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Disordered fermions, extra dimensions, and a solvable Yang-Mills theory
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By generalizing disorder couplings of the Sachdev-Ye-Kitaev (SYK) model by means of SU(N)
matrices, we formulate a lattice model of fermions in d 4+ 1 dimensions. Integration of fermions yields an
effective theory of Yang-Mills fields in d dimensions, the latter approaching the standard Yang-Mills theory
in the case of heavy fermions and the classical limit of the vanishing coupling constant of the theory.
Quantum mechanically, the theory is solved using large N approximation of the dual effective theory of
Hermitian matrices in d dimensions. The theory is asymptotically free and confines the color. In case of
massless fermions, the emerging theory is an asymptotic safe QCD theory. We discuss also the relationship

of this theory to the SYK model.
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I. INTRODUCTION

Yang-Mills theories and quantum chromodynamics
(QCD) [1-4] play an important role in our understanding
of basic forces of the Universe. They are part of the Standard
Model of particle physics. Nonetheless, an analytical sol-
ution in four dimensions is missing. Although early lattice
simulations of Creutz were illuminating and showed that
there is no second-order phase transition between strong and
weak coupling [5], the possibility of a Gross-Witten [6] and
Wadia [7] transition diminished the hope of a full solution
from the strong coupling regime. While an analytical solu-
tion is highly desirable, the high precision lattice simulation
of Liischer and Weisz leaves no doubt that, at low energies,
the Yang-Mills theory may be described by an effective string
theory [8]. Many years of research in lattice simulations of
QCD have proven to be an indispensable tool in understanding
the Standard Model at a nonperturbative level. During these
years, string theory has made a great contribution in the search
for a unifying theory of gravity and particle physics. The AdS/
CFT correspondence, put forward first by Maldacena [9], has
established an avenue in this direction. There is recent
progress made in the field using the Sachdev-Ye-Kitaev
(SYK) generic model [10-12], which uses disorder and extra
dimensions as model building ingredients.

In this paper, we formulate a solvable model beyond the
Standard Model. The basic degrees of freedom of the model
are d + 1-dimensional lattice fermions coupled by means
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of SU(N) random matrices defined on a d-dimensional
sublattice. Such matrices generalize the randomly distrib-
uted couplings of the SYK model. However, such a
generalization has a nontrivial effect in the structure of
the theory: the model is chosen with the aim of obtaining a
lattice gauge theory as an effective theory that remains after
fermion integration. There may be an arbitrary number of
such models. We have constrained the model with the
intention to have a dual description of gauge theories and
quantum mechanical models of holography, such as the
SYK model and its generalizations.

Note that one may use complex N x N matrices as
disorder fields. In Appendix A, we formulate a matrix
theory with Gaussian disorder couplings. In this approach,
SU(N) matrices embedded in general complex matrices are
the basis of an emergent Yang-Mills theory.

In our model, we fix the length of the extra dimension
by the coupling constant of the theory. Therefore, the
d-dimensional system evolves along the extra dimension in
order to reach a certain value of the coupling constant.
Since each value of the latter corresponds to a given length
scale, the extra dimension in our theory is the dimension of
physical scales.

The results of this paper may be summarized as follows:

(1) The model with heavy fermions yields an effective

theory of local Yang-Mills fields, a theory which
approaches the standard Yang-Mills theory in the
classical limit of a vanishing coupling constant.

(i) The model with massless fermions yields an effective

theory of QCD with a large number of light fermions.

(iii) In the large N limit, the theory is dual to a field

theory of matrices of order N,, where N, is the
number of lattice sites along the extra dimension.

(iv) The theory is nonperturbatively solvable in the large

N approximation.
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(v) The theory with heavy fermions is asymptotically
free and confines the color.

(vi) The theory with massless fermions is dual to an
asymptotic safe QCD theory, i.e., a QCD theory
which is ultraviolet complete at a nonzero value of
the coupling.

(vii) The massless fermion theory is also chirally sym-
metric, a symmetry that is spontaneously broken.

(viii) Although the heavy fermion theory shares important
properties with the standard Yang-Mills theory, like
asymptotic freedom and color confinement, the
corresponding beta functions are different functions
of the coupling constant.

(ix) The asymptotic safe QCD theory, within the leading
approximation of our bosonization approach and the
low energy limit, is equivalent to an ideal gas of
g =2 SYK models.

In summary, we show that a local Yang-Mills theory is
solvable in the dual formulation in the large N limit. Its
solution shares qualitative properties of the standard Yang-
Mills theory. Moreover, we are able to link gauge theories
with the SYK model of holography.

The paper is organized as follows: In the next section, we
define the model and discuss the disorder average of the
theory. In Sec. III, we show the effective description of the
theory with heavy and massless fermions. In the first case,
we obtain local theory Yang-Mills fields in the weak
coupling limit, whereas in the second we get QCD with a
large number of light modes. Section IV deals with the
disorder averaged theory, which is a field theory of matrices
of order N,. In Sec. V, we solve the matrix field theory in the
large N limit and heavy fermions. Section VI deals with the
case of massless fermions in which case an asymptotic safe
QCD theory emerges. In Sec. VII, we discuss the relation
to the ¢ = 2 SYK model. The last section closes the paper
with a discussion of results and their phenomenological
relevance within and beyond the Standard Model. The paper
includes three Appendices. In Appendix A, we show that the
model can be generalized in the case of Gaussian disorder,
where we get an identical large N solution as with SU(N)
disorder within our approximation of bosonization of the
fermion theory. In order to make the paper self-contained,
Appendix B serves as a starting point in group integration
and one-link integrals. Finally, Appendix C applies our
bosonization approach to strong coupling QCD.

II. THE MODEL

In this section, we define our model using Hamiltonian
and field theory formalism. We begin with the description
of the Hamilton operator.

A. Hamilton operator
Let W%(x),¥%(x)*,c =1,2,...,N be N Dirac-fermion
annihilation and creation operators for each Dirac compo-
nent a = 1,2, ...,2%4? at each site x = (x1,x,,...,x;) on a

regular Euclidean lattice of even dimensions d acting on the
Hilbert space H. They obey the anticommutation relations

{‘“P?()C)*, \PZ’/ (.X'/)} = 500' (lu/éxx" (2 1)

The lattice is finite and we assume it to be a torus with V
number of sites. Let also U ,(x) be an SU(N) matrix at each
directed link (x, x + /i) on the lattice, where y = 1,2, ..., d.
The Hamiltonian operator of the model is

{lep s (x
+ KZ 757;4

+T@+M%m%@WHW}

()W (x + /1)

(2.2)

where « is the lattice spacing, k is a dimensionless coupling
constant, y, are the usual gamma matrices, and m is the
bare fermion mass. We have denoted by y5 the product of
all gamma matrices in order to remember that the theory in
four dimensions is the phenomenologically relevant theory.
In the above expression, we have suppressed Dirac indices
for clarity. In the following, the lattice spacing is set to
unity. Note also that we have chosen naive fermions on the
lattice. Any local discretization would do the job. For
example, the Kogut-Susskind version (41"

H=mY ¥(x)75(0)¥(x)
+ 1Y P50 () [P (x)"

+ ¥ (x + ) U, (x)P(x)]

U, (x)¥(x + f2)

(2.3)

is simpler since fermion operators carry no Dirac indices;
i.e., they obey the anticommutation relations

{lijc(x>*’ lIAJC’ ()C/>} = 506’5)06"

Here, 75 is the lattice site parity operator taking +1 values
on even and odd lattice sites, i.e., 75(x) = (—=1)%""™% and
m(x) = Ln,(x) = (=11 up=2,..d Both, 75
and 7, are diagonal matrices on the lattice. If we define
hopping matrices

(2.4)

(Uﬂ)xy;cc’ = Uu(x)cc’éxﬂ?,y? (25)
then the following commutation relations hold:
}7577/4 - 7]/4775 =0, ?SUﬂ + U/ﬂ,}S =0,
U, —Um, =0. (2.6)

'For a derivation of Kogut-Susskind fermions from naive
fermions, see, for example, the book of Rothe [13], pp. 58-59.
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For the clarity of notations, we introduce the Hermitian
fermion matrix

h=mis +xisy_n, (U, —Up). (2.7)
"
This way, our model may be written in the form
H=Y ¥ )P0 (238)

x,y.c.c

where h(x,y),. are the matrix elements of the VN x VN
fermionic matrix A.

Note that the Hamilton operator (2.3) defines a dynami-
cal system in d dimensions, where d is the number of
dimensions of the world we live in, i.e., d = 4. The system
evolves along an extra dimension, which for the moment
may be thought of as a fictitious time dimension. We take
this extra time to be imaginary, which means that we are
studying the system at a finite temperature with partition
function

Zp(U) = TryeNid (2.9)
where the trace is taken in the Hilbert space and N, is the
length of the extra dimension in units of the lattice spacing
a. Using the Hilbert space trace rules, we get

Zp(U) = det (1 + e7Nih), (2.10)
In this paper, we are interested in the large N, limit of the

theory. In the next subsection, we compute the effective
gauge action of the theory in this limit.

