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The Landau-gauge gluon and ghost correlation functions obtained in lattice simulations can be
reproduced qualitatively and, to a certain extent, quantitatively if a gluon mass is added to the standard
Faddeev-Popov action. This has been tested extensively at one loop, for the two and three point correlation
functions of the gluons, ghosts and quarks. In this article, we push the comparison to two loops for the
gluon and ghost propagators. The agreement between lattice results and the perturbative calculation
considerably improves. This validates the Curci-Ferrari action as a good phenomenological model for
describing the correlation functions of Yang-Mills theory in the Landau gauge. It also indicates that the
perturbation theory converges fairly well, in the infrared regime.
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I. INTRODUCTION

During the last two decades, there has been intense activity
aimed at studying the long-distance properties of the corre-
lation functions of quantum chromodynamics (QCD) in the
Landau gauge. Nowadays, a consensus has been reached in
the community. A wide range of approaches (both analytic
and numerical), concluded that the gluon propagator satu-
rates in the infrared, while the ghost propagator diverges.
This behavior is consistent with the presence of a gluon
“mass,” which is found to be of the order of 500 MeV. The
origin of thismass is, however, still strongly debated. It could
be generated through nonperturbative effects (captured by
truncations of Schwinger-Dyson equations [1–7] or by
integrating nonperturbative renormalization-group equations
[8–10]), it could result from the generation of condensates
(such as hA2i for instance [11–13]) or couldbe a consequence
of the Gribov ambiguity, which invalidates the standard
Faddeev-Popov gauge-fixing procedure [14,15]. From the

numerical side, the saturation of the gluon propagator is
unambiguously seen in lattice simulations [16–20].
Understanding the origin of this mass is of great relevance

to the field, but remains a difficult task. A more humble
program consists in studying towhat extent the long-distance
behavior of QCD is related to the presence of this mass. One
way of addressing this question is to minimally extend the
Landau gauge-fixed QCD Lagrangian by means of a mass
term for the gluons, added on phenomenological grounds.
This starting point corresponds to the Curci-Ferrari model, in
the limit of vanishing gauge parameter. In a series of articles
[21–27], the 2- and 3-point correlation functions of gluons,
quarks and ghosts were computed at leading (one-loop) order
in perturbation theory and the results were compared to
available lattice simulations.1 The overall picture which
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1A gluonic mass operator has also been considered by Siringo
and collaborators, within the general setting ofRξ-gauges [28–30].
However, contrary to the present approach, theworking hypothesis
in this case is that the Faddeev-Popov action is not modified by the
presence of Gribov copies. The gluonic operator is formally added
and subtracted to the Faddeev-Popov action as a way to reorganize
the standard perturbative expansion of the model, while curing its
bad features in the infrared. The value of the gluonic mass is
typically fixed by some optimization criterion.
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emerges is the following. In the quenched approximation
(or Yang-Mills theory), where the fluctuations of the quarks
are neglected, the lattice results can be estimated with a
maximal error of 10%–20% on the whole range of available
momenta. The model is therefore very predictive, since
many features can be reproduced with only one phenom-
enological parameter: the gluon mass. These results are
surprising at first sight because the infrared regime of
QCD is reputed to be nonperturbative. The apparent paradox
can be solved by observing that the coupling constant
deduced from lattice simulations (see e.g. Ref. [31]) and
derived from analytic calculations [32] remains finite and
quite mild in the whole range of momenta. This is at odds
with the result obtained in standard perturbation theory,
where the coupling constant is found to diverge at an energy
scale of the order of few hundreds of MeV.Within the Curci-
Ferrari model, it is explicitly seen [22] that the mass term
regularizes the infrared properties of the theory, which does
not experience a Landau pole. When the quark dynamics is
taken into account, the agreement between lattice simulations
and the one-loop results is worse. This is related to the fact
that the quark-gluon interaction is up to three times bigger
than the 3-gluon interaction (the ghost-gluon interaction
being of the order of the latter).2 In this situation, it proved
useful to treat the ghost-gluon sector perturbatively, while
treating the matter sector using an expansion in the inverse
of the number of colors. This strategy enables the description
of the chiral transition within a systematic expansion
controlled by two small parameters [26].
The aim of this article is to further test the convergence of

the theory. It is particularly important for our whole project
to understand:

(i) to which extent perturbation theory converges in the
quenched limit. More precisely, it is important to
evaluate the contribution of higher loops to some
observables.

(ii) if the theory converges, does it converge to results
close to those of the true Yang-Mills theory. The
issue here is to test the validity of the phenomeno-
logical model.

We concentrate here on the gluon and ghost propagators in
the quenched approximation which are the simplest corre-
lation functions to compute and for which we have the
cleanest lattice data.
The rest of the article is organized as follows. In Sec. II,

we recall the model and describe the renormalization
scheme that we use. We give some details of the two-loop
calculation in Sec. III. In Sec. IV, we discuss how analytic
results can be obtained in some momentum configurations.
We finally compare the perturbative results to lattice data
in Sec. V.

