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By generalizing disorder couplings of the Sachdev-Ye-Kitaev (SYK) model by means of SU(N)
matrices, we formulate a lattice model of fermions in dþ 1 dimensions. Integration of fermions yields an
effective theory of Yang-Mills fields in d dimensions, the latter approaching the standard Yang-Mills theory
in the case of heavy fermions and the classical limit of the vanishing coupling constant of the theory.
Quantum mechanically, the theory is solved using large N approximation of the dual effective theory of
Hermitian matrices in d dimensions. The theory is asymptotically free and confines the color. In case of
massless fermions, the emerging theory is an asymptotic safe QCD theory. We discuss also the relationship
of this theory to the SYK model.
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I. INTRODUCTION

Yang-Mills theories and quantum chromodynamics
(QCD) [1–4] play an important role in our understanding
of basic forces of the Universe. They are part of the Standard
Model of particle physics. Nonetheless, an analytical sol-
ution in four dimensions is missing. Although early lattice
simulations of Creutz were illuminating and showed that
there is no second-order phase transition between strong and
weak coupling [5], the possibility of a Gross-Witten [6] and
Wadia [7] transition diminished the hope of a full solution
from the strong coupling regime. While an analytical solu-
tion is highly desirable, the high precision lattice simulation
of Lüscher and Weisz leaves no doubt that, at low energies,
theYang-Mills theorymay be described by an effective string
theory [8]. Many years of research in lattice simulations of
QCDhaveproven tobean indispensable tool inunderstanding
the Standard Model at a nonperturbative level. During these
years, string theory hasmade a great contribution in the search
for a unifying theory of gravity and particle physics. TheAdS/
CFT correspondence, put forward first byMaldacena [9], has
established an avenue in this direction. There is recent
progress made in the field using the Sachdev-Ye-Kitaev
(SYK) generic model [10–12], which uses disorder and extra
dimensions as model building ingredients.
In this paper, we formulate a solvable model beyond the

StandardModel. The basic degrees of freedom of the model
are dþ 1-dimensional lattice fermions coupled by means

of SU(N) random matrices defined on a d-dimensional
sublattice. Such matrices generalize the randomly distrib-
uted couplings of the SYK model. However, such a
generalization has a nontrivial effect in the structure of
the theory: the model is chosen with the aim of obtaining a
lattice gauge theory as an effective theory that remains after
fermion integration. There may be an arbitrary number of
such models. We have constrained the model with the
intention to have a dual description of gauge theories and
quantum mechanical models of holography, such as the
SYK model and its generalizations.
Note that one may use complex N × N matrices as

disorder fields. In Appendix A, we formulate a matrix
theory with Gaussian disorder couplings. In this approach,
SU(N) matrices embedded in general complex matrices are
the basis of an emergent Yang-Mills theory.
In our model, we fix the length of the extra dimension

by the coupling constant of the theory. Therefore, the
d-dimensional system evolves along the extra dimension in
order to reach a certain value of the coupling constant.
Since each value of the latter corresponds to a given length
scale, the extra dimension in our theory is the dimension of
physical scales.
The results of this paper may be summarized as follows:
(i) The model with heavy fermions yields an effective

theory of local Yang-Mills fields, a theory which
approaches the standard Yang-Mills theory in the
classical limit of a vanishing coupling constant.

(ii) The model with massless fermions yields an effective
theory of QCD with a large number of light fermions.

(iii) In the large N limit, the theory is dual to a field
theory of matrices of order Nt, where Nt is the
number of lattice sites along the extra dimension.

(iv) The theory is nonperturbatively solvable in the large
N approximation.
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(v) The theory with heavy fermions is asymptotically
free and confines the color.

(vi) The theory with massless fermions is dual to an
asymptotic safe QCD theory, i.e., a QCD theory
which is ultraviolet complete at a nonzero value of
the coupling.

(vii) The massless fermion theory is also chirally sym-
metric, a symmetry that is spontaneously broken.

(viii) Although the heavy fermion theory shares important
properties with the standard Yang-Mills theory, like
asymptotic freedom and color confinement, the
corresponding beta functions are different functions
of the coupling constant.

(ix) The asymptotic safe QCD theory, within the leading
approximation of our bosonization approach and the
low energy limit, is equivalent to an ideal gas of
q ¼ 2 SYK models.

In summary, we show that a local Yang-Mills theory is
solvable in the dual formulation in the large N limit. Its
solution shares qualitative properties of the standard Yang-
Mills theory. Moreover, we are able to link gauge theories
with the SYK model of holography.
The paper is organized as follows: In the next section, we

define the model and discuss the disorder average of the
theory. In Sec. III, we show the effective description of the
theory with heavy and massless fermions. In the first case,
we obtain local theory Yang-Mills fields in the weak
coupling limit, whereas in the second we get QCD with a
large number of light modes. Section IV deals with the
disorder averaged theory, which is a field theory of matrices
of order Nt. In Sec. V, we solve the matrix field theory in the
large N limit and heavy fermions. Section VI deals with the
case of massless fermions in which case an asymptotic safe
QCD theory emerges. In Sec. VII, we discuss the relation
to the q ¼ 2 SYK model. The last section closes the paper
with a discussion of results and their phenomenological
relevance within and beyond the Standard Model. The paper
includes three Appendices. In Appendix A, we show that the
model can be generalized in the case of Gaussian disorder,
where we get an identical large N solution as with SU(N)
disorder within our approximation of bosonization of the
fermion theory. In order to make the paper self-contained,
Appendix B serves as a starting point in group integration
and one-link integrals. Finally, Appendix C applies our
bosonization approach to strong coupling QCD.

II. THE MODEL

In this section, we define our model using Hamiltonian
and field theory formalism. We begin with the description
of the Hamilton operator.

A. Hamilton operator

Let Ψα
cðxÞ;Ψα

cðxÞ�; c ¼ 1; 2;…; N be N Dirac-fermion
annihilation and creation operators for each Dirac compo-
nent α ¼ 1; 2;…; 2d=2 at each site x ¼ ðx1; x2;…; xdÞ on a

regular Euclidean lattice of even dimensions d acting on the
Hilbert space H. They obey the anticommutation relations

fΨα
cðxÞ�;Ψα0

c0 ðx0Þg ¼ δcc0δαα0δxx0 : ð2:1Þ

The lattice is finite and we assume it to be a torus with V
number of sites. Let also UμðxÞ be an SU(N) matrix at each
directed link (x, xþ μ̂) on the lattice, where μ ¼ 1; 2;…; d.
The Hamiltonian operator of the model is

H ¼ 1

a

�
m
X
x

ΨðxÞ�γ5ΨðxÞ

þ κ
X
x;μ

½ΨðxÞ�γ5γμUμðxÞΨðxþ μ̂Þ

þ Ψðxþ μ̂Þ�γμγ5UμðxÞ�ΨðxÞ�
�
; ð2:2Þ

where a is the lattice spacing, κ is a dimensionless coupling
constant, γμ are the usual gamma matrices, and m is the
bare fermion mass. We have denoted by γ5 the product of
all gamma matrices in order to remember that the theory in
four dimensions is the phenomenologically relevant theory.
In the above expression, we have suppressed Dirac indices
for clarity. In the following, the lattice spacing is set to
unity. Note also that we have chosen naive fermions on the
lattice. Any local discretization would do the job. For
example, the Kogut-Susskind version [4]1

Ĥ ¼ m
X
x

Ψ̂ðxÞ�γ̂5ðxÞΨ̂ðxÞ

þ κ
X
x;μ

γ̂5ðxÞημðxÞ½Ψ̂ðxÞ�UμðxÞΨ̂ðxþ μ̂Þ

þ Ψ̂ðxþ μ̂Þ�UμðxÞ�Ψ̂ðxÞ� ð2:3Þ
is simpler since fermion operators carry no Dirac indices;
i.e., they obey the anticommutation relations

fΨ̂cðxÞ�; Ψ̂c0 ðx0Þg ¼ δcc0δxx0 : ð2:4Þ

Here, γ̂5 is the lattice site parity operator taking �1 values
on even and odd lattice sites, i.e., γ̂5ðxÞ ¼ ð−1Þx1þ���þxd and
η1ðxÞ ¼ 1; ημðxÞ ¼ ð−1Þx1þ���þxμ−1 ; μ ¼ 2;…; d. Both, γ̂5
and ημ are diagonal matrices on the lattice. If we define
hopping matrices

ðUμÞxy;cc0 ¼ UμðxÞcc0δxþμ̂;y; ð2:5Þ

then the following commutation relations hold:

γ̂5ημ − ημγ̂5 ¼ 0; γ̂5Uμ þ Uμγ̂5 ¼ 0;

ημUμ − Uμημ ¼ 0: ð2:6Þ

1For a derivation of Kogut-Susskind fermions from naive
fermions, see, for example, the book of Rothe [13], pp. 58–59.
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For the clarity of notations, we introduce the Hermitian
fermion matrix

h ¼ mγ̂5 þ κγ̂5
X
μ

ημðUμ −U�
μÞ: ð2:7Þ

This way, our model may be written in the form

Ĥ ¼
X
x;y;c;c0

Ψ̂ðxÞ�chðx; yÞcc0Ψ̂ðyÞc0 ; ð2:8Þ

where hðx; yÞcc0 are the matrix elements of the VN × VN
fermionic matrix h.
Note that the Hamilton operator (2.3) defines a dynami-

cal system in d dimensions, where d is the number of
dimensions of the world we live in, i.e., d ¼ 4. The system
evolves along an extra dimension, which for the moment
may be thought of as a fictitious time dimension. We take
this extra time to be imaginary, which means that we are
studying the system at a finite temperature with partition
function

ZFðUÞ ¼ TrHe−NtĤ; ð2:9Þ

where the trace is taken in the Hilbert space and Nt is the
length of the extra dimension in units of the lattice spacing
a. Using the Hilbert space trace rules, we get

ZFðUÞ ¼ det ð1þ e−NthÞ: ð2:10Þ

In this paper, we are interested in the large Nt limit of the
theory. In the next subsection, we compute the effective
gauge action of the theory in this limit.

B. Effective gauge action

Since h is traceless, and using the identity detA¼eTrlogA,
we can write the right-hand side of (2.10) in the form

ZFðUÞ ¼ e−
Nt
2
Trh detðeNt

2
h þ e−

Nt
2
hÞ ¼ detðeNt

2
h þ e−

Nt
2
hÞ;
ð2:11Þ

where the trace is taken in the tensor product space of the
lattice sites and the SU(N) group. The matrix in the last
expression is an even function of h; therefore, we get

ZFðUÞ ¼ det ðeNt
2

ffiffiffiffi
h2

p
þ e−

Nt
2

ffiffiffiffi
h2

p
Þ: ð2:12Þ

In the large Nt limit, the second exponential may be
neglected if mNt is not smaller than Oð1Þ.2 With this
assumption, the effective action of the theory is

SeffðUÞ ¼ −
Nt

2
Tr

ffiffiffiffiffi
h2

p
: ð2:13Þ

Eventually, we would like to integrate gauge fields and the
right-hand side is not convenient for this purpose. In
the next subsection, we formulate the theory as a dþ 1
field theory suitable to deal with the integration of the
SU(N) field.

C. Fermion action

Another way to formulate the model is by introducing
Grassmann valued fermion fieldsΘðx; tÞ and Θ̄ðx; tÞ, where
t ¼ 1; 2;…; Nt label the lattice sites along the extra dimen-
sion. Nt assumes integer values and the Grassmann field
satisfies antiperiodic boundary conditions along the extra
direction. The action of the theory is

Ĩ ¼
X
x;t

Θ̄ðx; tÞ∂̂tΘðx; tÞ þ
X
x;y;t

Θ̄ðx; tÞhðx; yÞΘðy; tÞ;

ð2:14Þ

where ∂̂t is a lattice derivative, for example,

∂̂tðt; t0Þ ¼
1

2
ðδtþ1;t0 − δt−1;t0 Þ: ð2:15Þ

In the continuum limit, this formulation of the model is
equivalent to the Hamilton operator formulation (2.3).