B. Effective gauge action

Since £ is traceless, and using the identity detA = ¢T84,

we can write the right-hand side of (2.10) in the form

Ni

Zp(U) = e 2" det(e%h 4 e—%h) _ det(e%h + e‘%h),
(2.11)

where the trace is taken in the tensor product space of the
lattice sites and the SU(N) group. The matrix in the last
expression is an even function of #; therefore, we get
Zp(U) = det (€Y 4 ¢=VF), (2.12)
In the large N, limit, the second exponential may be

neglected if mN, is not smaller than O(1).> With this
assumption, the effective action of the theory is

2 .

In the massless case, we will assume a small mass of the order
O(1/N,) with the prefactor large enough so that we may always
neglect the second exponential.

N
Set(U) = —T’Tr\/hz. (2.13)

Eventually, we would like to integrate gauge fields and the
right-hand side is not convenient for this purpose. In
the next subsection, we formulate the theory as a d + 1
field theory suitable to deal with the integration of the
SU(N) field.

C. Fermion action

Another way to formulate the model is by introducing
Grassmann valued fermion fields ©(x, ) and ©(x, ¢), where
t=1,2,..., N, label the lattice sites along the extra dimen-
sion. N, assumes integer values and the Grassmann field
satisfies antiperiodic boundary conditions along the extra
direction. The action of the theory is

=Y 0(x.0)0,0(x.1)+ Y _ O(x.0)h(x.y)0(y.1),

x,y,t
(2.14)
where 5t is a lattice derivative, for example,
A , 1
at(tv f)=5 <5t+1.t’ - 6t—1.t’)' (2-15)

2

In the continuum limit, this formulation of the model is
equivalent to the Hamilton operator formulation (2.3).

D. Gauge invariance

The action (2.14) defines a lattice theory of a massive
fermion in d+ 1 dimensions in a fixed background of
SU(N) random matrices, which are defined on the links of
the d-dimensional sublattice replicated along the extra
dimension. As it stands, it allows gauge variant states to
propagate in the bulk. In order to ensure a full gauge
invariance, one can introduce an extra SU(N) field along
the extra dimension and different random SU(N) matrices
at each time slice of the theory, ie., U,(x,7),u = 1,2, ...,
d,t=1,2,...,N,. Fixing the axial gauge, the gauge
invariant action within the restricted class of gauge trans-
formations of the axial gauge is given by

Tor = O 000(x.1) + Y O(x.0)h(x.y)0(y.1).

Xyt
(2.16)
where the extra dimension SU(N) field resides at the

boundary. Note also that there are N, different fermion
matrices at each time slice of the lattice,

he=mys + K75y U, (1) = U (6)'].  t=1.2,....N,,
2
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where we have suppressed space and color indices for
clarity [recall Eq. (2.5)]. This model differs from the
model (2.14) in two ways: it is gauge invariant along the
extra dimension and gauge fields along this dimension
are t dependent. The difference between these two models
should be clarified in a separate study. In the following, we
focus with the time-independent gauge field model (2.14).

E. Action in canonical form

In order to bring the action in the form of a d 4 1 Dirac
theory, we absorb 75 in a new set of fields

W) = 00D, Flet) = Ox1)s.

In terms of these fields, the action of Eq. (2.14) takes the
form

(2.18)

T =7 plxn)m+75(x)0]y(x1)

+ 6> 0, ([ (x. U, (x)y(x + . 1)

Xty

—p(x+ A )U,(x) 'y (x. 1)]. (2.19)
We use this action in the following.

Note that we have assumed an even number of dimensions
d in order to be compatible with d = 4 dimensions of the
Standard Model in the case of infinite N, limit. However, for
the sake of generality, one may allow d to be an odd integer
too. In this case, the Dirac field has (d + 1)/2 components
and the field y(x, r) may not necessarily be an irreducible
spinor representation. Moreover, Kogut-Susskind fermions
may be formulated in any dimensions.

F. Disorder average

Theories with disorder such as SYK use the replica trick
and compute disorder average by integrating the Boltzmann
kernel of the replicated theory with respect to the proba-
bility distribution of the random couplings. In the limit of
large N it is customary to assume a saddle point solution of
decoupled replicas. Gross and Rosenhaus [14], as well as
Kitaev and Suh [12], discuss this issue in the Appendix of a
recent publication on the SYK model. The net result of the
diagonal replica assumption is that the disorder averaged
theory is, in the large N limit, the disorder averaged
partition function of the fermion theory. This result moti-
vates us to promote SU(N) matrices as a randomly
distributed field, in which case the partition function of
the theory is

Z- / T, (0 [ (x. )i, 1) 7,

where dU,(x) is the Haar measure of the SU(N) group
integration and dy(x,t), [as well as dy(x,1),] is the

Grassmann integration measure. This definition allows
one to identify two effective theories depending on which
fields are integrated first. Integration of fermion fields gives
an SU(N) gauge field theory in d dimensions, while the
integration of SU(N) fields gives an interacting fermion
theory in d 4 1 dimensions. Thus, we have, in principle, a
dual description of the same theory from the start.

G. Meaning of the extra dimension

We have defined a quantum mechanical model in
d dimensions, keeping in mind that d = 4 is the physically
interesting case, where one of dimensions is the time
dimension. The length of the extra dimension N, is related
to the value of the coupling constant «, as it is shown in the
next section. Therefore, the d-dimensional system evolves
along the extra dimension in order to reach a certain value
of k. Since each value of x corresponds to a given length
scale, the evolution of the system along this dimension is
the evolution to reach that scale. This way, the extra
dimension is also the dimension of physical scales.

In the next section, we show that the d-dimensional
effective theories derived from the model are of the Yang-
Mills and QCD type.

III. AN EFFECTIVE THEORY OF LOCAL
YANG-MILLS FIELDS

In this section, we are interested in computing an
effective theory of Yang-Mills fields. In the next subsec-
tion, we proceed with the case of massive fermions.

A. Massive fermions

The largest fermion mass on a lattice is proportional to
m/a and we fix it to be exactly 1/a. Then, from (2.7) we
have

W=1+2h2,  h,=75) n(U,—U;). (3.1)
2]

This way, using (2.13), the effective action of the theory is

N /
Seff(U) = —TTTI' 1 +K2h(2,.

Expanding in powers of k? the right-hand side, we get

(3.2)

Sett(U) = c,N,— ;N x*y “TrU,U,U,U; + O(k%) + Hee.,
Y712

(3.3)

where ¢, is real, ¢; = 1/4, and we have used the fact that
the product of # matrices around the plaquette equals —1. If
we want our theory to be the standard Yang-Mills theory in
the classical limit of a vanishing coupling constant, then we
have to make sure that the plaquette term is the Wilson
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discretization of the standard Yang-Mills theory. Therefore,
scaling the length of the extra dimension according to the
relation

1

cthziss (3.4)
K

we get an effective theory that is described by the action

)=c¢,N, —

Serr(U) ZTrU U,U;U; + O(k) + Hec.

(3.5)

When no other loops are present other than the plaquette,
the theory is the Wilson discretization of the standard Yang-
Mills theory. Therefore, the above theory is a theory of
Yang-Mills fields enlarged by larger Wilson loops. The
theory is local if the series expansion in terms of Wilson
loops converges. An upper bound of the convergence radius
of the series may be found using the following standard
argument: since at each lattice site there are 2d — 1 choices
to construct a loop without moving backwards, the number
of Wilson loops of length n is bounded by (2d — 1)". This
way, at each order n in the x expansion, the number of
Wilson loops of length n does not grow faster than
(2d — 1)". Hence, the series converges for k<1/(2d—1)
and the theory is local for vanishing «.

Classically, as x goes to zero, the theory is dominated by
the plaquette term, while larger Wilson loops may be
included in a perturbation expansion. The perturbative
approach in the classical theory is important if we want
to maintain the correspondence principle, in which case,
our theory includes the standard Yang-Mills theory as a
leading-order approximation of the expansion. Quantum
mechanically, we may expect that the theory is asymptoti-
cally free, since larger Wilson loops are perturbations of the
plaquette result. This is indeed the case as shown in Sec. V.
However, the beta function of the theory vanishes linearly
with the coupling constant, which shows that the approach
to the continuum limit is different from what we expect in
the standard Yang-Mills theory.

Note that we have related the length of the extra
dimension to the coupling constant of the gauge theory.
Given N, is discrete, the relation (3.4) tells us that « is
discrete too. However, since we are interested in the large
N, limit of the theory, we assume x values to be real.

B. Massless fermions

In the case of massless fermions, the fermion matrix is
kh,. Nonetheless, we introduce a small mass m of the order
O(1/N,). The square of the fermion matrix in this case is

h? = m? + k*h3. (3.6)
In order to discover an effective local theory, we start with
the action of the theory (2.14). By means of Fourier

transformed fields (x @) and O(x, w;) the action may
be written in the form

7= z é(x wy)i sin 0 O(x, wy)
Kk

+ Z é(x, wi)h(x, )’)é()’, wy),

(3.7)
x,y.k
where the choice
T
o =1-(k+ 1. k=12..N,  (38)

t

respects the boundary condition along the extra dimension.
Integrating Grassmann fields, the partition function may be
written as a product of the following determinants:

NI
Zp(U) = [ det(h + isinwy).

