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We compute the Coulomb interaction energy of dense sets of static quarks in a compact volume (much
smaller than the lattice volume) containing one quark per lattice site. The quark color charges are combined
into either a set of three-quark nucleon states, or into a nonfactorizable “one big hadron” state. In both cases
we find that the energy per quark is roughly constant as the volume of quarks increases. A surprise is that if
we construct the nucleon states from sets of three quarks chosen at random in the volume, then the energy
per quark remains roughly constant, even as the average distance between quarks in a nucleon state grows
as the volume increases. This energy dependence of a nucleon in a dense medium is at odds with the
behavior of an isolated nucleon as quark separation increases, and for static quarks it is not easily explicable
in terms of some version of Debye screening.
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I. INTRODUCTION

The study of QCD at high baryon density is constrained
by the (as yet) unsolved sign problem. There are, however,
some situations related to QCD at high baryon density
where the sign problem is less acute. In this article we will
study the Coulomb interaction energy of a dense system of
static quark charges in a fixed volume, and for this problem
we will see that standard Monte Carlo methods will suffice.
The thermodynamics of a system of heavy dense quarks at
finite chemical potential has already been treated by other
(e.g., Langevin) methods [1,2], but our focus here is a little
different and goes a little beyond the phase diagram. Rather
than introducing a chemical potential and having a finite
baryon density throughout the lattice volume, we will place
2p × 3 quark charges in a subvolume of the lattice, with a
density of one quark per site. This requires that the color
charges are contracted into an overall color singlet combi-
nation, and we will consider two types of contractions:
(1) A “multinucleon” (MN) state. This consists of

division of the quarks into 2p sets of three quarks
(not necessarily nearest neighbors), and contraction
of the quark charges in each set into a color singlet.
This leaves 2p “nucleon” states.

(2) A “diquark pyramid” (DQP) state. Here we first
construct 2p−1 × 3 diquark states in the 3̄ represen-
tation, form from these 2p−2 × 3 sets of states in the 3

representation, and so on until we arrive at three states
in either the 3 (even p) or 3̄ (odd p) representations,
which are finally contracted into a singlet.

The point to notice is that unlike the MN state, a DQP state
cannot be factorized into two or more subsets of color
singlets. It is, in a sense, one big hadron, where every quark
interacts in some way with every other quark.
Our focus in this article is on energetics. We would like

to know how the color Coulomb interaction energy per
quark depends on volume, on how the colors are con-
tracted, and on the average distance (in the MN case)
between quarks in a nucleon. One important point to note
from the beginning is that the usual mechanisms of charge
screening in a plasma are not available here, because the
charges are static, and the positions of the quarks are fixed.
A theory with only massive static quarks (and hence with

negligible quark loop effects) is not immune from the sign
problem,which is tied to finite baryondensity.Andone indeed
has a sign problem in the standard formulationwith a chemical
potential, in the well-studied heavy-dense limit (see, e.g.,
[1,2]) where the effect of quark loops is absent. In the type of
canonical approach we follow here, the sign problem must
manifest itself through strong oscillations in the sign of the
observable. But we will find, for the observables from which
we extract the Coulomb energy, that these sign oscillations are
manageable.One could of course repeat our calculations using
gauge field configurations generated with light dynamical
quarks, but with a finite baryon density due to heavy static
quarks only. We leave this for future investigation.

II. COLOR CONTRACTIONS

In this section we use an upper-lower color index
convention to distinguish between indices transforming
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in the 3̄ and 3 representations, respectively, with indices
raised and lowered by complex conjugation. Thus a gauge
transformation gðxÞ transforms quark fields as

ψaðxÞ → ψ 0
aðxÞ ¼ gabðxÞψbðxÞ

ψ̄aðxÞ → ψ̄ 0aðxÞ ¼ gabðxÞψ̄bðxÞ
gabðxÞgcbðxÞ ¼ gbaðxÞgbcðxÞ ¼ δca: ð1Þ

In a theory with local SU(3) gauge invariance, a set of
quark operators ψa in the equal-times combination1

ϵabcψaðx1Þψbðx2Þψcðx3Þ ð2Þ
is invariant under global, but not local SU(3) gauge
transformations. To form a gauge-invariant combination
which, when applied to the vacuum, would create a
physical state, we must in general replace ϵabc by a
multicovariant gluonic operator

Vabcðx1; x2; x3;AÞψaðx1Þψbðx2Þψcðx3Þ; ð3Þ
which is a functional of the gauge field A on a time slice,
and which transforms under a local gauge transformation g
as

Vabcðx1; x2; x3;AÞ
→ V 0abcðx1; x2; x3;AÞ
¼ gaa0 ðx1Þgbb0 ðx2Þgcc0 ðx3ÞVa0b0c0 ðx1; x2; x3;AÞ: ð4Þ

