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We have investigated the shear viscosity of quark matter in the presence of a strong uniform magnetic
field background in which the Nambu-Jona-Lasinio model has been considered to describe the
magnetothermodynamical properties of the medium. In the presence of magnetic field, the shear viscosity
coefficient gets split into different components because of anisotropy in tangential stress of the fluid. Four
different components can be merged to two components in the strong field limit, at which the collisional
width of the quark becomes much lower than its synchrotron frequency. A simplified contact diagram of
quark-quark interaction can estimate a small collisional width, for which the strong field limit expressions
are exactly applicable, although for the Relativistic Heavy Ion Collider or LHC matter, one can expect a
large thermal width, for which generalized four-component viscosities are necessary. We have explored all
these different possible cases in the thermodynamical framework of the Nambu–Jona-Lasinio model.
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I. INTRODUCTION

One of the major updates in the research of heavy-ion
collision (HIC) experiments like the Relativistic Heavy Ion
Collider (RHIC) and LHC is that the produced medium
behaves like a nearly perfect fluid [1], with the smallest
shear viscosity–to–entropy density ratio (η=s) ever
observed in nature. On the other hand, recent progress
in the HIC research has speculated that the produced
medium may face a high magnetic field [2] in the non-
central heavy-ion collisions. The possible space-time
dependence of this produced magnetic field has been
investigated in Refs. [3–7]. A considerable amount of
research work has already been performed in understanding
the influence of the magnetic field on the QCD phase
diagram. See, for example, the review article [8] for recent
updates. The modification of the QCD phase diagram in the
presence of magnetic field is directly related to the
corresponding change in the quark condensate, and its
enhancement with magnetic field is known as magnetic
catalysis, which is a quite expected feature in vacuum as
well as at finite temperature [9–14]. However, recent

calculations, based on lattice QCD [15,16], have found
inverse magnetic catalysis, the possibility of which is also
indicated by some effective QCD model calculations
[17–20]. The modifications pertaining to the QCD phase
diagram may also have some impact in the transport
properties of the medium produced in HICs. In the presence
of magnetic field, different transport coefficients like shear
viscosity [21–28], bulk viscosity [26–30], and electrical
conductivity [31–38] of quark matter are calculated in
recent times. The simulation of magnetohydrodynamics
[39,40] as well as the transport simulation for an external
magnetic field [41] may require these temperature- and
magnetic field–dependent transport coefficients for their
future upgrading.
Among the different transport coefficients, only the shear

viscosity is our matter of interest in the present work, in
which a two-flavor Nambu–Jona-Lasinio (NJL) model has
been used as a dynamical framework. Among the earlier
calculations of shear viscosity for magnetized matter
[21–28,42], we find that Refs. [21–24] have not explored
its component decomposition, which is explicitly analyzed
in Refs. [25–28,42]. This component decomposition of
shear viscosity due to anisotropy, created by external
magnetic field or other sources, is well studied in the
direction of gauge gravity duality (see Refs. [43,44] and
references therein).
We have first followed the strong field limit expression,

obtained in Refs. [25,45], in which four components of
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shear viscosity merge to two main components, as also
found in gauge gravity dual theory [43,44]. One is normal-
type shear viscosity, and another is a Hall-type component.
The normal component depends on both collisional and
synchrotron frequencies, but the Hall component depends
completely on the synchrotron frequency in the strong field
limit. However, below that strong field limit, both compo-
nents can depend on both frequencies. We have also studied
the general structure of four different components in the
moderate field zone, which is expected in RHIC or LHC
experiments.
The article is organized as follows. In Sec. II, the

background formalism of the NJL model is addressed.
Next, Sec. III covers the formalism of shear viscosity for
the case of strong magnetic field in Sec. III A and then its
corresponding numerical outcome in Sec. III B. Realizing
the strong field limit cannot be applicable for RHIC or LHC
matter, which should have small collisional relaxation time,
we go through the strong field case to general case, the
modified formalism and corresponding numerical outcome
of which are discussed in Secs. IVA and IV B, respectively.
At the end, investigations of all these different possible
cases are summarized in Sec. V.