II. CURCI-FERRARI MODEL

Based on the phenomenological considerations given
above, we use as a starting point the following Lagrangian
density:

L ¼ 1

4
ðFa

μνÞ2 þ ∂μc̄aðDμcÞa þ iha∂μAa
μ þ

m2

2
ðAa

μÞ2: ð1Þ

The covariant derivative ðDμcÞa ¼ ∂μca þ gfabcAb
μcc and

the field strength Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν are

expressed in terms of the coupling constant g and the
Latin indices correspond to the SUðNcÞ gauge group.
The Lagrangian (1) corresponds to a particular case of
the Curci-Ferrari model [33], obtained in the limit of
vanishing gauge parameter. At tree level, the gluon propa-
gator is massive and transverse in momentum space, which
ensures that the model is renormalizable. Note that the mass
term is introduced at the level of the gauge-fixed theory.
If instead we modified the unfixed theory, we would obtain
a longitudinal propagator which does not decrease in the
ultraviolet and the theory would not be renormalizable. We
refer the reader to Ref. [22] for a more detailed account of
this model, including its symmetries.
The theory is regularized in d ¼ 4 − 2ϵ dimensions. It is

renormalized by introducing renormalized coupling con-
stant, mass and fields, which are related to the bare ones
(that we denote now with the subscript “B”) by including
multiplicative renormalization factors:

Aa μ
B ¼

ffiffiffiffiffiffi
ZA

p
Aa μ; caB ¼

ffiffiffiffiffi
Zc

p
ca; c̄aB ¼

ffiffiffiffiffi
Zc

p
c̄a;

λB ¼ Z2
gλ; m2

B ¼ Zm2m2; ð2Þ

with λ ¼ g2Nc

16π2
. The renormalization factors are defined by

choosing the value of propagators and vertices at a given
scale μ.3 For the gluon propagator and the ghost dressing
functions, we choose

G−1ðp ¼ μÞ ¼ m2 þ μ2; Fðp ¼ μÞ ¼ 1: ð3Þ
We use the Taylor scheme to fix the renormalization of the
coupling constant. In this scheme, the coupling constant is
defined as the ghost-gluon vertex with a vanishing anti-
ghost momentum. This leads to the following relation
between renormalization factors:

Zg

ffiffiffiffiffiffi
ZA

p
Zc ¼ 1: ð4Þ

Finally, we use the nonrenormalization theorem for the
divergent part of the gluon mass [34–38]:

2We stress that the behavior of the running coupling constant is
universal in the deep ultraviolet but the interaction in different
channels can (and does) differ in the infrared limit.

3Note that, at order λ, the renormalization factors need to be
expanded up to order ϵ1. This is because they appear in one-loop
diagrams which diverge as 1=ϵ. The combination of these
divergences together with the ϵ1 of the renormalization factors
produce finite contributions (of order λ2) that should not be
forgotten in the two-loop calculation considered in this work.
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Zm2ZAZc ¼ 1; ð5Þ

and extend this relation to the finite parts.4 The four pre-
vious constraints define the infrared safe (IS) scheme [22].
We obtain the flow of the coupling constant, the gluon

mass and the anomalous dimensions by computing

βλðλ; m2Þ ¼ μ
dλ
dμ

����
λB;m2

B

;

βm2ðλ; m2Þ ¼ μ
dm2

dμ

����
λB;m2

B

;

γAðλ; m2Þ ¼ μ
d logZA

dμ

����
λB;m2

B

;

γcðλ; m2Þ ¼ μ
d logZc

dμ

����
λB;m2

B

: ð6Þ

Thanks to the nonrenormalization theorems, see Eqs. (4)
and (5), the anomalous dimensions are easily related to the
beta functions as

γAðλ; m2Þ ¼ 2
βm2

m2
−
βλ
λ
; ð7Þ

γcðλ; m2Þ ¼ βλ
λ
−
βm2

m2
: ð8Þ

Wecan then use the renormalization-group (RG) equation
for the vertex function with nA gluon legs and nc ghost legs:�
μ∂μ −

1

2
ðnAγA þ ncγcÞ þ βλ∂λ þ βm2∂m2

�
ΓðnA;ncÞ ¼ 0

ð9Þ
to relate these functions at different scales:

ΓðnA;ncÞðfpig; μ; λðμÞ; m2ðμÞÞ
¼ zAðμ; μ0ÞnA=2zcðμ; μ0Þnc=2ΓðnA;ncÞ

× ðfpig; μ0; λðμ0Þ; m2ðμ0ÞÞ; ð10Þ
where λðμÞ andm2ðμÞ are obtained by integration of the beta
functions with initial conditions given at some scale μ0 and
where

log zAðμ; μ0Þ ¼
Z

μ

μ0

dμ0

μ0
γAðλðμ0Þ; m2ðμ0ÞÞ;

log zcðμ; μ0Þ ¼
Z

μ

μ0

dμ0

μ0
γcðλðμ0Þ; m2ðμ0ÞÞ: ð11Þ

In order to avoid large logarithms we choose the renor-
malization-group scale μ ¼ p in Eq. (10). We thus obtain

Gðp; μ0Þ ¼
zAðp; μ0Þ

p2 þm2ðpÞ ;

Fðp; μ0Þ ¼ zcðp; μ0Þ: ð12Þ

By using the nonrenormalization theorems (7) and (8), the
gluon propagator and the ghost dressing function are
readily deduced from the running parameters:

Gðp; μ0Þ ¼
λðμ0Þ
m4ðμ0Þ

m4ðpÞ
λðpÞ

1

p2 þm2ðpÞ ;

Fðp; μ0Þ ¼
m2ðμ0Þ
λðμ0Þ

λðpÞ
m2ðpÞ : ð13Þ

One advantage of the IR scheme is that the propagators at
some momentum scale are algebraically related to the
running mass and coupling constant, evaluated at the same
momentum scale.