D. Gauge invariance

The action (2.14) defines a lattice theory of a massive
fermion in dþ 1 dimensions in a fixed background of
SU(N) random matrices, which are defined on the links of
the d-dimensional sublattice replicated along the extra
dimension. As it stands, it allows gauge variant states to
propagate in the bulk. In order to ensure a full gauge
invariance, one can introduce an extra SU(N) field along
the extra dimension and different random SU(N) matrices
at each time slice of the theory, i.e., Uμðx; tÞ; μ ¼ 1; 2;…;
d; t ¼ 1; 2;…; Nt. Fixing the axial gauge, the gauge
invariant action within the restricted class of gauge trans-
formations of the axial gauge is given by

IGI ¼
X
x;t

Θ̄ðx; tÞ∂̂tΘðx; tÞ þ
X
x;y;t

Θ̄ðx; tÞhtðx; yÞΘðy; tÞ;

ð2:16Þ

where the extra dimension SU(N) field resides at the
boundary. Note also that there are Nt different fermion
matrices at each time slice of the lattice,

ht ¼ mγ̂5 þ κγ̂5
X
μ

ημ½UμðtÞ − UμðtÞ��; t ¼ 1; 2;…; Nt;

ð2:17Þ
2In the massless case, we will assume a small mass of the order

Oð1=NtÞ with the prefactor large enough so that we may always
neglect the second exponential.
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where we have suppressed space and color indices for
clarity [recall Eq. (2.5)]. This model differs from the
model (2.14) in two ways: it is gauge invariant along the
extra dimension and gauge fields along this dimension
are t dependent. The difference between these two models
should be clarified in a separate study. In the following, we
focus with the time-independent gauge field model (2.14).

E. Action in canonical form

In order to bring the action in the form of a dþ 1 Dirac
theory, we absorb γ̂5 in a new set of fields

ψðx; tÞ ¼ Θðx; tÞ; ψ̄ðx; tÞ ¼ Θ̄ðx; tÞγ̂5: ð2:18Þ

In terms of these fields, the action of Eq. (2.14) takes the
form

I ¼
X
x;t

ψ̄ðx; tÞ½mþ γ̂5ðxÞ∂̂t�ψðx; tÞ

þ κ
X
x;t;μ

ημðxÞ½ψ̄ðx; tÞUμðxÞψðxþ μ̂; tÞ

− ψ̄ðxþ μ̂; tÞUμðxÞ�ψðx; tÞ�: ð2:19Þ

We use this action in the following.
Note thatwe have assumed an even number of dimensions

d in order to be compatible with d ¼ 4 dimensions of the
StandardModel in the case of infiniteNt limit. However, for
the sake of generality, one may allow d to be an odd integer
too. In this case, the Dirac field has ðdþ 1Þ=2 components
and the field ψðx; tÞ may not necessarily be an irreducible
spinor representation. Moreover, Kogut-Susskind fermions
may be formulated in any dimensions.

F. Disorder average

Theories with disorder such as SYK use the replica trick
and compute disorder average by integrating the Boltzmann
kernel of the replicated theory with respect to the proba-
bility distribution of the random couplings. In the limit of
large N it is customary to assume a saddle point solution of
decoupled replicas. Gross and Rosenhaus [14], as well as
Kitaev and Suh [12], discuss this issue in the Appendix of a
recent publication on the SYK model. The net result of the
diagonal replica assumption is that the disorder averaged
theory is, in the large N limit, the disorder averaged
partition function of the fermion theory. This result moti-
vates us to promote SU(N) matrices as a randomly
distributed field, in which case the partition function of
the theory is

Z ¼
Z Y

μ;x

dUμðxÞ
Y
x;t;a

dψ̄ðx; tÞadψðx; tÞaeI ;

where dUμðxÞ is the Haar measure of the SUðNÞ group
integration and dψ̄ðx; tÞa [as well as dψðx; tÞa] is the

Grassmann integration measure. This definition allows
one to identify two effective theories depending on which
fields are integrated first. Integration of fermion fields gives
an SU(N) gauge field theory in d dimensions, while the
integration of SU(N) fields gives an interacting fermion
theory in dþ 1 dimensions. Thus, we have, in principle, a
dual description of the same theory from the start.

G. Meaning of the extra dimension

We have defined a quantum mechanical model in
d dimensions, keeping in mind that d ¼ 4 is the physically
interesting case, where one of dimensions is the time
dimension. The length of the extra dimension Nt is related
to the value of the coupling constant κ, as it is shown in the
next section. Therefore, the d-dimensional system evolves
along the extra dimension in order to reach a certain value
of κ. Since each value of κ corresponds to a given length
scale, the evolution of the system along this dimension is
the evolution to reach that scale. This way, the extra
dimension is also the dimension of physical scales.
In the next section, we show that the d-dimensional

effective theories derived from the model are of the Yang-
Mills and QCD type.

III. AN EFFECTIVE THEORY OF LOCAL
YANG-MILLS FIELDS

In this section, we are interested in computing an
effective theory of Yang-Mills fields. In the next subsec-
tion, we proceed with the case of massive fermions.

A. Massive fermions

The largest fermion mass on a lattice is proportional to
m=a and we fix it to be exactly 1=a. Then, from (2.7) we
have

h2 ¼ 1þ κ2h2o; ho ¼ γ̂5
X
μ

ημðUμ −U�
μÞ: ð3:1Þ

This way, using (2.13), the effective action of the theory is

SeffðUÞ ¼ −
Nt

2
Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2h2o

q
: ð3:2Þ

Expanding in powers of κ2 the right-hand side, we get

SeffðUÞ¼ coNt−c1Ntκ
4
X
μν

TrUμUνU�
μU�

νþOðκ6ÞþH:c:;

ð3:3Þ

where co is real, c1 ¼ 1=4, and we have used the fact that
the product of η matrices around the plaquette equals −1. If
we want our theory to be the standard Yang-Mills theory in
the classical limit of a vanishing coupling constant, then we
have to make sure that the plaquette term is the Wilson
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discretization of the standard Yang-Mills theory. Therefore,
scaling the length of the extra dimension according to the
relation

c1Nt ¼
1

κ5
; ð3:4Þ

we get an effective theory that is described by the action

SeffðUÞ ¼ coNt −
1

κ

X
μν

TrUμUνU�
μU�

ν þOðκÞ þ H:c:

ð3:5Þ
When no other loops are present other than the plaquette,
the theory is the Wilson discretization of the standard Yang-
Mills theory. Therefore, the above theory is a theory of
Yang-Mills fields enlarged by larger Wilson loops. The
theory is local if the series expansion in terms of Wilson
loops converges. An upper bound of the convergence radius
of the series may be found using the following standard
argument: since at each lattice site there are 2d − 1 choices
to construct a loop without moving backwards, the number
of Wilson loops of length n is bounded by ð2d − 1Þn. This
way, at each order n in the κ expansion, the number of
Wilson loops of length n does not grow faster than
ð2d − 1Þn. Hence, the series converges for κ≤1=ð2d−1Þ
and the theory is local for vanishing κ.
Classically, as κ goes to zero, the theory is dominated by

the plaquette term, while larger Wilson loops may be
included in a perturbation expansion. The perturbative
approach in the classical theory is important if we want
to maintain the correspondence principle, in which case,
our theory includes the standard Yang-Mills theory as a
leading-order approximation of the expansion. Quantum
mechanically, we may expect that the theory is asymptoti-
cally free, since larger Wilson loops are perturbations of the
plaquette result. This is indeed the case as shown in Sec. V.
However, the beta function of the theory vanishes linearly
with the coupling constant, which shows that the approach
to the continuum limit is different from what we expect in
the standard Yang-Mills theory.
Note that we have related the length of the extra

dimension to the coupling constant of the gauge theory.
Given Nt is discrete, the relation (3.4) tells us that κ is
discrete too. However, since we are interested in the large
Nt limit of the theory, we assume κ values to be real.

B. Massless fermions

In the case of massless fermions, the fermion matrix is
κho. Nonetheless, we introduce a small massm of the order
Oð1=NtÞ. The square of the fermion matrix in this case is

h2 ¼ m2 þ κ2h2o: ð3:6Þ
In order to discover an effective local theory, we start with
the action of the theory (2.14). By means of Fourier

transformed fields ¯̃Θðx;ωkÞ and Θ̃ðx;ωkÞ the action may
be written in the form

Ĩ ¼
X
x;k

¯̃Θðx;ωkÞi sinωkΘ̃ðx;ωkÞ

þ
X
x;y;k

¯̃Θðx;ωkÞhðx; yÞΘ̃ðy;ωkÞ; ð3:7Þ

where the choice

ωk ¼
π

Nt
ð2kþ 1Þ; k ¼ 1; 2;…; Nt ð3:8Þ

respects the boundary condition along the extra dimension.
Integrating Grassmann fields, the partition function may be
written as a product of the following determinants:

Z̃FðUÞ ¼
YNt

k¼1

detðhþ i sinωkÞ: ð3:9Þ

Assuming Nt is even, we get3

Z̃FðUÞ ¼
YNt=2

k¼1

det ðh2 þ sin2ωkÞ: ð3:10Þ

The effective action of the theory

SeffðUÞ ¼ −
XNt=2

k¼1

ln

�
m2 þ sin2ωk

4κ2
þ 1

4
h2o

�
ð3:11Þ

is thus a theory of Nt=2 Kogut-Susskind fermions (modulo
factor four) with masses

mk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ sin2ωk

p
2κ

; k ¼ 1; 2;…;
Nt

2
: ð3:12Þ

Note that the theory has a large number of heavy flavors
with masses of the order 1=κ. For such masses, one can
write an effective action similar to the convergent expan-
sion (3.5). These contribute to the Yang-Mills part of the
effective action. The rest of masses mk contribute to the
fermionic part of the action. This way, we end up with a
local quantum field theory, which is QCD with a large
number of flavors. Since a large number of frequencies
scale like 1=Nt, a large number of fermions are light with
masses of the order κ4 (for m ∼ 1=Nt). We expect asymp-
totic freedom, which is a property of QCD with a limited
number of massless flavors, to be lost in this case. In
Sec. VI, we show that the theory is asymptotic safe at a
fixed value of κ, which corresponds to a large value of Nt.

3In case Nt is odd, we get an extra factor det h in the product
corresponding to the ωk ¼ π mode.
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C. Synthesis

In this section, we have shown that, when fermions are
integrated out, the large Nt limit of our model gives
effective Yang-Mills and QCD theories. As shown in the
rest of the paper, the dual representation of the model is
solvable in the large N limit. This property gives us an
analytical tool to analyze these theories in this limit. In the
next section, we deal with the effective theory in terms of
dual degrees of freedom.

IV. A HERMITIAN MATRIX FIELD THEORY

The aim of this section is to formulate the theory in terms
of dual fields. We first integrate gauge fields, obtaining a

pure fermion theory with the action S defined by the
equation

eS ¼
Z Y

μ;x

dUμðxÞeI : ð4:1Þ

Then we bosonize fermions in terms of matrix fields. We
begin with the gauge field integration.