(3.9)
k=1
Assuming N, is even, we get3
N,/2
Zp(U) = [ det (h? + sin’ey). (3.10)

k=1

The effective action of the theory
N,/2

1
S Zl (m +sm W | Zh%> (3.11)

is thus a theory of N,/2 Kogut-Susskind fermions (modulo
factor four) with masses

Vm? + sinfwy

N
, k=1,2,..., =
2K

my = (3.12)
Note that the theory has a large number of heavy flavors
with masses of the order 1/k. For such masses, one can
write an effective action similar to the convergent expan-
sion (3.5). These contribute to the Yang-Mills part of the
effective action. The rest of masses m; contribute to the
fermionic part of the action. This way, we end up with a
local quantum field theory, which is QCD with a large
number of flavors. Since a large number of frequencies
scale like 1/N,, a large number of fermions are light with
masses of the order x* (for m ~ 1/N,). We expect asymp-
totic freedom, which is a property of QCD with a limited
number of massless flavors, to be lost in this case. In
Sec. VI, we show that the theory is asymptotic safe at a
fixed value of k, which corresponds to a large value of N,.

*In case N, is odd, we get an extra factor det 4 in the product
corresponding to the w; = 7 mode.
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C. Synthesis

In this section, we have shown that, when fermions are
integrated out, the large N, limit of our model gives
effective Yang-Mills and QCD theories. As shown in the
rest of the paper, the dual representation of the model is
solvable in the large N limit. This property gives us an
analytical tool to analyze these theories in this limit. In the
next section, we deal with the effective theory in terms of
dual degrees of freedom.

IV. A HERMITIAN MATRIX FIELD THEORY

The aim of this section is to formulate the theory in terms
of dual fields. We first integrate gauge fields, obtaining a
|

pure fermion theory with the action S defined by the
equation

(4.1)

oS — / E[dUﬂ(x)eZ.

Then we bosonize fermions in terms of matrix fields. We
begin with the gauge field integration.

A. Integration of gauge fields

The partition function (4.1) may be written as a product
of one-link integrals,

5 = oY Bl FSODOWED T Wil
X

. x . "U“X“ XHfr),— /_xAv/aquZ x,t
= /de(x)e 2o )[Z/"’( DU ()ap (405= 2 W) Uy () ”}] (4.2)

Group integration rules and one-link integrals have been solved long ago by different authors (see, for example, [15-18]
and references therein). In order to make the paper self-contained, we have derived one-link integrals in Appendix B. The
result is

S =Y Walx. ) s +75(x)0,(t. ) (x.7),

x,t,ta
2
K _ _ ~ ~
NS [ o P+ 0| @3)
Xophst t.a,b

where the solution F(.) depends on a set of boundary conditions [see (B12)]. Since we are concerned with the behavior of
the theory in the large N, (i.e., small k) limit, we require the leading-order expansion of F(.) in the form

F(A) = —=A + O(A?), (4.4)
where, given a lattice site x and direction g, A is a matrix with matrix elements
K - A P ~
Altn) =55 D oWy (e )i+ )y (x + 1) (4.5)
t.a.b
The full result is [see (B17)]
14 (1 +4A)
F(A) = 1—(1+4A)%+1n¥. (4.6)
In this paper, we use the leading-order approximation (4.4); i.e., the action that we use in the following is
S= S Fale )mé, g + 750D, Oy (x. 1),
x,tta
K — AR /
g D 0w )+ )y (x o+ ), (4.7)

xu .t a,b

In order to estimate the effect of higher-order terms, we compute the expectation value (A(#,1,)). Since A(t,1,)
fluctuations around (A(,, t,)) are small in the large N limit, A(z;, 1,) itself is expected to follow the behavior of (A(#,1,))
in this limit. The expectation value is computed using Eq. (4.27),
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(A(t. 1)) = —K'2ZG(X + i1, 0)G(x. 1. 1y),  (4.8)

where G(x, t, ') is the two-point function of the theory. As
shown in Sec. V, the two-point function may be written in a
Fourier basis. In this basis, (A) is diagonal,

(A)y = —K

» = kG, (@), (4.9)
where G, () is defined in Eq. (5.15). The right-hand side is
maximum at @ = 0 (as well as x) and the spectral radius of
(A) is ¥*G,(0)%. Therefore, for massive fermions and
vanishing «, the spectral radius of (A) is k?, whereas for
massless fermions we find 1/2d. This way, the leading-
order approximation is sensible in the vanishing x and large
d limit, respectively. In Appendix C, we show also that, in
the case of strong coupling QCD, where the exact result is
known, the effect of higher-order terms in A in (4.4)
vanishes in the large d limit. We turn next to the
bosonization of the fermion theory.

B. Bosonization of fermions

Let A be the matrix with matrix elements

= Z(5x+ﬁ,y + 5x—ﬁ,y)?

u

A(x,y)

which connects neighbor lattice sites x and y. Then, the
fermion action may be split in two terms

§= Z l/_/a(x7 [> [mém/ + 75 ()C)ét(t, [’)]W(x, tj)a + 8,

x,t,ta

(4.10)
|

400

2~

>

APEPL)E(pt 1) — &(p) /+°° dReS(p, t,#)dImS(p, t t/)e—xﬂ[(;’)“Ii(ﬂeht’)|2+i(P,t»f’)E(p-l/-l)Jri(p,t,t’)E(pst-l’)

with

Si1 =55 Z @ (x. )y (6, ) A Qe ) (9. 1) W (3. 1) -

xy.t'.a,b

(4.11)

We integrate fermions by decoupling the quartic term, so
that we end up with a quadratic action on fermion fields. If
we define £(x) matrices with matrix elements

N
E(x,1.7) :Z

a=1

x, 0 w(x, 1), (4.12)

then the S, part of the action is a quadratic form in x, y
variables

Zz.fxtt

Xy

VEW 1), (4.13)

This action can be written in the diagonal basis of A as

E(p.t,0)é(p.1.1), (4.14)

S1= ZNZZA

with p being a four vector, and & and A are representations
of £ and A in the new basis. The exponential function €' is
a product of exponential functions. These can be repre-
sented using Gaussian integrals

where ¢(p), ¢,(p) are integration constants. This way, one finds (modulo an integration constant)

St = /Hdz p.t.t) [ [ dReZ(p.t.¢)dImE(p. 1.1')e” 222 pat AP
p.t

pit>t

dZ(p t l)e—#~(P)_li(!”f»f)z+2(P~f~f)g(Psfaf) (415)
(4.16)
NEpad P+, et ) (4.17)

where Z(p) is a Hermitian matrix. By going back to x representation, the right-hand side may be written as an integral with

respect to X(x, ¢, 1) fields,

eS = /HdZ(x,t 1) HRedZ x,t,7)dImZ(x, 1,7 )e” 200 Dyt ZOAT CENTOL NS
X1

x,t>1

Therefore, using (4.12) the action takes the form

2(x,t, t)f(x,t,t’)' (4.18)
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S= S Wl )md, g + 50,0 0) + (e (x. 1),

x, 0t

xy, 0t

Doing the Grassmann integral and using the identity detA = e

$2 = N3 {Infm + 75000, + S} (01) = 5y 3 (w1, ) A (6, 9)2(0. 7.1).

Note that A is not invertible and positive definite and this
poses a problem in the Gaussian integral representation.
However, one may shift A such as to be invertible and
positive definite. The cost of doing so is the introduction of
another Gaussian field. We have checked that, in this case,
the saddle point solution is the same. Therefore, for
simplicity, we stay with a single Gaussian field and treat
A as being formally invertible and positive definite.

In this subsection, we have shown that the dual theory is
a matrix field theory. Since the action is proportional to N
one can solve this theory in the large N approximation.
Before doing so we define some useful observables in terms
of matrix fields. We start with Green’s functions of the
theory.

C. Green’s functions

Fermionic Green’s function of the theory can be com-
puted by adding the following Grassmann valued source
terms in the action (2.19):

L) =T+ (e t)ar (), + 7 ) (x,0),)-

x,ta
(4.21)
For example, the two-point function for 7 > 7, i.e.,
Gy, t.0) = W 1) (%, 1))z, (4.22)

may be computed using the double derivative with respect
to fermionic sources

82
= — ; log Z(y, 7 .
0 D), LA

(4.23)

Gy, 1.0 )ap

Adding fermionic sources in the action S (4.19) and using
the Grassmann integration rules, we get the updated Sy
action

Ss(r.7) = Ss + Z 2(x, 1) [m+ ]75()6)3, + E(X)](_t,lt’)
xy.t.ta.b

X 5xy5ab)((y7 t/)b' (424)

Ja
N o /
—5a 2 6 AT ()0, 7 0),

(4.19)

wInA "the final expression is

(4.20)

x40t

Therefore, the two-point function is diagonal in color and
d-dimensional space

Gx,y.1.0) gy = G(x.1,1)8,,64p (4.25)

where

G(x.t.1) = [m+ 75(x)0, + Z(x)]l).  (4.26)

Applying the same procedure for the four-point function,
we find

(W, ) (x, )y (9, ), (v, 1)) = G(x,1,1)G(y, 7', 1).
(4.27)

In the next subsection, we turn to the Polyakov loop.