III. COMPUTATIONAL DETAILS

We devote this section to detailing the evaluation of the
underlying Feynman graphs contributing to the gluon and
ghost propagators in the Landau gauge of Yang-Mills
theory when there is a nonzero gluon mass. To achieve
this, we have constructed an automatic routine which com-
putes the 2-point functions using state of the art Feynman
diagram evaluation procedures. The starting point is the
construction of the Feynman graphs for each Green’s
function and for this we used the graph generator
QGRAF, [41]. Since there is a nonzero gluon mass, we
have been careful to include graphs involving gluon snails
in the language of [41]. Ordinarily, the gluon is regarded as
massless. So graphs where the quartic gluon vertex is
included on a gluon propagator with two legs contracted are
omitted as these would be zero in dimensional regulariza-
tion. With a nonzerom, such graphs will give contributions
and are included at one and two loops. Also, omitting them
would lead to inconsistencies with the gluon mass renorm-
alization. In total, there are 16 two-loop graphs for the
gluon 2-point function and 6 for the ghost case. At one
loop, the respective numbers are 3 and 1. Once the graphs
are generated, the electronic representation is converted
into the notation of the symbolic manipulation language
FORM, [42,43]. It is the most suitable tool to handle the
large tedious amounts of internal algebra. With a nonzero
mass, it is not possible to use established diagram evalu-
ation packages and therefore, we have resorted to imple-
menting the Laporta algorithm, [44], for the computation.
To apply it, each Green’s function needs to be written as a
sum of scalar integrals. This is achieved by writing all the
scalar products in the form of the propagators. For the

FIG. 1. One- and two-loop integral families.

4A similar nonrenormalization theorem for the Gribov mass
parameter was derived in [39,40].
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gluon propagator, one has to first project out the transverse
and longitudinal components. To two-loop order, this
procedure is straightforward as the number of independent
scalar products of internal and external momenta equals the

total number of propagators in the one- and two-loop
integral families in the syntax of the Laporta technique,
[44]. These are illustrated in Fig. 1 where the one-loop and
two-loop d-dimensional integrals are defined to be

I1m1m2
ðn1; n2Þ ¼

Z
k

1

½k2 þm2
1�n1 ½ðk − pÞ2 þm2

2�n2
;

Im1m2m3m4m5
ðn1; n2; n3; n4; n5Þ ¼

Z
kl

1

½k2 þm2
1�n1 ½l2 þm2

2�n2 ½ðk − pÞ2 þm2
3�n3 ½ðl − pÞ2 þm2

4�n4 ½ðk − lÞ2 þm2
5�n5

; ð14Þ

with
R
k ¼

R
ddk=ð2πÞd and the variables ni are integers.

In the decomposition of each of the Green’s functions
into scalar integrals, the propagator powers can be larger
than unity. Equally, one can have integrals where the scalar
products of momenta, when rearranged, exceed the number
of corresponding denominator factors. So, in Eq. (14), the
propagator powers can be negative. Such integrals are
readily accounted for in the Laporta construction. The
notation is that the powers of the propagators, which can
therefore be negative or zero as well as positive, appear in

the arguments of the respective functions representing the
two integral families. With each, we have to allow for all
possible distributions of a nonzero mass of each propagator.
Therefore, the massesmi take values in the set f0; mg since
the ghosts are massless and there is a transverse tensor in
the gluon propagator. To reflect this within the notation, we
append subscripts to I in the definitions in (14) which take
values in f0; 1g, where 1 corresponds to the mass being
nonzero on the respective propagator. For orientation, we
provide several examples which are

I110ðn1; n2Þ ¼
Z
k

1

½k2 þm2�n1 ½ðk − pÞ2�n2 ;

I00000ðn1; n2; n3; n4; n5Þ ¼
Z
kl

1

½k2�n1 ½l2�n2 ½ðk − pÞ2�n3 ½ðl − pÞ2�n4 ½ðk − lÞ2�n5 ;

I11101ðn1; n2; n3; n4; n5Þ ¼
Z
kl

1

½k2 þm2�n1 ½l2 þm2�n2 ½ðk − pÞ2 þm2�n3 ½ðl − pÞ2�n4 ½ðk − lÞ2 þm2�n5 : ð15Þ

Once each of the Green’s function is written in terms of
these two core integral structures, the Laporta algorithm is
applied.We have chosen to use theREDUZE version, [45,46],
and each of the integrals is converted to the unique Laporta
labelling, [44].UsingREDUZE,we have created a database of
the relations for the required scalar integrals, for all possible
mass configurations. These are then solved algebraically
within REDUZE in order to relate all integrals to a basic set of
what are known asmaster integrals. In the case of the present
problem, there are 2 one-loopmasters and 31 two-loop ones.
The latter total includes those cases which are the disjoint
product of one-loop masters. In addition to the integral
family topologies of Fig. 2, there are several additional
master topologies which are illustrated in Fig. 2. The large
number ofmasters is due to the different ways the topologies
can be decorated with nonzero mass. In that file, we use the
Laporta labeling, [44], and to assist with this we note

I1abðn1; n2Þ
¼ int1abðt;id;r;s;n1;n2Þ;

Iabcdeðn1; n2; n3; n4; n5Þ
¼ intabcdeðt;id;r;s;n1;n2;n3;n4;n5Þ: ð16Þ

The first four entries of each integral in the FORM output are
the unique internal labels required by the REDUZE version
of the Laporta algorithm. In particular, id labels the sector
the integral belongs to uniquely. It is defined from the
different ways the various lines can appear in each of the
Fig. 1 integral families. This includes the case where there
are no lines which is known as a zero sector. At one loop,
there are four sectors but 32 at two loops for each possible
mass configuration. The total number of independent lines in