This obviously generalizes to any number of quarks
(provided that number is divisible by 3); i.e., the creation
operator for a system of N quarks will have the form

Va1a2a3…aN ðx1; x2; x3;…; xN ;AÞ
× ψa1ðx1Þψa2ðx2Þψa3ðx3Þ…ψaN ðxNÞ: ð5Þ

What is meant by a “multinucleon” state is that the operator
which creates the state can be factorized into products of
gauge invariant operators, each composed of three quarks.
So the operator which creates a MN state of six quarks
factorizes into a product of two nucleon operators, e.g.,

ΨMN ¼ Va1a2a3a4a5a6ðx1; x2; x3; x4; x5; x6Þψa1ðx1Þ
× ψa2ðx2Þψa3ðx3Þψa4ðx4Þψa5ðx5Þψa6ðx6ÞΨ0

¼ fVa1a2a3ðx1; x2; x3Þψa1ðx1Þψa2ðx2Þψa3ðx3Þg
× fVa4a5a6ðx4; x5; x6Þψa4ðx4Þψa5ðx5Þψa6ðx6ÞgΨ0;

ð6Þ

where Ψ0 is the vacuum state. A DQP operator cannot be
factorized in this manner.

We are interested in comparing the energies of MN and
DQP states. Of course it is difficult to do this in full
generality, not least because the V operators which min-
imize the energies of such states are unknown. However, if
we are satisfied with just computing numerically the
Coulomb interaction energy of such states, then it is
possible to make such comparisons. By “Coulomb energy”
we mean the energy, above the vacuum energy, of a state
obtained from a set of quark creation operators in Coulomb
gauge acting on the vacuum. In particular, let AkðxÞ be a
gauge field at some fixed time t, and let gðx;AÞ be the
gauge transformation which takes a quark operator at point
x into Coulomb gauge. Then we may construct, e.g., a
gauge-invariant one-nucleon state as

Ψ ¼ ϵa1a2a3ga1
b1ðx1;AÞga2b2ðx2;AÞga3b3ðx3;AÞ

× ψb1ðx1Þψb2ðx2Þψb3ðx3ÞΨ0: ð7Þ

If A is already in Coulomb gauge, then gðx;AÞ is the
identity operator, and therefore in Coulomb gauge we have
simply

Ψ ¼ ϵa1a2a3ψa1ðx1Þψa2ðx2Þψa3ðx3ÞΨ0: ð8Þ

We note that Coulomb gauge does not fix the gauge
uniquely (even if we ignore the Gribov copy issue), because
the gauge condition is preserved by gauge transformations
gðx; tÞ ¼ gðtÞ which are constant on a time slice. The
contraction of indices with the Levi-Civita tensor is
required in order that Ψ be invariant under this global
remnant of the gauge symmetry. The interaction energy of a
state of this kind can only be due to the nonlocal Coulomb
term in the Hamiltonian, since there is no other expression
in the Coulomb gauge Hamiltonian which could give rise to
an interaction energy between spatially separated quarks.
So we will refer to the energy of state (8) above the vacuum
energy as the “Coulomb energy” of a set of three static
quarks.
More generally, let S† be the creation operator for a set of

static quarks in Coulomb gauge, invariant under the
remnant symmetry, and denote

jΨSi ¼ S†jΨ0i: ð9Þ

We define ESðtÞ, on a Euclidean lattice with discretized
time, from the vacuum expectation values

e−ESðtÞ ≡ hSðtþ 1ÞS†ð0Þi
hSðtÞS†ð0Þi

¼ hΨSje−ðH−E0Þðtþ1ÞjΨSi
hΨSje−ðH−E0ÞtjΨSi

; ð10Þ

where by e−Hn we mean the nth power of the transfer
matrix. Note that

1We ignore spin states and Dirac indices; for the Coulomb
energy only color combinations are important.
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Emin
S ¼ lim

t→∞
ESðtÞ ð11Þ

is the minimum possible energy, above the vacuum energy
E0, of a state containing the same set of static quarks as ΨS,
in the same spatial positions with the same color contrac-
tions. At the other end of the timescale, in the t ¼ 0 limit,

E ≡ ESð0Þ ð12Þ

may be regarded as a definition of the Coulomb energy of
state ΨS on a discrete time lattice, and it is energies of this

kind that we report below. We of course compute E on a
periodic lattice at each time slice t and average over time
slices, so that the quantities to be computed by lattice
Monte Carlo are hSðtþ 1ÞS†ðtÞi.
The integration over static quark fields in the Sðtþ

1ÞS†ðtÞ operator leaves us with a set of timelike link
variables on a time slice, with one link variable for each
static quark position running between times t and tþ 1, and
with indices contracted to form a singlet under the remnant
global symmetry. As an example, for the one nucleon state
in (8), we have for the Coulomb energy