D. Polyakov loop

A key observable in lattice gauge theory is the Polyakov
loop

P = (yTrsom [] 0a) ) 428

where the expectation value is evaluated with respect to the
effective theory (3.2). In the following, we express the
expectation value with respect to degrees of freedom of
the dual theory. Adding the fermionic source term in the
action (2.19),

Z(a.a.b,b) =T —xY_n,(x)[a(x)U,(x)a(x + fr)

—B(x + @)U, (x)"b(x)], (4.29)

then the insertion of gauge fields in the path integral may be
achieved using the double derivative of the partition
function with respect to source fields

82
da(x + fr) ;0a(x);
= <_K77;4(x)UM(x)ij>I7

logZ(a,a,b, 1_7) la—a—b—p=0

(4.30)
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where i, j are SU(N) matrix indices and the expectation is
evaluated with respect to the action of Eq. (2.19). After
integration of gauge fields and using the same approxima-
tion that led us to the action (4.7), one gets the same action
supplemented with source terms

(4.31)

The effect of the double derivative in this theory is now the
insertion of the following bilinear combination of fermionic
fields

o o
aa(x ¥ ﬁ)/aa(x)l log Z(Cl, a, b’ b) |a:fl:b:b:0

— <—I]€V—22ty/(x, 1) (x + i, t)j>s,

where now the expectation value is evaluated in the theory
defined by the action of Eq. (4.7). Therefore, the Polyakov
loop may be written in the form

-3 <H S bt

)C4—1]X =1

(4.32)

l//()?’x4’ tx4)jX4> ’

S
(4.33)

modulo an irrelevant constant factor and where 7, = ty,.
By means of two-point functions this expression may be
written in the form

PEH - Y <HGH4, went)) (63

foeenily, Sy

modulo a trivial factor that comes from color summations.
In the next subsection, we define one more observable: the
fermion-antifermion condensate.

E. Fermion-antifermion condensate

An important observable in a theory of fermions is the
fermion-antifermion condensate

<Z (1) yr(x. 1), >

- N

(= hm

WLy 2 (4.35)

From the discussion in the previous subsection, we con-
clude that

N
= lim —

Voo

(G(x,1,0))s,

X,t

(4.36)

In this study, we restrict ourselves in this limited set of
observables. In the following, we turn to the solution of the
theory in the large N limit.

V. THE LARGE N SOLUTION

Since the action (4.20) is proportional to N, one may
employ the saddle point solution of the theory. The
stationary field should satisfy the necessary first-order
conditions, which in our case is the system of equations

Sy

WZO, t,t’=1,2...,Nt

(5.1)

for any lattice site x of the d-dimensional lattice. The
derivative of the first term is taken by expanding the matrix
logarithm as a power series on X. This way, we obtain the
system of equations

G(x.7.1) 2Z(A N y)Z(.2.1).  (5.2)
These can be inverted to give
X(x, 7, 1) —K2Z (x+p,0,0)+G(x—-p,r,1)]. (53)

Therefore, we get a coupled system of quadratic equations
for Green’s functions,

G (x,7.1) = 6,y +75(x)D,(1.7)
—I—K‘2Z (x+a,7,t)+Gx—p, 1, 1)].

(5.4)

We are interested in the vanishing « solution of the theory.
In this limit, the second term of the right-hand side is small.
Given the translation invariance of the time derivative, the
small x limit of the solution is also translation invariant; i.e.,
G(x,?,t) is a function of time separation ¢’ — t. Therefore,
equations may be written in terms of Fourier transformed
Green’s functions G(x, w),

= =m—+ 7s(x)isinw
G(x o) 7s5(x)

+ KZZ[G(X +pw)+ Gx—pw)] (55)

2
for each frequency w. We solve the system using the

solution ansatz

G(x, w) = e taelnt7sWisinel (G () + G(x, w)], (5.6)
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where G(x, ) is a small fluctuation around x-independent
solution G, (). Expanding the left-hand side of the system
(5.5) up to the first order in G(x, @) and using the fact that
(5.5) relates the solution on even and odd sites, we get a
scalar quadratic equation

1 . ~
=—— = |m +isinw| + 2d*G,(w),

G (@) (5.7)

as well as the first-order constraint

G(x. @) + K2G,(@) ) [G(x + jr.w) + G(x — fr.w)] = 0.

(5.8)

Substituting the Fourier transformed Eq. (5.3) in the action
(4.20) and writing it in terms of G(x,a)), we get

K2 A .
S¢/N = —Zln G(x, ) — EZ G(x,w)A(x,y)G(y, w).

X,y,@

(5.9)

Expanding the logarithm up to the second order in
G,;'G(x,w) and substituting the constraint (5.8), we get
the effective action in the large N approximation

Sg/N ==V [nG,(o) + dG,(w)?]

+K—2 < ! —2d>(}(x w)?
2 2\i2G, (p ’

N G4 o) — Glx. o)
+5 SI6tc o) =Gt

(5.10)

where translation symmetry of G(x, @) on the d-dimensional
lattice hasbeenused, i.e., Y., G(x + i1, ®)* = Y, G(x, w)%.
Neglecting cubic order corrections, this action describes a
free theory of N, bosons with masses given by

1

0)?:=—
MO =38 oy

—2d. (5.11)

The symmetry of the action can be made explicit by writing it
in the form of a nonlinear sigma model

Se/N « —ZM(w)ZeiG(x,w) _ Z G t@) =iG (x.)
X, )

+ 0[G,(0)3G(x,w)*] + Hec.. (5.12)

If we define G(x) matrices with matrix elements
G(x, )3, , then the global unitary transformations

2iG) UeiG(x>U*, Ue€U(N,), (5.13)

with U(N,) denoting the unitary group, leave the spectrum of
the theory invariant. In the following subsection, we compute
the free energy and the mass gap of the theory.

A. Free energy and mass gap

We compute the solution G,(w) of the quadratic
Eq. (5.7). Denoting

u(w) = |m+ isinw), (5.14)
we get
~ —pu(w) + /p(w)? + 8dx?
G = . 5.15
0((1)) 4dK'2 ( )
Using Eq. (5.10), the free energy reads
F(x) =NVY [InG,(w) + d*G,()?], (5.16)

whereas substituting G, (@) in Eq. (5.11), the mass spec-
trum of the theory is given by

>+ @)/ p(w)* + 8dx®

M(CO)2 = ﬂ(w) 212

(5.17)

The spectrum is bounded from below by the mass gap

M = m? + mvm? + 8dx*?
o 2k? '

(5.18)

In the case of massive fermions and vanishing x, the mass
gap M, diverges as m/k. In the following subsection, we
study Green’s functions of the theory.

B. Two-point function

Using the solution ansatz (5.6), the leading-order
approximation of the two-point function is

Gi((x)) — e—iarg(mi—isinw)éo(w)’ (519)
where we have used y5(x) = =1 on even and odd sites.
Substituting G,(w) from Eq. (5.15) and expanding the
square root in x for massive fermions, we get

~ 1

— 2
Gi(w) _mj:isina)+0(K ). (5.20)
In the following, we concentrate in the two-point function
defined on even sites, i.e., ¥5(x) = 1, and compute the first
term of the right-hand side. The odd site’s expression is then
the negative even site’s result with the formal substitution
m — —m. The time domain two-point function may be
computed using the inverse discrete Fourier transform
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1 eitw

— _ (5.21)
N, m-isinw’

X, (1) =

plus O(k?) terms. The leading term X (¢) is thus the
propagator of free fermions in 0 4 1 dimensions. The latter
may be obtained by solving the linear system of equations

(m+ )X (1) = 5,0,

t=01,...N,—1 (522

with antiperiodic boundary conditions. Both ways we find*

t € even,

5.23
t € odd, ( )

o= {sinhE(N,/Z—t)

C coshE(N,/2 —1)

with sinh E = m, C = cosh E cosh(EN,/2), and N, even. In
case N, is odd, the above result should be replaced by the
expression

t € even,

1 (coshE(N, —t) 4+ sinh Et
{ (N:i=1) (5.24)
t € odd,

X, (1) =~
+ S | sinh E(N, —t) — cosh Et

with S = cosh Esinh(EN,). The different behavior of the
two-point function at even and odd times is a manifestation
of fermion doubling on the lattice, i.e., the presence of two
poles of 1/(m + isinw) at iE and = — {E corresponding to
the same energy E.

C. Polyakov loop

We begin by expressing the time domain trace of (4.34)
in the frequency domain

%) = Zw:<ﬁl G(%, x4,a))>

In the large N approximation, the right-hand side factorizes
and we find

(5.25)

Sz

N, € even,

;Go(w)’v“

Ze—iarg (m=isinw) GO (w)N4 N4 € odd,

[0

P(F) = (5.26)

since for N4 even phase factors cancel due to equal number
of even and odd sites in the product. If N, is odd, then only
one phase factor remains. Due to the z periodicity of

“The right-hand side of (5.21) may be computed in two steps:
First, one computes the N, — oo expression, i.e., X(+°°)(t) =
W pltw —EM .

* o irsne = wnE 01 + (=1)'0(=1)], where O(t) is the
Heaviside function. Then, the finite N, result is obtained by

I‘Vl_—OO( 1)‘"1‘X 00)

evaluating the infinite sum X, (7) =
(t+mN,).