A. Integration of gauge fields

The partition function (4.1) may be written as a product
of one-link integrals,

eS ¼ e
P

x;t;t0 ;a ψ̄aðx;tÞ½mδt;t0þγ̂5ðxÞ∂̂tðt;t0Þ�ψðx;t0ÞaY
μ;x

eWμðxÞ;

eWμðxÞ ¼
Z

dUμðxÞe
κ
P

a;b
ημðxÞ

hP
t
ψ̄ðx;tÞaUμðxÞabψðxþμ̂;tÞb−

P
t0 ψ̄ðxþμ̂;t0ÞaUμðxÞ�abψðx;t0Þb

i
: ð4:2Þ

Group integration rules and one-link integrals have been solved long ago by different authors (see, for example, [15–18]
and references therein). In order to make the paper self-contained, we have derived one-link integrals in Appendix B. The
result is

S ¼
X
x;t;t0;a

ψ̄aðx; tÞ½mδt;t0 þ γ̂5ðxÞ∂̂tðt; t0Þ�ψðx; t0Þa

þ N
X
x;μ;t

F

�
−
κ2

N2

X
t0;a;b

ψ̄ðx; tÞbψðx; t0Þbψ̄ðxþ μ̂; t0Þaψðxþ μ̂; tÞa
�
; ð4:3Þ

where the solution Fð:Þ depends on a set of boundary conditions [see (B12)]. Since we are concerned with the behavior of
the theory in the large Nt (i.e., small κ) limit, we require the leading-order expansion of Fð:Þ in the form

FðΛÞ ¼ −ΛþOðΛ2Þ; ð4:4Þ
where, given a lattice site x and direction μ, Λ is a matrix with matrix elements

Λðt1; t2Þ ¼ −
κ2

N2

X
t0;a;b

ψ̄ðx; t1Þbψðx; t0Þbψ̄ðxþ μ̂; t0Þaψðxþ μ̂; t2Þa: ð4:5Þ

The full result is [see (B17)]

FðΛÞ ¼ 1 − ð1þ 4ΛÞ12 þ ln
1þ ð1þ 4ΛÞ12

2
: ð4:6Þ

In this paper, we use the leading-order approximation (4.4); i.e., the action that we use in the following is

S ¼
X
x;t;t0;a

ψ̄aðx; tÞ½mδt;t0 þ γ̂5ðxÞ∂̂tðt; t0Þ�ψðx; t0Þa

þ κ2

N

X
x;μ;t;t0;a;b

ψ̄ðx; tÞbψðx; t0Þbψ̄ðxþ μ̂; t0Þaψðxþ μ̂; tÞa: ð4:7Þ

In order to estimate the effect of higher-order terms, we compute the expectation value hΛðt1; t2Þi. Since Λðt1; t2Þ
fluctuations around hΛðt1; t2Þi are small in the large N limit, Λðt1; t2Þ itself is expected to follow the behavior of hΛðt1; t2Þi
in this limit. The expectation value is computed using Eq. (4.27),

ARTAN BORIÇI PHYS. REV. D 100, 034502 (2019)

034502-6



hΛðt1; t2Þi ¼ −κ2
X
t0
Gðxþ μ̂; t2; t0ÞGðx; t0; t1Þ; ð4:8Þ

where Gðx; t; t0Þ is the two-point function of the theory. As
shown in Sec. V, the two-point function may be written in a
Fourier basis. In this basis, hΛi is diagonal,

hΛiω ¼ −κ2G̃oðωÞ2; ð4:9Þ

where G̃oðωÞ is defined in Eq. (5.15). The right-hand side is
maximum at ω ¼ 0 (as well as π) and the spectral radius of
hΛi is κ2G̃oð0Þ2. Therefore, for massive fermions and
vanishing κ, the spectral radius of hΛi is κ2, whereas for
massless fermions we find 1=2d. This way, the leading-
order approximation is sensible in the vanishing κ and large
d limit, respectively. In Appendix C, we show also that, in
the case of strong coupling QCD, where the exact result is
known, the effect of higher-order terms in Λ in (4.4)
vanishes in the large d limit. We turn next to the
bosonization of the fermion theory.

B. Bosonization of fermions

Let A be the matrix with matrix elements

Aðx; yÞ ¼
X
μ

ðδxþμ̂;y þ δx−μ̂;yÞ;

which connects neighbor lattice sites x and y. Then, the
fermion action may be split in two terms

S ¼
X
x;t;t0;a

ψ̄aðx; tÞ½mδt;t0 þ γ̂5ðxÞ∂̂tðt; t0Þ�ψðx; t0Þa þ S1;

ð4:10Þ

with

S1 ¼
κ2

2N

X
x;y;t;t0;a;b

ψ̄ðx; tÞbψðx; t0ÞbAðx; yÞψ̄ðy; t0Þaψðy; tÞa:

ð4:11Þ

We integrate fermions by decoupling the quartic term, so
that we end up with a quadratic action on fermion fields. If
we define ξðxÞ matrices with matrix elements

ξðx; t; t0Þ ¼
XN
a¼1

ψ̄ðx; tÞaψðx; t0Þa; ð4:12Þ

then the S1 part of the action is a quadratic form in x, y
variables

S1 ¼
κ2

2N

X
t;t0

X
x;y

ξðx; t; t0ÞAðx; yÞξðy; t0; tÞ: ð4:13Þ

This action can be written in the diagonal basis of A as

S1 ¼
κ2

2N

X
t;t0

X
p

ÃðpÞξ̃ðp; t; t0Þξ̃ðp; t0; tÞ; ð4:14Þ

with p being a four vector, and ξ̃ and Ã are representations
of ξ and A in the new basis. The exponential function eS1 is
a product of exponential functions. These can be repre-
sented using Gaussian integrals

e
κ2

2NÃðpÞξ̃ðp;t;tÞ2 ¼ c̃1ðpÞ
Z þ∞

−∞
dΣ̃ðp; t; tÞe− N

2κ2
ÃðpÞ−1Σ̃ðp;t;tÞ2þΣ̃ðp;t;tÞξ̃ðp;t;tÞ; ð4:15Þ

e
κ2

N ÃðpÞξ̃ðp;t;t0Þξ̃ðp;t0;tÞ ¼ c̃2ðpÞ
Z þ∞

−∞
dReΣ̃ðp; t; t0ÞdImΣ̃ðp; t; t0Þe−N

κ2
ÃðpÞ−1jΣ̃ðp;t;t0Þj2þΣ̃ðp;t;t0Þξ̃ðp;t0;tÞþΣ̃ðp;t;t0Þ ξ̃ðp;t;t0Þ; ð4:16Þ

where c̃1ðpÞ, c̃2ðpÞ are integration constants. This way, one finds (modulo an integration constant)

eS1 ¼
Z Y

p;t

dΣ̃ðp; t; tÞ
Y
p;t>t0

dReΣ̃ðp; t; t0ÞdImΣ̃ðp; t; t0Þe− N
2κ2

P
p;t;t0 ÃðpÞ−1jΣ̃ðp;t;t0Þj2þ

P
p;t;t0 Σ̃ðp;t;t0Þξ̃ðp;t0;tÞ; ð4:17Þ

where Σ̃ðpÞ is a Hermitian matrix. By going back to x representation, the right-hand side may be written as an integral with
respect to Σðx; t; t0Þ fields,

eS1 ¼
Z Y

x;t

dΣðx; t; tÞ
Y
x;t>t0

RedΣðx; t; t0ÞdImΣðx; t; t0Þe− N
2κ2

P
x;y;t;t0 Σðx;t;t0ÞA−1ðx;yÞΣðy;t0;tÞþ

P
x;t;t0 Σðx;t0;tÞξðx;t;t0Þ: ð4:18Þ

Therefore, using (4.12) the action takes the form
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S̃ ¼
X
x;t;t0;a

ψ̄aðx; tÞ½mδt;t0 þ γ̂5ðxÞ∂̂tðt; t0Þ þ Σðx; t0; tÞ�ψðx; t0Þa

−
N
2κ2

X
x;y;t;t0

Σðx; t; t0ÞA−1ðx; yÞΣðy; t0; tÞ: ð4:19Þ

Doing the Grassmann integral and using the identity detA ¼ etr lnA, the final expression is

SΣ ¼ N
X
x;t

fln ½mþ γ̂5ðxÞ∂̂t þ ΣðxÞ�gðt; tÞ − N
2κ2

X
x;y;t;t0

Σðx; t; t0ÞðA−1Þðx; yÞΣðy; t0; tÞ: ð4:20Þ

Note that A is not invertible and positive definite and this
poses a problem in the Gaussian integral representation.
However, one may shift A such as to be invertible and
positive definite. The cost of doing so is the introduction of
another Gaussian field. We have checked that, in this case,
the saddle point solution is the same. Therefore, for
simplicity, we stay with a single Gaussian field and treat
A as being formally invertible and positive definite.
In this subsection, we have shown that the dual theory is

a matrix field theory. Since the action is proportional to N
one can solve this theory in the large N approximation.
Before doing so we define some useful observables in terms
of matrix fields. We start with Green’s functions of the
theory.

C. Green’s functions

Fermionic Green’s function of the theory can be com-
puted by adding the following Grassmann valued source
terms in the action (2.19):

Iðχ; χ̄Þ ¼ I þ
X
x;t;a

½ψ̄ðx; tÞaχðx; tÞa þ χ̄ðx; tÞaψðx; tÞa�:

ð4:21Þ
For example, the two-point function for t ≥ t0, i.e.,

Gðx; y; t; t0Þab ¼ hψðy; t0Þaψ̄ðx; tÞbiI ; ð4:22Þ
may be computed using the double derivative with respect
to fermionic sources

Gðx; y; t; t0Þab ¼
∂2

∂χ̄ðy; t0Þa∂χðx; tÞb logZðχ; χ̄Þ
			
χ¼χ̄¼0

:

ð4:23Þ

Adding fermionic sources in the action S̃ (4.19) and using
the Grassmann integration rules, we get the updated SΣ
action

SΣðχ; χ̄Þ ¼ SΣ þ
X

x;y;t;t0;a;b

χ̄ðx; tÞa½mþ γ̂5ðxÞ∂̂t þ ΣðxÞ�−1ðt;t0Þ

× δxyδabχðy; t0Þb: ð4:24Þ

Therefore, the two-point function is diagonal in color and
d-dimensional space

Gðx; y; t; t0Þab ¼ Gðx; t; t0Þδxyδab; ð4:25Þ
where

Gðx; t; t0Þ ¼ ½mþ γ̂5ðxÞ∂̂t þ ΣðxÞ�−1ðt;t0Þ: ð4:26Þ
Applying the same procedure for the four-point function,
we find

hψðx; t0Þaψ̄ðx; tÞaψðy; tÞbψ̄ðy; t0ÞbiI ¼ Gðx; t; t0ÞGðy; t0; tÞ:
ð4:27Þ

In the next subsection, we turn to the Polyakov loop.

D. Polyakov loop

A key observable in lattice gauge theory is the Polyakov
loop

Pðx⃗Þ ¼


1

N
TrSUðNÞ

YN4

x4¼1

U4ðx⃗; x4Þ
�
; ð4:28Þ

where the expectation value is evaluated with respect to the
effective theory (3.2). In the following, we express the
expectation value with respect to degrees of freedom of
the dual theory. Adding the fermionic source term in the
action (2.19),

Iða; ā; b; b̄Þ ¼ I − κ
X
x;μ

ημðxÞ½āðxÞUμðxÞaðxþ μ̂Þ

− b̄ðxþ μ̂ÞUμðxÞ�bðxÞ�; ð4:29Þ

then the insertion of gauge fields in the path integral may be
achieved using the double derivative of the partition
function with respect to source fields

∂2

∂aðxþ μ̂Þj∂āðxÞi logZða; ā; b; b̄Þja¼ā¼b¼b̄¼0

¼ h−κημðxÞUμðxÞijiI ; ð4:30Þ
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where i, j are SU(N) matrix indices and the expectation is
evaluated with respect to the action of Eq. (2.19). After
integration of gauge fields and using the same approxima-
tion that led us to the action (4.7), one gets the same action
supplemented with source terms

Sða; ā; b; b̄Þ ¼ Sþ κ2

N

X
x;μ;t

½ψ̄ðxþ μ̂; tÞaðxþ μ̂ÞāðxÞψðx; tÞ

þ ψ̄ðx; tÞbðxÞb̄ðxþ μ̂Þψðxþ μ̂; tÞ�

þ κ2

N

X
x;μ

āðxÞbðxÞb̄ðxþ μ̂Þaðxþ μ̂Þ:

ð4:31Þ

The effect of the double derivative in this theory is now the
insertion of the following bilinear combination of fermionic
fields

∂2

∂aðxþ μ̂Þj∂āðxÞi logZða; ā; b; b̄Þja¼ā¼b¼b̄¼0

¼


−
κ2

N

X
t
ψðx; tÞiψ̄ðxþ μ̂; tÞj

�
S
; ð4:32Þ

where now the expectation value is evaluated in the theory
defined by the action of Eq. (4.7). Therefore, the Polyakov
loop may be written in the form

Pðx⃗Þ ¼
X

t1;…;tN4


YN4

x4¼1

XN
jx4¼1

ψ̄ðx⃗; x4; tx4−1Þjx4ψðx⃗; x4; tx4Þjx4
�

S

;

ð4:33Þ

modulo an irrelevant constant factor and where to ¼ tN4
.