E ¼ − log

�hϵa1a2a3ϵb1b2b3 ½U0�a1b1ðx1; tÞ½U0�a2b2ðx2; tÞ½U0�a3b3ðx3; tÞi
ϵa1a2a3ϵa1a2a3

�
: ð13Þ

The generalization to larger sets of quarks is straightforward. In Coulomb gauge the V operators are simply tensors,
independent of position and gauge field, which contract quark indices into global color singlets, and the Coulomb energy is
computed on the lattice from the correlators

E ¼ − log

�hVa1a2…aNVb1b2…bN ½U0�a1b1ðx1; tÞ½U0�a2b2ðx2; tÞ…½U0�aN bN ðxN; tÞi
Va1a2…aNVa1a2…aN

�
ð14Þ

evaluated in Coulomb gauge. In the past this method has
been used to compute the Coulomb energy of a single
quark-antiquark pair as a function of quark separation [3,4].
Our intention here is to apply the same technique to a dense
system of quarks.

A. Gauge invariance and Coulomb energy

Although the expression for Coulomb energy boils down
to computing the expectation value of a certain product of
timelike link variables in Coulomb gauge, it is important to
recognize that this is the computation of a gauge invariant
quantity, namely the energy of a certain physical state,
which happens to have an especially simple form when
evaluated in Coulomb gauge. Because of the apparent
gauge dependence of (14), this point may be worth
emphasizing. For simplicity, consider a gauge invariant
quark-antiquark state of the form

Ψψ̄ψ ¼ ψ̄aðxÞVa
bðx; y;UÞψbðyÞΨ0; ð15Þ

where V transforms like a Wilson line running between
sites x, y, at some fixed time t, and moreover V depends
only on spacelike link variables U at the same fixed time t.
Ψ0 is the ground state. Ψψ̄ψ satisfies Gauss’s law, and it is a
physical state, with an energy given by the lattice loga-
rithmic derivative

E¼−log
�hTr½U0ðx;0ÞVðx;y;t;UÞU†ðy;0ÞVðy;x;0;UÞ�i

hTr½Vðx;y;0;UÞVðy;x;0;UÞ�i
�
;

ð16Þ

where Vðx; y; t;UÞ is the V operator evaluated from space-
like links U at time t. There are, however, an infinite
number of possible V operators with the appropriate
transformation properties. One possibility, for x, y lying
along, e.g., the x-axis, is to choose V to be a Wilson line
running between these points. The physical state Ψψ̄ψ then
represents a static quark and antiquark with a thin line of
color electric flux running between them, and E, which is
the energy of this state, involves taking the logarithm of a
familiar object, namely an R × T rectangular Wilson loop
with T ¼ 1. The gauge invariance of such a quantity is
obvious, but it must be recognized that this is only one
possible physical state. There are other ways to satisfy
Gauss’s law, and one of them is to create, along with the
static sources, a longitudinal color electric field which
solves Gauss’s law in the presence of those static sources.
We are led to consider, instead of a Wilson line, the
following operator:

Va
bðx; yÞ ¼ gcaðx;UÞδdcgdbðy;UÞ; ð17Þ

where gabðx;UÞ is the gauge transformation which takes the
link variables at fixed time t intoCoulombgauge. It is easy to
check that under an arbitrary gauge transformation g0,
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gabðx;UÞ → gacðx;UÞg0bcðxÞ
gabðx;UÞ → g0bcðxÞgacðx;UÞ; ð18Þ

which establishes the gauge covariance of the V operator in
(17), and the gauge invariance of the corresponding energy.
As it happens, this construction of the V operator in the
Abelian theory yields, for static opposite charges, the
minimal energy state ðψ̄VψÞΨ0 of the theory. TheV operator
in (17) takes on avery simple form inCoulombgauge,where
gðx;UÞ ¼ 1, and therefore Va

bðx; yÞ ¼ δba. Computing
the energy of the corresponding physical state just requires
computing the correlator of timelike link variables
hTr½U0ðxÞU†

0ðyÞ� on a time slice. Although the expression
does not look gauge invariant when evaluated in Coulomb
gauge (as opposed, e.g., to a rectangular Wilson loop), it
must be recognized that in fact it is nothing more than the
Coulomb gauge version of the gauge invariant expression
(16) with the covariant V operator (17). After fixing to
Coulomb gauge, the Kronecker delta in (17) contracts
indices into a singlet under the remnant global gauge
transformations, which are constant on a time slice. In
passing to more complicated physical states, such as those
involving large numbers of static quarks, the simple
Kronecker delta is replaced by other tensors, such as the
Levi-Civita tensor, which have the same purpose in con-
tracting indices to form a singlet under global transforma-
tions. As an example, we create a physical one-nucleon state
with the gauge invariant operator shown in (3), and we
specialize to a subclass of states for which