II. NJL MODEL IN THE PRESENCE
OF MAGNETIC FIELD

We shall consider here the two-flavor (u and d quarks)
NJL model with a determinant interaction with the
Lagrangian density given as [12,46]

L ¼ ψ̄ðiD −mÞψ þ G
X3
a¼0

½ðψ̄τaψÞ2 þ ðψ̄iγ5τaψÞ2�

þ K½detfψ̄ð1þ γ5Þψ þ detfψ̄ð1 − γ5Þψ �; ð1Þ

where ψ ¼ ðu; dÞT is the doublet of quarks and m ¼
ðmu;mdÞ is the current quark mass with mu ¼ md. The
first term is basically the Dirac Lagrangian in the presence
of an external magnetic field, which we assume to be
constant and in the direction of the z axis. For calculational
purposes, we shall further choose the gauge such that the
corresponding electromagnetic potential is given by
AμðxÞ ¼ ð0; 0; Bx; 0Þ. The second line is the attractive part
of the quark-antiquark channel of the Fiertz-transformed
color current-current interaction. The third line is the
’t Hooft determinant interaction in the flavor space that
describes the effects of instantons and is flavor mixing. τa,
a ¼ 0 � � � 3 are the U(2) generators in the flavor space. In
the absence of magnetic field, the interaction is invariant
under SUð2ÞL × SUð2ÞR × UVð1Þ. The second term has an
additional Uð1ÞA symmetry, while the ’t Hooft term does
not have this symmetry and reflects the Uð1ÞA anomaly
of QCD.
The thermodynamic potential corresponding to Eq. (1)

can be computed exactly in the same manner as was done

previously in Ref. [13], which was done for three flavors in
a variational method with an explicit structure for the
vacuum with quark-antiquark condensates. The thermody-
namic potential is then given as

Ω ¼
X
i

Ωi
0 þ

X
i

Ωi
field þ

X
i

Ωi
med

þ 2G
X
i

Iis2 þ 2KIus Ids ; ð2Þ

where i is the flavor index. We might mention here that the
above thermodynamic potential can also be derived in a
mean field approximation [46]. The vacuum term for ith
flavor Ωi

0 is given as

Ωi
0 ¼ −

2Nc

ð2πÞ3
Z

dp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

i

q
θðΛ − jpjÞ

¼ −
Nc

8π2

�
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

i

q
ð2Λ2 þM2

i Þ

−M4
i log

Λþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

i

p
Mi

�
; ð3Þ

with Λ as the three-momentum cutoff associated with the
NJL model. The field contribution that arises from the
effect of magnetic field on the Dirac vacuum is given by

Ωi
field ¼−

Nc

2π2
X
i

jqiBj2
�
ζ0ð−1;xiÞ−

1

2
ðx2i − xiÞ lnxiþ

x2i
4

�
;

ð4Þ

where we have defined a dimensionless quantity, xi ¼
M2

i =2jqiBj, i.e., the mass parameter in units of magnetic
field, and ζ0ð−1; xÞ ¼ dζðz; xÞ=dzjz¼1 is the derivative of
the Riemann-Hurwitz ζ function, which is given by

ζ0ð−1; xÞ ¼ ln x
2

�
x2 − xþ 1

6

�
−
x2

4

þ x2
Z

∞

0

2tan−1yþ y lnð1þ y2Þ
e2πxy − 1

dy: ð5Þ

Finally, the medium contribution Ωi
med is given as

Ωi
med ¼

−Nc

π2
Xnmax

n¼0

αnjqiBj
β

Z
dpz logð1þ e−βω

i
nÞ ð6Þ

with the single particle energy in the presence of magnetic
field ωi

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqijBþm2

p
. The condition of a sharp

three-momentum cutoff translates to a finite number
of Landau-level summation with nmax ¼ Int½ Λ2

2jqijB� when
pz ¼ 0. Further, for the medium contributions, this also
leads to a cutoff for the jpzj as Λ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − 2njqijB

p
for a

given value of n.
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Similarly, in Eq. (2), the quark condensate Iis ¼ −hψ̄ iψ ii
can be separated into a zero field vacuum term, a finite
field-dependent term, and a medium dependent term as

Iis ≡ −hψ̄ iψ ii ¼ 2Nc

ð2πÞ3
Z
jpj<Λ

dp
Miffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þMi2
p

þ NcMijqiBj
ð2πÞ2

�
xið1 − ln xiÞþ lnΓðxiÞ þ 1

2
ln

xi

2π

�

−
Xnmax

n¼0

NcjqijBαn
ð2πÞ2

Z
dpz

Mi

ωn
i

1

1þ ϵ−βω
n
i

¼ Iisvac þ Iisfield þ Iismed: ð7Þ

The zero field vacuum contribution, Iisvac, can be analyti-
cally calculated using a sharp momentum cutoff Λ and can
be written as