FIG. 2. Additional one- and two-loop master topologies.
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a sector ist irrespective ofwhat their powers are. The sumof
the propagator powers is r while the sum of numerator
propagators iss. Several of themasters have nonunit powers
which is an established feature of master bases. An example
where one can be related to other integrals is

I10011ð1;−1; 0; 1; 1Þ ¼
1

3
½p2 − 3m2�I10011ð1; 0; 0; 1; 1Þ

þ I11000ð1; 1; 0; 0; 0Þ; ð17Þ
where p is the external momentum. In the Supplemental
Material [47], we give the 2-loop expressions for the gluon
and ghost 2-point vertices expressed in terms of the integrals
int1ab and intabcde defined above. We have used the
more general gluon-ghost vertex of the gauge fixing of
Curci-Ferrari, [33] which involves an extra parameter β for
any future investigations into other gauges but our results
focus exclusively throughout on the standard Faddeev-
Popov case which is β ¼ 1. Finally, the transverse and
longitudinal parts of the 2-point gluon vertex are encoded in
the parts proportional to long and trans respectively. For
completeness, we note that the Feynman rule for the gluon-
ghost vertex used is

hAa
μðp1Þc̄bðp2Þccðp3Þi¼−

i
2
gfbac½½1þβ�p2μ− ½1−β�p3μ�;

ð18Þ

where g is the usual gauge coupling constant.
The main duty of the Laporta algorithm is to convert the

evaluation of a Green’s function into a small set of master
integrals. The next stage in the procedure is the determi-
nation of these integrals. How one achieves this is depen-
dent on the particular problem of interest. Here, we wish to
plot the propagators over the whole momentum range and
compare with the lattice gauge theory computation of the
same quantities. Therefore, we either need the explicit
analytic form of all the master integrals as a function of m
and the external momentum or instead a numerical tabu-
lation of each master integral. In the former case, while
there has been a large amount of investment in achieving
this for two-loop self-energy graphs where the distribution
of masses corresponds to integrals which can appear in the
Standard Model at large, such as in [48], integrals like
I11111ð1; 1; 1; 1; 1Þ are not known explicitly analytically.
Various known cases have been noted in [48]. So instead,
we have resorted to a numerical analysis and made
extensive use of the TSIL package, [49], which is written
in C. This has been designed with the Laporta algorithm in
mind as it provides the necessary tools to numerically
evaluate two-loop self-energy graphs with all possible mass
configurations. Moreover, it is comprehensive and com-
plete in the sense that we have not taken the route of trying
to consolidate results for various integrals from different
sources. This would have the added complication of

needing to reconcile different conventions. As an aid to
converting between the REDUZE conventions of (14) and
(16) and the integral definitions of TSIL, the mapping
between the two is

I1x0ð1; 0Þ ¼ AðxÞ; I1xyð1; 1Þ ¼ Bðx; yÞ; ð19Þ
for the one-loop integrals of TSIL. As TSIL accommodates
the most general mass configuration, we adapt our defi-
nitions (14) and use x, y, z, u and v as subscript labels
corresponding to the different masses. These parameters are
used in TSIL and correspond to the general masses m2

i of
our notation in (14) although we have only one mass in our
problem. At two loops, the corresponding relations are

Ixy00zð1; 1; 0; 0; 1Þ ¼ Iðx; y; zÞ;
Ix00yzð1; 0; 0; 1; 1Þ ¼ Sðx; y; zÞ;
Ix00yzð2; 0; 0; 1; 1Þ ¼ Tðx; y; zÞ;
Iyux0zð1; 1; 1; 0; 1Þ ¼ Uðx; y; z; uÞ;
Iyux0zð2; 1; 1; 0; 1Þ ¼ Vðx; y; z; uÞ;
Ixyzuvð1; 1; 1; 1; 1Þ ¼ Mðx; y; z; u; vÞ: ð20Þ

One useful aspect of the TSIL package used in this work
is that it correctly isolates the poles with respect to ϵ for
each master integral ahead of the numerical evaluation of
the finite part. Moreover, the residues of the 1

ϵ and
1
ϵ2
poles

are determined analytically rather than numerically. This
provides an important check on both the Laporta reduction
and the TSIL implementation. The divergent part for each
2-point function is already known analytically in the case of
a massless gluon. This, therefore, has to be recovered and
we note that this is indeed the case when the m → 0 limit is
taken. Moreover, we correctly recover the divergent part
of the gluon mass renormalization to two loops when
m ≠ 0. Therefore, the correct MS renormalization constants
emerge from our full construction of the Green’s functions.
The main benefit of TSIL [49] is that if the finite part of a
master is unknown then it is evaluated numerically and we
note that version 1.41 was used for our computations.