Vb1b2b3ðx1; x2; x3;UÞ
¼ ϵa1a2a3ga1

b1ðx1;UÞga2b2ðx2;UÞga3b3ðx3;UÞ: ð19Þ

In Coulomb gauge, this expression simplifies to Vb1b2b3ðx1;
x2; x3;UÞ ¼ ϵb1b2b3 .
Thus the apparent gauge dependence of (14) should not

be construed as some violation of gauge invariance. It is
simply the Coulomb gauge form of a more complicated
gauge invariant expression, which is greatly simplified by
going to Coulomb gauge, and which represents the energy
of a particular type of physical state. The nature of this state
is clearest in the Hamiltonian formulation, where the
Coulomb gauge Hamiltonian is H ¼ Hglue þHcoul, and

Hglue ¼
1

2

Z
d3xðJ −1

2Etr;aJ · Etr;aJ −1
2 þ Ba · BaÞ;

Hcoul ¼
1

2

Z
d3xd3yJ −1

2ρaðxÞJKabðx; y;AÞρbðyÞJ −1
2;

ð20Þ

with

Kabðx; y;AÞ ¼ ½M−1ð−∇2ÞM−1�abxy ;
ρa ¼ ρaψ þ ρaψ̄ þ ρag ;

M ¼ −∇ ·DðAÞ; J ¼ det½M�: ð21Þ

Here ρaψ ðxÞ ¼ gψ†
i ðxÞTa

ijψ jðxÞ, ρaψ̄ðxÞ ¼ gψ̄ iðxÞTa
ijψ̄

†
jðxÞ

and ρagðxÞ ¼ −gfabcAb
kðxÞEc

kðxÞ are the charge density of
quarks, antiquarks and gluons, respectively, with Ta, fabc

the SU(3) group generators and structure constants, and
DkðAÞ is the covariant derivative.
In Coulomb gauge the nonlocal Hcoul term derives from

solving Gauss’s law for the longitudinal color electric field.
The position-dependent energy of the physical state created
by a set of static quark operators operating, in Coulomb
gauge, on the vacuum state can only be due to Hcoul. For
this reason we refer to the energies in (14) as the Coulomb
energy of such states. In a continuous time formalism,
denote a timelike Wilson line of time extent t by the time-
ordered exponential

Lðx; tÞ ¼ T exp
�
ig
Z

t

0

dt0A0ðx; t0Þ
�
; ð22Þ

and the energy is computed from the logarithmic time
derivative

E ¼ −lim
t→0

d
dt

loghVa1a2…aNVb1b2…bN

× La1
b1ðx1; tÞLa2

b2ðx2; tÞ…LaN
bN ðxN; tÞi: ð23Þ

Equation (14) is the Euclidean lattice version of this
expression.
We finally note that our construction of physical states

with V operators requires that those operators depend on
link variables only in a time slice. If we would construct a V
operator using, e.g., the gauge transformation to Landau
gauge in (17), the resulting operator could not be used to
construct a physical state containing a static quark-anti-
quark pair.

B. The multiplicities of MN and DQP contractions

Consider initially an isolated set of N ¼ 2p × 3 quarks
which are in such close proximity that their interactions can
be neglected in comparison to their kinetic energies. Even
so, either the quark indices are contracted to form a singlet
or else we must in addition consider forming a singlet with
the help of constituent gluons. For now we consider only
the former possibility. In a situation of this sort, we may ask
what is the most likely contraction of quark color charges
that form the singlet. The simplest possibility is to form 2p

nucleon states, each a color singlet of three quarks. The
number ΩMN of ways of making this multi-nucleon group-
ing is
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ΩMN ¼ N!

ðN
3
Þ!ð3!ÞN=3 : ð24Þ

In this counting, the static quark charges are assumed
to occupy different lattice sites and can be treated as
distinct objects. The number of ways of grouping a set
of N distinct objects into N=3 distinct bins, each containing
three objects, is N!=ð3!ÞN=3. But since the “bins” are not
distinct, and their order is irrelevant, this number must be
corrected by dividing by ðN=3Þ!.
Of course there are a vast number of alternate possibil-

ities. We will not attempt an exhaustive counting, but rather
concentrate on the DQP arrangement. This is one particular
example of a “one big hadron” state, as it cannot be
factorized into subsets of color singlets, and it is easy to
count the DQPmultiplicity. We first divideN quark charges
into N=2 subsets of two quarks each, i.e., diquarks in
representation 3̄. The multiplicity is

Ω1 ¼
N!

ðN
2
Þ!2N=2 : ð25Þ

The next step is to group the N=2 diquarks in N=4 subsets
of two diquarks each, with multiplicity

Ω2 ¼
ðN
2
Þ!

ðN
4
Þ!2N=4 ; ð26Þ

proceeding in this way p times until there are only three
charged objects left. The total multiplicity is then

ΩDQP ¼ Ω1Ω2 � � �Ωp ¼ N!