Iisvac ¼
NcMi

s

2π2

�
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2þMi2

p
−Mi2 log

�
Λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2þMi2

p

Mi

��
:

ð8Þ

The constituent quark massMi satisfies the gap equation

Mi ¼ mi þ 4GIis þ 2KjϵijjIjs: ð9Þ

This completes the definitions of all the quantities that are
used to describe the thermodynamic potential in Eq. (2).
For numerical evaluations, we choose the parameters as in

Ref. [46]; i.e., we write G ¼ ð1 − αÞG0 and K=2 ¼ αG0.
The parameter α controls the strength of the instanton
interaction, while the value of the quark condensate
is determined by the combination of parameters:
m ¼ 6 MeV, the three-momentum cut off Λ ¼ 590 MeV,
and the dimensionless coupling G0Λ2 ¼ 2.435. These
values lead to pion mass in vacuum as 140.2 MeV, a pion
decay constant of 92.6 MeV, and quark condensate
hūui ¼ hd̄di ¼ ð−241.5 MeVÞ3, all in reasonable agree-
ment with the experimental values. This also leads to a
vacuum constituent quark mass of 400 MeV. Further, in all
these calculations, we have taken α ¼ 0.15 as a reasonable
value interpolated from η − η0 splitting within the three-
flavor NJL model [46].
Figure 1(a) shows the constituent quark mass as a

function of temperature for different values of magnetic
fields. At eB ¼ 0, masses of u and d quarks exactly
coincide (dotted line), while for nonzero eB, they split
due to different electrical charges of the two quark flavors,
and their splitting increases with the magnetic field. Our
results reveal the magnetic catalysis in the entire temper-
ature range, and therefore the transition temperature Tc
increases with B. Using this MQðT; eBÞ, one can calculate
the entropy density s with the help of a quasiparticle
relation,

s ¼ Nc

π2T

X
i¼u;d

Xnmax

n¼0

αnjqijB
Z

dkz

�
k2z
ωi
n
þ ωi

n

�
f0ðωi

nÞ; ð10Þ

where f0ðωi
nÞ is the Fermi-Dirac distribution function. The

temperature dependence of normalized entropy density
s=T3 for eB ¼ 0 (dotted line), 10m2

π (solid line), and
20m2

π (dash-dotted line) is shown in Fig. 1(b). We notice
that s decreases as eB increases in the lower-temperature
domain, but all the curves are merged into its Stefan-
Boltzmann limit in the high-temperature region.

III. STRONG MAGNETIC FIELD CASE

A. Formalism of shear viscosity in the presence
of strong magnetic field

Let us first briefly recapitulate the relaxation time approxi-
mation technique to calculate shear viscosity coefficients of a
relativistic fluid in the absence of any magnetic field (i.e.,
B ¼ 0), which is elaborately given inRefs. [47,48]. Then,we
will come to its corresponding formalism in presence of the
strong magnetic field, well described in Refs. [25,45].
The total energy-momentum tensor of relativistic

fluid, Tμν ¼ Tμν
0 þ Tμν

D , contains the ideal part Tμν
0 ¼

−Pgμν þ ðPþ ϵÞuμuν and dissipation part Tμν
D ¼ ηUμν

(only shear dissipation), where P, ϵ, and uμ are, respec-
tively, the pressure, energy density, and 4-velocity of the
fluid. The tensor structure Uμν, linked with shear viscosity
η, has the form [48]

Uμν ¼ Dμuν þDνuμ þ 2

3
Δμν∂σuσ with

Dμ ¼ ∂μ − uμuσ∂σ; Δμν ¼ uμuν − gμν: ð11Þ

Now, in terms of four-momentum kμ ¼ ðω; kÞ and
thermal distribution function f0 ¼ 1=feβω þ 1g of a quark
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FIG. 1. T dependence of constituent quark masses (MQ) and
normalized entropy density (s=T3) for different values of mag-
netic fields.
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at temperature T ¼ 1=β, one can express the total energy-
momentum tensor as

Tμν ¼
Z

d3k
ð2πÞ3

kμkν

ω
ff0 þ ϕf0ð1 − f0Þg; ð12Þ

where the second term in the curly brackets involving the
function ϕ describes the nonequilibrium part for which one
can construct the shear dissipative part Tμν

D of the energy-
momentum tensor [48]. In terms of velocity gradient tensor
Uμν, the function ϕ can be written as ϕ ¼ CkμkνUμν.