IV. ANALYTIC RESULTS

After extracting the divergences of the various master
integrals according to Ref. [49] and implementing the IR
safe renormalization conditions, the decomposition of the
inverse gluon propagator and of the inverse ghost dressing
function into master integrals can be written formally as

G−1ðpÞ ¼ Z1p2 þ Z2m2 þ
X
I∈M

RGðIÞI ; ð21Þ

F−1ðpÞ ¼ Z3 þ
X
I∈M

RFðIÞI ; ð22Þ
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where the Zi are related to the finite parts of the renorm-
alization factors,

P
I∈M represents the sum over the finite

master integrals and the coefficientsRGðIÞ andRFðIÞ are
rational functions of the external momentum p which
depend on the considered integral. The finite master inte-
grals are defined in Ref. [49] and are denoted A0, B0, I0, S0,
T0, U0, V0 and M0. The sum also involves products of
bilinears in A0 and/or B0 and also linear terms involving the
order ϵ1 contributions to the one-loop master integrals,
denoted respectively A1 and B1. Similar decompositions
hold for the β and γ functions.5 The explicit expressions for
the renormalized 2-point vertex in an arbitrary scheme,
expressed in terms of these finite master integrals is given in
the Supplemental Material [47]. We also included in this
Supplemental Material the two-loop expressions for the
renormalization factors and the γ functions.
In principle, the above decompositions can be evaluated

directly using the TSIL library. In practice however,
certain ranges of momenta, including the ultraviolet regime
(p ≫ m), the infrared regime (p ≪ m), and also the
vicinity of p ¼ p� ≡

ffiffiffi
2

p
m, require a more analytic treat-

ment. The reason is that the decompositions (21) and (22)
are not well conditioned in those ranges of momenta
because the expected behavior of G−1ðpÞ and F−1ðpÞ as
functions of p emerges only as the result of cancellations
among the various terms of the decomposition.
For instance, we find that some of the terms in the

decomposition diverge artificially as p approaches p�,
whereas we expect G−1ðpÞ and F−1ðpÞ to be regular for
any value of the Euclidean momentum. A more detailed
analysis reveals that the residue of the potential pole at
p ¼ p� is proportional to

11 − 8
A0ðm2Þ
m2

þ 2
A0ðm2Þ2

m4
− 4

A0ðm2Þ
m2

B0ðm2; m2;p2�Þ
− 2B2

0ðm2; m2;p2�Þ þ 4B0ðm2; m2;p2�Þ

þ 4

m2
S0ðm2; m2; m2;p2�Þ; ð23Þ

both for the gluon propagator and for the ghost dressing
function. All these integrals can be computed analytically
[49] and we find that the residue vanishes, as it should. This
is a nontrivial check of our decompositions into master
integrals.
Similarly, we find that the individual terms in (21)

can grow up to p6 (up to logarithmic corrections) in the
UV, and those in (22) can grow up to p4, whereas on
general grounds, we expect

lim
p→∞

G−1ðpÞ
jpj3 ¼ 0 and lim

p→∞

F−1ðpÞ
jpj ¼ 0: ð24Þ

In the infrared, the various terms can grow up to 1=p4 in
the IR, whereas we expect the G−1ðpÞ and F−1ðpÞ to be
regular. In order to check that the correct behavior emerges
after summing over the master integrals we have used
analytic asymptotic expansions for the master integrals
that we derived using the algorithms described in [50,51].
The algorithm in the infrared does not apply to certain cases
but fortunately the master integrals in those cases are
known exactly [49]. Another possible strategy could be
to try to use the algorithms developed in [52,53]. In the
Supplemental Material [47], we provide the infrared and
ultraviolet expansions of all the master integrals needed in
our calculation up to order p2.6

Using these expansions, we find for instance that the
potentially dangerous 1=p4 contributions in the infrared
regime are proportional to

∝ λ2½A0ðm2Þ þm2B0ðm2; 0;p2 ¼ 0Þ�2 1

p4
ð25Þ

and thus cancel identically since the combination between
brackets vanishes. Similarly, the dangerous 1=p2 contri-
butions cancel owing to an identity between the finite two-
loop master integrals that involves the following relation

0 ¼ π2 − 36Li2ðe−iπ=3Þ − 54iCl2

�
2π

3

�
ð26Þ

between Clausen function and the dilogarithm.
We have used the UV/IR asymptotic expansions of

the master integrals not only to check that the expected
leading behaviors of G−1ðpÞ and F−1ðpÞ are retrieved
in the ultraviolet and the infrared, but also to replace
when needed the numerical evaluation of these functions by
a controlled analytic expansion to arbitrary order. In
particular to leading order, we find that the UV behavior
is given by

γA ¼ −
13

3
λ −

85

6
λ2 þO

�
m2

μ2
ln
m2

μ2

�
; ð27Þ

γc ¼ −
3

2
λ −

17

4
λ2 þO

�
m2

μ2
ln
m2

μ2

�
; ð28Þ

from which one recovers the two-loop universal βλ func-
tion. The expansion in the infrared regime leads, for the IR
safe scheme, to

5The origin of those terms is again that the order ϵ1 con-
tributions multiply factors of order 1=ϵ. For completeness, we
also mention that the renormalization procedure generates linear
terms involving m2 derivatives of one-loop master integrals.
However, using dimensional analysis, these derivatives can
always be expressed in terms of the master integrals themselves.

6Some of these master integrals are known analytically. We
only give the expansions of those for which no analytic form is
known.
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γA ¼ λ

�
1

3
−

217μ̄2

180m2

�
þ λ2μ̄2

m2

�
38687

25920
−
37

48
ζð2Þ

þ 3647

288
S2 −

179

180
log

�
μ̄

m

�
þ 13

36
log2

�
μ̄

m

��
þOðλ3; ðμ̄=mÞ4Þ; ð29Þ

γc ¼
λμ̄2

m2

�
−

5

12
þ log

�
μ̄

m

��

þ λ2μ̄2

m2

�
−
4295

576
þ 5

12
ζð2Þ þ 459

16
S2 þ

1

6
log

�
μ̄

m

��
þOðλ3; ðμ̄=mÞ4Þ; ð30Þ

where the constant S2 ¼ 2
ffiffiffi
3

p
=9Cl2ð2π=3Þ ≃ 0.2604341. It

is remarkable that the low-momentum behavior of γA is
completely governed by the one-loop result.
As a further cross-check of our calculation, we have used

the symmetries of the model. In particular, the Curci-Ferrari
model possesses a non-nilpotent version of Becchi-Rouet-
Stora-Tyutin (BRST) symmetry. Together with the equation
of motion for the antighost field, this symmetry implies a
relation between the ghost dressing function and the

longitudinal component of the vertex function Γð2Þ
AA, namely

Γð2Þ
AA;LðpÞF−1ðpÞ ¼ m2; ð31Þ

see [22] for more details. We have checked that this identity
is fulfilled by our expressions up to the relevant order of
accuracy.