2N−33!
: ð27Þ

Obviously there are far more DQP states than multinucleon
states. If the energies of the DQP and multinucleon states
are comparable, then purely on the grounds of multiplicity
the system is bound to be in a one big hadron state,
although not necessarily in a DQP state. But in fact diquark
pairings are favored energetically at the perturbative level,
and it has been argued that this sort of pairing exists even
within nucleons [5]. It could be that DQP states are favored
energetically in general among one big hadron states,
although this is, of course, far from certain. In any case
they constitute a simple alternative to MN states. Also, the
Coulomb energies of both DQP and MN states can be
computed numerically and compared at varying densities
and spatial arrangements.

III. SPATIAL ARRANGEMENTS
AND COULOMB ENERGIES

We work in the framework of SU(3) lattice pure gauge
theory with the usual Wilson action on a 244 lattice volume,
at lattice coupling β ¼ 5.8.

Let us consider operators La
bðiÞ and Ma

bðiÞ which
transform under the remnant global gauge symmetry as
U0ðxÞ and U†

0ðxÞ respectively, i.e.,

La
b → L0

a
b ¼ gacgbdLc

d

Mb
a → M0b

a ¼ gbcgadMc
d: ð28Þ

When contracting two quarks in the 3 representation into a
diquark in the 3̄ representation, and allowing these charges
to propagate for one lattice spacing in the time direction,
then we are essentially contracting twoU0 operators into an
M operator. Likewise, contracting two diquarks in the 3̄
representation into an operator in the 3 representation, and
propagating for one lattice spacing in the time direction,
involves contracting two M operators into an L operator. It
will be helpful to introduce the following notation:
(1) Contraction of three L or three M operators to a

singlet:

½1∶2∶3�≡
�
ϵa1a2a3ϵb1b2b3La1

b1ð1ÞLa2
b2ð2ÞLa3

b3ð3Þ
ϵa1a2a3ϵ

b1b2b3Ma1
b1ð1ÞMa2

b2ð2ÞMa3
b3ð3Þ

:

ð29Þ

(2) Contraction of two L operators to an M operator, or
contraction of two M operators to an L operator

f2; 3g≡
�
ϵa1a2a3ϵb1b2b3La2

b2ð2ÞLa3
b3ð3Þ

ϵa1a2a3ϵ
b1b2b3Ma2

b2ð2ÞMa3
b3ð3Þ

: ð30Þ

As a warm-up exercise, we consider six (p ¼ 1) quarks in a
plane, arranged in two L-shaped arrangements (indicated
by the solid lines) of three quarks, with the groups
separated by a lattice distance R, as shown in Fig. 1(a).
In a MN arrangement, the three quark indices in each L-
shaped subgroup are contracted into a singlet, producing
two nucleon states. The energy of this arrangement is
obtained, as explained previously, by computing the
expectation value of the operator,

QMNðUÞ¼ ½U0ð1Þ∶U0ð2Þ∶U0ð3Þ�× ½U0ð4Þ∶U0ð5Þ∶U0ð6Þ�;
ð31Þ

with integers 1–6 corresponding to the six quarks shown in
Fig. 1(a). The energy per quark is then given by

Eq ¼ −
1

6
log

�hQðUÞi
Qð1Þ

�
; ð32Þ

where QðUÞ; Qð1Þ correspond to the numerator and
denominator of the right-hand side of (14) respectively,
with V in the Coulomb gauge being some combination of
ϵabc tensors which makes QðUÞ a global color singlet. In
the DQP arrangement, we pair each quark in one subgroup
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with a quark in the other subgroup to form three diquarks in
the 3̄ representation, and then contract these three diquarks
into a singlet as follows:

QDQPðUÞ ¼ ½fU0ð1Þ; U0ð4Þg∶fU0ð2Þ; U0ð5Þg∶
fU0ð3Þ; U0ð6Þg�: ð33Þ

We compute the Coulomb energies per quark of the MN
and DQP states from (32), as described previously, and find
the results shown in Fig. 1(d). These are as expected. In
the MN case, the energies are almost independent of the
separation R between the L-shaped nucleons. In the DQP
case, the energy rises linearly with separation (until the data
begin to flatten out due to the finite lattice volume) and is
strongly disfavored energetically compared to the MN
configuration.
The next possibilities are 12 (p ¼ 2) and 24 p ¼ 3

quarks, with L-shaped groups of three quarks placed in the
arrangements shown in Figs. 1(b) and 1(c) respectively.
Again the QMN operator is constructed by contracting
indices in each L-shaped group to form a singlet and then
taking the product. The QDQP operator is created by first
contracting pairs of quark charges to form diquarks in the 3̄
representation, then contracting pairs of 3̄ diquarks into 3

combinations, and so on until finally contracting the three
remaining operators into singlets. Shortening the notation
further to let an integer i denote the link variable U0ðiÞ
associated with the ith static quark, the choice of contrac-
tions is, for the 12-quark combination