The unknown C can be obtained as C ¼ τcβ
2ω by using

the relativistic Boltzmann equation (RBE), where τc is the
relaxation time of the quark in the medium. Comparing the
coefficients of Uμν from the dissipative part of the energy-
momentum tensor, we finally obtain the expression of the
shear viscosity coefficient as

η ¼ gβ
15

Z
d3k
ð2πÞ3

k4

ω2
τcf0ð1 − f0Þ; ð13Þ

where g ¼ 2 × 2 × 2 × 3 is an additional input that takes
care of the degeneracy factor for two-flavor (isospin
symmetric) quark matter.
Now, let us discuss the effect of external magnetic field

on the shear viscosity of the medium. In the presence of
a constant background magnetic field, the medium can
possess five independent components of shear viscosity,
and the dissipative part of the energy-momentum tensor (in
3-vector notation) can be written as [25,45]

Tij
D ¼

X4
n¼0

ηnV
ij
n ¼

Z
d3k
ð2πÞ3

kikj

ω
δf; ð14Þ

where

δf ¼ ϕf0ð1 − f0Þ ¼
X4
n¼0

CnkikjV
ij
n f0ð1 − f0Þ ð15Þ

and

ϕ ¼
X4
n¼0

CnkikjV
ij
n ð16Þ

is assumed in terms of same tensorial components Vij
n .

Among these five components, four components
(n ¼ 1; ::; 4) will be only our matter of interest as they
only depend on magnetic field, while the n ¼ 0 component
remains undisturbed by magnetic field. This n ¼ 0

viscosity component can be compared with electrical/
thermal conductivity along the direction of magnetic field,
as discussed Refs. [34,45], in which they also remain
undisturbed by the external magnetic field. Hence, ignoring
the η0 or V

ij
0 component [25,45], one can obtain four shear

viscosity coefficients as

ηiðn¼1;2;3;4Þ ¼
2gi
15

Z
d3k
ð2πÞ3

k4

ωi C
i
ðn¼1;2;3;4Þf

i
0ð1 − fi0Þ; ð17Þ

where the unknown Ci
n again will be determined with the

help of the RBE but in a two-step approximations. Since the
magnetic field will destroy the degeneracy of u and d quark
masses, the energy ωi, distribution function fi0, and Ci

n in
Eq. (17) carry the flavor index i. The gi ¼ 2 × 2 × 3 is the
degeneracy factor of each flavor.
As a first approximation, the particle relaxation time τc in

the RBE is ignored by assuming that the deviation from
equilibrium due to the strong magnetic field is much larger
than that due to the particle collisions. Therefore, we get a
magnetic field–induced relaxation time τiB ¼ 1=ωi

B, where

ωi
B¼ qiB=ωi;

�
qi ¼þ2

3
e; −

1

3
e for i¼ u;d

�
ð18Þ

is the synchrotron frequency of the quark. So, the strong
field limit will be established if we can show that τic ≫ τiB.
As a first approximation of RBE [25,45], we ignore τic
leading to the the coefficients Ci getting related to the field
induced relaxation time τiB as

Ci
1 ¼ Ci

2 ¼ 0; and Ci
4 ¼ 2Ci

3 ¼
τiBβ

2ωi : ð19Þ

Next, in the second approximation, a collisional or thermal
width Γi

c ¼ 1=τic, obeying the inequality Γi
c ≪ ωi

B or
τic ≫ τiB, is considered, which leads to the relation [25]

Ci
2 ¼ 4Ci

1 ¼
Γi
c

ωi
B
Ci
4 ¼

Γi
c

2ωi
B
Ci
3; ð20Þ

with Ci
4 ¼ 2Ci

3 ¼ τiBβ
2ωi. Thus, in the presence of constant

background magnetic field B, the expressions of the four
components of the shear viscosity for the i ¼ u=d quark are

ηi2 ¼ 4ηi1

¼ giβ
15

Z
d3k
ð2πÞ3 ½f

i
0f1 − fi0g�

��
Γi
c

ωi
B

��
1

ωi
B

���
k2

ωi

�
2

;