By means of two-point functions this expression may be
written in the form

Pðx⃗Þ ¼
X

t1;…;tN4


YN4

x4¼1

Gðx⃗; x4; tx4−1; tx4Þ
�

SΣ

; ð4:34Þ

modulo a trivial factor that comes from color summations.
In the next subsection, we define one more observable: the
fermion-antifermion condensate.

E. Fermion-antifermion condensate

An important observable in a theory of fermions is the
fermion-antifermion condensate

ζ ¼ lim
V→∞

1

V

X
x;t


XN
j¼1

ψ̄ðx; tÞjψðx; tÞj
�

S

: ð4:35Þ

From the discussion in the previous subsection, we con-
clude that

ζ ¼ lim
V→∞

N
V

X
x;t

hGðx; t; tÞiSΣ : ð4:36Þ

In this study, we restrict ourselves in this limited set of
observables. In the following, we turn to the solution of the
theory in the large N limit.

V. THE LARGE N SOLUTION

Since the action (4.20) is proportional to N, one may
employ the saddle point solution of the theory. The
stationary field should satisfy the necessary first-order
conditions, which in our case is the system of equations

∂SΣ
∂Σðx; t0; tÞ ¼ 0; t; t0 ¼ 1; 2…; Nt ð5:1Þ

for any lattice site x of the d-dimensional lattice. The
derivative of the first term is taken by expanding the matrix
logarithm as a power series on Σ. This way, we obtain the
system of equations

Gðx; t0; tÞ ¼ 1

κ2
X
y

ðA−1Þðx; yÞΣðy; t0; tÞ: ð5:2Þ

These can be inverted to give

Σðx; t0; tÞ ¼ κ2
X
μ

½Gðxþ μ̂; t0; tÞ þ Gðx − μ̂; t0; tÞ�: ð5:3Þ

Therefore, we get a coupled system of quadratic equations
for Green’s functions,

G−1ðx; t0; tÞ ¼ δt;t0 þ γ̂5ðxÞ∂̂tðt; t0Þ
þ κ2

X
μ

½Gðxþ μ̂; t0; tÞ þ Gðx − μ̂; t0; tÞ�:

ð5:4Þ
We are interested in the vanishing κ solution of the theory.
In this limit, the second term of the right-hand side is small.
Given the translation invariance of the time derivative, the
small κ limit of the solution is also translation invariant; i.e.,
Gðx; t0; tÞ is a function of time separation t0 − t. Therefore,
equations may be written in terms of Fourier transformed
Green’s functions Ĝðx;ωÞ,

1

Ĝðx;ωÞ ¼ mþ γ̂5ðxÞi sinω

þ κ2
X
μ

½Ĝðxþ μ̂;ωÞ þ Ĝðx − μ̂;ωÞ� ð5:5Þ

for each frequency ω. We solve the system using the
solution ansatz

Ĝðx;ωÞ ¼ e−i arg ½mþγ̂5ðxÞi sinω�½G̃oðωÞ þ G̃ðx;ωÞ�; ð5:6Þ
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where G̃ðx;ωÞ is a small fluctuation around x-independent
solution G̃oðωÞ. Expanding the left-hand side of the system
(5.5) up to the first order in G̃ðx;ωÞ and using the fact that
(5.5) relates the solution on even and odd sites, we get a
scalar quadratic equation

1

G̃oðωÞ
¼ jmþ i sinωj þ 2dκ2G̃oðωÞ; ð5:7Þ

as well as the first-order constraint

G̃ðx;ωÞ þ κ2G̃oðωÞ2
X
μ

½G̃ðxþ μ̂;ωÞ þ G̃ðx − μ̂;ωÞ� ¼ 0:

ð5:8Þ

Substituting the Fourier transformed Eq. (5.3) in the action
(4.20) and writing it in terms of Ĝðx;ωÞ, we get

SĜ=N ¼ −
X
x;ω

ln Ĝðx;ωÞ − κ2

2

X
x;y;ω

Ĝðx;ωÞAðx; yÞĜðy;ωÞ:

ð5:9Þ

Expanding the logarithm up to the second order in
G̃−1

o G̃ðx;ωÞ and substituting the constraint (5.8), we get
the effective action in the large N approximation

SG̃=N ¼ −V
X
ω

½ln G̃oðωÞ þ dκ2G̃oðωÞ2�

þ κ2

2

X
x;ω

�
1

κ2G̃oðωÞ2
− 2d

�
G̃ðx;ωÞ2

þ κ2

2

X
x;μ;ω

½G̃ðxþ μ̂;ωÞ − G̃ðx;ωÞ�2

þO

�X
ω

G̃oðωÞ−3G̃ðx;ωÞ3
�
; ð5:10Þ

where translation symmetryof G̃ðx;ωÞon thed-dimensional
lattice has beenused, i.e.,

P
x G̃ðxþ μ̂;ωÞ2 ¼ P

x G̃ðx;ωÞ2.
Neglecting cubic order corrections, this action describes a
free theory of Nt bosons with masses given by

MðωÞ2 ¼ 1

κ2G̃oðωÞ2
− 2d: ð5:11Þ

The symmetry of the action can bemade explicit bywriting it
in the form of a nonlinear sigma model

SG̃=N ∝ −
X
x;ω

MðωÞ2eiG̃ðx;ωÞ −
X
x;μ;ω

eiG̃ðxþμ̂;ωÞe−iG̃ðx;ωÞ

þO½G̃oðωÞ−3G̃ðx;ωÞ3� þ H:c:: ð5:12Þ

If we define G̃ðxÞ matrices with matrix elements
G̃ðx;ωÞδω;ω0 , then the global unitary transformations

eiG̃ðxÞ → UeiG̃ðxÞU�; U ∈ UðNtÞ; ð5:13Þ

withUðNtÞdenoting theunitarygroup, leave the spectrumof
the theory invariant. In the followingsubsection,wecompute
the free energy and the mass gap of the theory.

A. Free energy and mass gap

We compute the solution G̃oðωÞ of the quadratic
Eq. (5.7). Denoting

μðωÞ ¼ jmþ i sinωj; ð5:14Þ

we get

G̃oðωÞ ¼
−μðωÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðωÞ2 þ 8dκ2

p
4dκ2

: ð5:15Þ

Using Eq. (5.10), the free energy reads

F ðκÞ ¼ NV
X
ω

½ln G̃oðωÞ þ dκ2G̃oðωÞ2�; ð5:16Þ

whereas substituting G̃oðωÞ in Eq. (5.11), the mass spec-
trum of the theory is given by

MðωÞ2 ¼ μðωÞ2 þ μðωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðωÞ2 þ 8dκ2

p
2κ2

: ð5:17Þ

The spectrum is bounded from below by the mass gap

M2
o ¼

m2 þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 8dκ2

p

2κ2
: ð5:18Þ

In the case of massive fermions and vanishing κ, the mass
gap Mo diverges as m=κ. In the following subsection, we
study Green’s functions of the theory.

B. Two-point function

Using the solution ansatz (5.6), the leading-order
approximation of the two-point function is

G̃�ðωÞ ¼ e−i arg ðm�i sinωÞG̃oðωÞ; ð5:19Þ

where we have used γ̂5ðxÞ ¼ �1 on even and odd sites.
Substituting G̃oðωÞ from Eq. (5.15) and expanding the
square root in κ for massive fermions, we get

G̃�ðωÞ ¼
1

m� i sinω
þOðκ2Þ: ð5:20Þ

In the following, we concentrate in the two-point function
defined on even sites, i.e., γ̂5ðxÞ ¼ 1, and compute the first
term of the right-hand side. The odd site’s expression is then
the negative even site’s result with the formal substitution
m → −m. The time domain two-point function may be
computed using the inverse discrete Fourier transform
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XþðtÞ ¼
1

Nt

X
ω

eitω

mþ i sinω
; ð5:21Þ

plus Oðκ2Þ terms. The leading term XþðtÞ is thus the
propagator of free fermions in 0þ 1 dimensions. The latter
may be obtained by solving the linear system of equations

ðmþ ∂̂tÞXþðtÞ ¼ δt;0; t ¼ 0; 1;…; Nt − 1 ð5:22Þ

with antiperiodic boundary conditions. Both ways we find4

XþðtÞ ¼
1

C

�
sinhEðNt=2 − tÞ t ∈ even;

coshEðNt=2 − tÞ t ∈ odd;
ð5:23Þ

with sinhE ¼ m,C ¼ coshE coshðENt=2Þ, andNt even. In
case Nt is odd, the above result should be replaced by the
expression

XþðtÞ ¼
1

S

�
coshEðNt − tÞ þ sinhEt t ∈ even;

sinhEðNt − tÞ − coshEt t ∈ odd;
ð5:24Þ

with S ¼ coshE sinhðENtÞ. The different behavior of the
two-point function at even and odd times is a manifestation
of fermion doubling on the lattice, i.e., the presence of two
poles of 1=ðmþ i sinωÞ at iE and π − iE corresponding to
the same energy E.

C. Polyakov loop

We begin by expressing the time domain trace of (4.34)
in the frequency domain

Pðx⃗Þ ¼
X
ω


YN4

x4¼1

Gðx⃗; x4;ωÞ
�

SΣ

: ð5:25Þ

In the large N approximation, the right-hand side factorizes
and we find

Pðx⃗Þ ¼

8>><
>>:

P
ω
G̃oðωÞN4 N4 ∈ even;

P
ω
e−i arg ðm�i sinωÞG̃oðωÞN4 N4 ∈ odd;

ð5:26Þ

since for N4 even phase factors cancel due to equal number
of even and odd sites in the product. If N4 is odd, then only
one phase factor remains. Due to the π periodicity of

G̃oðωÞ, the Polyakov loop may be written as a sum over
positive frequency terms5

Pðx⃗Þ ¼

8>><
>>:

2
P
ω>0

G̃oðωÞN4 N4 ∈ even;

2
P
ω>0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þsin2ω

p G̃oðωÞN4 N4 ∈ odd:
ð5:27Þ

We evaluate the sum in the large N4 limit, in which case the
largest term dominates. Note that G̃oðωÞ is maximum at
ω ¼ π=Nt. In the large Nt limit, π=Nt is close to zero and
we evaluate

Pðx⃗Þ ≃ 2NtG̃oð0ÞN4 : ð5:28Þ
This way, the free energy Fo of the static charge is

aFo ¼ − ln G̃oð0Þ; ð5:29Þ
where we have restored the lattice spacing a. At leading
order in κ and m ¼ 1, we have G̃oð0Þ ¼ 1–2dκ2 þOðκ4Þ,
and therefore

Fo ¼
1

a
2dκ2 þOðκ4Þ; ð5:30Þ

which vanishes in the limit κ→0. The result does not change
if we use G̃ðπ=NtÞ instead of G̃ð0Þ, as well as if we add the
next largest term in the sum over frequencies in (5.27).
Using Fo we can compute the renormalization group

beta function

βðκÞ ¼ −a
dκ
da

¼ að∂Fo=∂aÞ
ð∂Fo=∂κÞ ¼ −

κ

2
þOðκ3Þ: ð5:31Þ

It is negative and vanishes linearly with the coupling
constant. The theory is thus asymptotically free. However,
its ultraviolet behavior is different from the standard Yang-
Mills theory. The same conclusion may be drawn if we had
computed Wilson loops. In this case, we would find a
perimeter law.