QDQPðUÞ ¼ ½ff1; 4g; f7; 10gg∶ff2; 5g; f8; 11gg
∶ff3; 6g; f9; 12gg�; ð34Þ

and for the 24-quark combination

QDQPðUÞ ¼ ½fff1; 4g; f7; 10gg; ff13; 16g; f19; 22ggg
∶fff2; 5g; f8; 11gg; ff14; 17g; f20; 23ggg∶
fff3; 6g; f9; 12gg; ff15; 18g; f21; 24ggg�:

ð35Þ

We compute energies Eq per quark from − log½hQðUÞi=
Qð1�, and dividing by the number of quarks, either 12 or 24
in these cases. The energies of the corresponding DQP and
MN states for these 12 and 24 quark states vs R are shown
in Figs. 1(e) (p ¼ 2) and 1(f) (p ¼ 3) respectively. Again
this is what one would expect; in both cases the MN state is

(a)

(d) (e) (f)

(b) (c)

FIG. 1. Arrangements of (a) 6, (b) 12, and (c) 24 static quarks. In the multinucleon state, triplets of neighboring quarks are contracted
into singlets. In the diquark pyramid the colors are contracted as specified in Eqs. (33)–(35), respectively. The Coulomb energies per
quark, as a function of the separation R, are displayed for the (d) 6, (e) 12, and (f) 24 quark arrangements.
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independent of the separation R, while the energy of the
DQP state rises linearly with R.
Rather than keep three quarks in a nearest-neighbor

L-shaped configuration, we may also compute the
Coulomb energy of a single three quark nucleon as a
function of average quark separation within the nucleon. In
this calculation we arrange the quarks to lie as closely as
possible (within the constraints of the lattice structure) on
an equilateral triangle, with the average quark separation
defined as being R ¼ ðd12 þ d23 þ d31Þ=3, where dij is the
(straight-line) distance between quarks i, j in the nucleon.
Once again, and unsurprisingly, the Coulomb energy per
quark rises linearly with R, as seen in Fig. 2.

IV. COULOMB ENERGY IN A DENSE MEDIUM

Instead of keeping the number of quarks fixed and varying
the separation between nucleons, as in the previous section,
we next keep the density fixed at one quark per lattice site in a
rectangular volume, and vary the size of the rectangular
volume containing the quarks. In this setup we choose to
average over all possible color contractions of the MN and
DQP type. In other words, in the MN case, we group the
quarks into 2p randomly chosen sets of three, contracting the
indices in each group into a singlet. In the DQP scheme we
group the quarks into 2p−1 × 3 randomly chosen sets of two
quarks, contracting the indices to form a 3̄ combination.
These diquarks are then randomly grouped into 2p−2 × 3 sets
of two diquarks, contracting the indices in each set into a 3
combination, and so on until only three 3̄ or 3 combinations
are available, and these are finally grouped into a singlet. We
then compute the Coulomb energy from correlation func-
tions of timelike link variables, as explained above, and
divide by the number of quarks to obtain the energy per

quark. In this calculation the quarks are arranged in a
rectangular volume of i × j × k ¼ 2p × 3 lattice units, with
each lattice site in thevolume occupied by one quark. At each
data-taking sweep through the lattice we compute the
observable in each ijk rectangular subvolume of the lattice,
choosing a different random grouping in each subvolume.
There is, of course, a maximum density of quarks that

can be placed on the lattice, e.g., in the staggered lattice
formulation with one flavor, the maximum is three quarks
per site. This maximum density is a lattice artifact asso-
ciated with quarks occupying the same site. Taking the
density to be one quark/lattice site is a compromise
between having the highest density possible, and avoiding
the onset of this kind of lattice artifact, which would also
invalidate the counting shown in Eqs. (24)–(27).
As an example, the expectation value of the QDQPðUÞ

operator, for the 3 × 2 × 4 arrangement corresponding to
Fig. 1(c) with R ¼ 1, involves taking the expectation value
of the operator shown in (35), but averaged over all
permutations of the quark numbers shown. Likewise, for
the 3 × 2 × 1 arrangement corresponding to Fig. 1(a) at
R ¼ 1, the energy of the multinucleon case is extracted
from the expectation value of the operator QMNðUÞ as
shown in (31), but averaged over all permutations of the
quarks in this expression.
The results of this calculation, shown in Fig. 3 for each