ð21Þ

and
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ηi4 ¼ 2ηi3

¼ giβ
15

Z
d3k
ð2πÞ3 ½f

i
0f1 − fi0g�

�
1

ωi
B

��
k2

ωi

�
2

: ð22Þ

If we compare Eqs. (21) and (22) with Eq. (13), then we can
get a physical interpretation of these shear viscosity
components. In the plane perpendicular to the external
magnetic field, the momentum transfer due to shear stress is
independent of the particle collisions and will be propor-
tional to the field-induced relaxation (τB ¼ 1=ωB), which is
basically the inverse of the synchrotron frequency. In other
words, rotational motion of the charged particles with
corresponding synchrotron frequency provides the required
momentum transfer for generating shear stress along the
tangential directions, located in the perpendicular plane
with respect to the magnetic field. This strength of the shear
stress, velocity gradient, and its proportional coefficients η3
and η4 are completely originated due to (strong) magnetic
field background.
In other possible tangential directions, both the colli-

sional and rotational energies take part in momentum
transfer. Therefore, the fraction Γc=ωB is required for
fixing the proportional strength of viscosities η1 and η2.
The corresponding relaxation time for these components
becomes ½ðΓc

ωB
Þ 1
ωB
�−1.

B. Results of strong field case

In the strong field limit, the τc should be much, much
greater than τB ¼ 1=ωB ¼ ωk

Q=eQB ¼ fk2 þm2
Qg1=2=eQB

[25], which is basically the inverse of the synchrotron
frequency ωB. The assumption τc ≫ τB is the baseline of
the strong field case formalism, discussed earlier in
Sec. III A. After calculating τc microscopically, we can
know whether or not the value of τc satisfies τc ≫ τB or the
strong field limit. Here, we will attempt to obtain τcðT; eBÞ
in an explicit microscopic calculation. For this purpose, let
us start with the B ¼ 0 case with the standard expression of
collisional relaxation time τc or thermal width,

ΓcðT; kaÞ ¼
1

τc

¼
X
b

Z
d3kb
ð2πÞ3 σabðT; ka; kbÞvabðT; ka; kbÞ

× fbðT; kbÞ; ð23Þ

where

vabðT;ka;kbÞ ¼
fðωa þωbÞ2 − 4M2

QðTÞg1=2ðωa þωbÞ
2ωaωb

ð24Þ

is the relative velocity with ωa;b ¼ fk2a;b þM2
QðTÞg1=2.

To map grossly the scattering strength of NJL dynamics, let
us calculate cross section σab from a simple four-quark
contact diagram, shown inside Fig. 2(b). To do this, we use
the standard quantum field theoretical relation of 2 → 2
scattering,

σab ¼
1

16πs
jMj2ab; ð25Þ

where s ¼ ðωa þ ωbÞ2 and

jMj2ab ¼
1

2× 2
G216

�
s
2

�
2

¼G2s2; s¼ ðωaþωbÞ2: ð26Þ

Hence, we get a temperature- and momentum-dependent
cross section σabðT; ka; kbÞ ¼ G2

16π sðT; ka; kbÞ.
By maintaining electric charge conservation, we will get

12 possible 2 → 2 ðab → a0b0Þ scattering processes:

uū → uū; ud̄ → ud̄; uū → dd̄; uu → uu;

ud → ud; ū ū → ū ū; ū d̄ → ū d̄; dd̄ → dd̄;

dd̄ → uū; dū → dū; dd → dd; d̄ d̄ → d̄ d̄ : ð27Þ
So, fixing any initial particle a as the probe particle, we
have to take the summation of b to calculate ΓcðT; kaÞ as in
Eq. (23) Taking the momentum average of the probe
particle, we get only the T-dependent quark width,

ΓcðTÞ ¼
1

τc
¼

R d3ka
ð2πÞ3 ΓðT; kaÞfaðT; kaÞR d3ka

ð2πÞ3 faðT; kaÞ
: ð28Þ

So, we find that temperature dependence mainly comes
from thermodynamical phase space and MQðTÞ. If we go

0.1

1

10

η/
s

eB=0
η2/s(eB=10 mπ

2
))

η4/s(eB=10 mπ
2
)

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
T (GeV)

1

10

100

τ c (
fm

) eB=10mπ
2

eB=0

(a)

(b)

KSS bound

Chiral KSS line

FIG. 2. (a) T dependence of η=s at eB ¼ 0 (dotted line) and
η2=s (blue dash line) and η4=s (pink solid line) at eB ¼ 10m2