D. Fermion-antifermion condensate

Using its definition (4.36) and substituting the two-point
function in the leading-order approximation of the large N
solution, the condensate is

ζ ¼ N
X
ω

e−i arg ðmþi sinωÞG̃oðωÞ

¼ 2N
X
ω>0

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ sin2ω

p G̃oðωÞ; ð5:32Þ

where we have used again the π periodicity of G̃oðωÞ.
Expanding the right-hand side in κ and taking m ¼ 1
we have

4The right-hand side of (5.21) may be computed in two steps:
First, one computes the Nt → ∞ expression, i.e., Xð∞Þ

þ ðtÞ ¼R
π
−π

dω
2π

eitω
mþi sinω ¼ e−Ejtj

coshE ½ΘðtÞ þ ð−1ÞtΘð−tÞ�, where ΘðtÞ is the
Heaviside function. Then, the finite Nt result is obtained by
evaluating the infinite sum XþðtÞ ¼

Pþ∞
m¼−∞ð−1ÞjmjXð∞Þ

þ ×
ðtþmNtÞ.

5This is true in case there is an even number of frequencies,
otherwise one should add an extra contribution coming from
ω ¼ π, which does not change the result.
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ζ ¼ N
X
ω

1

1þ sin2ω
þOðκ2Þ: ð5:33Þ

For large Nt the first term is a lattice sum equal to Nt=
ffiffiffi
2

p 6

and therefore

ζ ¼ NNt
1ffiffiffi
2

p þOðκ2Þ: ð5:34Þ

This way, in the continuum limit, the theory is charac-
terized by a nonzero value of the fermion-antifermion
condensate.

E. Synthesis

The solution of the theory in the large N approximation
shares distinctive properties with the standard Yang-Mills
theory, like asymptotic freedom and color confinement.
Note, however, that the beta function of our effective Yang-
Mills theory is different from that of the standard Yang-
Mills theory. In the next section, we probe the theory in the
massless limit.

VI. ASYMPTOTIC SAFE QCD

We have seen that the effective Yang-Mills theory is local
and asymptotically free. In this section, we compute the
solution in the case of massless fermions, or almost
massless fermions, with mass m. In Sec. III B we learned
that the effective theory of our model is QCD with a large
number of flavors. The large N solution is found following
the same steps as in the previous section. The mass
spectrum of the theory is given by Eq. (5.17) with

μðωÞ2 ¼ m2 þ sin2ω: ð6:1Þ
However, the lightest mass

M2
o ¼

m2 þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 8dκ2

p

2κ2
ð6:2Þ

vanishes for exactly massless fermions. Therefore, the
theory is gapless. Note, however, that the number of light
fermions is large, as can be seen from Eq. (3.12). If there
are Nf such modes, then the effective action of the theory
(5.12) may be split in two pieces corresponding to light and
heavy modes

SG̃=N ∝ −
X

x;ω∈Ωl

MðωÞ2eiG̃ðx;ωÞ −
X

x;μ;ω∈Ωl

eiG̃ðxþμ̂;ωÞe−iG̃ðx;ωÞ

−
X

x;ω∈Ωh

MðωÞ2eiG̃ðx;ωÞ −
X

x;μ;ω∈Ωh

eiG̃ðxþμ̂;ωÞe−iG̃ðx;ωÞ

þO½G̃−3
o G̃ðxÞ3� þ H:c:; ð6:3Þ

with Ωl and Ωh being the set of light and heavy mode
frequencies. If we define light mode matrices G̃lðxÞ with
matrix elements

G̃lðx;ω;ω0Þ ¼ G̃ðx;ωÞδω;ω0 ; ω;ω0 ∈ Ωl; ð6:4Þ

and take light modes to be massless, the action is symmetric
with respect to global UðNfÞL ×UðNfÞR chiral trans-
formations of light modes

eiG̃lðxÞ → UeiG̃lðxÞV�; U; V ∈ UðNfÞ: ð6:5Þ

As shown below, the fermion-antifermion condensate of the
full theory is nonzero due to light modes alone. Therefore,
the chiral symmetry of the light modes is spontaneously
broken to UðNfÞ. Taking the limit of vanishing m in
Eq. (6.2), the mass of the N2

f Goldstone modes is

M2
o ≃

m
κ

ffiffiffiffiffiffi
2d

p
; ð6:6Þ

a result that is expected from the chiral perturbation theory
[19]. Therefore, the solution shows that the low lying
spectrum behaves as in QCD. Note, however, that Nf is
large in our case.

A. Two-point function

We compute the two-point function using again the
solution ansatz (5.6) in the leading-order approximation.
The massless two-point function is then

G̃�ðωÞ ¼ �isgnðωÞG̃oðωÞ; ð6:7Þ

where the plus (minus) subscript corresponds to even (odd)
sites of the d-dimensional lattice. Substituting G̃oðωÞ from
Eq. (5.15), we get

G̃�ðωÞ ¼ �−i sinωþ isgnðωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ωþ 8dκ2

p

4dκ2
: ð6:8Þ

In continuous time, this is the same as the two-point
function of the q ¼ 2 SYK model, i.e.,

G̃contþ ðωÞ ¼ −iωþ isgnðωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ 4J2

p

2J2
; ð6:9Þ

where J is the coupling constant of the SYK model, with
the identification J ¼ ffiffiffiffiffiffi

2d
p

κ. The time domain two-point
function is given by Maldacena and Stanford [20] as

Xcontþ ðtÞ ¼ sgnðtÞ
Z

π

0

dθ
π
cos2θe−2

ffiffiffiffi
2d

p
κjtj sin θ; ð6:10Þ

which for large time separations is

6In this limit, one may compute the integral Nt

R
π
−π dω=ð2πÞ=ð1þ sin2ωÞ.
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Xcontþ ðtÞ ¼ 1

π
ffiffiffiffiffiffi
2d

p
κt

−
1

4πð ffiffiffiffiffiffi
2d

p
κtÞ3 þOðκ−5t−5Þ: ð6:11Þ

This is a power law decay as opposed to exponential decay
in the case of massive fermions.

B. Asymptotic safety

Following the same steps as in the case of massive
fermions, we compute the Polyakov loop (5.27) in the large
N4 limit. The free energy of the static charge is thus
evaluated at zero frequency using the same formula (5.29).
The result in the massless case is

aFo ¼ ln
ffiffiffiffiffiffi
2d

p
κ: ð6:12Þ

Using Fo, the beta function of the theory is

βðκÞ ¼ −κ ln ð
ffiffiffiffiffiffi
2d

p
κÞ:

It is zero at κ ¼ 0 and κc ¼ 1=
ffiffiffiffiffiffi
2d

p
, positive for κ ∈ ð0; κcÞ,

and negative for κ > κc. Hence, the theory has an ultraviolet
fixed point at κc. Solving the renormalization group
equation

−a
dκ
da

¼ −κ ln ð
ffiffiffiffiffiffi
2d

p
κÞ; ⇒ am̃ ¼ ln ð

ffiffiffiffiffiffi
2d

p
κÞ;

with m̃ being an integration constant, the correlation length
of the theory is defined by

ξ ¼ 1

am̃
:

At the critical point, it diverges according to the law

ξ ∝
				1 − κ

κc

				
−1
;

i.e., the theory shares the same critical exponent with the
two-dimensional Ising model. The theory has a continuum
limit at a critical value of the coupling constant. Note that in
the limit d → ∞ the theory becomes asymptotically free.
There are some consequences of the critical theory. For

example, at critical κ the mass of the Goldstone boson (6.6)
becomes

M2
o ≃ 2dm; ð6:13Þ

which again vanishes as expected from chiral perturbation
theory. Another consequence is that the length of the extra
dimension is finite in the continuum limit. However, due
to relation (3.4), i.e., Nt ¼ 4κ−5, the critical value of Nt

is NðcÞ
t ¼ 4ð2dÞ5=2. In the interesting case d ¼ 4, the value

NðcÞ
t ≈ 724, which is indeed large. Even at d ¼ 2 we have

NðcÞ
t ¼ 128. Therefore, both theories considered in this

paper, for massive and massless fermions, satisfy the large
Nt assumption that has been used by us from the beginning.

C. Fermion-antifermion condensate

Splitting the sum in Eq. (5.32) into light and heavy
frequency contributions, we find

ζðmÞ ≈ 2NNfG̃oð0Þ þOðmÞ: ð6:14Þ

Therefore, in the massless limit, we get

ζð0Þ ≈ 2NNf
1ffiffiffiffiffiffi
2d

p
κ
: ð6:15Þ

This way, in the continuum limit, the theory has a nonzero
chiral condensate. At critical κ its value is independent of
the coupling constant and the number of dimensions.

VII. RELATION TO q= 2 SYK MODEL

Recently, there has been a great deal of work on
discovering solvable examples of the AdS/CFT correspon-
dence. Such an example is the SYK model. Its effective
action on a time lattice has the form7

−SSYK;q ¼
N
2

X
t

½ln ð∂̂t − ΣÞ�ðt; tÞ

þ 1

2

�
J2N
q

X
t;t0

Gðt; t0Þq − N
X
t;t0

Gðt; t0ÞΣðt; t0Þ
�
;

ð7:1Þ
where Gðt; t0Þ and Σðt; t0Þ are bilocal fields defined on a
time lattice, N is a large positive integer, and J is the
coupling constant of the theory. In this subsection, we relate
our model, i.e., Eq. (4.20),

SΣ ¼ N
X
x;t

fln ½mþ γ̂5ðxÞ∂̂t þ ΣðxÞ�gðt; tÞ

−
N
2κ2

X
x;y;t;t0

Σðx; t; t0ÞðA−1Þðx; yÞΣðy; t0; tÞ ð7:2Þ

to the q ¼ 2 SYK model. The relation is established in the
massless case under the following conditions:

(i) the large N limit;
(ii) the coupling constant relationship J2 ¼ 2dκ2.

The saddle point solution G̃oðωÞ, which is x independent,
suggests that we may approximate the matrix A by a
constant matrix, i.e., A ¼ 2d. This way, the action (4.20)
decouples completely in x space

7See, for example, Eq. (A.9) of the Gross and Rosenhaus
paper [14].
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SΣ ¼ N
X
x;t

�
ln ½mþ γ̂5ðxÞ∂̂t þ ΣðxÞ� − 1

4dκ2
ΣðxÞ2

�
ðt; tÞ:

ð7:3Þ

This is an ideal gas of pairs of one-matrix theories

SΣ;� ¼ N
X
t

�
ln ðm� ∂̂t þ ΣÞ − 1

4dκ2
Σ2

�
ðt; tÞ ð7:4Þ

corresponding to even (odd) sites of the d-dimensional
lattice. Picking even sites only and setting m ¼ 0, we end
up with model

SΣ;1 ¼ N
X
t

�
ln ð∂̂t þ ΣÞ − 1

4dκ2
Σ2

�
ðt; tÞ: ð7:5Þ

One-matrix models have been studied in the past as a
nonperturbative formulation of the two-dimensional grav-
ity (see, for example, [21]). In general, such models do not
lead to black hole formation [22]. As it was shown in the
previous section, the theory with massless fermions shares
the same two-point function with the action of the q ¼ 2
SYK model. This is not a coincidence. The action (7.5)
may be written in terms of an additional Hermitian matrix
Gðt; t0Þ

SΣ;G;1 ¼ N
X
t

½ln ð∂̂t þ ΣÞ�ðt; tÞ − 2dκ2N
2

X
t;t0

Gðt; t0ÞGðt0; tÞ

þ iN
X
t;t0

Gðt; t0ÞΣðt; t0Þ; ð7:6Þ

which can be shown by integrating eSΣ;G;1 with respect to
individual matrix elementsGðt; t0Þ using Gaussian integrals
(4.15) and (4.16). Rescaling the matrix G → −iG as well
as the matrix Σ → −Σ we get twice the action of the
q ¼ 2 SYK model on a time lattice