V. RESULTS

We are now ready to compute explicitly the gluon and
ghost propagators at two loop order. We shall do so in four
dimensions for the SUð2Þ and SUð3Þ gauge groups and
compare our results with lattice data as well as with
previously obtained one-loop results. However, before
embarking in this discussion, we first describe the general
properties of the RG flow.

A. General properties of the
renormalization-group flow

In Fig. 3 we depict the solutions of Eqs. (6) for different
initial conditions. The two-loop IR-safe flow presents an
infrared fixed point at ðλ�; m̃�Þ ∼ ð1.64; 0.6Þ, where m̃ ¼
m=μ is the dimensionless mass. These fixed-point values
are smaller than those found at one loop ðλ�; m̃�Þ ∼
ð16; 3.7Þ [27]. The trajectory from the UV fixed point,
ðλ; m̃Þ ∼ ð0; 0Þ, to the infrared fixed point corresponds to
the so-called “scaling solution.” This solution leads to a
gluon propagator which vanishes at small momentum, as is
shown in Fig. 4. For initial conditions lying on the left of
the separatrix, the RG flow terminates at a Landau-pole
(green curves), while the flows initialized on the right of the

separatrix (blue trajectories) are infrared safe and corre-
spond to a gluon propagator which saturates at a nonzero
value in the infrared, see Fig. 4.
There is a feature which appears at two loops that was

not present in our previous one-loop calculation. We see
that, for trajectories close enough to the scaling solution,
the gluon propagator shows oscillations, see Fig. 4. To
understand more clearly this phenomenon, we have drawn
in Fig. 3 the position of the extrema of the gluon propagator
(dotted line). This curve corresponds to the values of λ and

0.6 , 1.64

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

m

FIG. 3. Different trajectories of the IS-flow in the plane ðm̃
≡m=μ; λÞ including two-loop corrections. The infrared fixed
point is located at ðλ�; m̃�Þ ∼ ð1.64; 0.6Þ. Green trajectories (left
side) present a Landau pole, while blue trajectories (right side) are
infrared safe. The dotted line represents the position for the
extrema of the gluon propagator. The orange (dashed) curve is the
one used to reproduce lattice data in SUð3Þ.
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FIG. 4. Gluon propagator for different initial conditions
of the flow.
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m=μ for which the derivative of the gluon propagator with
respect to p2 is zero, namely:

βλ
λ
−
2μ2 þm2

μ2 þm2

βm2

m2
þ 2μ2

μ2 þm2
¼ 0:

As some of the flow trajectories can intersect this line
several times, the gluon propagator may present some
oscillations, as seen in Fig. 4. However, these features
concern only relatively large values of λ (λ≳ 1), a region
where the perturbative approach is questionable. The
oscillations observed in the gluon propagator are probably
to be attributed to the use of the perturbative approach
beyond its range of validity. We note that such oscillations
are not observed in nonperturbative approaches, see e.g.
Ref. [54]. Finally, although not shown in Fig. 3, we note
that the line of extrema (dotted line) always crosses the IR
safe trajectories deep in the infrared.

B. Fixing the parameters

Our calculation of the gluon and ghost propagator
involves four parameters: the initial conditions of the
RG flow (at μ0 ¼ 1 GeV) for the running gluon mass
and the running coupling as well as a global normalization
of the propagators.
We choose those parameters in order to minimize

simultaneously the error for the ghost dressing function
and the gluon propagator. Specifically, we minimize the

average of the error functions, χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
χ2AAþχ2cc̄

2

q
, where χ2AA and

χ2cc̄ are defined as

χ2AA ¼
X
i

G−2
lt ðμ0Þ þ G−2

lt ðpiÞ
2N

ðGltðpiÞ − GthðpiÞÞ2;

χ2cc̄ ¼
X
i

F−2
lt ðμ0Þ þ F−2

lt ðpiÞ
2N

ðFltðpiÞ − FthðpiÞÞ2: ð32Þ

The subscript lt. indicates the lattice data while th. indicates
the perturbative results and N represents the number of
lattice points with momentum less than 4 GeV (more
ultraviolet data were disregarded). Therefore, the functions
χ correspond to a sort of average between the (normalized)
absolute error and the relative error. As an example, for the
determination of the best fitting parameters, we show in
Fig. 5 the level curves for χ as a function of λ0 and m0, for
one-and two-loop corrections, using the corresponding data
for SUð3Þ [56] and SUð2Þ [31]. We stress that the optimal
value for the coupling constant λ0 is smaller in the SUð3Þ
than in SUð2Þ case. In Table I we summarize the values of
the parameters λ0 ¼ λðμ0Þ and m0 ¼ mðμ0Þ used for the
comparison with lattice data for different gauge groups.
The values of the gluon masses are comparable with those
found by other methods, see, e.g. [58]. A more quantitative

comparison would require using the same renormalization
scheme.