G,(w), the Polyakov loo op may be written as a sum over
positive frequency terms

252G, (o)™

>0

N4 € even,

P(F) = (5.27)

Ny N4 € odd.

a);O \/m 2 fsin’w (w)

We evaluate the sum in the large N, limit, in which case the
largest term dominates. Note that G,(w) is maximum at
® = n/N,. In the large N, limit, z/N, is close to zero and
we evaluate

P(x)

~2N,G,(0)Ns, (5.28)

This way, the free energy F, of the static charge is

afF, =—1InG,(0), (5.29)

where we have restored the lattice spacing a. At leading
order in k and m = 1, we have G,(0) = 1-2d«x> + O(x*),
and therefore

F = éZdKz +o(), (5.30)
which vanishes in the limit k — 0. The result does not change
if we use G(x/N,) instead of G(0), as well as if we add the
next largest term in the sum over frequencies in (5.27).

Using F, we can compute the renormalization group
beta function

_ dx a(OF,/0a)  « 3

P =~ e = TaF, Jar) ~ 2T O
It is negative and vanishes linearly with the coupling
constant. The theory is thus asymptotically free. However,
its ultraviolet behavior is different from the standard Yang-
Mills theory. The same conclusion may be drawn if we had
computed Wilson loops. In this case, we would find a
perimeter law.

(5.31)

D. Fermion-antifermion condensate

Using its definition (4.36) and substituting the two-point
function in the leading-order approximation of the large N
solution, the condensate is

‘= Nze—i arg (m+isinw) Go (6())

m -
=Ny — LG, (), 5.32

;\/mz—i—sinza) (@) (5:32)
where we have used again the 7 periodicity of G, ().

Expanding the right-hand side in x and taking m =1
we have

>This is true in case there is an even number of frequencies,
otherwise one should add an extra contribution coming from
@ = r, which does not change the result.
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1
gzNZm‘FO(KZ). (533)

w

For large N, the first term is a lattice sum equal to N,/ V2°
and therefore

1
{=NN,—
t \/z
This way, in the continuum limit, the theory is charac-
terized by a nonzero value of the fermion-antifermion
condensate.

+ 0. (5.34)

E. Synthesis

The solution of the theory in the large N approximation
shares distinctive properties with the standard Yang-Mills
theory, like asymptotic freedom and color confinement.
Note, however, that the beta function of our effective Yang-
Mills theory is different from that of the standard Yang-
Mills theory. In the next section, we probe the theory in the
massless limit.

VI. ASYMPTOTIC SAFE QCD

We have seen that the effective Yang-Mills theory is local
and asymptotically free. In this section, we compute the
solution in the case of massless fermions, or almost
massless fermions, with mass m. In Sec. III B we learned
that the effective theory of our model is QCD with a large
number of flavors. The large N solution is found following
the same steps as in the previous section. The mass
spectrum of the theory is given by Eq. (5.17) with

u(w)? = m? + sin’w. (6.1)
However, the lightest mass
) m? + mvm? + 8dx*
M = 2 (6.2)

vanishes for exactly massless fermions. Therefore, the
theory is gapless. Note, however, that the number of light
fermions is large, as can be seen from Eq. (3.12). If there
are Ny such modes, then the effective action of the theory
(5.12) may be split in two pieces corresponding to light and
heavy modes

SG/N X — Z M(w)ZeiG(x,w) — Z eiG(x+ﬁ.(u)e—iG(x.w)

xX,weR, X p0EL,
_ E M(w)ZeiG(x,w) _ E eiG(x+;7,a))e—iG(x.w)
X,0EQ), X, U,0EQ,

+ 0[G;*G(x)’] + Hec., (6.3)

®In this limit, one may compute the integral N, [* dw/
(27)/(1 + sin’w).

with Q; and Q, being the set of light and heavy mode
frequencies. If we define light mode matrices G,(x) with
matrix elements

Gl(x, o, o) = G(x, ®)84 0 s w, 0 € L, (6.4)
and take light modes to be massless, the action is symmetric
with respect to global U(N;), x U(Ny)g chiral trans-
formations of light modes

0 - UGy U,V eUNs). (6.5)
As shown below, the fermion-antifermion condensate of the
full theory is nonzero due to light modes alone. Therefore,
the chiral symmetry of the light modes is spontaneously
broken to U(Ny). Taking the limit of vanishing m in

Eq. (6.2), the mass of the N_% Goldstone modes is

m2="\/24, (6.6)
K

a result that is expected from the chiral perturbation theory

[19]. Therefore, the solution shows that the low lying

spectrum behaves as in QCD. Note, however, that N is

large in our case.

A. Two-point function

We compute the two-point function using again the
solution ansatz (5.6) in the leading-order approximation.
The massless two-point function is then

G.(w) = +isgn(w)G, (), (6.7)
where the plus (minus) subscript corresponds to even (odd)
sites of the d-dimensional lattice. Substituting G,(w) from
Eq. (5.15), we get

. —isinw + isgn(w)Vsin’w + 8dk*
G == .
i(w) Adx?

(6.8)

In continuous time, this is the same as the two-point
function of the ¢ = 2 SYK model, i.e.,

—iw + isgn(w)Vo® + 4J°

Gconl —
(@) 2

. (6.9)

where J is the coupling constant of the SYK model, with
the identification J = v/2dk. The time domain two-point
function is given by Maldacena and Stanford [20] as

7 dO .
Xeont(r) = sgn(t)/ = cos2e=2V2drlilsing  (6.10)

o T

which for large time separations is
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1 1
av/2dxt  4n(v/2dxt)?

Xeont(r) = +0(k33).  (6.11)

This is a power law decay as opposed to exponential decay
in the case of massive fermions.

B. Asymptotic safety
Following the same steps as in the case of massive
fermions, we compute the Polyakov loop (5.27) in the large
N, limit. The free energy of the static charge is thus
evaluated at zero frequency using the same formula (5.29).
The result in the massless case is

aF, = In\/2dx. (6.12)

Using F,, the beta function of the theory is
(k) = —x1n (V2dk).

It is zero at k = 0 and k. = 1/+/2d, positive for k € (0, x,),
and negative for k > k... Hence, the theory has an ultraviolet
fixed point at x.. Solving the renormalization group
equation

d
—ad—K = —xIn(V2dx), =

a

am = In (V2dx),

with /.1 being an integration constant, the correlation length
of the theory is defined by

o
Sl

At the critical point, it diverges according to the law

-1
)

5«‘1—’(

c

1.e., the theory shares the same critical exponent with the
two-dimensional Ising model. The theory has a continuum
limit at a critical value of the coupling constant. Note that in
the limit d — oo the theory becomes asymptotically free.
There are some consequences of the critical theory. For
example, at critical k the mass of the Goldstone boson (6.6)
becomes
M? ~2dm, (6.13)
which again vanishes as expected from chiral perturbation
theory. Another consequence is that the length of the extra
dimension is finite in the continuum limit. However, due
to relation (3.4), i.e., N, = 4k, the critical value of N,

is N\ = 4(2d)/2. In the interesting case d = 4, the value
N EC) =~ 724, which is indeed large. Even at d = 2 we have

N Ec) = 128. Therefore, both theories considered in this
paper, for massive and massless fermions, satisfy the large
N, assumption that has been used by us from the beginning.

C. Fermion-antifermion condensate

Splitting the sum in Eq. (5.32) into light and heavy
frequency contributions, we find

¢(m) ~2NN;G,(0) + O(m). (6.14)
Therefore, in the massless limit, we get
£(0) % 2NN, — (6.15)
~ f m’( . .

This way, in the continuum limit, the theory has a nonzero
chiral condensate. At critical « its value is independent of
the coupling constant and the number of dimensions.

VII. RELATION TO ¢=2 SYK MODEL

Recently, there has been a great deal of work on
discovering solvable examples of the AdS/CFT correspon-
dence. Such an example is the SYK model. Its effective
action on a time lattice has the form’

~Ssuiq =5 S (0, = D))(1.1)

t

2
SIS ot NSt
(7.1)

where G(r,7') and X(t,¢') are bilocal fields defined on a
time lattice, N is a large positive integer, and J is the
coupling constant of the theory. In this subsection, we relate
our model, i.e., Eq. (4.20),

Sy =Ny _{In[m +75(x)d; + (x)]}(z.1)

- S S A R ) (72)

to the ¢ = 2 SYK model. The relation is established in the
massless case under the following conditions:

(1) the large N limit;

(ii) the coupling constant relationship J> = 2dk>.
The saddle point solution G,(w), which is x independent,
suggests that we may approximate the matrix A by a
constant matrix, i.e., A = 2d. This way, the action (4.20)
decouples completely in x space

7See, for example, Eq. (A.9) of the Gross and Rosenhaus
paper [14].
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1

Sy = NZ{ln [m + $5(x)0, + Z(x)] — e
X,

Z(x)z}(t, 1).
(7.3)

This is an ideal gas of pairs of one-matrix theories

A 1
Sg.=N {ln(miatﬁ-i)—
Z 4dx?