SΣ;G;1 ¼ N
X
t

½ln ð∂̂t − ΣÞ�ðt; tÞ þ 2dκ2N
2

X
t;t0

Gðt; t0ÞGðt0; tÞ

− N
X
t;t0

Gðt; t0ÞΣðt; t0Þ; ð7:7Þ

where 2dκ2 ¼ J2 is identified with the square of the
coupling constant of the SYK model. Therefore, the large
N asymptotic safe QCDmay be described as an ideal gas of
q ¼ 2 SYK models on each site of a d-dimensional lattice.
Note that, since d and κ are related in a continuum limit
such that κc ¼ 1=

ffiffiffiffiffiffi
2d

p
, we have J2c ¼ 1. Therefore, the

relationship (3.4), i.e., Nt ¼ 4κ−5, has no influence on the
magnitude of J. It merely tells us that at critical κ the length

of the extra dimension NðcÞ
t ¼ 4ð2dÞ5=2 is large. Therefore,

the continuum limit of the asymptotic safe QCD

corresponds to the low temperature limit of the q ¼ 2 SYK
model with J2 ¼ 1.
Note that for q ¼ 2 the SYK model is not chaotic,

whereas for q ¼ 4 it saturates the chaos bound. Since we
used the leading-order approximation of the F function [see
Eq. (4.6)], the effect of order q ¼ 4 terms or higher is
expected to be present in the effective action. The extent to
which these terms alter the chaotic behavior of our theory
remains unclear without a proper calculation. However, the
q ¼ 2 SYK model originates from a quadratic Hamiltonian
with disorder couplings. Magan has shown that a generic
model of quadratic fermions with random couplings
satisfies the eigenstate thermalization hypothesis [23].

VIII. SUMMARY AND DISCUSSION

In this paper, we have formulated and studied a lattice
theory of fermions beyond the Standard Model. Integration
of fermions yields a lattice gauge theory that is expressed in
terms of Wilson loops of growing sizes. This premise is
interesting alone since the effective theory is a local Yang-
Mills theory in the limit of a vanishing coupling constant.
On the other hand, the fermion theory may be integrated
with the help of known one-link integrals. The remaining
effective theory of fermions is then bosonized with the help
of Hermitian matrices. The dual theory obtained this way is
solved in the large N limit. The solvability of the theory is a
distinctive property of the model. The solution shows that
the model shares qualitative properties of strong inter-
actions like asymptotic freedom, color confinement, and a
spectral gap. However, the renormalization group beta
function of the theory vanishes linearly with the coupling
constant, as opposed to the cubic law of the standard Yang-
Mills theory [1,2]. Nonetheless, the main result of the paper
is that a local Yang-Mills theory exists that is nonpertur-
batively solvable in contrast to the present status of an
unknown similar solution to the standard Yang-Mills theory
in four dimensions.
We have studied also the model with massless fermions.

In this case, the effective theory of Yang-Mills fields is
QCD with a large number of light flavors. Its solution is
ultraviolet complete at a nonzero critical coupling constant
where the theory is scale invariant. The light modes of the
theory are shown to be chirally symmetric, a symmetry that
is spontaneously broken. The theory shares the same two-
point function with the q ¼ 2 SYK model in the leading
order of large N approximation and the leading-order
approximation of our bosonization approach.
In Appendix A, we have shown that one may use

complex N × N matrices as disorder couplings instead
of SU(N) couplings. Within the approximation made for
the bosonization of fermions in the case of the SU(N)
disorder and the scaling relation assumed between N and
Nt (see Appendix A), we show that SU(N) and Gaussian
disorder give closely related effective theories.
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The results of this paper show that the model has a rich
structure, which we intend to study further in the future.
The next step is to treat the bosonization of fermions
exactly. In order to probe the theory further we would like
to compute more physical quantities such as the low lying
meson spectrum. The computation of fermion-antifermion
potential would reveal the nature of the interactions of the
theory. We would like to study further the connection to the
SYKmodel with the intention of finding whether the theory
has a gravity dual. Finally, we would like also to simulate
the theory on the computer.
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APPENDIX A: GAUSSIAN DISORDER

The SU(N) disordered fields are a special case of more
general model of lattice fermions coupled to general N × N
complex matrices ΦμðxÞ attached at each directed link (x,
xþ μ̂) on the lattice. Adopting the same notations as in
Sec. II A, the Hamiltonian operator of the theory is

H ¼
X
x;a

ΨðxÞ�aγ̂5ðxÞΨðxÞa

þ κ
X
x;a;b;μ

γ̂5ðxÞημðxÞ½ΨðxÞ�aΦμðxÞabΨðxþ μ̂Þb

− Ψðxþ μ̂Þ�aΦμðxÞ�abΨðxÞb�; ðA1Þ

where matrix elements of disorder fields, i.e., ΦμðxÞab,
a; b ¼ 1; 2;…; N, are distributed according to density

f½ΦμðxÞab� ¼ Ce−NjΦμðxÞabj2 ; ðA2Þ

with C being a normalization constant. The theory may be
formally described by the same Hamiltonian kernel h as in
Sec. II A with SU(N) fields substituted by Gaussian fields.
In terms of the Grassmann valued fermion field ψðx; tÞ,
with t labeling points in the extra dimension, the model is
defined by the action

I ¼ −N
X
x;a;b;μ

jΦμðxÞabj2 þ
X
x;t;a

ψ̄aðx; tÞ½1þ γ̂5ðxÞ∂̂t�ψðx; tÞa

þ κ
X

x;t;a;b;μ

ημðxÞ½ψ̄ðx; tÞaΦμðxÞabψðxþ μ̂; tÞb

− ψ̄ðxþ μ̂; tÞaΦμðxÞ�abψðx; tÞb�; ðA3Þ

whereas the partition function of the theory is

Z ¼
Z Y

x;μ;a;b

dΦμðxÞabdΦμðxÞab
Y
x;a

dψðxÞadψ̄ðxÞaeI :

Gaussian fields can be integrated using the formula

Z
dzdz̄e−αjzj2þβ̄zþγz̄ ¼ 2πi

α
eβ̄γ=α;

where α is a positive real number and β, γ are complex
numbers. The effective action of the theory that remains
after integration of Gaussian fields is

S¼
X
x;t;a

ψ̄aðx;tÞ½1þ γ̂5ðxÞ∂̂t�ψðx;tÞa

þ κ2

N

X
x;μ;t;t0;a;b

ψ̄ðx;tÞbψðx;t0Þbψ̄ðxþ μ̂; t0Þaψðxþ μ̂; tÞa:

ðA4Þ

This is precisely Eq. (4.7), which is used as an approxi-
mation of the full fermion theory (4.3) in the case of SU(N)
disorder. This shows that SU(N) and Gaussian disorder
theories are closely related. In the following subsection, we
further elaborate on this relationship.

1. Embedded gauge fields

In this subsection, we identify embedded gauge fields
within Gaussian fields and show that the large Nt theory is
effectively a local Yang-Mills theory. We begin by giving
the expression of the effective action that remains after
fermions are integrated out. Following the same steps as in
Sec. III A and taking into the account the Gaussian measure
(A2), the effective action of the theory is

SeffðΦÞ ¼ N
X
x;a;b;μ

jΦμðxÞabj2 −
Nt

2
Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2h2o;Φ

q
; ðA5Þ

with

ho;Φ ¼ γ̂5
X
μ

ημðΦμ −Φ�
μÞ; ðΦμÞxyab ¼ ΦμðxÞabδxþμ̂;y:

ðA6Þ

Note that the trace on the right-hand side of (A5) is taken in
the tensor product space of the lattice sites and N × N
matrices. Using the polar decomposition of Gaussian fields

ΦμðxÞ ¼ ϕμðxÞUμðxÞ; ðA7Þ

gauge fields are identified by the U(N) factor UμðxÞ, where
ϕμðxÞ are positive definite Hermitian matrices. In the
following, we keep the gauge fields fixed and find the
saddle point action in the large Nt limit using the solution
ansatz
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ϕμðxÞab ¼ φδab; ðA8Þ

where φ is a real value. A more general ansatz would
include terms that giveOð1=NtÞ contributions to the saddle
point action. Since we are interested in the leading con-
tributions to the effective action, we stay with the above
solution ansatz. Note also that both N and Nt are large and
we relate them by the κ-dependent factor

rðκÞ ¼ N
Nt

: ðA9Þ

Using this definition and the solution ansatz, the action is a
function of a single variable φ

SðφÞ=Nt ¼ φ2rðκÞVNd −
1

2
Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ φ2κ2h2o

q
; ðA10Þ

where ho is the fermion matrix in the background of the
gauge field UμðxÞ. The saddle point equation S0ðφÞ ¼ 0

yields the nontrivial solution φo given implicitly by the
equation

rðκÞ ¼ 1

4VNd
Tr

κ2h2offiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ φ2

oκ
2h2o

p : ðA11Þ

Note that the solution φo is gauge field dependent. As
shown in the next subsection, an explicit solution may be
computed in the limit of vanishing κ. Alternatively, one
may assign to the action (A10) an approximate as well as
gauge field-independent solution. Such a solution corre-
sponds to an approximate saddle point. This way, one may
proceed as in Sec. III A and obtain a local theory of Yang-
Mills fields. Therefore, Gaussian and U(N) disorder the-
ories are related at the approximate saddle point of the
Gaussian disordered action in the large Nt limit. In the next
subsection, we give an example of a precise relationship.

2. Saddle point Yang-Mills theory

In this subsection, we compute the saddle point action of
the theory with Gaussian disorder fields in the limit of
vanishing κ. Our starting point is the saddle point
equation (A11). Making the following ansatz for the
left-hand side

rðκÞ ¼ a2κ2 þ a4κ4; ðA12Þ

with a2, a4 being real constants, and matching it to the
right-hand side expansion of (A11) in κ, we find

a2 ¼
Trh2o
4VNd

; φ2
o ¼ −

8a4VNd
Trh4o

: ðA13Þ

Note that we have neglected the higher powers of the
expansion of the right-hand side since we seek the limit of

vanishing κ. We have also the freedom to select a small
value of a4 in order to control the matching error of the
expansion. Substitution of a2 and φ2

o to the action (A10)
give the effective theory of Yang-Mills fields

SeffðUÞ=Nt ∝ −
4a24ðVNdÞ2κ4

Trh4o
þOðκ6Þ: ðA14Þ

Since the leading term does not look like the standard
plaquette action of Wilson, we expand Trh4o in terms of
gauge fields and get

SeffðUÞ=Nt ∝ −
4a24ðVNdÞ2κ4

6VNdþ 4
P

μ≠νTrð1 −UμUνU�
μU�

νÞ
þOðκ6Þ: ðA15Þ

For smooth gauge fields close to continuum limit, the
plaquette terms TrUμUνU�

μU�
ν are close to 1. This pro-

perty allows us to write the right-hand side as a geometric
series of 4

P
μ≠ν Trð1 −UμUνU�

μU�
νÞ=6VNd with the

leading term

SeffðUÞ=Nt ∝
4

9
a24κ

4
X
μ≠ν

TrUμUνU�
μU�

ν þOðκ6Þ: ðA16Þ

If we insist on maintaining the scaling of Nt to κ as defined
in (3.4), then the leading terms of this theory and the one of
(3.5) are the same provided we select a4 ¼ 3=4. This
calculation shows that close to continuum limit the saddle
point action of the theory with Gaussian fields yields a
similar Yang-Mills leading term as in the case of the theory
with SU(N) disorder fields. Note that the form of the rðκÞ
ansatz (A12) is crucial to arrive to this conclusion. If there
is no relation between N and Nt, the theory may not
be local.