C. SUð3Þ
With the set of parameters given in Table I, we obtain the

propagators depicted in Fig. 6, where we represent the two-
loop results for the gluon propagator, gluon and ghost
dressing functions in comparison with lattice data and the
one-loop calculation. We include the plots for both the
gluon propagator and the gluon dressing function since the
first one yields a better comparison in the deep infrared
while the second has better resolution for intermediate
momenta.
The agreement between lattice data and perturbation

theory is considerably improved when the two-loop cor-
rections are added and the error is reduced by a factor 2. For
the two-loop results, the error is less than 5%. At a more
qualitative level, we observe that the two-loop results
reproduce the gluon dressing function with great accuracy
while providing a better fit for the ghost propagator.
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FIG. 5. Level curves for the error χ for the two-loop correction
(left) and one-loop correction (right) in SUð3Þ (top) and SUð2Þ
(bottom) all in d ¼ 4 and renormalized using the IS scheme.
From dark to light, the different regions correspond to 4%, 5%
and 6% (top left); 7%, 8%, 9% and 10% (top right); 6%, 7% and
8% and 10% (bottom left); 7%, 8%, 9% and 10% (bottom right).

TABLE I. Parameters used in our calculations with the IS
scheme, which correspond to the minimum of the error χ.

SUðNÞ Two loops One loop

λ0 m0 (GeV) χ λ0 m0 (GeV) χ

SUð3Þ 0.27 0.33 4% 0.24 0.35 7%
SUð2Þ 0.38 0.39 6% 0.36 0.43 7%
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In Fig. 7, we represent the running gluon mass and the
squared coupling constant λ as a function of the momentum
scale. This figure shows that there is a sizeable difference
between the one-loop and two-loop results, but only in a
rather small range of momentum. Moreover, as discussed in
[27] the relevant expansion parameter within this model is
not λ itself. Indeed in the deep infrared all the interactions
are mediated by a gluon propagator, which is massive. A
better measure of the relative importance of the different
terms in perturbation theory is

λ̃ðμÞ ¼ g2Nc

16π2
μ2

μ2 þm2ðμÞ : ð33Þ

We can see, in Fig. 8, that the relevant expansion parameter
does not change much from one loop to two loops and in
particular it remains less that 0.4.
It is interesting to observe that the typical error of the

one-loop and two-loop calculations are not too far from
0.42 and 0.43, which gives a strong indication that λ̃ is
indeed a good measure of the convergence of perturbation
theory.
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FIG. 6. Comparison with lattice data from [55] for the gluon
propagator (top), gluon dressing function (middle) and with
lattice data from [56] for the ghost dressing function (bottom), in
four dimensions and for the SU(3) gauge group.
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FIG. 7. Renormalization-group flow of the coupling constant
(top) and mass (bottom) for the SUð3Þ gauge group, in the IS
scheme.
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FIG. 8. Expansion parameter λ̃ðμÞ [see Eq. (33)] as a function
of the renormalization-group scale for SUð3Þ.
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We mention finally that, as discussed in Ref. [57], λ̃ðpÞ
corresponds in fact to the Taylor coupling7

λ̃ðpÞ ¼ λ0p2Gðp; μ0ÞF2ðp; μ0Þ; ð34Þ

which is used in both lattice and continuum studies [10,19].
Up to multiplication by a factor 4π=Nc, it gives the
corresponding αsðpÞ which we display in Fig. 9 at one-
and two-loop order in our approach, as compared to the
lattice results of [56]. It is to be noted that a direct
comparison (upper plot) is not really meaningful since
the Taylor coupling (34) involves not only the gluon and
ghost propagators but also the value of the running
coupling at the initial UV scale μ0. Even though we are
able to find good fits for the propagators, there is no reason
why the exact value of the coupling in the UV would be
reproduced by our fixed loop order calculations. For this
reason, we have also considered implementing a correction
factor “a” to be applied to αSðμ0Þ (disregarding possible
uncertainties from the lattice). When implementing this

recipe, we find the result in the lower plot of Fig. 9, which
shows some apparent convergence, with a correction factor
at μ20 ¼ 10 GeV2 changing from the value 0.68 at one loop
to the value 0.76 at two loops (a correction factor equal to
one meaning that no correction factor needs to be applied).
We note also the qualitative agreement of our results with
the holomorphic reconstruction of αs put forward in [59].8

D. SUð2Þ
We can easily extend our study to the SUð2Þ case. The

one-loop case was studied in [22] and it was observed
that the agreement with lattice data was less satisfactory
than for SUð3Þ. This can be understood because the
coupling constant seems to be roughly 30% larger than
for SUð3Þ, as can be seen in Fig. 10. Using two loops
corrections, we find parameters that give accurate results
for both propagators at the same time. Those parameters
considerably improve the fitting for gluon and ghost
dressing functions as is shown in Fig. 11.

E. Scheme dependence

The IR safe renormalization-group scheme that we used
in this study has several nice properties but is just one
scheme among infinitely many. Of course, in an exact
calculation, the physical results would not depend on the
choice of scheme but this property is not maintained when
we perform an approximation, such as a perturbative
expansion.
In [22,23] we studied the dependence of the Yang-Mills

propagator with the renormalization scheme. We compared
the results obtained in the IS scheme with the those
obtained in the vanishing-momentum scheme (VM), which
differs from the IS scheme by changing the condition of
Eq. (5) by

Gðp ¼ 0Þ ¼ 1

m2
: ð35Þ
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FIG. 9. The strong coupling constant in the Taylor scheme. The
data points are those of Ref. [57]. The dashed and plain lines
correspond to our one-loop and two-loop results, respectively. In
the lower plot, a correction factor is applied to the value of αS in
the UV; see the main text for more explanations.
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FIG. 10. Expansion parameter λ̃ðμÞ [see Eq. (33)] as a function
of the renormalization-group scale for SUð2Þ.