ijk arrangement, are a little surprising. Consider the MN
contractions. If the quarks are divided at random in groups
of 3, then the average separation between quarks in each
group, denoted by R, ought to grow with the volume. Yet
the dependence of energy per quark (¼ energy density Eq)
turns out to be only mildly dependent on the i × j × k
volume, even as we go from 6 quarks at ijk ¼ ð6; 1; 1Þ and
R ¼ 2.33, where we find Eq ¼ 0.41, to 768 quarks at ijk ¼
ð12; 8; 8Þ and R ¼ 6.23 with Eq ¼ 0.44. In Fig. 4 we plot
Eq vs R for the MN states of quarks in the rectangular
volume, as compared to the energy per quark vs R for three
isolated quarks in a roughly equilateral arrangement, which
was already displayed in Fig. 2. We have also computed the
energy of single nucleon states extracted from the ijk
volumes, denoted “nucleons in vacuum” in the figure. Here
we have computed the single nucleon energies by con-
tractions ½a∶b∶c� for quarks a, b, c chosen at random in the
ijk volumes, and averaged over the possible choices of a,
b, c. As opposed to the MN states we do not take the
product of such contractions, but only take the logarithm of
the expectation value of single nucleon contractions to
obtain a single nucleon energy, which we have again
plotted against the average quark separation. These ener-
gies represent the energies of nucleons in a vacuum, rather
than in a medium, although not necessarily in an equilateral
arrangement. It can be seen that the energies of the
“nucleons in vacuum” are roughly parallel, as a function
of average quark separation, to the energies of quark triplets
in an equilateral configuration.

FIG. 2. The Coulomb energies of a nucleon state consisting of
three static quarks in an arrangement as close as possible (within
the constraints of the lattice structure) to an equilateral triangle.
The figure displays the energies of such states as a function of the
average interquark separation in the state.
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What is clear from Fig. 4 is that the average Coulomb
energy per quark in a nucleon embedded in a dense medium
is only mildly dependent on the average separation of the
quarks within a nucleon, whereas the energy clearly
increases linearly with separation for an isolated triplet

of quarks. Since this is the central result of our work, it may
be worth repeating: in the MN case we choose sets of three
quarks in the ðijkÞ volume at random, and of course this
means that the average interquark separation of quarks
within each nucleon increases as the rectangular volume
increases. The surprise is that this increase in separation in
only very weakly reflected in the Coulomb energy per
quark. If the quarks were dynamical this would not
necessarily be a surprise; the phenomenon might be
expected from a Debye screening process of some kind.
But with static quarks, and an energy which derives from
the instantaneous and nonlocal Coulomb term in the
Coulomb gauge Hamiltonian, it is hard to see how there
can be any Debye-like screening process. So this result we
consider a surprise. We do not, at present, have an
explanation for this effect.
The energy/quark Eq for the random DQP arrangements

described above is also displayed, together with the
previous MN results, in Fig. 3. What is again a little
surprising, at least to us, is that the MN and DQP energies
per quark are quite comparable. The DQP arrangement of
dense static quarks should be preferred, thermodynami-
cally, just on considerations of multiplicity, as noted
in Sec. II.
Finally we have studied how Eq changes (in lattice units

at β ¼ 5.8) as the density of quarks in the ijk volumes are
varied away from the density of one static quark per lattice
site. For this purpose we start with 48 quarks in an ðijkÞ ¼
ð3; 4; 4Þ arrangement. Keeping the number of quarks fixed

FIG. 3. Coulomb energies per quark for dense quark systems (one quark/site) in an i × j × k volume, plotted versus the volume. The
multinucleon state groups the quarks at random into sets of 3, contracting each triplet into a singlet. The diquark pyramid contractions
are also randomized, as described in the text.

FIG. 4. The energy/quark in the multinucleon states (open
circles) shown in the previous figure, plotted against the average
separation between quarks in those nucleons (random triplets
chosen at random in the ijk volume, contracted to a singlet). Also
plotted are the energy per quark of isolated nucleons in vacuum
(open squares) in a (nearly equilateral) arrangement, which was
already plotted in Fig. 2, and of individual random nucleons
(open triangles), selected as described in the text.
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at 48, we increase the volume by adding, at each step, one
unit to the length of the volume in the x, y, z directions, in
that order. In other words, we increase the volume in the
following order:

ðiþ 1; j; kÞ; ðiþ 1; jþ 1; kÞ; ðiþ 1; jþ 1; kþ 1Þ;
ðiþ 2; jþ 1; kþ 1Þ;