APPENDIX B: GROUP INTEGRATION

This section is written to make the paper self-contained.
We begin first with some integration rules in the unitary
groups.

1. Group integration rules

Unitary group integration rules used in this paper rely on
the Haar measure. These rules are known and we point the
reader to the paper of Creutz, Ref. [15],8 for a detailed
account. Here we would like to give a few useful results.
For example, invariant group integration arguments lead to
the conclusion

8There is a slight difference with our formulas since this
reference uses the group SUðNÞ.
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Z
dUUab ¼ 0: ðB1Þ

One can extend this result for the product of n matrix
elements as long as n ≠ N. In the case n ¼ N the integral is
nonvanishing if indices lead to a group invariant quantity
such as the determinant of U,9 i.e.,

Z
dUU1a1U2a2 � � �UNaN ¼ detU

N!
ϵa1a2;…;aN ; ðB2Þ

where a1; a2;…; aN is a permutation of 1; 2;…; N and
ϵa1a2;…;aN is the rank N totally antisymmetric tensor.
Indeed, if we multiply both sides by ϵa1a2;…;aN and sum
over all permutations a1; a2;…; aN we get an identity.
Another useful integral is

Z
dUUabU�

cd ¼
1

N
δadδbc: ðB3Þ

One can be convinced about the normalization and the δad
factor by taking b ¼ c and summing both sides over b. The
same argument justifies the factor δbc. This integral is also
derived at the end of the next subsection applying the
results obtained therein.

2. Computation of one-link integrals

In this subsection, we deal with the computation of one-
link integrals of the type

eWðψ̄ ;ψ ;χ̄;χÞ ¼
Z

dU e

P
a;b

�P
t
ψ̄ t
aUabχ

t
bþ
P

t0 χ̄
t0
a U�

abψ
t0
b


; ðB4Þ

where a, b indices run from 1 to N, the t index runs from
1 to Nt, the trace is taken in t space, and dU is the Haar
measure of the UðNÞ group. Using invariance properties of
the Haar measure, the integral depends only on gauge
invariant quantities

X
a

ψ̄ t
aψ

t0
a;

X
a

χ̄t
0
aχ

t
a: ðB5Þ

On the other hand, the integral depends also on bilinear
Grassmann sums

X
t

ψ̄ t
aχ

t
b;

X
t0
χ̄t

0
aψ

t0
b; ðB6Þ

since they are invariant with respect to invertible Nt × Nt
matrix transformations. Therefore, if we define the Nt × Nt
matrix

Λðt; t00Þ ¼ 1

N2

X
t0;a;b

ψ̄ t
bψ

t0
b χ̄

t0
aχ

t00
a ; ðB7Þ

the integral is a function of t-space traces of this matrix

trΛ; trΛ2;…; trΛNt ; ðB8Þ

i.e., it can be written in the form

eNtrFðΛÞ ¼
Z

dU e

P
a;b

�P
t
ψ̄ t
aUabχ

t
bþ
P

t0 χ̄
t0
a U�

abψ
t0
b


; ðB9Þ

where F is a matrix valued function defined by its power
series expansion. Taking the derivative of both sides with
respect to ψ̄ t1

b and then ψ t
b in this order, multiplying by

ψ̄ t2
a ψ t

a, summing over a, b, and t, we find

X
a;b;t

ψ̄ t2
a ψ t

a
∂2eNtrFðΛÞ

∂ψ t
b∂ψ̄ t1

b

¼ −N2Λt2t1e
NtrFðΛÞ: ðB10Þ

The left-hand side may be written in terms of derivatives of
trFðΛÞ with respect to matrix elements of Λ. This way, we
obtain a system of N2

t coupled second-order differential
equations for trFðΛÞ
X
t0t00t3t4

�
N2

∂trF
∂Λt0t00

∂trF
∂Λt3t4

þ N
∂2trF

∂Λt0t00∂Λt3t4

�

×
X
a;b;t

ψ̄ t2
a ψ t

a
∂Λt0t00

∂ψ t
b

∂Λt3t4

∂ψ̄ t1
b

þ
X
t2t4

∂trF
∂Λt3t4

X
a;b;t

ψ̄ t2
a ψ t

a
∂2Λt3t4

∂ψ t
b∂ψ̄ t1

b

¼ −N2Λt2t1 ; ðB11Þ

supplemented by suitable boundary conditions. For exam-
ple, the set

FðΛÞt2t1 jΛ¼0 ¼ 0;
∂trF
∂Λt1t2

				
Λ¼0

¼ −δt2t1 ðB12Þ

guarantees that the solution is regular around zero. Using
the definition of Λ (B7), the system to be solved is

X
t4

Λt2t4

∂trF
∂Λt1t4

−
X
t0

�X
t4

Λt0t4
∂trF
∂Λt1t4

��X
t00
Λt2t00

∂trF
∂Λt0t00

�

−
1

N

X
t0

�X
t00t4

Λt2t00Λt0t4
∂2trF

∂Λt0t00∂Λt1t4

�
þ Λt2t1 ¼ 0: ðB13Þ

This system may be written in matrix notations in the form

Λ
∂trF
∂Λ −

�
Λ
∂trF
∂Λ

�
2

−
1

N

�
Λ

∂
∂Λ

�
2

trF þ Λ ¼ 0: ðB14Þ
9In the case of the SUðNÞ group the determinant is one.
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Since we are interested in the large N limit, we drop the
third term and find

�
Λ
∂trF
∂Λ

�
2

− Λ
∂trF
∂Λ − Λ ¼ 0: ðB15Þ

This is an algebraic quadratic matrix equation for Λ ∂trF
∂Λ . Its

solution poses no problem and is given by

Λ
∂trF
∂Λ ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Λ

p

2
; ðB16Þ

where the second condition in Eqs. (B12) is taken into
account and the matrix square root is defined in terms of its
power series expansion. A solution for the matrix FðΛÞ that
satisfies this equation as well as the condition Fð0Þ ¼ 0 is

FðΛÞ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Λ

p þ ln
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4Λ
p

2
: ðB17Þ

In this case too, the matrix logarithm is defined in terms of
its power series expansion.10

As an application let us derive the group integral (B3).
Taking the fourth derivative of both sides of the integral
(B9) with respect to ψ̄ , ψ , χ̄, χ Grassmann variables in this
order, one finds

∂4eNtrFðΛÞ

∂χtb2∂χ̄t
0
b1
∂ψ t0

a1∂ψ̄ t
a2

				
ψ¼ψ̄¼χ¼χ̄¼0

¼ −
Z

dUUa1b2U
�
b1a2 :

ðB18Þ
Substituting FðΛÞ on the left-hand side using the result
(B17), one finds

∂4eNtrFðΛÞ

∂χtb2∂χ̄t
0
b1
∂ψ t0

a1∂ψ̄ t
a2

				
ψ¼ψ̄¼χ¼χ̄¼0

¼ −
1

N
δa1a2δb1b2 : ðB19Þ

Comparing the right-hand sides of the last two equations,
Eq. (B3) is thus established. Other interesting integrals can
be computed using this method.

3. Relation to other work

Our derivation can be related to the one of Ref. [24]. In
this reference, the derivative of trF is taken with respect to
invariant traces

λ1 ¼ trΛ; λ2 ¼ trΛ2;…; λNt
¼ trΛNt : ðB20Þ

The resulting system of differential equations is related to
ours (B14), if the derivative of trF with respect to matrix
elements of Λ is defined by the expression

∂trF
∂Λ ¼ Λ

∂trF
∂λ1 þ 2Λ

∂trF
∂λ2 þ � � � þ NtΛ

∂trF
∂λNt

:

In order to find the solution, Ref. [24] diagonalizes the
matrix Λ, whereas Ref. [25] relies on the “strong coupling”
solution of Brezin and Gross [17], their solution being
found also by diagonalizing Λ.

APPENDIX C: QCD AT STRONG COUPLING

The large N limit of QCD at strong coupling has been
studied in the past. Notable references are Kluberg-Stern
et al. [24] and Kawamoto and Smit [25]. The aim of this
Appendix is to derive the main results of QCD at strong
coupling using the bosonization approach employed in this
paper. The action is given by Eq. (2.19), but without the
time derivative term, i.e.,

I ¼ mf

X
x;t;a

ψ̄aðx; tÞψðx; tÞa

þ κ
X

x;t;a;b;μ

ημðxÞ½ψ̄ðx; tÞaUμðxÞabψðxþ μ̂; tÞb

− ψ̄ðxþ μ̂; tÞaUμðxÞ�abψðx; tÞb�; ðC1Þ
where κ is now fixed at the value of 1=2. Everything else
being the same, integrating gauge fields as in Sec. IVA, we
get

S ¼ mf

X
x;t;a

ψ̄aðx; tÞψðx; tÞa

þ N
X
x;μ;t

F

�
−
κ2

N2

X
t0;a;b

ψ̄ðx; tÞbψðx; t0Þb

× ψ̄ðxþ μ̂; t0Þaψðxþ μ̂; tÞa
�
; ðC2Þ

where Fð:Þ is defined by the expression [see (B17)]

FðΛÞ ¼ 1 − ð1þ 4ΛÞ12 þ ln
1þ ð1þ 4ΛÞ12

2
: ðC3Þ

In this paper, we approximate the right-hand side with
the leading-order result FðΛÞ ¼ −ΛþOðΛ2Þ. It is this
approximation that will be tested in the case of strong
coupling QCD. Following the same steps as in Sec. IV, the
final expression of the bosonic effective action is [see
Eq. (4.20)]

SΣ ¼ N
X
x;t

fln½mf þ ΣðxÞ�gðt; tÞ

−
N
2κ2

X
x;y;t;t0

Σðx; t; t0ÞðA−1Þðx; yÞΣðy; t0; tÞ: ðC4Þ

1. Large N solution

For future references on QCD at strong coupling, we
make this section self-contained. Therefore, a few steps of

10Note that boundary conditions specified in (B12) apply in the
case when trΛ is small. In this case, the first term on the left-hand
side of Eq. (B15) may be neglected and one finds FðΛÞ ¼ −Λ.
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the large N solution of Sec. V will be repeated here. In
order to find the large N solution, we find first the field that
makes the action stationary and then compute an effective
action by computing fluctuations around such a solution.
The stationary field should satisfy the necessary first-order
conditions, which in our case is the system of equations

∂SΣ
∂Σðx; t; t0Þ ¼ 0; x ∈ Λd; t; t0 ¼ 1; 2;…; Nt; ðC5Þ

where SΣ is the bosonic action (C4). The derivative of the
first term is taken by expanding the matrix logarithm as a
power series on Σ. This way, we obtain the system of
equations
�

1

mf þ ΣðxÞ
�
ðt; t0Þ ¼ 1

κ2
X
y

ðA−1Þðx; yÞΣðy; t; t0Þ: ðC6Þ

Denoting by GðxÞ ¼ 1=½mf þ ΣðxÞ� the Nt × Nt matrix,
equations take the form
�

1

GðxÞ
�
ðt; t0Þ ¼ mfδt;t0 þ κ2

X
μ

½Gðxþ μ̂; t; t0Þ

þGðx − μ̂; t; t0Þ�: ðC7Þ

This is a system of matrix valued quadratic equations,
which is solved using the ansatz

Gðx; t; t0Þ ¼ Goδt;t0 þ G̃ðx; t; t0Þ; ðC8Þ

where G̃ðx; t; t0Þ is a small fluctuation field around the
uniform solution Goδt;t0 . Expanding the left-hand side of
(C7) up to the first order in power series of the matrix
G−1

o G̃ðxÞ, we get a quadratic equation for the matrix Go

1

Go
−mf − 2dκ2Go ¼ 0; ðC9Þ

with the solution

Go ¼
−mf þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f þ 8dκ2
q
4dκ2

; ðC10Þ

as well as the first-order constraint in the fluctuating field
G̃ðx; t; t0Þ

G̃ðx; t; t0Þ þ κ2G2
o

X
μ

½G̃ðxþ μ̂; t; t0Þ þ G̃ðx − μ̂; t; t0Þ� ¼ 0:

