Ps,Pim) = / dx/ dy yxJ°(Ps, P;,m,0) = AldxxF(z)(x), (B90)
TP, Pim) = / dx/l Xdyj (Ps.Pi.m,0) = / dx FO) (x) + -+, (B91)
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where the ellipses denote terms that will be canceled by the Pauli-Villars-like subtractions. These are terms that are
independent of m. For example, in the last line above we are ignoring a term proportional to [ dxdyy.
Finally, for 7 4.,,,,,,(P, P;,m), six integrals appear

IGD(Ps, Piym) = / dx 3 / dy J°(P;.Pi,m.,0) = / dx x*F(x), (B92)
ICD(Ps, P m) = 3)/ dx/ dyy J°(Ps. Piym,0) = /1dxF< )(x), (B93)

IB3(Ps, P om) = / dx x* / dyyJ°(Ps,P;,m,0) / dx x’F (B94)
ZC9(P,, P;m) :F(3)Aldxxll_x dyy*J°(Ps, P;,m,0) / dx xF©) (B95)
IG(Ps, P im) = / dxx/l_ dy J'(Ps, P;.m,0) = A] dx xFO) (x) + - - -, (B96)
ZBO(Ps P im) = / dx/ _xdyyj (Ps,P;,m,0) = AldxF@(x)—l—---. (B97)

Again, we have ignored terms that cancel after the Pauli-Villars-like subtraction. This includes terms that are proportional to
the external momenta but independent of m, e.g., P} [ dxdyx.

In the final steps we have evaluated the y-integrals analytically and expressed the remaining x-integral in terms of F(") (x).
These, in turn, can be written

M(x) = 1 C—}—e[y-&-(x)} _‘C—e[y—(x)]
S 5N 9 B 9 R (B58)
FO(x) = (4n1)2s,. Vi (X)£+e[yy++ ((xx))] :i: E;C))E_e [y-(x)] ’ (B99)
o — L (7 PLly ()] =y (L Dy ()
P = g ¥ ) =y-() ) S0
- s PP Ly (9] =y (L [y ()
90) = G (1= 90 () 4.0 + Ll ) (B101)
FO(x) = ;—7:2((1 —x = y_(x))loge(1 —x = y_(x)) + (1 —x = y.. (x))log_¢ (1 —x =y (x))
3 (0)loge (=3 (x)) + . (x)log (=¥ (x))) (B102)

F(G)(X)—<4”)2( (1= x)(v=(x) + y+.(x)) + ((1 = x)* = y2 (x))log (1 = x = y_(x))
+ ((1=x)? =y (x))log_c (1 = x =y, (x)) + y2 (x)log (—y_(x)) + y% (x)log_(—y (x))). (B103)

where L£.[f(x)] is defined in Eq. (86). log.(f(x)) is defined to be the standard log with its branch-cut aligned on the
negative real axis. Except if f(x) is purely real and negative, in which case log...(f(x)) = £iz + log(|f(x)|). As discussed
in the main text, these expressions allow one to work identically at € = 0 in the numerical evaluation of the integrals with
respect to x. The only memory of the nonzero value of ¢ that these functions carry are the sign.
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