22] (t,1) (7.4)
corresponding to even (odd) sites of the d-dimensional
lattice. Picking even sites only and setting m = 0, we end
up with model

Sy =N [m 0,4+ %) - ﬁ?] (,1).  (7.5)

One-matrix models have been studied in the past as a
nonperturbative formulation of the two-dimensional grav-
ity (see, for example, [21]). In general, such models do not
lead to black hole formation [22]. As it was shown in the
previous section, the theory with massless fermions shares
the same two-point function with the action of the ¢ = 2
SYK model. This is not a coincidence. The action (7.5)
may be written in terms of an additional Hermitian matrix
G(t,1)

Sxgi=NY [In(d, + T)|(t.1) - 24N > G(1.1)G(r. 1)

2

t
+iNY G(t.1)Z(t. 1), (7.6)
t.t

which can be shown by integrating e=c1 with respect to
individual matrix elements G(z, ') using Gaussian integrals
(4.15) and (4.16). Rescaling the matrix G — —iG as well
as the matrix £ — —X we get twice the action of the
g =2 SYK model on a time lattice

2dKk*N
5 > G(t.1)G(.1)

1

Ss.61 = NZUH (0, = Z)](t.1) +

~NY G(t.1)x(t.1), (7.7)

1t

where 2dk* = J? is identified with the square of the
coupling constant of the SYK model. Therefore, the large
N asymptotic safe QCD may be described as an ideal gas of
g = 2 SYK models on each site of a d-dimensional lattice.
Note that, since d and k are related in a continuum limit
such that x, = 1/v/2d, we have J2 = 1. Therefore, the
relationship (3.4), i.e., N, = 4>, has no influence on the
magnitude of J. It merely tells us that at critical « the length

of the extra dimension N\’ = 4(2d)/? is large. Therefore,
the continuum limit of the asymptotic safe QCD

corresponds to the low temperature limit of the ¢ =2 SYK
model with J? = 1.

Note that for ¢ =2 the SYK model is not chaotic,
whereas for g = 4 it saturates the chaos bound. Since we
used the leading-order approximation of the F function [see
Eq. (4.6)], the effect of order ¢ =4 terms or higher is
expected to be present in the effective action. The extent to
which these terms alter the chaotic behavior of our theory
remains unclear without a proper calculation. However, the
g = 2 SYK model originates from a quadratic Hamiltonian
with disorder couplings. Magan has shown that a generic
model of quadratic fermions with random couplings
satisfies the eigenstate thermalization hypothesis [23].

VIII. SUMMARY AND DISCUSSION

In this paper, we have formulated and studied a lattice
theory of fermions beyond the Standard Model. Integration
of fermions yields a lattice gauge theory that is expressed in
terms of Wilson loops of growing sizes. This premise is
interesting alone since the effective theory is a local Yang-
Mills theory in the limit of a vanishing coupling constant.
On the other hand, the fermion theory may be integrated
with the help of known one-link integrals. The remaining
effective theory of fermions is then bosonized with the help
of Hermitian matrices. The dual theory obtained this way is
solved in the large N limit. The solvability of the theory is a
distinctive property of the model. The solution shows that
the model shares qualitative properties of strong inter-
actions like asymptotic freedom, color confinement, and a
spectral gap. However, the renormalization group beta
function of the theory vanishes linearly with the coupling
constant, as opposed to the cubic law of the standard Yang-
Mills theory [1,2]. Nonetheless, the main result of the paper
is that a local Yang-Mills theory exists that is nonpertur-
batively solvable in contrast to the present status of an
unknown similar solution to the standard Yang-Mills theory
in four dimensions.

We have studied also the model with massless fermions.
In this case, the effective theory of Yang-Mills fields is
QCD with a large number of light flavors. Its solution is
ultraviolet complete at a nonzero critical coupling constant
where the theory is scale invariant. The light modes of the
theory are shown to be chirally symmetric, a symmetry that
is spontaneously broken. The theory shares the same two-
point function with the ¢ =2 SYK model in the leading
order of large N approximation and the leading-order
approximation of our bosonization approach.

In Appendix A, we have shown that one may use
complex N x N matrices as disorder couplings instead
of SU(N) couplings. Within the approximation made for
the bosonization of fermions in the case of the SU(N)
disorder and the scaling relation assumed between N and
N, (see Appendix A), we show that SU(N) and Gaussian
disorder give closely related effective theories.
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The results of this paper show that the model has a rich
structure, which we intend to study further in the future.
The next step is to treat the bosonization of fermions
exactly. In order to probe the theory further we would like
to compute more physical quantities such as the low lying
meson spectrum. The computation of fermion-antifermion
potential would reveal the nature of the interactions of the
theory. We would like to study further the connection to the
SYK model with the intention of finding whether the theory
has a gravity dual. Finally, we would like also to simulate
the theory on the computer.
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APPENDIX A: GAUSSIAN DISORDER

The SU(N) disordered fields are a special case of more
general model of lattice fermions coupled to general N x N
complex matrices @, (x) attached at each directed link (x,
x + ji) on the lattice. Adopting the same notations as in
Sec. II A, the Hamiltonian operator of the theory is

H= qu x)aYS (x)a
Y ps(xm(x
x,a,b.u
q)y(x)Zb‘{’(x)b]’

~W(x+ ),
where matrix elements of disorder fields, i.e., ®,(x),,
a,b=1,2,...,N, are distributed according to density

) @ (x)ahlp(x+ﬁ)17

(A1)

F10,(x) ] = CeNB,
with C being a normalization constant. The theory may be
formally described by the same Hamiltonian kernel /4 as in
Sec. IT A with SU(N) fields substituted by Gaussian fields.
In terms of the Grassmann valued fermion field w(x, f),
with 7 labeling points in the extra dimension, the model is
defined by the action

T==NY [Pyl + Y walx )1+ 75(x)dJw(x,1),

x,a,b.u x,t,a

T 7 1) e, 1), D, () (x4 1),

x,ta,b.u

= (x4, 1), @, (x) 5w (x, 1),

(A2)

(A3)

whereas the partition function of the theory is

ubHdW

Gaussian fields can be integrated using the formula

:/ I d®.(x)

x.p.a,b

/ddee“”P*/}”Vz = —27” ePrla,
a

where « is a positive real number and f, y are complex
numbers. The effective action of the theory that remains
after integration of Gaussian fields is

S= Zl//a .X'[ +7/5( )é] ( )

KZ
D P )i () (),

Xt a,b

(A4)

This is precisely Eq. (4.7), which is used as an approxi-
mation of the full fermion theory (4.3) in the case of SU(N)
disorder. This shows that SU(N) and Gaussian disorder
theories are closely related. In the following subsection, we
further elaborate on this relationship.

1. Embedded gauge fields

In this subsection, we identify embedded gauge fields
within Gaussian fields and show that the large N, theory is
effectively a local Yang-Mills theory. We begin by giving
the expression of the effective action that remains after
fermions are integrated out. Following the same steps as in
Sec. III A and taking into the account the Gaussian measure
(A2), the effective action of the theory is

N,
Sei (@) = N Z (@, (%) 5| ——Tr\/ T+&°h; g, (AS)

x,a,b.u

with

ho,CD = ?52’7# ((D/,t - d);), ((I)/l)xyab = q)/t (x)ab5x+ﬁ,}"
"

(A6)

Note that the trace on the right-hand side of (A5) is taken in
the tensor product space of the lattice sites and N x N
matrices. Using the polar decomposition of Gaussian fields

q>/4 (X) = ¢;4 (x) Uﬂ (x)’

gauge fields are identified by the U(N) factor U ,(x), where
¢,(x) are positive definite Hermitian matrices. In the
following, we keep the gauge fields fixed and find the
saddle point action in the large N, limit using the solution
ansatz

(A7)
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¢/4 (x>ab = (péab’ (A8)
where ¢ is a real value. A more general ansatz would
include terms that give O(1/N,) contributions to the saddle
point action. Since we are interested in the leading con-
tributions to the effective action, we stay with the above
solution ansatz. Note also that both N and N, are large and
we relate them by the x-dependent factor

(A9)

Using this definition and the solution ansatz, the action is a
function of a single variable ¢

1
r(k)VNd — ET”/ 1+ ¢**h2,  (A10)

where &, is the fermion matrix in the background of the
gauge field U,(x). The saddle point equation S'(¢) =0
yields the nontrivial solution ¢, given implicitly by the
equation

S(p)/N, = @

1 T K> h2

= . All
r(x) 4VNd f 1]_,_(;,%,(2;’% ( )

Note that the solution ¢, is gauge field dependent. As
shown in the next subsection, an explicit solution may be
computed in the limit of vanishing k. Alternatively, one
may assign to the action (A10) an approximate as well as
gauge field-independent solution. Such a solution corre-
sponds to an approximate saddle point. This way, one may
proceed as in Sec. III A and obtain a local theory of Yang-
Mills fields. Therefore, Gaussian and U(N) disorder the-
ories are related at the approximate saddle point of the
Gaussian disordered action in the large N, limit. In the next
subsection, we give an example of a precise relationship.

2. Saddle point Yang-Mills theory

In this subsection, we compute the saddle point action of
the theory with Gaussian disorder fields in the limit of
vanishing k. Our starting point is the saddle point
equation (All). Making the following ansatz for the
left-hand side

r(k) = a® + azx?, (A12)
with a,, a, being real constants, and matching it to the
right-hand side expansion of (All) in k, we find

Trh2 ,

8a4VNd
N7 7 R '

a, =
Trh?