ðC11Þ

Substituting the ansatz (C8) into the effective action (C4),
using Eqs. (C6) and (C7) and the first-order constraint
(C11), as well as expanding the logarithm up to the second
order in powers of the G−1

o GðxÞ matrix, we get

SΣ=N ¼ − NtVðlnGo þ dκ2G2
oÞ

þ κ2

2

�
1

κ2G2
o
− 2d

�X
x;t;t0

G̃ðx; t; t0ÞG̃ðx; t0; tÞ

þ κ2

2

X
x;t;t0;μ

½G̃ðxþ μ̂; t; t0Þ − G̃ðx; t; t0Þ�

× ½G̃ðxþ μ̂; t0; tÞ − G̃ðx; t0; tÞ�
þO½G−3

o G̃ðxÞ3�; ðC12Þ

where the translation invariance on the lattice, i.e., the
identity

P
x G̃ðxþ μ̂; t; t0Þ2 ¼ P

x G̃ðx; t; t0Þ2, has also
been used. From this expression, one can infer the free
energy of the theory

F ¼ NNtVðlnGo þ dκ2G2
oÞ: ðC13Þ

On the other hand, Eq. (C12) can be written in the form

−SG̃=ðκ2NÞ ¼ M2
X
x

treiG̃ðxÞ þ
X
x;μ

treiG̃ðxþμ̂Þe−iG̃ðxÞ

þO½G−3
o G̃ðxÞ3� þ H:c:; ðC14Þ

with the trace taken in t space and where we have denoted

M2 ¼ 1

κ2G2
o
− 2d ¼

m2
f þmf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f þ 8dκ2
q
2κ2

: ðC15Þ

Neglecting cubic order corrections, the resulting effective
theory (C14) is a nonlinear sigma model of massive bosons
with mass M given by Eq. (C15). For vanishing mf, the
mass squared vanishes linearly with mf

M2 ¼ mf

κ

ffiffiffiffiffiffi
2d

p
þOðm2

fÞ: ðC16Þ

For vanishing quark mass, the theory has an exact global
UðNtÞL ×UðNtÞR symmetry, i.e., the effective action is
invariant with respect to global transformations

eiG̃ðxþμ̂Þ → UeiG̃ðxþμ̂ÞV�; eiG̃ðxÞ → VeiG̃ðxÞU�: ðC17Þ

The chiral condensate of the theory does not vanish, and
therefore, the chiral symmetry (C17) is spontaneously
broken to UðNtÞ. In order to see this, we compute the
chiral condensate, which is defined by expressions

ζ ¼ lim
mf→0

lim
V→∞

1

V

X
x;t;a

hψ̄ðx; tÞaψðx; tÞai

¼ lim
mf→0

lim
V→∞

1

V
∂ lnZ
∂mf

¼ − lim
mf→0

lim
V→∞

1

V
∂F
∂mf

: ðC18Þ

Using the result (C13) for the free energy and substituting
the solution Go (C10), we get
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ζ ¼ NNtffiffiffiffiffiffiffiffiffiffi
2dκ2

p
				
κ¼1

2

¼ NNt

ffiffiffi
2

d

r
: ðC19Þ

Therefore, the chiral symmetry of QCD at strong coupling
is broken spontaneously to the UðNtÞ group, whereas the
spectrum has N2

t Goldstone bosons.
We note that our results rely on the leading-order appro-

ximation FðΛÞ ¼ −ΛþOðΛ2Þ. Our condensate and boson
mass differ with the exact results of Refs. [24,25] by aOð1Þ
prefactor at vanishing fermion mass. This small difference
does not alter the physical picture and thus justifies our
approximation. In order to make these differences trans-
parent, we summarize below the approach and results
obtained in these references.

2. Relation to other work

If we want our results to be exact, we may follow the
bosonization approach of Refs. [24,25]. Another possibility
is to use the Lagrange multiplier method as shown in a
series of papers related to the SYKmodel; see, for example,
Gross and Rosenhaus [14], as well as Kitaev and Suh [12].
The Kluberg-Stern et al. paper starting point is the

observation that the integration of functions that depend on
Grassmann pairs η̄tηt

0
; t; t0 ¼ 1;…; k can be cast in the form

of the following matrix determinant:

Z Yk
t¼1

dηtdη̄t fðη̄1η1; η̄1η2;…; η̄kηkÞ

¼

									

∂f
∂ðη̄1η1Þ

∂f
∂ðη̄1ηkÞ

..

.

∂f
ð∂η̄kη1Þ

∂f
∂ðη̄kηkÞ

									
η¼η̄¼0

: ðC20Þ

The proof can be established by noting that only the order
k term of Grassmann pairs power series expansion of
f contributes in the integral. If Grassmann pairs of the right-
hand side are formally substituted by real valued matrix
elements σtt0 ¼ 0; t; t0 ¼ 1;…; k, we get the identity

Z Yk
t¼1

dηtdη̄t fðη̄1η1; η̄1η2;…; η̄kηkÞ

¼

									

∂f
∂σ11

∂f
∂σ1k

..

.

∂f
∂σk1

∂f
∂σkk

									
σ¼0

: ðC21Þ

Substituting the Fourier representation

fðσÞ ¼ 1

ð2πÞk2
Z Y

tt0
dλtt0e

−i
P

tt0 σtt0 λt0 t f̃ðλÞ ðC22Þ

on the right-hand side, we get

Z Yk
t¼1

dηtdη̄tfðη̄1η1; η̄1η2;…; η̄kηkÞ

¼ ð−iÞk
ð2πÞk2

Z Y
tt0
dλtt0 det λf̃ðλÞ: ðC23Þ

The Fourier transformed function f̃ can be written in terms
of the original function using the inverse Fourier transform,
and the final expression is

Z Yk
t¼1

dηtdη̄tfðη̄1η1; η̄1η2;…; η̄kηkÞ

¼ ð−iÞk
ð2πÞk2

Z Y
tt0
dλtt0dσtt0 det λe

i
P

tt0 σtt0 λt0tfðσÞ: ðC24Þ

If f depends on Grassmann sums
P

N
a¼1 η̄

t
aη

t0
a;t;t0 ¼1;…;k,

as is the case in our application, the Berezin integral (C21),
gives

Z YN
a¼1

Yk
t¼1

dηtadη̄ta f

�XN
a¼1

η̄1aη
1
a;
XN
a¼1

η̄1aη
2
a;…;

XN
a¼1

η̄kaη
k
a

�

¼

									

∂
∂σ11

∂
∂σ1k

..

.

∂
∂σk1

∂
∂σkk

									

N

fðσÞjσ¼0; ðC25Þ

whereas the result reads

Z YN
a¼1

Yk
t¼1

dηtadη̄taf

�XN
a¼1

η̄1aη
1
a;
XN
a¼1

η̄1aη
2
a;…;

XN
a¼1

η̄kaη
k
a

�

¼ ð−iÞk
ð2πÞk2

Z Y
tt0
dλtt0dσtt0 det λNe

i
P

tt0 σtt0 λt0 tfðσÞ: ðC26Þ

This way, the fermion theory can be cast in the form of the
bosonic theory with an action S that depends on matrix
elements λtt0 ; σtt0 ; t; t0 ¼ 1; 2;…; k

−Sðλ; σÞ ¼ trðN ln λþ iλTσÞ þ ln fðσÞ: ðC27Þ

Using this technique and adopting the normalization of
fermion bilinears as in Ref. [24], i.e., ψ̄ψ → iψ̄ψ , one can
show that the large N solution of the fermion theory (C2) is
given at the saddle point σþδtt0 with

iσþ ¼
−mfð1 − 1

dÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f þ 2d − 1
q

dð1þ m2
f

d2 Þ

						
mf¼0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2d − 1

p

d
;

ðC28Þ
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whereas the chiral condensate is

ζ ¼ NNt

ffiffiffi
2

d

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

2d

r
: ðC29Þ

Now let us turn to the approach followed by Kawamoto
and Smit [25]. These authors use the bosonization of the
fermion determinant based on the identity

Z
dUðdetRUÞ−NetrJRU ¼ ckNðdet JÞN; ðC30Þ

where dU is the Haar measure on the UðkÞ group, R is a
Hermitian and positive definite k × k matrix, and ckN are
defined by the expression

ckN ¼ 0! 1! � � � ðk − 1Þ!
N!ðN þ 1Þ! � � � ðN þ k − 1Þ! : ðC31Þ

Since the left-hand side of the equation is independent
of R one can define M ¼ RU and combine Eqs. (C30)
and (C25) to get

Z YN
a¼1

Yk
t¼1

dηtadη̄ta f

�XN
a¼1

η̄1aη
1
a;
XN
a¼1

η̄1aη
2
a;…;

XN
a¼1

η̄kaη
k
a

�

¼ 1

ckN

Z
dUe−Ntr lnMe

tr

0
BB@

∂
∂σ11

∂
∂σ1k

..

.

∂
∂σk1

∂
∂σkk

1
CCAM

fðσÞjσ¼0:

ðC32Þ

Expanding the exponential, one finally obtains the boson-
ized fermion theory

Z YN
a¼1

Yk
t¼1

dηtadη̄ta f

�XN
a¼1

η̄1aη
1
a;
XN
a¼1

η̄1aη
2
a;…;

XN
a¼1

η̄kaη
k
a

�

¼ 1

ckN

Z
dUe−Ntr lnMfðM11;M12;…;MkkÞ; ðC33Þ

where the integration is over the unitary part of the polar
decomposition of the matrix M. The proof of the identity
(C30) is given in the Appendix of Ref. [25]. However, the
basic idea can be understood in the case N ¼ 1. Indeed,
setting R ¼ 1 and factoring U ¼ eiφV, where V is a SUðkÞ
matrix, one has

Z
dU

etrJU

detU
¼ 1

2π

Z
2π

0

dφ
Z
SUðkÞ

dV e−ikφee
iφtrJV: ðC34Þ

Expanding the second exponential and integrating over φ,
only the power of order k gives a nonvanishing result.
Therefore, one gets

Z
dU

etrJU

detU
¼ 1

k!

Z
SUðkÞ

dV ðtrJVÞk

¼ 1

k!

X
t1;…;tk

X
t0
1
;…;t0k

Jt1t01 � � � Jtkt0k

×
Z
SUðkÞ

dVVt0
1
t1 � � �Vt0ktk

¼ 1

k!
det J;

where we have used the group integration formula
Z

dV Vt0
1
t1 � � �Vt0ktk

¼ 1

k!
ϵt0

1
…;t0k

ϵt1…;tk : ðC35Þ

This identity may be proven by generalizing the
formula (B2) of Appendix B 1.
Using the bosonized fermion theory (C33), one can show

that the large N solution of the fermion theory (C2) is given
at the saddle point vδtt0 with

v ¼
−mfð1 − 1

dÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f þ 2d − 1
q

dð1þ m2
f

d2 Þ

						
mf¼0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2d − 1

p

d
;

ðC36Þ
whereas the free energy of the theory is

F ¼ NNtV½− ln vþmfvþ dFð−κ2v2Þ�: ðC37Þ
This way, the chiral condensate is given by the expression

ζ ¼ NNt

ffiffiffi
2

d

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

2d

r
: ðC38Þ

Therefore, whichever bosonization method is used, one
gets identical results.
Finally, let us compare these results with ours in the limit

mf → 0. Our saddle point solution (C10), evaluated at
κ ¼ 1=2, as well as the condensate (C19) read

Gojmf→0 ¼
ffiffiffiffiffiffi
2d

p

d
; ζ ¼ NNt

ffiffiffi
2

d

r
: ðC39Þ

Therefore, our approximation misses the prefactorffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

2d

q
, which is of the order Oð1Þ even at d ¼ 2. For

large d, the exact treatment of the function F (C3) yields the
same result as ours.
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