7One should rewrite λ0Gðp; μ0Þ as λ̃0ð1þ m̃2ðμ0ÞÞGðp; μ0Þ
where λ̃0 is the Taylor coupling at the initial UV scale μ0 and
ð1þ m̃2ðμ0ÞÞGðp; μ0Þ is the propagator in the Taylor scheme,
equal to 1=μ20 when p ¼ μ0.

8We thank Gorazd Cvetic for pointing out this reference to us.
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This renormalization scheme is not infrared safe so it
reaches a Landau pole at low momentum. As a conse-
quence, we cannot evaluate, as in the IS scheme, equa-
tion (10) at the renormalization scale μ ¼ p. Instead, we

use μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ αm2

0

p
where α is a constant. This choice is

sufficient to avoid large logarithms. The conclusion of this
study was that the difference between the results obtained
in the IR scheme and the VM scheme were of the same
order as the difference between lattice simulation and the
one-loop calculation.
In this section, we perform again this comparison with

our two-loop results. We will use the values α ¼ 1 and
α ¼ 2. The optimal parameters for the coupling constant
and the mass are presented in Table II.
In Fig. 12, we analyze the dependence in the renorm-

alization scheme by comparing our results computed in the
IS scheme, and in the VM scheme for α ¼ 1 and α ¼ 2. We
can see that the dependence on the scheme for one-loop
results in SUð3Þ is small. Still, as expected, two-loop
results reduce this dependence as it is shown in Fig. 12.
In order to measure quantitatively the difference between

schemes we compute the error with respect to the IS
scheme, H, defined as

HðαÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
i

ðηVMðαÞðpiÞ − ηISðpiÞÞ2
η2ISðpiÞ

s

where η represents the gluon or ghost dressing functions
and N the number of lattice points. In Table III, we
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FIG. 11. Comparison with lattice data from [31] for the gluon
propagator (top), gluon dressing function (middle) and ghost
dressing function (bottom) in four dimensions and SUð2Þ.

TABLE II. Parameters used in our calculations in the VM
scheme in SUð3Þ, which minimize the error χ.

Two loops λ0 m0 (GeV)

VM α ¼ 1 0.39 0.50
VM α ¼ 2 0.36 0.50

One loop λ0 m0 (GeV)

VM α ¼ 1 0.36 0.50
VM α ¼ 2 0.42 0.50
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FIG. 12. Comparison with lattice data from [56] for the gluon
dressing function in four dimensions and SUð3Þ using different
schemes at two loops (top) and one loop (bottom).
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summarize the values of H for gluon and ghost dressing
functions using one-loop or two-loops results.

VI. CONCLUSIONS

In this article, we have computed the propagators of the
gluons and ghosts at two-loop order in the Curci-Ferrari
model, in the quenched approximation. These were com-
pared with the available lattice simulations, both for SUð2Þ
and SUð3Þ gauge groups. The gluon mass is seen as a
phenomenological parameter, which is fitted to obtain the
best agreement with the lattice data. The two-loop calcu-
lations significantly improve the fits for the SUð3Þ group.
With a unique set of fitting parameters, we obtain a maximal
error of a few percent on the gluon and ghost propagators. In
the SUð2Þ case, we also find an improvement of the
precision, but which is less significant. This can be traced
back to the fact that the interaction is bigger in SUð2Þ than
in SUð3Þ.
This study gives strong indications that the Curci-Ferrari

model is indeed a good phenomenological model for
describing the correlation functions of QCD in the
quenched approximation. We stress that it is a nontrivial
result that two-loop results reproduce better lattice simu-
lations than the corresponding ones at one-loop order.
Indeed, it could happen that, adding more and more loops,
we obtain correlation functions that converge to results very
different from the lattice results. This possibility seems to
be excluded by our analysis. Moreover, it justifies a pos-
teriori that a good estimate of the infrared contributions of
higher loops is given by the square of the coupling constant,
divided by the typical momentum squared [see Eq. (33)]

(up to multiplicative factors). This is an important effect,
which ensures the convergence of perturbation theory in the
deep infrared regime.
Following the same procedure, a calculation of the quark

propagator could be performed. The situation is more
complex in this case because two masses are present, those
of the quark and the gluon, leading to an increase in the
number of master integrals appearing in the expressions.
This calculation is interesting because the renormalization
factor of the quarks receives no correction at one loop in the
Landau gauge. In this situation, we expect the two-loop
contribution to have a significant influence on the results.
For higher point vertices, the calculations become signifi-
cantly more complex. In particular, while the Laporta
algorithm will decompose Feynman diagrams to master
integrals, full analytic expressions for massive two-loop n-
point masters are not known. This could be circumvented
by considering n-point vertices with n − 2 vanishing
external momenta.
Alternatively, one could compute power corrections,

such as m2

p2 , to the full two-loop vertex functions with

non-nullified external legs in order to compare with lattice
results in intermediate momentum ranges. This would
provide an interim study of when mass effects become
apparent ahead of when the fully two-loop technology
becomes available.
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