(A13)

Note that we have neglected the higher powers of the
expansion of the right-hand side since we seek the limit of

vanishing k. We have also the freedom to select a small
value of a4 in order to control the matching error of the
expansion. Substitution of a, and @2 to the action (A10)
give the effective theory of Yang-Mills fields

4a3(VNd)*k*

T + O(x%).

Setr(U)/N; & — (A14)

Since the leading term does not look like the standard
plaquette action of Wilson, we expand Trk# in terms of
gauge fields and get

4a3(VNd)*k*
6VNd +4Y,.,Tr(1 - U,U,U,U})
+ O(x®). (A15)

Sert(U)/N;y o< =

For smooth gauge fields close to continuum limit, the
plaquette terms TrU,U,U,U; are close to 1. This pro-
perty allows us to write the right-hand side as a geometric
series of 43 ., Tr(1-U,U,U,U;)/6VNd with the

leading term

Seit(U)/N, & = a4K4ZTrU U,U;U; + O(x5).
HFV

(A16)

If we insist on maintaining the scaling of N, to « as defined
in (3.4), then the leading terms of this theory and the one of
(3.5) are the same provided we select a4, = 3/4. This
calculation shows that close to continuum limit the saddle
point action of the theory with Gaussian fields yields a
similar Yang-Mills leading term as in the case of the theory
with SU(N) disorder fields. Note that the form of the r(x)
ansatz (A12) is crucial to arrive to this conclusion. If there
is no relation between N and N,, the theory may not
be local.

APPENDIX B: GROUP INTEGRATION

This section is written to make the paper self-contained.
We begin first with some integration rules in the unitary
groups.

1. Group integration rules

Unitary group integration rules used in this paper rely on
the Haar measure. These rules are known and we point the
reader to the paper of Creutz, Ref. [15],8 for a detailed
account. Here we would like to give a few useful results.
For example, invariant group integration arguments lead to
the conclusion

There is a slight difference with our formulas since this
reference uses the group SU(N).
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/dUUabZO.

One can extend this result for the product of n matrix
elements as long as n # N. In the case n = N the integral is
nonvanishing if indices lead to a group invariant quantity
such as the determinant of U ,9 i.e

(B1)

detU
/dU Ula] U2a2 T UNaN = Wealaz,...,a,w (BZ)
where a;,a,,...,ay is a permutation of 1,2,...,N and

€a4,ay,...ay 18 the rank N totally antisymmetric tensor.
Indeed, if we multiply both sides by €,,, ., and sum
over all permutations a;,a,,...,ay we get an identity.
Another useful integral is

1
N 5ad6bc‘

S (B3)

/dU UabU*cd =

One can be convinced about the normalization and the J,,
factor by taking b = ¢ and summing both sides over b. The
same argument justifies the factor §,.. This integral is also
derived at the end of the next subsection applying the
results obtained therein.

2. Computation of one-link integrals

In this subsection, we deal with the computation of one-
link integrals of the type

eW(l/_/.lI/,)_(,)() _ dU eza‘b <Z, l/_’fonb)(;,"'Z,/)?gUZbW;:) , (B4)

where a, b indices run from 1 to N, the ¢ index runs from
1 to N,, the trace is taken in ¢ space, and dU is the Haar
measure of the U(N) group. Using invariance properties of
the Haar measure, the integral depends only on gauge
invariant quantities

> Wi,
a

On the other hand, the integral depends also on bilinear
Grassmann sums

> k. (BS)

a

(B6)

t 4
since they are invariant with respect to invertible N, X N,

matrix transformations. Therefore, if we define the N, x N,
matrix

°In the case of the SU(N) group the determinant is one.

At t") = ZZW;,V/;,)(MZ/, (B7)

t.a,b

the integral is a function of 7-space traces of this matrix

trAL trA2, ... trAN, (B8)
1.e., it can be written in the form
eNUF(N) — | qu ez‘”’ (Z’%U‘Mﬁz’j" Ué”y/">, (B9)

where F'is a matrix valued function defined by its power
series expansion. Taking the derivative of both sides with
respect to 1/72‘ and then y in this order, multiplying by
1/731//;, summing over a, b, and ¢, we find

D Wi i

a,b.t

2 eNTF(A ) , e

o0 = —N2A,, N0, (B10)
The left-hand side may be written in terms of derivatives of
trF(A) with respect to matrix elements of A. This way, we
obtain a system of N? coupled second-order differential

equations for trF(A)

11314

aA " aA
X ZW ttt 8 —tilt4
Yp

otk ouwF
8A,/,J/ GAM

O*rF >
ONyy aAt3 ty

a,b.t

ourF . PA,,
+ Y A ) WiV =
2, 2T o

tyty B34 g bt

~N2A,,,  (BIl)

supplemented by suitable boundary conditions. For exam-
ple, the set

OtrF
0N,

(B12)

F<A)t2t| |A:O =0, = _5t271

A=0

guarantees that the solution is regular around zero. Using
the definition of A (B7), the system to be solved is

F ok otk
S, -3, (S i)

1y iy 7
O*rF
- —Z <[Z;A,2,/A, TV ) + Ay, =0. (B13)
This system may be written in matrix notations in the form

otrF OotrF\2 1 0?2
A(’)_A_<A8_A> _N<A8_A) trF+A=0. (Bl4)
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Since we are interested in the large N limit, we drop the
third term and find

2
<A8trF) YN (BI5)

OA OA

This is an algebraic quadratic matrix equation for A % Its
solution poses no problem and is given by

AatrF_l—\/1+4A
ON 2 ’

(B16)

where the second condition in Eqs. (B12) is taken into
account and the matrix square root is defined in terms of its
power series expansion. A solution for the matrix F(A) that
satisfies this equation as well as the condition F(0) = 0 is

1+ VI+4A
F(A):l—\/1+4A+ln%. (B17)

In this case too, the matrix logarithm is defined in terms of
its power series expansion.lo

As an application let us derive the group integral (B3).
Taking the fourth derivative of both sides of the integral
(B9) with respect to ¥, v, ¥, y Grassmann variables in this
order, one finds

9t eNUF(A)

- _/dUUaleU*blaz'

Oy, O, Wi, Ol |,

(B18)

Substituting F(A) on the left-hand side using the result
(B17), one finds

846NtrF(A)
oty 07, O, O

1
SR S
N aya, Vb b,

(B19)

w=p=y=p=0

Comparing the right-hand sides of the last two equations,
Eq. (B3) is thus established. Other interesting integrals can
be computed using this method.

3. Relation to other work

Our derivation can be related to the one of Ref. [24]. In
this reference, the derivative of trF is taken with respect to
invariant traces

M =1t Ay = trA?, L Ay, = AV (B20)
The resulting system of differential equations is related to

ours (B14), if the derivative of trF with respect to matrix
elements of A is defined by the expression

""Note that boundary conditions specified in (B12) apply in the
case when trA is small. In this case, the first term on the left-hand
side of Eq. (B15) may be neglected and one finds F(A) = —A.

otrF OotrF OtrF
=A 2A -+ N,A
OA ol + 0y o N

otrF
Ody,

In order to find the solution, Ref. [24] diagonalizes the
matrix A, whereas Ref. [25] relies on the “strong coupling”
solution of Brezin and Gross [17], their solution being
found also by diagonalizing A.

APPENDIX C: QCD AT STRONG COUPLING

The large N limit of QCD at strong coupling has been
studied in the past. Notable references are Kluberg-Stern
et al. [24] and Kawamoto and Smit [25]. The aim of this
Appendix is to derive the main results of QCD at strong
coupling using the bosonization approach employed in this
paper. The action is given by Eq. (2.19), but without the
time derivative term, i.e.,

I = mle/_/a(xv t)l)U(x’ t)a

x,ta

T Y 0 0,U, () 1),

= (2 1)Uy ()00 (x, 1)),

where « is now fixed at the value of 1/2. Everything else
being the same, integrating gauge fields as in Sec. IVA, we
get

(C1)

S = mle/_’a(x’ t)V/(x’ t)a

x.ta
S _ ,
+ NZF [—m Z w(x, 1)y (x. 1),
Xt t.a.b

xpx+p.t)wx+ i, l)a} ) (C2)

where F(.) is defined by the expression [see (B17)]

1+ (1+4A)
n——.
2

In this paper, we approximate the right-hand side with
the leading-order result F(A) = —A + O(A?). It is this
approximation that will be tested in the case of strong
coupling QCD. Following the same steps as in Sec. IV, the
final expression of the bosonic effective action is [see
Eq. (4.20)]

Sy =N {In[m; + X(x)]}(.1)

F(A)=1-(1+4A) +1 (C3)

- 2%2 > S ) AT (. y)Z(y. 1), (C4)

.t

1. Large N solution

For future references on QCD at strong coupling, we
make this section self-contained. Therefore, a few steps of
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the large N solution of Sec. V will be repeated here. In
order to find the large N solution, we find first the field that
makes the action stationary and then compute an effective
action by computing fluctuations around such a solution.
The stationary field should satisfy the necessary first-order
conditions, which in our case is the system of equations

Sy

= —0,
0X(x, t,1)

xe€N;, t,f=12,..,N, (C5)

where Sy is the bosonic action (C4). The derivative of the
first term is taken by expanding the matrix logarithm as a
power series on X. This way, we obtain the system of
equations

s =g X

Denoting by G(x) = 1/[m; + Z(x)] the N, x N, matrix,
equations take the form

{ng)}( "= ’”f@ﬂﬂZ (x+ p.1.1)

+G(x—/4,t,t)].