ðiþ 2; jþ 2; kþ 1Þ; ðiþ 2; jþ 2; kþ 2Þ;
ðiþ 3; jþ 2; kþ 2Þ;… ð36Þ

The 48 quarks are placed at random in each of the larger
ði0; j0; k0Þ volumes, with the MN and DQP contractions
constructed as before. We observe in Fig. 5 that the energy
per quark does increase somewhat as the density decreases
(volume/quark increases), as one might expect, but the
increase in energy in the DQP and (especially) the MN
cases is comparatively modest, given an order-of-magni-
tude reduction in the quark density.
In the Introduction we mentioned the sign problem in

connection with high baryon density, which makes a
conventional Monte Carlo calculation (e.g., via reweight-
ing) unfeasible due to sign cancellations. Inspection of
Fig. 3, which displays on the y-axis the logarithm of
hQðUÞ=Qð1Þi divided by the number of quarks, makes it
clear that hQðUÞ=Qð1Þi itself must have extraordinarily
small values for our larger volumes of quarks, and the
question is how it is possible that such minute values are not
swamped by statistical error. The answer is that these very
small values are not, for the most part, due to delicate sign
cancellations among measured values of O(1), but rather
come mainly from the very small magnitude of each
measured value. This is illustrated for the 3 × 4 × 4 volume
by the histogram of QðUÞ=Qð1Þ values shown in Fig. 6.
The set consists of 100 000 values obtained at β ¼ 5.8 on a

104 lattice. The average value in this case is 7.06 × 10−9,
and the asymmetry between positive and negative values,
which results in this nonzero average, is obvious at a
glance.

V. CONCLUSIONS

Studies of the Coulomb energy in static quark systems
have generated some unexpected results. In the past it was
found that the Coulomb energy in a static quark-antiquark
pair rises linearly with quark separation [3,4]; contains a
Lüscher term [4]; and (here is the surprise) is arranged into
a flux tube which is somewhat more narrow than the
minimal energy configuration [6], rather than being spread
out over all space as one might naively expect.
We have now investigated the Coulomb energy of a

system of 2p × 3 static quarks, at a density of one quark per
lattice site in a rectangular volume, with colors contracted
into either a set of 2p “nucleons,” the MN state, or into a
diquark “pyramid,” the DQP state, which cannot be
factorized into subsets of color singlets. We average over
the possible selections of three quarks into nucleon subsets,
or the choice of quark pairs contracted into diquarks in the
DQP state, as explained previously. What we have found is
that the energy per quark, in either the MN or DQP states, is
only very weakly dependent on the rectangular volume
containing the quarks. The reason this was unexpected,
especially in the MN case, is that while the average
separation between quarks in a nucleon rises with volume,
this is not reflected in a corresponding linear rise in the
energy per quark. This behavior of the energy of a nucleon

FIG. 5. The energy per quark of a system of 48 quarks in which
the density of the system is varied by increasing the volume. The
plot is energy per quark vs inverse density.

FIG. 6. Histogram of 100 000 values of QðUÞ=Qð1Þ obtained
for 48 static quarks in a 3 × 4 × 4 volume. The central bin shows
the frequency of measured values lying between −10−12 and
þ10−12, the adjacent bin to the right is the frequency of measured
values in the range 10−12 to 10−10, and so on. Note the small
magnitude of these values and the asymmetry in the frequencies
of positive and negative values.
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in a dense medium contrasts sharply with the correspond-
ing energetics of an isolated nucleon with static quarks,
where the energy per quark does rise linearly with quark
separation.
In a plasma of dynamical quarks, this insensitivity of

energy/quark to the volume of the ensemble of quarks
would not be especially surprising and would be explained
via some Debye-like screening mechanism in the quark
plasma. But since we are dealing with an ensemble of static
quarks, whose Coulomb interactions presumably arise from
the instantaneous nonlocal term in the Coulomb gauge
Hamiltonian Hcoul of Eq. (20), it is difficult to appeal to
such screening mechanisms. We appear to be finding some
unexpected property of the Coulomb energy of a dense
ensemble of quark charges, a kind of “screening without
screening,” such that the long-range interactions of static
quarks are somehow damped without corresponding quark
motion. Exactly how this effect emerges from the nonlocal
kernel Kabðx; y;AÞ of (21) is unclear at the moment. The
data, however, indicate that the Coulomb energy density of
a state at fixed baryon number density is fairly insensitive to
the total number of quarks, regardless of how the color
indices are contracted. This is obviously a nonperturbative
effect.

It should be understood that although the states we are
constructing are physical states, whose interaction energy is
the Coulomb energy, these are not necessarily the minimal
energy states of a dense quark system. For example, the
analogous states of a quark-antiquark pair have a string
tension, due to the Coulomb interaction, which is about
four times the asymptotic string tension. Nevertheless,
qualitative features of such states, such as the linear
potential, the existence of a flux tube, and the Lüscher
term, persist in the minimal energy state. It is possible that
screening without screening is a feature of the minimal
energy version of a heavy dense quark ensemble, which
may have implications also for light quarks at finite
densities. We leave this possibility for future study.
It should also be noted that in this study we have worked

throughout with a relatively coarse lattice at β ¼ 5.8. It
would be of interest to hold the density fixed in physical
units on finer lattices, and also to study further the variation
in energy density with quark density. We hope to obtain
results along these lines in a later investigation.
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