π .
(b) T dependence of τc at eB ¼ 0 (dotted line) and eB ¼ 10m2

π

(pink solid line).
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for a simplified extension of the finite magnetic field picture
by replacing MQðT; eBÞ in Eq. (28), we can get ΓcðT; eBÞ.
Figure 2(b) shows the τcðT; eBÞ at eB ¼ 0 (black dotted line)
and eB ¼ 10m2

π (pink solid line). Due to increase in the
number density of the particles with temperature, collisional
frequency increases, and relaxation time decreases with T.
The eB dependence of τc enters via eB dependence
of constituent quark mass MQðeBÞ. Increasing function
MQðeBÞ can suppress the number density, which makes
Γc decrease and τc increasewith eB. Being proportional with
the decreasing function τcðTÞ for eB ¼ 0, η=s decreaseswith
T. Let us note that in the behavior of η=s with temperature
arises from two competing quantities that depend upon
temperature. Due to thermodynamic phase space factor, this
ratio is an increasing function of temperature while the
relaxation time decrease with temperature. For constant
relaxation time, due to thermal phase space factor, η=s
increase with temperature. This can be easily found out
for mass less ideal gas behavior of the expression for η=s. On
the otherhand, for the decreasing behavior of temperature
dependent τ, dominates over the increasing behaviour arising
from the thermal phase space making the ratio decreasing
with temperature, as may be noticed in the dotted line of
Fig. 2(a).
Another noticeable thing is that for the contact diagram

of 2 → 2 scattering processes, the NJL model estimates
very large τc, which is quite far from the chiral Kovtun-
Son-Starinets (KSS) line τcðTÞ ¼ 5

4πT, shown by the red
solid line in Fig. 2(b). The chiral KSS line comes from the
requirement of η

s ¼ 1
4π for the massless particles. Therefore,

in Fig. 2(a), black dotted line is also quite far from the red
horizontal line, denoted KSS value for the ratio η

s ¼ 1
4π.

For this high value of τc, eB ¼ 10m2
π can be considered as

strong field limit case because τB remains within the range
0.8–3 fm. So, we can safely say that at eB ¼ 10m2

π we can
consider τc ≫ τB or the strong field limit case [25]. It is
interesting to notice in Eq. (21) that the position of τc for the
strong field case becomes inverse (η2 ∝ 1=τc); therefore,
η2=s becomes an increasing function of T, as shown by the
pink solid line in Fig. 2(a). Hence, in the strong field limit,
η1;2 ∝ 1=τc follows the opposite trend with respect to the
field-free case η ∝ τc. When we come to the Hall-type
viscosity, η3;4 ∝ τB, which appears as dissipation free com-
pletely as it becomes independent of τc. η3;4 increases with T
because of its phase space part, which can be realized from
the η4=s curve (blue dash line) in Fig. 2(a).
Now, for the simplest contact diagram calculation, we are

getting a very large value of τc, but it cannot be expected in
the RHIC or LHC matter, the lifetime of which is approx-
imately 10 fm. So, the strong field case cannot be applicable
for the RHIC or LHC matter, the τc of which is expected to
be small, at least smaller than 10 fm. We might find
alternative possible diagrams, which can provide small τc.
References [49–53] have obtained very small τc, relevant to
the RHIC or LHC matter through a meson exchange–type

diagram, the calculation ofwhich in the presence ofmagnetic
field is not at all very straightforward. It might be considered
as a future challenging topic. Instead of calculating smaller
τcðTÞ, we can take it as a parameter and examine the impact
of its smaller value. When we consider a small value of τc
(<10 fm) at eB ¼ 10m2

π , the inequality τc ≫ τB does not
hold. So, instead of considering the strong field limit, we
might have to find some general structure of ηn, which is
attempted in the next section.

IV. FROM STRONG FIELDS TO MODERATE
FIELDS

A. Modified formalism of shear viscosity

In this section, we will attempt toguess a general
structure of shear viscosities, which can be applicable
for any value of τB and τc.
We have found that the τc in Eq. (13) for B ¼ 0 is

basically replaced by effective relaxation time τeff1;2 ¼ τ2B
τc
for

η1;2 and τeff3;4 ¼ τB for η3;4. Let us take an ansatz of effective
relaxations [42],

τeff1 ¼ τc
1

4f1
4
þðτc=τBÞ2g

τeff2 ¼ τc
1

f1þðτc=τBÞ2g

τeff3 ¼ τc
τc=τB

2f1
4
þðτc=τBÞ2g

τeff4 ¼ τc
τc=τB

f1þðτc=τBÞ2g
; ð29Þ

which might be considered as their general structure,
because in the limit of τc ≫ τB, we get