Z(y.t.1).  (Co)

(C7)

This is a system of matrix valued quadratic equations,
which is solved using the ansatz

G(x,t,1) = G,8,y + G(x,1,1), (C8)
where G(x, t,¢') is a small fluctuation field around the
uniform solution G,6, . Expanding the left-hand side of
(C7) up to the first order in power series of the matrix
G;'G(x), we get a quadratic equation for the matrix G,

1

G_) - I’Vlf - 2dK2G0 = 0, (Cg)
with the solution
—my + y/m7 + 8dx®
G, = (C10)

4di* ’

as well as the first-order constraint in the fluctuating field
G(x,1,1)

G(x.t.1) +K°G2Y [G(x+p.t.0) +G(x— . t.1)] = 0.
u
(C11)

Substituting the ansatz (C8) into the effective action (C4),
using Egs. (C6) and (C7) and the first-order constraint
(C11), as well as expanding the logarithm up to the second
order in powers of the G,!G(x) matrix, we get

Sy/N =—=N,V(InG, + d*G?)

2 1 o
+K2 ( e 2d>ZG x, 1,0)G(x,7,1)

x, 1
LY 6

xtt’
x [G(x +p. 1, 1)
+0[G*G(x)],

x4+ gt ) =Gx, 1,1

- G(x. 7, 1)]
(C12)

where the translation invariance on the lattice, i.e., the
identity > G(x+f,t,¢)? =>,G(x,t,')%, has also
been used. From this expression, one can infer the free
energy of the theory

F =NN,V(InG, + d*G?). (C13)
On the other hand, Eq. (C12) can be written in the form
_SG/ 2N MZZtrelG + ZtrelG x+;4 —iG(x)

+ 0[G;3G(x)’] + Hec., (C14)

with the trace taken in 7 space and where we have denoted

2 [ 2 2
A 1 _2d:mf+mf mf+8d1<.

K*G?3 22

(C15)

Neglecting cubic order corrections, the resulting effective
theory (C14) is a nonlinear sigma model of massive bosons
with mass M given by Eq. (C15). For vanishing my, the
mass squared vanishes linearly with m
m
M? = —L\2d + O(m3). (C16)
K
For vanishing quark mass, the theory has an exact global
U(N,), x U(N,)r symmetry, i.e., the effective action is
invariant with respect to global transformations

eiG(erﬁ) - UeiG(erﬁ)V*, eiG(x) — VeiG(x) U*. (C17)
The chiral condensate of the theory does not vanish, and
therefore, the chiral symmetry (C17) is spontaneously
broken to U(N,). In order to see this, we compute the

chiral condensate, which is defined by expressions

o1 _
(= ,i}‘llo Jim v2 a<l//(x, 1)aw(x.1),)
19InZ
—im gim 22 i im L9 (g

m;—0V—o0 \% 8mf m;—0V—oo Vv mf

Using the result (C13) for the free energy and substituting
the solution G, (C10), we get
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NN,

2
— NNy /=
V2di? |y ’\/;

Therefore, the chiral symmetry of QCD at strong coupling
is broken spontaneously to the U(N,) group, whereas the
spectrum has N? Goldstone bosons.

We note that our results rely on the leading-order appro-
ximation F(A) = —A + O(A?). Our condensate and boson
mass differ with the exact results of Refs. [24,25] by a O(1)
prefactor at vanishing fermion mass. This small difference
does not alter the physical picture and thus justifies our
approximation. In order to make these differences trans-
parent, we summarize below the approach and results
obtained in these references.

(C19)

2. Relation to other work

If we want our results to be exact, we may follow the
bosonization approach of Refs. [24,25]. Another possibility
is to use the Lagrange multiplier method as shown in a
series of papers related to the SYK model; see, for example,
Gross and Rosenhaus [14], as well as Kitaev and Suh [12].

The Kluberg-Stern et al. paper starting point is the
observation that the integration of functions that depend on
Grassmann pairs ﬁtn’/, t,t =1, ..., kcan be cast in the form
of the following matrix determinant:

k
/ [T andn r@'n'atn. ....i5¢")

t=1

of of
Ai'n") i n®)
= : . (C20)
of of
(0n") ") 1y=r=0

The proof can be established by noting that only the order
k term of Grassmann pairs power series expansion of
f contributes in the integral. If Grassmann pairs of the right-
hand side are formally substituted by real valued matrix
elements 6,, = 0,1,/ = 1, ..., k, we get the identity

k
/ [T andn r@'n'a'n, ... i¢")
t=1

or or
Joy Jo
=1 : . (C21)
or or
Joyy 00k | 5—0
Substituting the Fourier representation
~(@nF / [[ddwe™ 2nowiefay — (C22)
1t

on the right-hand side, we get

k
/ [T andnr@'n' a0k

t=1

— ((2 G / cht, det Af(1).

i

(C23)

The Fourier transformed function f can be written in terms
of the original function using the inverse Fourier transform,
and the final expression is

k
/Hdn’dﬁ’f(ﬁlnl,ﬁln2,
=1
(_i)k iz ey
= o [[dAvdo, detie i f (o).

tf

k)
(C24)

If f depends on Grassmann sums y lnana,t ’=1,...,k,
as is the case in our application, the Berezin integral (C21),
gives

N N N

1T H dnt,d,, f <Z Ak, Z Y n’én’é)

a=1 t=1 =1 a=1 a=1
0 o N
do do

= [ (@)oo (C25)
0 0
Joyy Dok

whereas the result reads

/alN_[f[d dnaf(Znana,zN: un ---,az:ﬁ’;ﬂ5>

1

( l 2/Hd/1tfd6n’ det/INe"Zn/”nfo(a)‘

(27r k ”

(C26)

This way, the fermion theory can be cast in the form of the
bosonic theory with an action S that depends on matrix
elements A,/,6,,1,1 =1,2,...,k

-S(A,0) =t(NInA+iT6) +1Inf(s). (C27)
Using this technique and adopting the normalization of
fermion bilinears as in Ref. [24], i.e., yy — iy, one can
show that the large N solution of the fermion theory (C2) is
given at the saddle point 6,5, with

_ —my(1 =3+ /m}+2d—1 Vad—1
10y = m> - T’
d(1+-4) -
(C28)
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whereas the chiral condensate is

C—NN\/;/l—i
V4 2d

Now let us turn to the approach followed by Kawamoto
and Smit [25]. These authors use the bosonization of the
fermion determinant based on the identity

(C29)

/ dU(det RU)NeWRU — ¢k (detJ)V,  (C30)
where dU is the Haar measure on the U(k) group, R is a

Hermitian and positive definite k& x k matrix, and cﬂ‘\, are
defined by the expression

01!+ (k=1)!

Cfv:Ng(N+1)!-.-(N+k—1)!'

(C31)

Since the left-hand side of the equation is independent
of R one can define M = RU and combine Egs. (C30)
and (C25) to get

/ﬂHdﬂgdna <Z’1a’7avz’7a’7av me)

a=1 t=

_9_ 0

Joy, Jo 1

tr . M
1 0 0
=— [ dUe™NtInMg R Ooy You” f(0)]p0-
N
(C32)

Expanding the exponential, one finally obtains the boson-
ized fermion theory

N k N N
J T ot (kY Y
a=1t =1 a=1

=1 —1

1
= /dUe_Ntrlan(Mll,Mlz,...,
C

- M),
N

(C33)

where the integration is over the unitary part of the polar
decomposition of the matrix M. The proof of the identity
(C30) is given in the Appendix of Ref. [25]. However, the
basic idea can be understood in the case N = 1. Indeed,
setting R = 1 and factoring U = €'V, where V is a SU (k)
matrix, one has

etrJU 2,,
du
/ detU 2z /

—ik(/)ee"’/’trJV'

(C34)

Expanding the second exponential and integrating over ¢,
only the power of order k gives a nonvanishing result.
Therefore, one gets

etrJU 1 .
as—=— 1| avwv
/ a0~ & Jsy @ V)

where we have used the group integration formula

1
av Vz’]r, '”Vt;t,( = k' AT

This identity may be proven by generalizing the
formula (B2) of Appendix B 1.

Using the bosonized fermion theory (C33), one can show
that the large N solution of the fermion theory (C2) is given
at the saddle point v5,, with

(C35)

—mf(1—$)+,/mjzc+2d—l /2d_1
v = > =,
d(1+24) o d
(C36)

whereas the free energy of the theory is

F = NN,V[-Inv+ msv + dF(—k*v?)]. (C37)

This way, the chiral condensate is given by the expression

2 1
g_NN,\/;,/l—g

Therefore, whichever bosonization method is used, one
gets identical results.

Finally, let us compare these results with ours in the limit
my — 0. Our saddle point solution (C10), evaluated at
k = 1/2, as well as the condensate (C19) read

V2d 2
G1)|mf—>0 = 7 s C = NNt E (C39)

Therefore, our

(C38)

approximation misses the prefactor
1 — 5, which is of the order O(1) even at d = 2. For

large d, the exact treatment of the function F (C3) yields the
same result as ours.
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