4τeff1 ¼ τeff2 ¼ τ2B
τc

2τeff3 ¼ τeff4 ¼ τB: ð30Þ

It means that we will get back Eqs. (21) and (22) for the
strong field limit (τc ≫ τB).
Using that general structure of relaxation (29) in

Eqs. (21) and (22), we will get general expressions of
shear viscosity components:

η1 ¼
gβ
15

Z
d3k
ð2πÞ3

�
k2

ω

�
2

τc
1

4f1
4
þ ðτc=τBÞ2g

½f0f1 − f0g�

ð31Þ

η2 ¼
gβ
15

Z
d3k
ð2πÞ3

�
k2

ω

�
2

τc
1

1þðτc=τBÞ2
½f0f1−f0g� ð32Þ

η3¼
gβ
15

Z
d3k
ð2πÞ3

�
k2

ω

�
2

τc
τc=τB

2f1
4
þðτc=τBÞ2g

½f0f1−f0g� ð33Þ

η4 ¼
gβ
15

Z
d3k
ð2πÞ3

�
k2

ω

�
2

τc
τc=τB

1þðτc=τBÞ2
½f0f1−f0g�: ð34Þ
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B. Modified results for general case

Using Eqs. (31)–(34), we have first plotted η1;2;3;4 vs T in
Fig. 3(a) and then their normalized values η1;2;3;4=s in
Fig. 3(b). An interesting point is that all components of
shear viscosity in the presence of magnetic field are smaller
than their isotropic values in the absence of magnetic field.
In Fig. 3(b), we notice that the KSS line is crossing different
curves at different temperatures. Here, we find that at fixed
τc the perfect fluid nature will be developed in quark matter
at a higher temperature for B ≠ 0 with respect to its B ¼ 0
case. It reflects that for fixed interaction magnetic field se
the system toward the KSS bound, while temperature kicks
away from the bound. To highlight the fact, we have plotted
η1;2;3;4 vs eB=m2

π in Fig. 4, in which the decreasing trend of
η1;2 with magnetic field is clearly observed. Magnetic field–
dependent Hall-type coefficients η3;4 behave a little differ-

ently because of their anisotropic structure ðτc=τBÞ
1þðτc=τBÞ2, which

increases with B for τc=τB < 1 but decreases with B for
τc=τB > 1. Therefore, we get increasing η3;4ðBÞ for τc ¼
1 fm and decreasing η3;4ðBÞ for τc ¼ 20 fm, as displayed in
Figs. 4(b) and 4(d).
Another interesting point has also been shown in Fig. 4.

It is regarding the merging of general anisotropic shear
viscosity components with their strong field limit estima-
tion. At the strong field limit, η2 ¼ 4η1 and η4 ¼ 2η3, the
expressions of which are given in Eqs. (21) and (22). These
strong field limit estimations of η2 ¼ 4η1 and η4 ¼ 2η3
curves are plotted by the dotted lines in Figs. 4(a) and 4(b),
respectively, for τc ¼ 1 fm. On the other hand, general
anisotropic components of shear viscosity can be obtained
from Eqs. (31)–(34), and we plotted 4η1 (red dash line), η2
(blue solid line), 2η3 (green dash line), and η4 (orange solid
line) in Figs. 4(a) and 4(b) for τc ¼ 1 fm. We notice that
these curves are not merging in any point of the B axis up to

eB ¼ 15m2
π , but when we use τc ¼ 20 fm in Figs. 4(c) and

4(d), they are merging after eB ¼ 6m2
π. So, the results say

that strong field limit might be a good approximation for
τc > 10 fm.However, for RHIC or LHC matter, whose
τc < 10 fm, strong field limit expressions might not be
considered a good approximated estimation. This picture
will be more clear in Fig. 5, which exposes the τc
dependence of η2=s from Eq. (32) (solid line) and
Eq. (21) (dotted line) at eB ¼ 10m2

π , T ¼ 0.150 GeV in
the range of (a) τc < 10 fm and (b) τc > 10 fm. Here, we
find how general η2=s is merging with its strong field limit
curves in the second zone (τc > 10 fm), while they are
quite far in the first zone (τc < 10 fm). The same
qualitative pattern is also noticed for T ¼ 0.300 GeV in
Figs. 5(c) and (d). From the crossing of the KSS line in
Fig. 5, we can say that nearly perfect fluid nature can be
obtained for two different values of τc within the

0

0.02

0.04

0.06

(G
eV

3 )

η1
η2
η3
η4
η

0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
T (GeV)

0.1

η1/s
η2/s
η3/s
η4/s
η/s

τc=1 fm eB=10 mπ
2

KSS

(a)

(b)

FIG. 3. (a) T dependence of η at eB ¼ 0 (solid line) and η1;2;3;4
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π . (b) Corresponding viscosity-to–entropy density ratios.
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τc < 10 fm zone at eB ¼ 10m2
π, T ¼ 0.150 GeV. We can

denote them as τ∓c . The values of τ−c are below 1 fm, and,
such a value might not be reached in the RHIC or LHC
matter. So, τþc is a more phenomenological point. We notice
that τþc at T ¼ 0.300 GeVremain within the zone of
τc > 10 fm. Hence, alternatively, we can say that to build
nearly perfect fluid nature in higher-temperature quark
matter we need a higher magnetic field if we want it for the
τc < 10 fm zone. It is quite possible for the RHIC or LHC
matter, having the τc < 10 fm zone, in which a high
magnetic field decays with time and temperature. This
means that as we approach a higher temperature that matter
can face higher magnetic field in experiments. So, there
might be a compensating role of temperature and magnetic
field to build nearly perfect fluid nature in the RHIC or
LHC matter.

V. SUMMARY

We have studied the shear viscosity of quark matter in a
uniform magnetic field background, where the medium
loses its isotropic property. Because of this anisotropic
nature, one can get more than one component of shear
viscosity, denoted by η1, η2, η3, and η4, which are ultimately
reduced to two main components in the strong field limit
through relations 4η1 ¼ η2 and 2η3 ¼ η4. We know that
isotropic shear viscosity η in the absence of magnetic field
is mainly governed by two parts: the phase space and the
relaxation time. Here, also, η2 and η4 can be cast into the
similar structure with phase space and relaxation time parts.
The relaxation time of η4 is inversely proportional to
synchrotron frequency ωB, and the relaxation time of η2
is Γc

ðωBÞ2 in strong field limit, where the collisional thermal

width Γc of medium constituents will be much smaller that
its synchrotron frequency, i.e., Γc ≪ ωB. However, a large
value of Γc is expected for strongly coupled RHIC or LHC
matter. To describe that zone, we need a general structure of
η1;2;3;4, which does not follow the relations 4η1 ¼ η2 and
2η3 ¼ η4 below the strong field domain.
We have used the formalism of the NJL model in the

presence of magnetic field to describe the magnetothermo-
dynamics of quark matter, and we get a temperature- and
magnetic field–dependent quark mass, which will be
entered to the phase space factors of η1;2;3;4. In strong
field limits, all components decrease with B, but in the
weak field case, the Hall-type viscosities η3;4 increase
with B.
Along with the constant value τc, we have also calculated

the T dependence of τc from a simple contact diagram of
2 → 2 scattering processes, coming from the interaction
Lagrangian density of the NJL model. Replacing the
T-dependent quark mass MQðTÞ by T, the eB-dependent
quark mass MQðT; eBÞ, we have extended the expression
of relaxation time from τcðTÞ to τcðT; eBÞ. Scattering
probability (Γc) proportionally increases with the density
of the medium, which increases with T due to statistical
reasons and decreases with eB due to mass enhancement.
Hence, relaxation time τcðT; eBÞ decreases with T and
increases with eB. In the absence of magnetic field, the
shear viscosity–to–entropy density ratio decreases with T
as it is proportional to relaxation time, but it increases with
T in the strong field picture as it is inversely proportional
to the relaxation time. So, when we shift from zero to finite
magnetic field picture, T dependence of viscosity to
entropy density ratio transforms from its decreasing to
increasing trends.
In the present work, we have calculated τcðT; eBÞ from

the simplest contact diagram 2 → 2 scattering processes,
which provide a large τc, where eB ¼ 10m2

π can safely be
considered a strong field case. However, to describe RHIC
or LHC matter with small τc, we have to consider the
general structure of η1;2;3;4 and a better interaction picture,
which can map strongly coupled matter. In future, we are
planning to build a better interaction picture through
Feynmann diagram calculations in presence of magnetic
field.
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